

1

2

3

4

5

6

Men and Snakes: a long-term monitoring of wild caught snakes used in the Rito di San Domenico e dei Serpari (Cocullo, AQ, Italy)

Gianpaolo Montinaro, Jairo Alfonso Mendoza-Roldan, Pasqualino Piro, Domenico Otranto, Ernesto Filippi

7

8

9

8

4

5

6

Please cite this article as:

13
14 Montinaro, G., Mendoza-Roldan, J. A., Piro, P., Otranto, D., Filippi, E. (2025): Men and Snakes: a
15 long-term monitoring of wild caught snakes used in the Rito di San Domenico e dei Serpari (Cocullo,
16 AQ, Italy). *Acta Herpetol.* **21**. doi: 10.36253/a_h-17744.

Men and Snakes: a long-term monitoring of wild caught snakes used in the Rito di San Domenico e dei Serpari (Cocullo, AQ, Italy)

Gianpaolo MONTINARO^{1,2}, Jairo Alfonso MENDOZA-ROLDAN², Pasqualino PIRO³, Domenico OTRANTO^{2,4}, Ernesto FILIPPI^{3,*}

¹ *Rifcon GmbH, Goldbeckstraße 13, 69493 Hirschberg an der Bergstraße, Germany*

² *Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy*

³ *Consultant for the Cocullo municipality, Cocullo (AQ), Italy*

⁴ *Department of Veterinary Clinical Sciences, City University of Hong Kong, SAR, China*

* Corresponding author. E-mail: ernesto.flp@gmail.com

Gianpaolo Montinaro: <https://orcid.org/0000-0003-3277-6228>

Jairo Alfonso Mendoza-Roldan: <https://orcid.org/0000-0001-9787-932X>

Domenico Otranto: <https://orcid.org/0000-0002-7518-476X>

Ernesto Filippi: <https://orcid.org/0000-0003-2024-7222>

Submitted on: 2025, 18th April; revised on: 2025, 5th July; accepted on: 2025, 2nd September

17 *Editor: Francesco Paolo Faraone*

18

Short running title: a long-term monitoring of Cocullo's snakes

19 **Abstract.**

20 In Cocullo, a small village in central Italy, the traditional religious rite of San Domenico involves
21 the annual capture and temporary exhibition of wild non-venomous snakes, primarily *Elaphe*
22 *quatuorlineata*, *Zamenis longissimus*, and *Hierophis viridiflavus*. In 2010 a citizen science project
23 was launched to monitor the captured snakes and evaluate the sustainability of this practice and its
24 potential conservation threats. Over 15 years, data on 1,505 individual snakes have been collected.
25 This project also included PIT-tagging, improvements in temporary housing conditions, regular
26 clinical checks and the release of the snakes at their original capture sites. The monitoring results
27 suggest that based on the collected data, current practices are sustainable and underline the
28 importance of continued surveillance. However, the need for comparative field studies has emerged.
29 This study shows how local cultural traditions can be integrated with evidence-based conservation
30 and long-term monitoring, providing a replicable model for managing human–wildlife interactions
31 involving reptiles.

32

33 **Keywords.** Human-wildlife interaction, snake conservation, citizen science, *Elaphe quatuorlineata*,
34 *Hierophis viridiflavus*, *Zamenis longissimus*.

35

37 An ancient traditional religious rite, performed annually in the small mountainous village of
38 Cocullo in Abruzzo, central Italy, involves the capture and temporary housing of local non-
39 venomous snake species. Every year, on the first of May, this well-known religious rite (the
40 Catholic cult of San Domenico, who lived in the area in the 11th century) attracts worldwide
41 attention, draws thousands of visitors, including researchers, and international media (see for
42 example Martinelli and Zavoli, 2023; Martinelli, 2024; Hall, 2025).

43 Dating back at least four centuries ago, this rite combines cultural, religious, and anthropological
44 aspects (see, for example, Harrison, 1907; Haland, 2011) with important snake conservation
45 implications. Indeed, the central figures are snakes, and the local snake catchers, known as *Serpari*.
46 The ceremony has mostly remained unchanged for centuries. However, until the early 1900s it is
47 reported that snakes were often killed at the end of the rite or sold (Harrison, 1907). In contrast,
48 over the past decades, the local community has shown increased respect and protection towards
49 snakes (Savoretti, 2016; Pellegrini et al., 2017; Zenoni, 2019), which is something unique in Italy,
50 where snakes are generally among the most ‘unpopular’ animals and often persecuted and killed (Di
51 Nicola et al., 2021).

52 *Serpari* are not professional herpetologists, but local inhabitants who preserve the tradition of
53 snake-catching in the weeks before the event (i.e., in the time span between March 19 and April 30).
54 The snake search by *Serpari* is carried out close to the Cocullo municipality. Snakes are captured
55 either by hand or using a stick.

56 Various Colubridae species are used during the celebration. The main target species appears to be
57 *Elaphe quatuorlineata* (Lacépède, 1789) one of the largest and most vulnerable snake species in
58 central Mediterranean Italy (Filippi, 2003; Corti et al., 2011; Filippi et al., 2005; Filippi and
59 Luiselli, 2006), as it is traditionally the only one destined to be placed on top on the statue of San
60 Domenico (Bruno and Maugeri, 1990; Filippi and Luiselli, 2003; Pellegrini et al., 2017).

