

**The Data Deficient *Leptobrachella nokrekensis* is a
junior synonym of the supposedly range-restricted
and Critically Endangered *Leptobrachella khasiorum*
(Amphibia: Anura: Megophryidae)**

R. S. NAVEEN, A.N. DIKSHIT AKALABYA SARMAH

**THIS ARTICLE HAS BEEN ACCEPTED FOR PUBLICATION AND UNDERGONE FULL PEER REVIEW
BUT HAS NOT BEEN THROUGH THE COPYEDITING, TYPESETTING, PAGINATION AND
PROOFREADING PROCESS, WHICH MAY LEAD TO DIFFERENCES BETWEEN THIS VERSION AND
THE VERSION OF RECORD.**

PLEASE CITE THIS ARTICLE AS:

Naveen, R. S., Dikshit Akalabya Sarmah, A. N. (2026): The Data Deficient *Leptobrachella nokrekensis* is a junior synonym of the supposedly range-restricted and Critically Endangered *Leptobrachella khasiorum* (Amphibia: Anura: Megophryidae). *Acta Herpetol.* **21**. doi: 10.36253/a_h-17681.

1 **The Data Deficient *Leptobrachella nokrekensis* is a junior synonym of the supposedly**
2 **range-restricted and Critically Endangered *Leptobrachella khasiorum* (Amphibia:**
3 **Anura: Megophryidae)**

4
5 R.S. NAVEEN^{1,*}, A.N. DIKSHIT AKALABYA SARMAH²
6

7 ¹Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry
8 University, Puducherry, India.

9 ²Systematics lab, Department of Environmental Studies, University of Delhi, Delhi 110 007,
10 India.

11 *Corresponding author. Email: naveen89240@gmail.com

12
13 Submitted on: 2025, 2th April; revised on: 2025, 30th November; accepted on: 2025, 9th
14 December.

15 Editor: Maria Torres Sánchez

16 **Abstract.**

17 Based on a molecular phylogeny using 16S ribosomal RNA gene fragment and an examination
18 of the external morphology of topotypic specimens we demonstrate that *Leptobrachella*
19 *nokrekensis* syn. nov. from Garo hills is a junior synonym of *Leptobrachella khasiorum*. These
20 data indicate that *Leptobrachella khasiorum* which was previously considered restricted to the
21 Khasi Hills and Critically Endangered is more widespread than previously known. Genetic
22 evidences also suggests that *L. tamdil* from Lushai hills may also be conspecific with *L.*
23 *khasiorum*, warranting further investigations. A reassessment of its threat status is required
24 based on this taxonomic revision and the consequent extension of *L. khasiorum*'s distribution
25 and elevational range.

26 **Keywords.** 16S rRNA, Data Deficient, Endemism, Amphibians, IUCN Red List, Eastern
27 Himalayas, Taxonomic revision, Threat status reassessment, Darwinian shortfall.

28

29

30

INTRODUCTION

31 The Khasi, Garo and Lushai hills of Northeast India are disconnected mountain ranges
32 with interesting biogeographical connections to the Eastern Himalayas, the Brahmaputra Valley
33 and the Indo-Malayan region including the Malayan Peninsula (Olson and Dinerstein, 2002;
34 Pawar et al., 2007; Badavath and Sahoo, 2025). The region's amphibian fauna has been studied
35 since the mid-19th century, yet many taxonomic revisions are ongoing as recent collections
36 continue to provide new insights into species boundaries and diversity (Kamei et al., 2012; Biju
37 et al., 2019; Saikia & Sinha 2019; Mahony et al., 2020; Patel et al., 2021; Saikia et al., 2022;
38 Boruah et al., 2023; Naveen et al., 2023). There are a few examples of congeneric herpetofaunal
39 diversity that are distinct between these ranges, probably due to the geographic disconnectivity
40 (e.g., Lalronunga et al., 2021; Naveen et al., 2023; Mirza et al., 2024) while many others are
41 known to occur across them (e.g., Siammawii et al., 2021; Muansanga et al., 2022; Naveen et
42 al., 2025).

