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Abstract. Organisms can evolve and produce different phenotypes in respond to local environmental conditions. Abi-
otic factors, such as water volume and food diversity in breeding ponds, also play significant roles in the survival and 
age at metamorphosis of amphibians. Here, we experimentally examined the plasticity of growth rate, survival rate, 
larval mass, age, and body size at metamorphosis in Bufo gargarizans gargarizans in response to varying combina-
tions of water volume and food diversity. The interaction between water volume and food diversity had no effect on 
larval growth and development. However, food diversity had a significant impact on the age at metamorphosis, with 
two food resources resulting in a shorter larval period and earlier metamorphosis, particularly in larger water vol-
umes. Our findings demonstrated that tadpoles raised in larger water volumes had larger body sizes at metamorphosis 
compared to those in smaller water volumes. Additionally, tadpoles in larger water volumes exhibited higher growth 
rates and shorter larval periods than those in smaller water volumes. We suggest that the increased frequency of phys-
ical encounters between tadpoles and the vessel walls in smaller volumes, akin to high-density conditions, causes psy-
chological stress due to crowding, which hinders larval growth and development.

Keywords. Bufo gargarizans gargarizans, water volume, food diversity, phenotypic plasticity, metamorphic size.

INTRODUCTION

Organisms have the ability to adapt to specific envi-
ronmental conditions by changing their phenotype (Pig-
liucci, 2001; DeWitt and Scheiner, 2004). Biotic factors 
such as population density (Kehr et al., 2014), competi-
tion, and predation can impact the composition of tad-
pole populations (e.g., tadpole size, developmental stage, 
distribution, richness, and diversity). Additionally, abiotic 
factors like hydroperiod, habitat size, or water volume 
can affect the survival and timing of metamorphosis in 
amphibians (Semlitsch et al., 1996; Wilbut, 1997).

For organisms with complex life cycles, such as 
amphibians, the growth and developmental rate of the 
larval stage can change according to different environ-

mental conditions (Richter-Boix et al., 2011). Although 
excessive water volume can reduce the growth of certain 
species (Pearman, 1993; Kehr et al., 2014), growth rates 
increase with larger absolute water volume in most cases 
(Pearman, 1993; Montealegre-Delgado et al., 2013). Sev-
eral studies have examined the potential impact of abi-
otic factors, such as habitat space or water volume, on the 
density effects (biotic factor) in organisms. As a result, 
the crowding effect caused by high population density 
often reduces the growth and development of larvae 
(Smith-Gill and Berven, 1979; Semlitsch and Caldwell, 
1982; Relyea and Hoverman, 2003). To date, four pri-
mary factors have been suggested to explain the decrease 
in individual growth and the lengthening of the larval 
period. These factors include a decrease in food ration 
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(Wilbur, 1977; Hota and Dash, 1981), competition for 
limited food resources (Brockelman, 1969; Wilbur and 
Collins, 1973; DeBenedictis, 1974), social interactions 
(Gromko et al., 1973), and stress (Lynn and Edelman, 
1936; John and Fenster, 1975).

Most anuran tadpoles are herbivorous or omnivorous, 
but there are a few that are carnivorous and cannibalistic 
(Kamat, 1962; Costa and Balasubramaniam, 1965; Sab-
nis and Kolhatkar, 1977; Sabnis and Kuthe, 1978; Sekar, 
1992; Altig et al., 2007). For instance, Bufo stomaticus lar-
vae showed optimal growth when provided with a diet 
containing a combination of animal and plant proteins. 
However, when these larvae were only provided with 
goat meat, their growth rate declined, and the timing of 
metamorphosis was delayed (Saidapur, 2001). Similarly, 
Bufo melanostictus larvae showed comparable growth 
rates when fed a diet of spinach and Chironomous larvae. 
However, their growth was stunted and metamorphosis 
was delayed when provided with only Chironomous larvae 
(Sabnis and Kuthe, 1978). This suggests that competition 
among larvae may be reduced when multiple food sources 
are available in breeding sites, allowing individuals to uti-
lize alternative resources (Martin and Garnett, 2013).

