

Study of the anatomy and histology of the female reproductive system of the Asian snake-eyed skink, *Ablepharus pannonicus* (Sauria: Scincidae)

OMID HEIRANI, RASOUL KARAMIANI, MEHRI AZADBAKHT

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.

Please cite this article as:

10 Heirani, O., Karamiani, R., Azadbakht, M. (2026): Study of the anatomy and histology of the
11 female reproductive system of the Asian snake-eyed skink, *Ablepharus pannonicus* (Sauria:
12 Scincidae). *Acta Herpetol.* **21**. doi: 10.36253/a_h-16392

13 **Study of the anatomy and histology of the female reproductive system of the Asian**
14 **snake-eyed skink, *Ablepharus pannonicus* (Sauria: Scincidae)**

15 OMID HEIRANI¹, RASOUL KARAMIANI^{1,*}, MEHRI AZADBAKHT¹

16 ¹Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran

17 *Corresponding author. Email: r.karamiani@razi.ac.ir

18 Submitted on 2024, 25th July; revised on: 2025, 16th December; accepted on: 2025, 17th
19 December

20 Editor: Andrea Gazzola

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract.** This study examines and contrasts the anatomy and histology of the female
33 reproductive system in *Ablepharus pannonicus*, a member of the Scincidae family, across the
34 spring and autumn seasons. Female specimens of *A. pannonicus* were collected from the
35 northern slopes of the Shorkhah Dizah village (34°23'49.1"N 46°03'15.1"E), located 125 km
36 west of Kermanshah Province in western Iran. After anaesthesia, the specimens were dissected
37 in the laboratory, and their reproductive systems were processed for tissue analysis, using serial
38 sections stained with Hematoxylin and Eosin for detailed histological examination. The
39 findings indicate that during the spring, the ovaries of *A. pannonicus* contain all stages of
40 follicular development, including primordial, mature, and ovulation-ready follicles. In contrast,
41 the autumn samples predominantly exhibit primordial or preovulatory follicles, with a notable
42 absence of mature follicles. These observations suggest a seasonal reproductive pattern in
43 female *A. pannonicus*, characterized by significant morphological changes and heightened
44 activity within the ovaries and genital tracts during spring. As the ambient temperature drops
45 and the reproductive season concludes, gonadal size and activity decrease, leading to the
46 absence of reproductive activity in autumn. It is hypothesized that during this period, the
47 animals engage in feeding and fat storage in preparation for hibernation.

48

49 **Keywords.** reproductive cycle, *Ablepharus pannonicus*, reproductive system, ovary

50

51

52

53

54 The exploration of reproductive diversity among lizards offers a rich tapestry of biological
55 phenomena for scientific inquiry. These reptiles display a remarkable array of reproductive
56 strategies: from oviparity to viviparity, prolific to sparse offspring production, and varied levels
57 of parental investment. Some species are known to lay eggs immediately post-shell formation,
58 while others retain shelled eggs for prolonged periods before laying. Remarkably, viviparity
59 has independently evolved numerous times within squamates, and certain species even exhibit
60 parthenogenesis. These reproductive variations offer a glimpse into the captivating complexity
61 of lizard reproductive ecology (Rheubert et al., 2014).

62 Lizards typically exhibit one of three reproductive cycles: constant, associated, or
63 dissociated. The constant cycle is characterized by nearly year-long gonadal activity. In
64 contrast, the associated and dissociated cycles feature a discontinuous mating season. The
65 associated cycle is marked by a surge in gonadal activity just before the mating season,
66 synchronously in both sexes, obviating the need for sperm storage due to its ready availability
67 (Censky, 1995; Huang, 1997). Conversely, the dissociated cycle is defined by diminished
68 gonadal activity during the mating season, with a peak in the non-mating period. Notably, male
69 gonadal activity is briefer compared to females, necessitating the storage of sperm within the
70 female reproductive tract for subsequent fertilization (Torki, 2006).