43 Four species of *Leptobrachella* Cope, 1865 are known from India, of which the three
44 species dealt with in this study were described within a short span between January and June
45 2010, from the Khasi, Garo, and Lushai Hills. *Leptobrachella khasiorum* (Das, Tron, Rangad,
46 and Hooroo, 2010), originally described as *Leptolalax khasiorum* from Mawphlang Sacred
47 Grove in the Khasi Hills is believed to be endemic to just this region. Consequently, it is
48 categorized as Critically Endangered due to its extremely narrow Extent Of Occurrence.
49 *Leptolalax tamdil* (Sengupta, Sailo, Lalremsanga, Das, and Das, 2010) was described from the
50 nearby Tamdil wetlands in Mizoram. This species was subsequently transferred to the genus
51 *Leptobrachella* and reported from a few other locations in central Mizoram, as well as from

52 another more northeastern location in Manipur (Decemson et al., 2021). A third species,
53 described from the Garo hills, *Leptobrachium nokrekensis*, later transferred to the genus
54 *Lepobrachella*, although claimed to be described in “2009” by Mathew and Sen (2009), is now
55 considered *Leptobrachella nokrekensis* (Mathew and Sen, 2010 “2009”), since Das and Deuti
56 (2011) convincingly argued that the name was only made available on June 3, 2010, the official
57 date of distribution of this printed publication.
58 *Leptobrachella* is one of the most diverse genera in the family Megophryidae Bonaparte, 1850
59 with 117 species distributed across southern China, northeastern India, Myanmar, Thailand,
60 Vietnam, Malaya, Borneo, and the Natuna Islands (Frost 2025). The members of this genus
61 exhibit a high degree of localised endemism and morphological overlap (Nguyen et al., 2021;
62 Wu et al., 2025). But despite their cryptic morphology, new species continue to be identified,
63 based on evidence from molecular analyses (Lin et al., 2022; Hoang et al., 2024; Luo et al.,
64 2025; Wu et al., 2025). However, in the case of the northeastern Indian species, *Leptobrachella*
65 *khasiorum*, *Leptobrachella nokrekensis*, and *Leptobrachella tamdil*, even though all of them
66 exhibit a high degree of morphological similarity, none of their original descriptions included
67 molecular data (Das et al., 2010; Mathew and Sen, 2010 “2009”). In the current study, the
68 taxonomic validity of *Leptobrachella nokrekensis* is re-examined, based on fresh topotypical
69 material collected from the Garo and Khasi hills, and further studies on *Leptobrachella tamdil*
70 from Mizoram to assess its status is recommended.

71 MATERIAL AND METHODS

72 *Sampling*
73 Specimens were collected from two locations of the northeast Indian state of Meghalaya:
74 Sakalgre Village, Garo hills (25.515992, 90.381045; 925 m asl): Three specimens—one adult

75 male (PU RSN 23) and two adult females (PU RSN 24, PU RSN 34), collected by RSN from
76 a stream near the village in October 2024.

77 Near Mawphlang Sacred Grove, Khasi hills (25.436459, 91.759246; 1575 m asl): Two
78 specimens—one adult male (PU RSN 32) and one adult female (PU RSN 33), collected by
79 RSN from a stream flowing out of the grove in October 2024.

80 Specimens were collected under the following permits (No. WC/Research/157/608). They
81 were photographed in life before being euthanized using approximately 0.10 ml of a 20%
82 benzocaine solution applied to the ventral surface. Liver tissues were extracted from freshly
83 euthanized specimens for molecular analyses and stored in 99% molecular-grade ethanol. The
84 specimens were then fixed in 10% buffered formalin and subsequently stored in 75% ethanol.

85 All specimens were deposited in the collections of the Department of Ecology and
86 Environmental Sciences, Pondicherry University (PU).

87 *Measurements*

88 Morphological data from fixed specimens were measured to the nearest 0.02 mm with
89 INSIZE digital callipers. The following measurements were taken: Snout-Vent Length (SVL);
90 Axilla-to-Groin Length (AGL); Mid-Body Width (MBW); Head Width (HW) (measured at
91 the angle of the jaws); Head Length (HLD) (from posterior end of the mouth snout tip);
92 Nostril-to-Snout Distance (NS); Internarial Distance (IN); Maximum Upper Eyelid Width
93 (UEW); Eye Diameter (ED); Interorbital Distance (IO) (shortest distance between the upper
94 eyelids); Eye-to-Nostril Distance (EN); Tympanum Diameter (TYD); Tympanum-to-Posterior
95 Corner of Eye Distance (TE); Upper Arm Length (UAL); Forearm Length (FAL) (previously
96 Forelimb Length) (measured from the elbow to the base of the outer palmar tubercle); Palm
97 Length (PAL) (measured from the base of the outer palmar tubercle to the tip of the third
98 finger); Thigh Length (THL); Shank Length (SL) (approximated by measuring the crus); and,