Extensive studies have been conducted on the rela-
tionships between crowding and growth rates (Goetsch, 
1924; Gromko et al., 1973; Steinwascher, 1978; Fixari III 
et al., 2017), but little attention has been paid to the impact 
of confining solitary tadpoles and the potential effects of 
water volume and food diversity on tadpole growth and 
development. In this study, we investigated the potential 
interactive effects of food diversity and water volume on 
the plasticity of metamorphic traits in Bufo gargarizans 
gargarizans, including the length of larval period, survival, 
the size at metamorphosis, and growth rate.

MATERIALS AND METHODS

Field procedures

Bufo gargarizans gargarizans exhibits sexual dimor-
phism and has a wide distribution in East Asia. They 
are explosive breeders (Wells, 2007), typically breeding 
between 6 to 14 days (Yu and Sharma, 2012) and tad-
poles hatch after two weeks. Ponds used as breeding sites 
are often rich in Spirogyra and pondweed (e.g., Pota-
mogeton crispus), which serve as a food source for tad-
poles (Wei et al., 2011).

During the peak breeding period in mid-February 
2018, we captured 5 mating pairs of B. g. gargarizans in 
Shihe County (32°08’39”N, 114°02’37”E, altitude 84 m), 
central plains of China. Each pair was then placed indi-
vidually in a plastic container (20 L) filled with approx-

imately 12-15 cm of pond water until females laid their 
eggs. Once the oviposition process was completed, we 
collected 50 eggs from each of the 5 egg masses. All eggs 
were placed separately into five plastic containers (5 L) 
filled with approximately 10 cm of tap water. Tap water 
has been previously stored in two large buckets (100 L) 
for several days before use. After the breeding was fin-
ished, we transported all toads and the remaining eggs 
back to their original spawning site.

Laboratory procedures

We employed a randomized block design to test 
the effect of food diversity (two food resources: Pota-
mogeton crispus and fish food with high protein content 
(>45%), lipids (>12%), algae (>12%), fiber (>4%), and 
ash (<10%); single food resource: P. crispus), and water 
volume (250 mL, 500 mL, 2000 mL, 8000 mL) on the 
growth and development of B. g. gargarizans tadpoles. 
Each tadpole (Gosner stage 25, absorption of external 
gills and formed spiracle, Gosner, 1960) was placed indi-
vidually in a series of numbered opaque tanks. A total 
of 120 tanks were used, with the tank diameters ranging 
from approximately 9.49 cm to 26.99 cm, representing 
the four different water volumes. Water temperature was 
recorded using a mercury thermometer.

The experiment was conducted using 120 tanks, 
with each of the eight treatment combinations replicated 
15 times. In each treatment combination, three tadpoles 
from the same families were used to diminish intra-spe-
cific competition in accordance with the principles of kin 
selection theory. Then, olfactory cues were provided dur-
ing the larval period (before Gosner stage 43) by adding 
25-800 mL of water from other families when changing 
water, minimizing maternal influence. Throughout the 
study period, tadpoles were subjected to a 13L:11D pho-
toperiod. The room temperature was maintained at 27.72 
± 1.12 °C, and any temperature variations were consistent 
across all parts of the experiment. To ensure cleanliness, 
we used a plastic straw to remove faeces and excess food 
from the tanks once a day prior to feeding. In smaller 
containers (250 mL and 500 mL), half of the water was 
replaced twice a week. For the 2000 mL containers, water 
replacement occurred once a week, while for the 8000 
mL containers, it was done biweekly. 

When the first metamorph (Gosner stage 42) was 
observed, tanks were checked daily. All metamorphs were 
then carefully collected and placed individually in plas-
tic vials with sand and 1 mm of water until the end of 
metamorphosis (Gosner stage 46). We measured five var-
iables. The length of the larval period was determined by 
counting the number of days from the beginning of the 
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experiment until Gosner stage 42. Mass at metamorpho-
sis was measured using a balance (to the nearest 0.001 
g), and snout-vent length (SVL) was measured using a 
digital caliper (to the nearest 0.01 mm). Growth rate was 
calculated by dividing the mass at metamorphosis by the 
age at metamorphosis (Gosner stage 42), and the survival 
rate was determined by calculating the percentage of tad-
poles that successfully underwent metamorphosis.