71 The oviductal structure in lizards exhibits a conserved morphology, characterized by three
72 distinct regions identifiable across species. These regions, extending from the caudal to the
73 cranial end, comprise the nonglandular uterus—commonly referred to as the vagina—the
74 glandular uterus, typically known as the uterus, and the infundibulum (Siegel et al., 2011).
75 Female lizards possess bilateral oval ovaries anchored to the dorsal body wall via a slender
76 mesovarium. The ovarian cortex is surrounded by the tunica albuginea, and is lined by a simple
77 squamous epithelium (Klosterman, 1983; Guraya, 1989). Oogenesis occurs within the germinal
78 beds situated dorsally on the ovary, proximal to the mesovarium. These beds harbor

79 proliferating oogonia, undifferentiated somatic cells, oocytes encased by a few somatic cells,
80 and primary follicles (Jones and Guillette, 1982; Klosterman, 1983). The ovarian follicles,
81 serving as the functional units of the ovary, are organized into a hierarchical structure, including
82 primordial, primary, secondary, previtellogenetic, vitellogenetic, and preovulatory follicles. This
83 follicular hierarchy is a well-defined feature of reptilian ovarian architecture (Guraya, 1989;
84 Etches and Petitte, 1990).

85 The skink *Ablepharus pannonicus* (see Fig. S1) inhabits a range of environments
86 including semi-desert and desert areas, steppe habitats, and mountainous terrains. Its
87 geographical distribution extends from the Middle East to Central and South Asia, covering
88 countries such as Iraq, Iran, Jordan, Syria, Afghanistan, Pakistan, India, Kyrgyzstan, and
89 Uzbekistan (Karamiani, 2018). Despite the breadth of studies on various aspects of this species,
90 there is a notable gap in the literature regarding the anatomical and histological characterization
91 of the female reproductive system. Addressing this lack of information, the present study
92 provides the first detailed description of the anatomy and histology of the female reproductive
93 system of *A. pannonicus*, offering insights into a previously unexplored aspect of this widely
94 distributed lizard.

95 This research was conducted in the natural surroundings of the village of Shorkhah Dizah
96 (34°23'49.1"N 46°03'15.1"E), located 125 km west of the city of Kermanshah, in Kermanshah
97 Province, western Iran. Sampling was conducted in the spring (April–May) and autumn
98 (October–November) of 2021, with four adult female specimens of *A. pannonicus* collected in
99 each season. These two sampling periods were selected to capture contrasting reproductive
100 stages: spring representing peak ovarian activity and autumn reflecting a regressed state,
101 consistent with seasonal reproductive patterns reported in scincid lizards (Sever and Hopkins,
102 2004; Vergilov et al., 2018). According to long-term climate normals (1981–2010) reported by
103 the Iran Meteorological Organization (IRIMO), average temperatures in the study area range

104 from 15–22 °C in spring and 9–17 °C in autumn. Rainfall is moderate in spring but substantially
105 lower in autumn (Iran Meteorological Organization, 2021).

106 Upon arrival at the laboratory, the specimens underwent anaesthesia using diethyl ether-
107 soaked cotton. Subsequently, we euthanised them through intracoelomic injection of sodium
108 pentobarbital, following the animal care guidelines approved by Southeastern Louisiana
109 University Animal Care and Use Committee (Rheubert et al., 2020). Next, we meticulously
110 recorded morphometric parameters, including snout–vent length (SVL) and body mass. A
111 longitudinal incision was made on the ventral surface of the specimens, allowing for the
112 removal of the digestive tract. This surgical approach exposed the reproductive system, which
113 we then photographed for subsequent analysis. The entire oviductal tract was carefully dissected
114 and weighed using a digital analytical balance. Using this data, we calculated the
115 gonadosomatic index (GSI), providing a quantitative measure of reproductive investment
116 (Jacobson, 2007). The GSI was calculated as $GSI = (\text{ovary weight} / \text{body weight}) \times 100$,
117 reflecting the proportional reproductive investment of each individual. After the oviductal tract
118 was removed from the lizard's body, the samples were immediately placed in 10% formalin for
119 72 h. Subsequently, the samples were dehydrated in a series of ethanol solutions: 60% for 60
120 min, 70% for 30 min, 80% for 30 min, and 96% for 120 min. For clearing, the samples were
121 placed in three containers containing xylene, each for 30 min. The samples were then embedded
122 in paraffin in an incubator set at 58°C. In this step, three containers of paraffin were used, and
123 the capsules containing the tissue samples were placed in each container for 120 min to allow
124 the paraffin to replace the xylene in the tissue. L-shaped metal molds, known as Leuckhard
125 molds, were used for molding. The mold was adjusted to the appropriate size, and molten
126 paraffin was then poured into the mold. The samples were subsequently placed vertically inside
127 it. In the next step, the blocks were separated from the mold, resulting in a molded block for
128 each individual. A rotary microtome (CUT SLEE 4060) was used to obtain transversal and

129 longitudinal sections from paraffin blocks containing the entire oviductal tract. Sections were
130 prepared from multiple regions along the tract, and representative slides were selected for
131 histological analysis. The sections were stained using hematoxylin-eosin staining (Suvarna et
132 al., 2018).