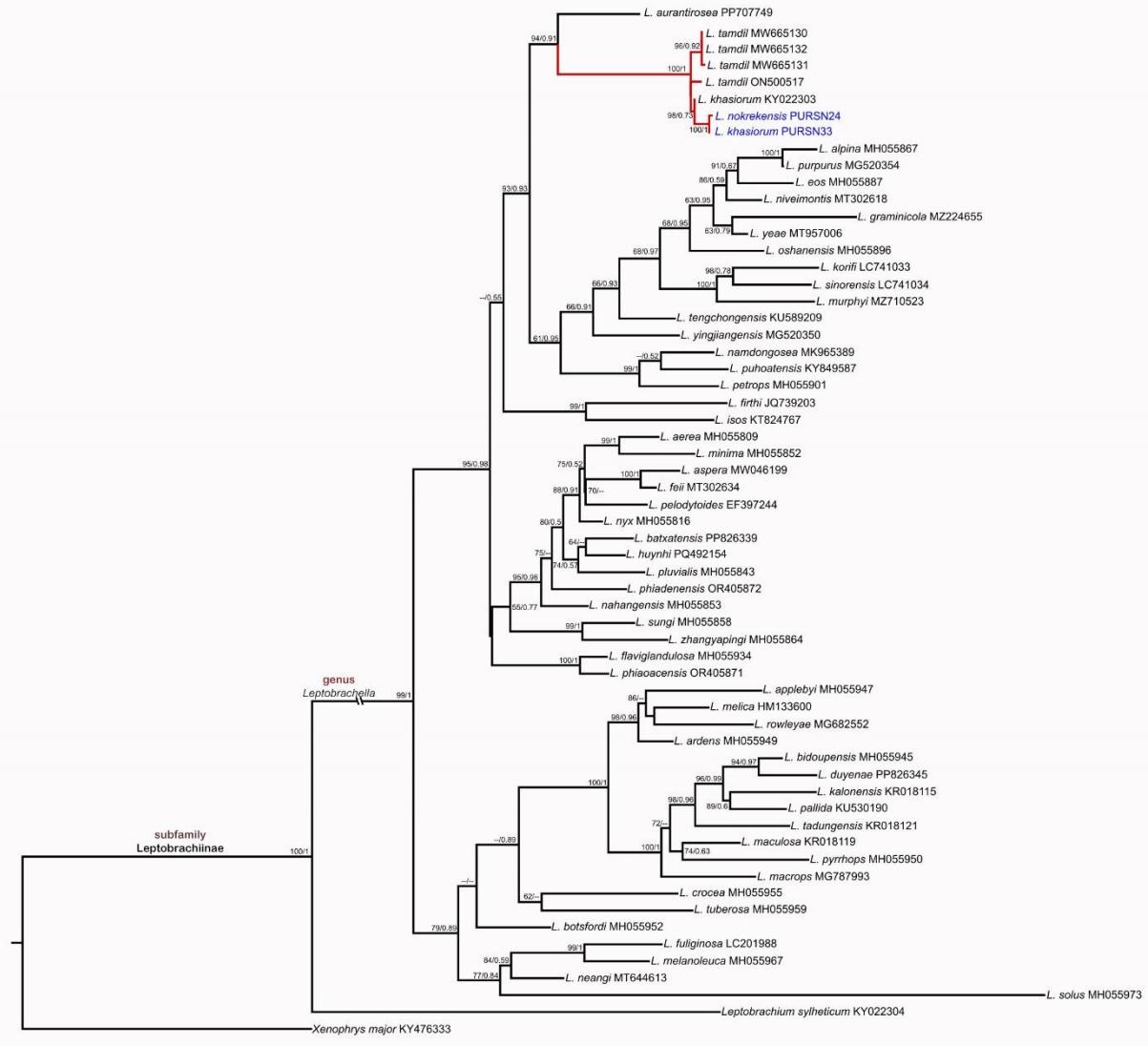
99 Foot Length (FL) (measured from the base of the inner metatarsal tubercle to the tip of the
100 fourth toe).