Data analysis

We analyzed the length of the larval period, SVL, 
mass at metamorphosis, and growth rate using univari-
ate two-way ANOVAs with type III sum of mean squares, 
treating water volume, food diversity, and their interac-
tion as fixed factors. We also used a log-linear model to 
examine the survival rate. In cases where the univariate 
two-way ANOVAs yielded significant results, we per-
formed ANOVAs or one-way ANOVAs with post-hoc 
comparisons (Fisher’s LSD) to assess differences between 
water volume or food diversity. However, given the non-
significant findings from the log-linear model, no further 
analyses were performed to investigate differences in sur-
vival rates across water volume or food diversity. Statis-
tical analyses were conducted using IBM SPSS Statistics 
20.0 (IBM Corp, Armonk, NY, USA).

RESULTS

The effects of water volume and food diversity on the 
length of the larval period were significant (Table 1). How-

ever, their interaction was not significant (Table 1). Tad-
poles raised at 8000 mL took less time to metamorphose 
than those raised at other volumes (Fisher’s LSD’s post hoc 
tests, all P < 0.001, Fig 1), while no difference was found 
across other water volume treatments (all P > 0.060). Tad-
poles feeding on two resources reached metamorphosis 
earlier than those raised at single-resource treatments (P = 
0.028 for all 1 of 4 LSD’s post hoc tests, Fig 1). 

The mass at metamorphosis was significantly influ-
enced by water volume (Table 1, Fig. 1). However, there 
was no significant impact of food diversity or the interac-
tion between water volume and food diversity (Table 1). 
Tadpoles reared in 8000 ml and 2000 ml had significantly 
larger mass at metamorphosis compared to those raised 
in 250 mL and 500 mL (all P < 0.001), but not between 
8000 mL and 2000 mL (P = 0.807) or 250 mL and 500 
mL (P = 0.992).

Water volume significantly affected SVL at meta-
morphosis (Table 1, Fig. 1), but food diversity, as well as 
water volume × food diversity interaction, did not (Table 
1). The SVL of tadpoles reared at 8000 ml and 2000 ml 
was significantly larger at metamorphosis compared to 
those reared at 250 mL and 500 mL (all P < 0.003). How-
ever, there was no significant difference in SVL between 
tadpoles reared at 8000 mL and 2000 mL (P = 0.904), or 
between those reared at 250 mL and 500 mL (P = 0.777).

In addition to water volume (Table 1, Fig.1), food 
diversity, as well as the interaction between water vol-
ume and food diversity did not significantly affect growth 
rate (Table 1). Tadpoles raised at 8000 mL had a greater 
growth rate than those raised at other treatments (all P 
< 0.038, Fig. 1), while tadpoles raised at 250 mL and 500 

Table 1. Two-way ANOVA tables for the effects of water volume and food diversity on metamorphic traits in a Bufo gargarizans gargari-
zans population.

Response variable Source of variation df MS F-value P-value

Length of larval period Water volume 3 100.014 16.594 <0.001
Food diversity 1 30.539 5.067 0.027
Water volume × Food diversity 3 12.225 2.028 0.115  
Error 94 6.027

SVL Water volume 3 4.92 7.306 <0.001 
Food diversity 1 0.5 0.742 0.391
Water volume × Food diversity 3 0.532 0.79 0.502
Error 94 0.673

Body mass Water volume 3 0.015 19.447 <0.001
Food diversity 1 <0.001 0.044 0.835
Water volume × Food diversity 3 0.0004 0.561 0.642
Error 94 0.001

Growth rate Water volume 3 20.244 32.709 <0.001 
Food diversity 1 0.391 0.631 0.429
Water volume × Food diversity 3 0.46 0.743 0.529
Error 94 0.619
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mL had a smaller growth rate than those raised at 2000 
mL (both P < 0.001), but not between 250 mL and 500 
mL (P = 0.809).

Water volume and food diversity did not affect sur-
vival at metamorphosis (water volume, Z = -0.97, P = 
0.330; food diversity, Z = -0.57, P = 0.571), neither the 
interaction between water volume and food diversity (Z = 
0.83, P = 0.405, Fig. 1).