133 The female reproductive system in *Ablepharus pannonicus* comprises a pair of ovaries
134 and an oviduct. The oviducts traverse past the kidneys and terminate in the cloaca (Fig. 1A, B).
135 The ovaries are situated within the abdominal cavity as whitish glandular structures, attached
136 to the dorsal wall by the mesovarium. The ovarian surface exhibits small and large protrusions
137 due to the presence of follicles at various stages of maturity. Each ovary is enveloped by a thin
138 covering known as the tunica albuginea. During the spring, all types of follicles (especially
139 vitellogenic and preovulatory follicles) are observable in the ovarian sections (Fig. 1C).
140 However, in autumn samples, mature follicles are scarce, and the predominant follicles are in
141 the primary, secondary, or previtellogenic stage (Fig. 1D).

142 Microscopic examination of the previtellogenic follicle wall reveals at least two distinct
143 cell types—large and small cells (see Fig. S2). The ovarian and body weight data, and
144 gonadosomatic index data collected from each season are presented in Table S1. No notable
145 structural differences were observed in the oviductal anatomy or histology between spring and
146 autumn specimens. Moving along the oviduct, the most anterior portion is referred to as the
147 infundibulum. The epithelial cells lining its proximal region exhibit a squamous to cuboidal
148 morphology. Toward the distal region, the cellular height increases, culminating in a cylindrical
149 form. Notably, certain cells in the distal infundibulum display abundant cilia (Fig. 2A, B).

150 The glandular uterus constitutes the central segment of the oviduct in *A. pannonicus*. Its
151 wall is densely populated with mucous glands, which are acinar in configuration and embedded
152 within the tissue. The predominantly columnar cells of these glands play a crucial role in
153 eggshell formation through their secretions (Fig. 2C, D).

154 The most posterior region of the oviduct is the non-glandular uterus, connecting the
155 glandular uterus to the urodeum of the cloaca. In this area, numerous crypts are present, their
156 abundance increasing as one approaches the cloacal urodeum (see Fig. 3 and Fig.S3).

157 Unlike the glandular uterus, this region lacks secretory glands, allowing for clear
158 demarcation (see Fig. 4). The number of Germinal Beds (GBs) per ovary exhibits both intra-
159 and inter-specific variation, ranging from one to six among lizard species (Jones et al., 1979;
160 Radder et al., 2008). Studies have posited a correlation between the number of GBs per ovary,
161 clutch size, and breeding frequency. Jones and Guillette (1982) identified a pattern linking the
162 number of GBs to clutch size. Typically, species that undergo monoallochronic ovulation—
163 ovulating a single egg alternately from each ovary, as seen in the Dactyloidae family (Jones et
164 al., 1979)—and those with low fixed clutch sizes and monoautochronic ovulation—releasing a
165 single egg simultaneously from both ovaries, such as in Gekkota (Jones and Summers, 1984)
166 and Gymnophthalmidae (Vitt, 1982)—possess one GB per ovary. Conversely, species with high
167 fecundity, characterized by polyautochronic ovulation and multiple large clutches, exhibit two
168 or more spatially distinct GBs in each ovary (Radder et al., 2008). In all *A. pannonicus*
169 specimens examined during the spring, GBs were indistinct. However, the presence of a single
170 follicle poised for ovulation in both ovaries suggests a monoallochronic ovulation pattern.

171 Within the walls of previtellogenic follicles in certain lizards, granulosa cells of varying
172 types are discernible. For instance, in *Ablepharus kitaibelii*'s previtellogenic follicles, three
173 granulosa cell types—small, large, and pyriform—are identifiable (Vergilov et al., 2018). In
174 this study, two cell types—large and small—were observed in *A. pannonicus*'s previtellogenic
175 follicle walls, yet pyriform cells were absent.