101 *Molecular analysis*

102 Total genomic DNA was extracted from two specimens of *Leptobrachella* from Meghalaya
103 (PU RSN 33 and PU RSN 24) with a DNA extraction and purification kit, following the
104 manufacturer's protocols. A fragment of the 16S rRNA gene was amplified using the primers
105 16sAR-L (5' CGCCTGTTATCAAAACAT-3') and 16sBR-H
106 (5'CCGGTCTGAACTCAGATCACGT 3') respectively (Kocher et al., 1989). Amplifications
107 were performed in an Applied Bio Systems Veriti 96 well thermal cycler: 20 μ l reactions with
108 4 μ l of 5X Phusion HF buffer, 0.4 μ l of 10mM dNTP, 0.2 μ l of Phusion DNA Polymerase,
109 0.1 μ l each of forward and reverse primers, 2.0 μ l of DNA template and 13.2 μ l of nuclease
110 free water with the following procedure: initial denaturation of DNA at 95°C for 5 min, 35
111 cycles of: denaturation at 95°C for 1 min, annealing at 55°C for 1 min, extension at 72°C for
112 1 min and at last, final extension at 72°C for 10 min. The amplicon was checked by running it
113 through an agarose gel electrophoresis for a clear band of the desired region in the amplified
114 PCR product. The amplified PCR product was purified and sequenced commercially at
115 Barcode BioSciences Pvt.Ltd (BBS), Bangalore, India. The new sequences were then
116 checked on the Basic Local Alignment Search Tool, BLAST (The National Centre for
117 Biotechnology Information) (Altschul et al. 1990) to verify their approximate identity.

118 *Phylogenetic analysis*

119 The new topotypic sequences of *Leptobrachella khasiorum* and *Leptobrachella nokrekensis*
120 were assembled along with 52 other congeners from the Indo-Burma, Indo-China and
121 southwestern China regions, with *Leptobrachium sylheticum* and *Xenophrys major* as the


122 outgroups (see Fig. 1). The single existing sequence from the type locality of *Leptobrachella*
123 *khasiorum* and all available homologous sequences of *Leptobrachella tamdil* were also added
124 to the dataset. The resultant dataset of 61 sequences were aligned with Muscle and optimized
125 manually, in MEGA X (Kumar et al., 2018). This alignment was then used to determine the
126 uncorrected pairwise genetic distances between the samples with MEGA X. For the
127 phylogenetic analysis, the best-fit model of nucleotide substitution was selected in
128 jModelTest2 (Darriba et al., 2012). MrBayes v3.1.2 (Ronquist and Huelsenbeck, 2003) was
129 used to perform the Bayesian analysis under the GTR+I+G model. Two independent
130 analyses, each consisting of four Metropolis-coupled Markov chain Monte Carlo (MCMC)
131 chains, were run for 20 million generations, with parameters sampled every 1,000
132 generations. Convergence was evaluated by ensuring that the average standard deviation of
133 split frequencies fell below 0.01 and that potential scale reduction factors approached 1.0.
134 Stationarity and effective sample sizes (ESS) were monitored within MrBayes. The first 25%
135 of sampled trees were discarded as burn-in following Huelsenbeck et al. (2001), and clade
136 support was assessed using Bayesian posterior probabilities (BPP), with values ≥ 0.95
137 considered strong (Leaché and Reeder, 2002). Maximum-likelihood (ML) analyses were
138 carried out in IQ-TREE v1.6.12 (Nguyen et al., 2015) under the GTR+F+I+G4 model.
139 Branch support was estimated using 10,000 ultrafast bootstrap (UFB) replicates (Hoang et al.,
140 2018). Nodes with UFB ≥ 95 were considered strongly supported (Minh et al., 2013).

141

RESULTS

142 The Bayesian Inference and Maximum Likelihood trees obtained were similar in topology
143 and largely congruent with existing recent large scale phylogenies of *Leptobrachella*. The
144 relationships between the focal group, comprising *Leptobrachella khasiorum*, *L. nokrekensis*
145 and *L. tamdil*, were well resolved and the new sequences of *L. khasiorum* and *L. nokrekensis*

146 grouped together with the sequence of *L. khasiorum* by Mahony et al., 2017 from the type
 147 locality. The Indian taxa formed a strongly supported monophyletic clade (UFB 100; BPP 1)
 148 which showed a sister relationship to a recently described species *L. aurantirosea*. The
 149 uncorrected pairwise genetic distance at the 16S mitochondrial gene between the new
 150 samples from this study and the available sequence of *L. khasiorum* from the GenBank was
 151 0.2 – 1.3%. These shallow divergences fall within the range typically considered conspecific
 152 among members of this genus and anurans as a whole for the 16S mtDNA gene.

154 **Fig 1.** Maximum Likelihood tree based on the 16S mtDNA gene for *Leptobrachella* species
155 of India studied here and congeners from nearby regions. The clade containing the Indian
156 taxa is highlighted in red, and newly collected topotypic samples are shown in blue. Branch
157 support values represent Ultrafast Bootstrap Support (UFB > 50%) and Bayesian Posterior
158 Probabilities (BPP > 0.50), respectively.