DISCUSSION

Increasing the absolute volume of water increases the 
growth and developmental rate of tadpoles (Gromko et 
al., 1973; Golay and Durrer, 1994; Smith, 1998; Durnin 
and Smith, 2001; Kehr et al., 2014). Our study found that 
single tadpoles reared in larger water volume had a larger 
body size at metamorphosis compared to those raised in 

Fig. 1. Influences of water volume and food diversity on (A) age at metamorphosis, (B) SVL, (C) body mass, (D) growth rate and (E) sur-
vival of Bufo gargarizans gargarizans (black circles, two resources; open circles, single resource; Error bars indicate standard errors).
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smaller water volume. Additionally, our results demon-
strated that single B. g. gargarizans tadpoles raised in larg-
er water volume grew at a higher rate and had a shorter 
larval period than those raised in smaller water volume. 
Previous studies have also shown that smaller water vol-
ume decreased tadpole growth (Smith, 1998; Durnin and 
Smith, 2001), which is consistent with our results. 

In this study, all tadpoles were individually placed in 
opaque glass beakers and received the same amount of 
food, suggesting that the effects of water volume could 
occur independently of food limitation, chemical accu-
mulation, and social interactions. These findings sup-
port the idea that mechanisms operating in smaller 
water volumes can lead to crowding effects. One of the 
mechanisms responsible for the effects of water volume 
is an increase in the number of collisions among indi-
viduals confined to limited volumes, which in turn leads 
to a decrease in growth or development rates (John and 
Fenster, 1975; John and Fusaro, 1981; Rot-Nikcevic et 
al., 2005; Fixari III et al., 2017). Nevertheless, in our 
experiment there was an increased possibility of physi-
cal contact between tadpoles and vessel walls due to the 
smaller water volume. Additionally, we observed higher 
activity levels in tadpoles in smaller water volumes. This 
increased activity can be attributed to the increased colli-
sions and agitation, resulting in an expenditure of energy 
(Rugh, 1934). Crowding diminishes the appetite of tad-
poles and leads to slower growth (Adolph, 1931). There-
fore, we suggest that the frequency of physical encounters 
between tadpoles and the vessel walls may cause psycho-
logical stress due to crowding (John and Fenster, 1975).

The surface area played a crucial role in restricting 
growth by regulating the availability of oxygen. Likewise, 
Yung (1885) discovered that tadpoles attained a larger 
size in tanks with a greater surface area. In this study, the 
surface and bottom areas of the container increase pro-
portionally with the increase in container volume, but 
we speculated that the oxygen levels in smaller contain-
ers may not have been sufficient to restrict growth or had 
minimal inhibitory effects due to the increased frequency 
of water changes as the tank volume decreased. Addition-
ally, in tanks with smaller water volumes, but with the 
same number of tadpoles, there was a higher accumula-
tion of fecal material on the tank bottom, which could 
potentially impact growth (Podhradsky, 1932; Adolph, 
1931). In this case, we employed plastic straws to clean 
up feces once a day throughout the experiments, thus 
minimizing the potential impact of feces on growth. 

While the interaction between water volume and 
food diversity did not impact larval growth and develop-
ment, we found that food diversity plays a significant role 
in determining the length of the larval period. Specifically, 

larger bodies of water with two food resources resulted in 
a shorter larval period and earlier metamorphosis. Within 
natural populations, tadpoles that undergo early metamor-
phosis can escape pond drying and predators (Loman, 
2002). Additionally, they acquire a larger body size before 
hibernation, increasing their chances of survival during the 
longer winter period (Valenzuelasanchez et al., 2015).

In conclusion, both water volume and food diver-
sity had an impact on larval growth and development, 
but these factors acted independently. The small volume 
of water had a more pronounced effect on limiting lar-
val growth and development compared to food diversity. 
This could be attributed to the increased physical encoun-
ters between tadpoles and vessel walls, resulting in stress 
from crowding or psychological factors. Additionally, the 
crowded conditions in a small volume of water could lead 
to limited oxygen supply, which may be a secondary fac-
tor in reducing larval growth. Further studies are needed 
to explore the amount of available oxygen and gain a bet-
ter understanding of its role in this process.
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