176 In species like *Eumeces egregius* (Schaefer and Roeding, 1973) and *Scincella lateralis*
177 (Sever and Hopkins, 2004), the non-glandular uterus contains numerous ciliated crypts
178 functioning as sperm storage sites. Examination of the non-glandular uterus of *A. pannonicus*

179 revealed numerous crypts, similar to those reported in the species mentioned above. However,
180 no sperm was detected in specimens collected during either spring or autumn. This absence may
181 reflect phylogenetic differences among scincid lizards or limitations of our sample size, rather
182 than conclusively indicating that the crypts are not used for sperm storage.

183 Glandular uterine glands play a pivotal role in egg membrane formation via their
184 secretions. These glands exhibit considerable morphological diversity across lizard species. In
185 *Plestiodon obsoletus*, the glands are tubular (Guillette Jr. et al., 1989), while in *Chalcides*
186 *chalcides*, they are tubular with simple cuboidal epithelium (Blackburn et al., 1998), and in
187 *Chalcides ocellatus*, they are simple alveolar (Corso et al., 2000). In these species, secretions
188 are expelled through an end duct to the uterus's glandular lining. The glands in the glandular
189 uterine wall of *A. pannonicus* were acinar with columnar epithelial cells in specimens from both
190 spring and autumn. While no seasonal structural differences were noted, potential variations in
191 functional activity cannot be ruled out.

192 The infundibulum, featuring numerous crypts in lizards like *Acanthodactylus scutellatus*
193 and *Hemidactylus turcicus*, is recognized as a sperm storage site (Bou-Resli et al., 1981; Eckstut
194 et al., 2009). However, comprehensive documentation of sperm storage in this region among
195 skinks is lacking. In *A. pannonicus*, as in other skinks, sperm was not detected in the
196 infundibulum.

197 These findings suggest that reproduction in female *A. pannonicus* is seasonal, as indicated
198 by significant morphological changes in the gonads and increased activity in the genital ducts
199 during spring. This conclusion is further supported by a marked increase in the gonadosomatic
200 index (GSI) observed in spring-collected specimens compared to those collected in autumn,
201 reflecting a higher reproductive investment during the active breeding season. As the ambient
202 temperature declines, a noticeable seasonal reduction in both gonadal size and GSI is evident,
203 corresponding with the cessation of reproductive activity. Consequently, this lizard exhibits no

204 signs of sexual activity during the autumn season. This seasonal variation in gonadal condition
205 and reproductive readiness aligns with regional climatic patterns, where average daily
206 temperatures range from 15–22 °C in spring and decrease to 9–17 °C in autumn in the
207 mountainous areas south of Kermanshah Province.

208

209 **ACKNOWLEDGMENTS**

210 We wish to thank Mr. Morad Besharati for assisting us with field work. This study was
211 conducted in accordance with the ethical standards of Razi University (Ethics Approval Code:
212 IR.RAZI.REC.1399.003).

213

214 **SUPPLEMENTARY MATERIAL**

215 Supplementary material associated with this article can be found at
216 <<http://www.unipv.it/webshi/appendix>> Manuscript number 16334

218 Blackburn, D. G., Kleis-San Francisco, S., Callard, I. P. (1998): Histology of abortive egg sites
219 in the uterus of a viviparous, placentotrophic lizard, the skink *Chalcides chalcides*. J Morphol.
220 **235**: 97-108.

221 Bou-Resli, M. N., Bishaw, L. F., Al-Zaid, N. S. (1981): Observations on the fine structure of
222 the sperm storage crypts in the lizard *Acanthodactylus scutellatus hardyi*. Arch. Biol. (Brux.)
223 **92**: 287-298.

224 Censky, E. J. (1995): Reproduction in two Lesser Antillean populations of *Ameiva plei*
225 (Teiidae). J. Herpetol. **29**: 553-560.

226 Corso, G., Delitala, G. M., Carcupino, M. (2000). Uterine morphology during the annual cycle
227 in *Chalcides ocellatus tiligugu* (Gmelin) (Squamata: Scincidae). J. Morphol. **243**: 153-165.

228 Eckstut, M. E., Lemons, E. R., Sever, D. M. (2009): Annual dynamics of sperm production and
229 storage in the Mediterranean Gecko, *Hemidactylus turcicus*, in the southeastern United States.
230 Amphib-Reptil. **30**: 45-56.