159 Furthermore, morphological characteristics were similar among newly collected specimens.
160 Based on comparative examination of specimens of *L. khasiorum* with the original
161 descriptions of *L. nokrekensis* provided in Mathew and Sen, (“2009” 2010), Das and Deuti,
162 (2011) point out, the following differences between these two species, *L. nokrekensis* (vs. *L.
163 khasiorum*) “*reduced tympanum, being less than half orbit diameter (vs. half orbit diameter);
164 area around pectoral region pale (vs. with dark pattern); paired red tubercles anterior to
165 tympanum (vs. absent); loreal region concave (vs. sloping); and dorsum with longitudinal
166 folds (vs. absent).*”.

167 In contrast, the series of topotypic *Leptobrachella* specimens collected and examined in this
168 study, including adult specimens from both the Garo and Khasi Hills, consistently show a
169 tympanum size greater than half the orbit diameter, an absence of longitudinal folds on the
170 dorsum, and a consistently concave loreal region in all specimens. Other differences in
171 coloration and tuberculation noted by Das and Deuti, (2011), these traits are now known to be
172 highly polymorphic in this genus and are not always reliable for species delimitation (see
173 intraspecific variation section in Nguyen et al., 2021; Lin et al., 2022; Hoang et al., 2024; Luo
174 et al., 2025; Wu et al., 2025).

175 Based on these morphological and molecular evidences from the topotypes, it’s evident that
176 *Leptobrachella khasiorum* and *L. nokrekensis* are not two distinct species. The remaining
177 question then is nomenclatural priority. Although *L. nokrekensis* was initially believed to

178 have been described earlier, Das and Deuti, (2011) clarified that its official date of
179 availability was on June 3, 2010. Thus, the nomen *L. khasiorum*, made available on January
180 10, 2010, in Das et al., (2010), is the first available among the two. Therefore, *L. khasiorum*
181 is the valid nomen for this species, and *Leptobrachella nokrekensis* syn. nov. is its junior
182 synonym.

183

184

185 **Fig 2a.** *Leptobrachella khasiorum* (PU RSN 33) from Mawphlang, Khasi hills

186

187

188 **Fig 2b.** *Leptobrachella nokrekensis* syn. nov. (PU RSN 24) from Sakalgre, Garo hills.

189 The preliminary molecular data presented here suggest that *L. tamdil* too is a probable junior
190 synonym of *Leptobrachella khasiorum* (uncorrected p-distance 1.0 – 2.6%). However, this
191 warrants further studies, as the current study was unable to examine any fresh specimens
192 from Mizoram or the specimens associated with the sequences used from GenBank in this
193 study and also the available GenBank sequences are not from the type locality but from other
194 localities in Mizoram and Manipur. Therefore, this is left unresolved here for further studies
195 to resolve.

196

DISCUSSION

197 With the results presented here, *Leptobrachella khasiorum*, previously thought to be
198 Critically Endangered due to its narrow endemic distribution range, restricted to a small
199 forested area in and around the Mawphlang Community Reserve, is now known to occupy a
200 substantially wider range, including the known occurrence locations of *L. nokrekensis* syn.

201 nov., across Nokrek National Park. In addition to its previously known occurrences in the
202 Garo Hills, this species was recorded near Sakal Aduma (25.524°N, 90.342°E; 980 m asl) and
203 near Tura Peak (25.515°N, 90.232°E; 820 m asl) during this study. In addition to this,
204 Chandramouli et al. (2022) reported a specimen of *Leptobrachella* (referred to it as
205 *Leptobrachella* cf. *khasiorum*, (SACON VA 115—an unsexed subadult collected by P.
206 Karthik), from Jirang (25.945°N, 91.567°E, 1280 m asl), approximately 50 km from
207 Mawphlang in a straight line. It is likely that this specimen also belongs to the same species,
208 as the location falls within the now known elevational range of *L. khasiorum* and is relatively
209 close to Mawphlang. With these new records, the updated Extent of Occurrence for this
210 species is 4,027 km² across an elevational range of 800 m asl to 1,600 m asl. In the locations
211 where this species was recorded during this study, it was found to be abundant. The species is
212 also likely distributed across several other protected areas, in addition to Nokrek National
213 Park and Mawphlang Sacred Forest. Based on this distributional information, the species
214 qualifies for being downlisted from Critically Endangered under the IUCN Red List criteria
215 (see IUCN 2012). This could still be an underestimation of the distribution range of this
216 species and further survey efforts across these regions, as well as the clarification of the
217 taxonomic status of *Leptobrachella tamdil* is required to accurately define the distribution
218 and conservation status of *Leptobrachella khasiorum*.