231 Etches, R. J., Petitte, J. N. (1990): Reptilian and avian follicular hierarchies: models for the
232 study of ovarian development. J. Exp. Zool. **256**: 112-122.

233 Guillette Jr, L. J., Fox, S. L., Palmer, B. D. (1989): Oviductal morphology and egg shelling in
234 the oviparous lizards *Crotaphytus collaris* and *Eumeces obsoletus*. J. Morphol. **201**: 145-159.

235 Guraya, S. S. (1989): Ovarian follicles in reptiles and birds. Zoophysiology **24**: XIII-285.

236 Huang, W. S. (1997): Reproductive cycle of the oviparous lizard *Japalura brevipes*
237 (Agamidae: Reptilia) in Taiwan, Republic of China. J. Herpetol. **31**: 22-29.

238 Iran Meteorological Organization. 2021. Climate Normals (1981-2010). Iran Meteorological
239 Organization, Tehran, Iran.

240 Jacobson, E.R. (2007): Biology, Medicine, and Surgery of Reptiles. Boca Raton, Florida, CRC
241 Press.

242 Jones, R.E., Fitzgerald, K.T., Duvall, D., Bunker, D. (1979): On the mechanisms of alternating
243 and simultaneous ovulation in lizards. *Herpetologica* **35**: 132-139.

244 Jones, R. E., Guillette Jr, L. J. (1982): Hormonal control of oviposition and parturition in lizards.
245 *Herpetologica* **38**: 80-93.

246 Jones, R. E., Summers, C. H. (1984): Compensatory follicular hypertrophy during the ovarian
247 cycle of the house gecko, *Hemidactylus frenatus*. *Anat. Rec.* **209**: 59-65.

248 Karamiani, R., Rastegar-Pouyani, N., Rastegar-Pouyani, E. (2018): Modeling the past and
249 current distribution and habitat suitability for *Ablepharus grayanus* and *A. pannonicus* (Sauria:
250 Scincidae). *Asian Herpetol. Res.* **9**: 56-64A.

251 Klosterman, L. L. (1983): The ultrastructure of germinal beds in the ovary of *Gerrhonotus*
252 *coeruleus* (Reptilia: Anguidae). *J. Morphol.* **178**: 247-265.

253 Radder, R. S., Pizzatto, L., Shine, R. (2008): Morphological correlates of life-history variation:
254 is lizard clutch size related to the number of germinal beds in the ovary? *Biol. J. Linn. Soc.* **94**:
255 81-88.

256 Rheubert, J. L., Siegel, D. S., Trauth, S. E. (2014): Reproductive biology and phylogeny of
257 lizards and tuatara. Boca Raton, Florida, CRC Press.

258 Rheubert, J., Pasternak, M. A., Ely, M., Siegel, D. S., Trauth, S. E., Gribbins, K. M., Sever, D.
259 M. (2020): Seasonal histology and ultrastructure of the urogenital system in two sympatric
260 lizards. *J. Zool.* **310**: 273-286.

261 Schaefer, G. C., Roeding, C. E. (1973): Evidence for vaginal sperm storage in the mole skink,
262 *Eumeces egregius*. *Copeia* **1973**: 346-347.

263 Sever, D. M., Hopkins, W. A. (2004): Oviductal sperm storage in the ground skink *Scincella*
264 *laterale* Holbrook (Reptilia: Scincidae). *J. Exp. Zool. A Comp. Exp. Biol.* **301**: 599-611.

265 Siegel, D. S., Miralles, A., Chabarría, R. E., Aldridge, R. D. (2011): Female reproductive
266 anatomy: cloaca, oviduct, and sperm storage. In: *Reproductive biology and phylogeny of*
267 *snakes*, pp. 347-409. Aldridge, R. D., Sever, D. M., Eds, Florida, CNC Press

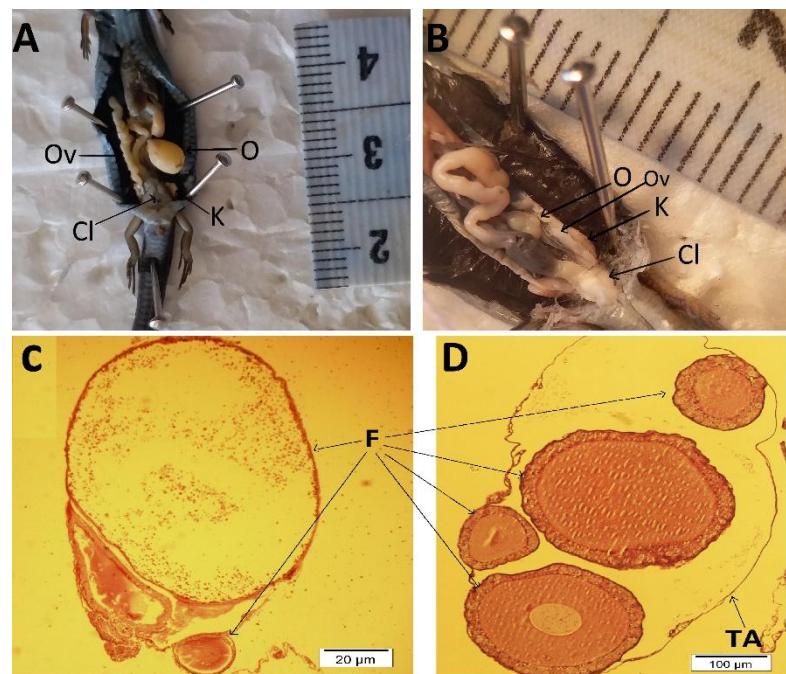
268 Suvarna, K. S., Layton, C., Bancroft, J. D. (2018): *Bancroft's theory and practice of histological*
269 *techniques*. Elsevier Health Sciences.

270 Torki, F. (2006): Spermatogenesis in the agama *Trapelus lessonae* (Agamidae: Reptilia) in the
271 central Zagros Mountains, Iran. *Zool. Middle East* **38**: 21-28.

272 Vergilov, V. S., Necheva, V. G., Zlatkov, B. P. (2018): Reproduction of Snake-eyed Skink
273 *Ablepharus kitaibelii* (Bibron & Bory de Saint-Vincent, 1833) (Squamata: Scincidae) in
274 Bulgaria. *Acta Zool. Bulg.* **70**: 507-516.

275 Vitt, L. J. (1982): Sexual dimorphism and reproduction in the microteiid lizard,
276 *Gymnophthalmus multiscutatus*. *J. Herpetol.* **16**: 325-329.