219 In addition to these three species, Northeast India also harbours another Critically
220 Endangered *Leptobrachella*, *Leptobrachella lateralis* (Anderson, 1871), which was originally
221 thought to be from Bhamo but has now been neotyped from the Naga Hills. This species
222 remains poorly documented, with no data on its phylogenetic position or natural history, and
223 continues to be known with confidence only from the neotype locality, with no subsequent
224 confirmed records elsewhere. We did not survey its range during the present study. Based on
225 general biogeographic patterns, we infer that this species is unlikely to be closely related to

226 the *Leptobrachella* populations of the Khasi, Garo, and Lushai Hills, as the Naga Hills are
227 comparatively less connected to these ranges. Further surveys are therefore necessary to
228 clarify its distribution and taxonomic status.

229

230 ACKNOWLEDGEMENTS

231 We are extremely grateful for the invaluable assistance to RSN during fieldwork by Mr.
232 Lising G. Momin, Mr. Kelbin Sangma, and Mr. Nite Ryngdoh throughout the course of this
233 study. We are thankful to Dr. Paul Oliver for his feedback on the initial draft, which greatly
234 improved the quality of the manuscript. We sincerely thank the Additional Principal Chief
235 Conservator of Forests (Wildlife) and the Chief Wildlife Warden (CWLW), Meghalaya Forest
236 Department, for granting the necessary permissions (No. FWC/Research/157/608).

237

238 REFERENCES

239 Badavath, N., Sahoo, S. (2025): Geospatial assessment and mapping landslide susceptibility
240 for the Garo Hills Division, Meghalaya, India. *Geol. J.* **60**: 1184-1201.

241 Biju, S. D., Garg, S., Kamei, R. G., Maheswaran, G. (2019): A new *Microhyla* species (Anura:
242 Microhylidae) from riparian evergreen forest in the eastern Himalayan state of
243 Arunachal Pradesh, India. *Zootaxa* **4674**: 100-116.

244 Boruah, B., Deepak, V., Das, A. (2023): Musicians in the marsh: A new species of music frog
245 (Anura: Ranidae: *Nidirana*) from Arunachal Pradesh, India. *Zootaxa* **5374**: 51-73.

246 Chandramouli, S. R., Naveen, R. S., Sureshmarimuthu, S., Babu, S., Karunakaran, P. V.,
247 Kumara, H. N. (2021): Catalogue of herpetological specimens from Meghalaya, India

248 at the Salim Ali Centre for Ornithology and Natural History. *J. Threat. Taxa* **13**: 19603-
249 19610.

250 Darriba, D., Taboada, G.L., Doallo, R., Posada, D. (2012): jModelTest 2: More models, new
251 heuristics and parallel computing. *Nat. methods* **9**: 772.

252 Das, I., Deuti, K. (2011): Notes on date of publication and generic identity of *Leptobrachium*
253 *nokrekensis* Mathew and Sen, “2009” 2010 (Amphibia: Anura: Megophryidae). *Curr.*
254 *Herpetol.* **30**: 69-73.

255 Das, I., Lyngdoh Tron, R. K., Rangad, D., Hooroo, R. N. K. (2010): A new species of *Leptolalax*
256 (Anura: Megophryidae) from the sacred groves of Mawphlang, Meghalaya, north-
257 eastern India. *Zootaxa* **2339**: 44-56.

258 Decemson, H., Vanlalsiammawii, Biakzuala, L., Vabeiryureilai, M., Malsawmdawngiana, F.,
259 Lalremsanga, H. T. (2021): Occurrence of Tamdil Leaf-litter Frog *Leptobrachella*
260 *tamdil* (Sengupta et al., 2010) (Amphibia: Megophryidae) from Manipur, India and its
261 phylogenetic position. *J. Threatened Taxa* **13**: 18624-18630.

262 Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. Vinh, L.S. (2018): UFBoot2:
263 Improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* **35**: 518-522.

264 Hoang, C., Luong, A., Nguyen, T., Nguyen, T., Ninh, H., Le, L. T., Ziegler, T., Pham, C. (2024):
265 A new species of *Leptobrachella* Smith 1925 (Anura, Megophryidae) from Lai Chau
266 Province, Vietnam. *Biodivers. Data J.* **12**: e136491.

267 Huelsenbeck, J.P., Ronquist, F., Neilsen, R. Bollback, J.P. (2001): Bayesian inference of
268 phylogeny and its impact on evolutionary biology. *Science* **294**: 2310-2314.