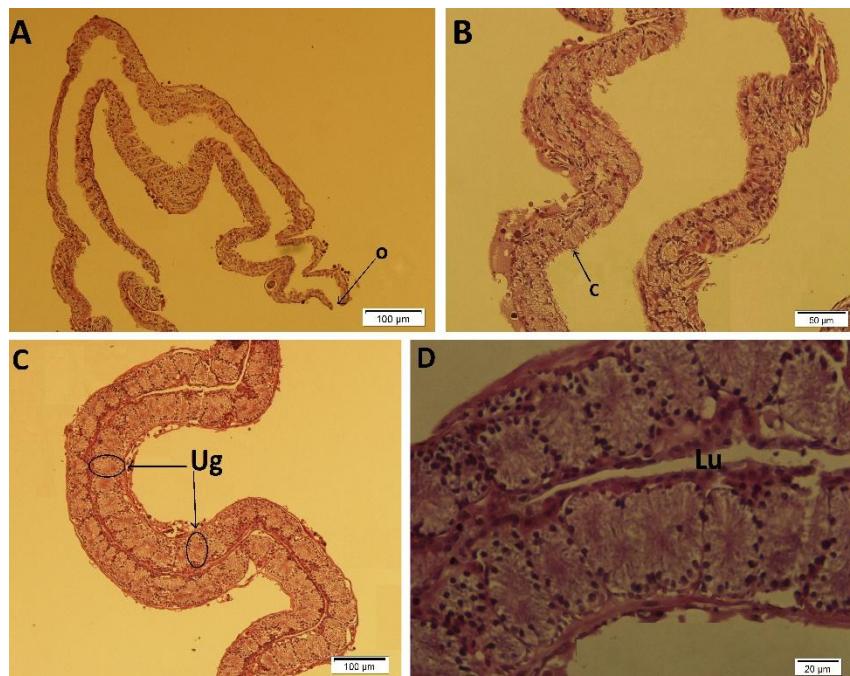
277

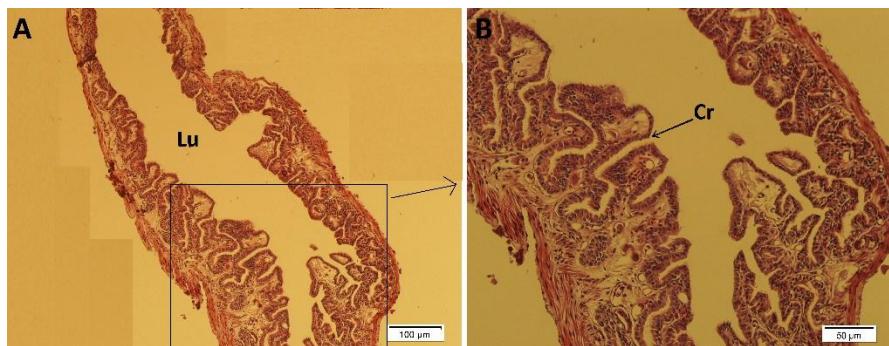

278

279

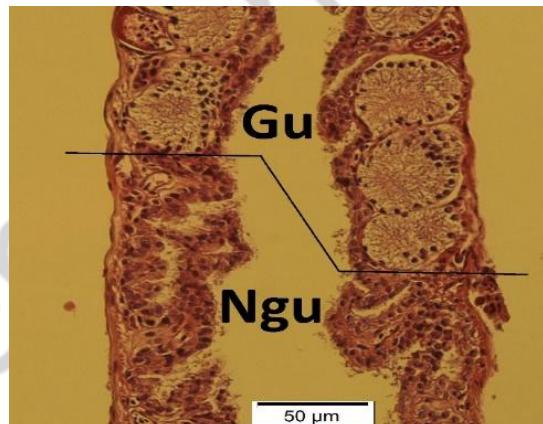
280

281


282


284 **Fig. 1.** Gross anatomy and ovarian histology of the female reproductive system of *Ablepharus*
285 *pannonicus* in two seasons. (A, B) Dissected views of the female reproductive system in spring
286 (A) and autumn (B), showing the position of the ovaries and oviducts relative to the kidneys
287 and cloaca. (C) Section from a spring-collected individual showing an advanced follicle (likely
288 preovulatory) and developing follicles (presumed vitellogenic). (D) Section from an autumn-
289 collected individual illustrating follicles at various earlier stages of development, including
290 presumed early, intermediate, and previtellogenic follicles. Sections stained with hematoxylin
291 and eosin (H&E). Abbreviations: O, ovary; Ov, oviduct; K, kidney; Cl, cloaca; F, follicle; TA,
292 tunica albuginea.

293


294

297 **Fig. 2.** Longitudinal histological sections of the infundibulum and glandular uterus in
 298 *Ablepharus pannonicus*. (A) Low magnification view showing the entire infundibulum from
 299 the anterior ostium to the posterior connection with the uterus. (B) Higher magnification of the
 300 posterior region of the infundibulum, revealing epithelial cilia. (C) Low magnification
 301 longitudinal section of the glandular uterus, showing the distribution of uterine glands within
 302 the uterine wall. (D) Higher magnification view of the glandular uterus, illustrating the acinar
 303 morphology of the uterine glands. Sections stained with hematoxylin and eosin (H&E).
 304 Abbreviations: O, ostium; C, cilia; Ug, uterine gland; Lu, lumen.

311 **Fig. 3.** Longitudinal section of the non-glandular uterus (vagina) of *A. pannonicus* collected in
 312 spring. (A) Low magnification showing overall tissue structure and distribution of epithelial
 313 crypts. (B) Higher magnification illustrating the detailed morphology of crypts. Sections stained
 314 with hematoxylin and eosin (H&E). Abbreviations: Lu: lumen, Cr: crypt.

317 **Fig. 4.** Longitudinal section illustrating the junction between the glandular (Gu) and non-
 318 glandular (Ngu) regions of the uterus in *A. pannonicus*. The boundary between the two is
 319 marked by a black line. Section stained with hematoxylin and eosin (H&E). Abbreviations: Gu:
 320 glandular uterus, Ngu: non-glandular uterus.