269 Kamei, R. G., San Mauro, D., Gower, D. J., Bocxlaer, I. Van, Sherratt, E., Thomas, A., Babu,
270 S., Bossuyt, F., Wilkinson, M. Biju, S. D. (2012): Discovery of a new family of
271 amphibians from northeast India with ancient links to Africa. *Proc. R. Soc. B Biol. Sci.*
272 **279**: 2396-2401.

273 Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., Wilson,
274 A. C. (1989): Dynamics of mitochondrial DNA evolution in animals: Amplification and
275 sequencing with conserved primers. Proc. Natl. Acad. Sci. U.S.A. **86**: 6192-6200.

276 Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018): MEGA X: Molecular
277 evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. **35**: 1547-
278 1549.

279 Lalronunga, S., Lalhmangaiha, K., Zosangliana, I., Lalhminglani, E., Gower, D. J., Das, A.,
280 Deepak, V. (2021): A new species of *Stoliczka* Jerdon, 1870 (Serpentes: Xenodermidae)
281 from Mizoram, India. Zootaxa, **4996**: 555-568.

282 Leaché, A.D. Reeder, T.W. (2002): Molecular systematics of the Eastern Fence Lizard
283 (*Sceloporus undulatus*): A comparison of parsimony, likelihood, and bayesian
284 approaches. Syst. Biol. **51**: 44-68.

285 Lin, S.-S., Li, Y.-H., Lu, Y.-H., Su, H.-L., Wu, S.-B., Zhang, Q.-Q., Mo, M.-J., Xiao, S.-J., Pan,
286 Z., Pan, H.-J., Zeng, Z.-C., Wang, J. (2022): A new species of the genus *Leptobrachella*
287 (Anura, Megophryidae) from northwestern Guangdong Province, China. Herpetozoa,
288 **35**: 165-178.

289 Luo, T., Zhao, Z.-F., Wang, Z.-L., Lan, C.-T., Xiao, M.-Y., Deng, H.-Q., Xiao, N., Zhou, J.
290 (2025): Diversification outbreaks and dynamics of Asian leaf-litter frogs, genus
291 *Leptobrachella* (Anura, Megophryidae), with the description of a new species from
292 Guizhou Province, China. Zoosyst. Evol. **101**: 223-243.

293 Mahony, S., Foley, N. M., Biju, S. D., Teeling, E. C. (2017): Evolutionary history of the Asian
294 Horned Frogs (Megophryinae): integrative approaches to timetree dating in the absence
295 of a fossil record. Mol. Biol. Evol. **34**: 744-771.

296 Mahony, S., Kamei, R. G., Teeling, E. C., Biju, S. D. (2020): Taxonomic review of the Asian
297 Horned Frogs (Amphibia: *Megophrys* Kuhl & Van Hasselt) of Northeast India and

298 Bangladesh previously misidentified as *M. parva* (Boulenger), with descriptions of
299 three new species. *J. Nat. Hist.* **54**: 119-194.

300 Mathew, R., Sen, N. (2009): Description of a new species of *Leptobrachium* Tschudi, 1838
301 (Amphibia: Anura: Megophryidae) from Meghalaya, India. *Rec. Zool. Surv. India* **109**:
302 91-108.

303 Minh, B.Q., Nguyen, M.A.T., Haeseler, A.V. (2013): Ultra-fast approximation for phylogenetic
304 bootstrap. *Mol Biol Evol.* **30**: 1188-1195.

305 Mirza, Z. A., Bhardwaj, V. K., Lalmuanwma, J. C., Choure, G., Lalremsanga, H. T.,
306 Vabeiryureilai, M., Captain, A., Zagade, A., Patel, H. (2024): A new species of
307 *Smithophis* Giri et al. 2019 from the Indo-Burma region. *Diversity* **16**: 480.

308 Muansanga, L., Malsawmdawngliana, F., Vabeiryureilai, M., Bualchhuak, T., Lalremsanga, H.
309 T. (2022): Color polymorphism in Jerdon's Treefrog, *Nasutixalus jerdonii* (Günther
310 1876), from Northeast India with notes on diet and distribution in Mizoram, India. *Rept.
311 Amphib.* **29**: 55-58.

312 Naveen, R. S., Tapley, B., Chandramouli, S. R., Jervis, P. A., Babu, S., Meetei, A. B.,
313 Karunakaran, P. V. (2023): A new species of *Bufooides* Pillai and Yazdani 1973
314 (Amphibia: Bufonidae) from Mizoram (India) and the delimitation of the distribution
315 range of *Bufooides meghalayanus* (Yazdani & Chanda 1971) to the Khasi Hills,
316 Meghalaya (India). *Biodiversitas* **29**.

317 Nguyen, L.T., Schmidt, H.A., Von, H.A. Minh, B.Q. (2015): IQ-TREE: A fast and effective
318 stochastic algorithm for estimating maximum likelihood phylogenies. *Mol. Biol. Evol.*
319 **32**: 268-274.

320 Nguyen, L. T., Tapley, B., Nguyen, C. T., Luong, H. V., Rowley, J. J. L. (2021): A new
321 species of *Leptobrachella* (Anura, Megophryidae) from Mount Pu Ta Leng, northwest
322 Vietnam. *Zootaxa* **5016**: 301-332.

323 Patel, N. G., Garg, S., Das, A., Stuart, B. L., Biju, S. D. (2021): Phylogenetic position of the
324 poorly known montane cascade frog *Amolops monticola* (Ranidae) and description of
325 a new closely related species from Northeast India. *J. Nat. Hist.* **55**: 1403-1440.

326 Ronquist, F., Huelsenbeck, J.P. (2003): MrBayes 3: Bayesian phylogenetic inference under
327 mixed models. *Bioinformatics* **19**: 1572-1574.

328 Saikia, B., Sinha, B. (2019): On the *Liurana* (Anura: Ceratobatrachidae) of India with the
329 description of three new species from Talley Valley Wildlife Sanctuary in Arunachal
330 Pradesh, Eastern Himalayas. *Rec. Zool. Surv. India* **119**: 303-315.

331 Saikia, B., Laskar, M. A., Dinesh, K. P., Shabnam, A., Sinha, B. (2022): Description of two
332 new species of *Amolops* (Anura: Ranidae) from Arunachal Pradesh, Northeast India
333 under the morphological 'Viridimaculatus species group'. *Rec. Zool. Surv. India* **122**:
334 247-266.

335 **Table 1.** Genetic divergences (uncorrected p-distance) between specimens identified as
 336 *Leptobrachella khasiorum*, *Leptobrachella nokrekensis*, and *Leptobrachella tamdil*.

	Location	1	2	3	4	5	6	7
<i>L. nokrekensis</i>	Garo							
This Study	Hills							
<i>L. khasiorum</i>	Khasi		0.0026					
This Study	Hills							
<i>L. khasiorum</i>	Khasi		0.0131	0.0105				
KY022303	Hills							
<i>L. tamdil</i>								
ON500517	Mizoram	0.0236	0.0209	0.0105				
<i>L. tamdil</i>								
MW665130	Mizoram	0.0236	0.0209	0.0105	0.0157			
<i>L. tamdil</i>								
MW665131	Mizoram	0.0262	0.0236	0.0131	0.0183	0.0026		
<i>L. tamdil</i>								
MW665132	Mizoram	0.0236	0.0209	0.0105	0.0157	0.0000	0.0026	-

337

338

339

340

341 **Table 2.** Morphometric measurements (in mm) of *Leptobrachella khasiorum* and
 342 *Leptobrachella nokrekensis* specimens examined in this study.

343

Voucher number	PU RSN 23	PU RSN 24	PU RSN 34	PU RSN 32	PU RSN 33
Location	Sakalgre Village, Garo Hills	Sakalgre Village, Garo Hills	Sakalgre Village, Garo Hills	Near Mawphlang Sacred Grove, Khasi Hills	Near Mawphlang Sacred Grove, Khasi Hills
Sex	Male	Female	Female	Male	Female
SVL	33.1	32.25	30.65	27.85	28.05
AGL	15.7	14.14	12.18	10.6	10.04
MBW	12.34	11.78	10.02	8.06	8.37
HW	11.06	11.3	10.85	9.31	9.54
HLD	11.31	11.2	10.35	10.03	9.26
NS	1.17	1.12	1.89	0.86	1.77
IN	2.34	2.66	2.34	2.91	2.63
UEW	3.38	3.04	3.02	2.9	2.94
ED	4.4	3.6	3.56	3.63	3.66
IO	3	3.82	3.43	2.8	3.1
EN	2.49	2.52	2.64	2.2	2.46
TYD	2.26	2.22	2.14	1.86	2
TE	1.26	1.32	1.1	1.15	1.02
UAL	6.16	5.34	5.76	4.53	4.26
FAL	8.51	7.26	8.44	6.32	6.49
PAL	7.62	7.66	6.62	7.11	7.25
THL	14.87	14.14	13.96	12.08	12.49
SL	14.33	15.02	14.36	12.96	12.45
FL	13.2	14.28	12.56	11.92	11.65

344