61 Other species, such as *Zamenis longissimus* (Laurenti, 1768) and *Hierophis viridiflavus* (Lacépède,
62 1789), both widespread throughout Italy (Filippi and Luiselli, 2000; Luiselli and Filippi, 2006;
63 Corti et al., 2011) are also caught by *Serpari* to be shown during the rite of San Domenico. These
64 three species are protected under the EU Directive habitats 92/43/CEE and by national law no.
65 357/1997. Since 2009, the Italian Ministry of the Environment, with the favorable opinion of the
66 Italian Institute for Environmental Protection and Research (ISPRA), the Societas Herpetologica
67 Italica (SHI) and Roma Tre University has authorized the capture and temporary possession of
68 snakes on a three-year basis.

69 The first authorization required that the monitoring of the captured snakes included the collection of
70 the following data: species, individual markings, and the names of *Serpari*. At the end of the ritual,
71 the snakes must be released at their original point of capture.

72 Since 2010, we have carried out a citizen science project, with the support of the local
73 administration, and the fundamental help of *Serpari*. This citizen science project has gone beyond
74 the requested monitoring of snakes by collecting biometric parameters, assessing the health status of
75 the snakes and improving housing conditions of snakes, as well as evaluating the sustainability of
76 the number of snakes captured over the years. We have improved the temporary housing conditions
77 of snakes by purchasing and distributing 22 professional terrariums to *Serpari*. We have provided
78 them with detailed husbandry guidelines (i.e., regular disinfection of the terrarium, accessories such
79 as hiding places and water bowls, differentiation between hot and cold areas). Before 2010, snakes
80 were mainly kept in makeshift containers made of wood or plastic, often lacking the minimum
81 welfare standards required for proper reptile housing.

82 The project has also involved promotional and scientific outreach activities: setting up a museum
83 space, public meetings (e.g., various editions of the Herpeton by SHI since 2017), and the
84 publication of outreach articles.

85 Summarizing, this study provides: i) monitoring data of the snakes (number of individuals captured
86 and biometric parameters) collected since 2010, ii) an overview of *Serpari* community iii) trends in

87 capture numbers and morphometric parameters to indirectly assess the impact of the conservation
88 measures implemented.

89

90 **MATERIALS AND METHODS**

91 All snakes captured by *Serpari* were monitored 2–3 days before May 1st. Data were collected
92 between 2010 and 2024, resulting in a total sample of 1,505 snakes. For each snake the following
93 information were recorded: species, sex, age class (juvenile, sub-adult, adult), biometric
94 measurements (weight, snout-vent length, and tail length), and the specific capture location (since
95 2010, *Serpari* have recorded GPS coordinates of snake's capture locations).

96 Most snakes (n = 1,204) were implanted subcutaneously with a Passive Integrated Transponder (PIT
97 tag) - a small injectable microchip containing a unique alphanumeric code readable by a scanner.

98 Physical examination followed, and bacteriological swabs were collected for laboratory analysis.

99 From 2010 to 2012, samples were processed by the Istituto Zooprofilattico Sperimentale (IZS) of
100 Lazio and Toscana, while in 2013, analyses were conducted by the IZS of Abruzzo and Molise (e.g.,
101 Filippi et al., 2010). When necessary, veterinary staff administered appropriate treatments, including
102 disinfection, wound care, hydration, antibiotics, and ectoparasite (e.g., mite) removal. After the
103 event, or within few days, each snake was released at the same site by the *Serpari* who captured it.

104 To indirectly evaluate the impact of conservation measures, we have adopted methodologies similar
105 to those used in studies of harvested snakes for the leather industry (Natusch et al., 2016; Natusch et
106 al., 2019; Arida et al., 2024).

107 Statistical tests (univariate descriptive statistics, χ^2 test, one-way independent ANOVA several-
108 sample test, Pearson's correlation coefficient) were calculated with Past 4.09 (Hammer et al., 2001).

109 Statistical significance was accepted at $P < 0.05$.

110

111 **RESULTS**

112 From 2010 to 2024, a total of 1,505 snakes (including adults, subadults, and juveniles and
113 recaptures) were brought to us by the Serpari (note that in 2020 and 2021 the ritual did not take
114 place due to the Covid-19 pandemic).

115 A summary of snakes' health assessments, including physical examination, controls, oral and
116 cloacal swabs, blood sampling, and microchips implantation, is provided in Fig. 1. Detailed results
117 of clinical and laboratory analyses have been presented in other studies (e.g., Marini et al., 2023;
118 Mendoza-Roldan et al., 2024; Ugochukwu et al., 2024; Fagundes-Moreira et al., 2025).

119 The snakes captured by *Serpari* were primarily *Elaphe quatuorlineata* (n = 1,011), with smaller
120 numbers of *Hierophis viridiflavus* (n = 279) and *Zamenis longissimus* (n = 198). Other less captured
121 species included, *Natrix helvetica* (Lacépède, 1789) (n = 10), *Coronella austriaca* Laurenti, 1768 (n
122 = 5), and *Coronella girondica* (Daudin, 1803) (n = 2). Although *Vipera aspis* (Linnaeus, 1758) is
123 syntopic, it is not permitted to capture it due to its venomous nature. Compared to the regional
124 potentiality, Cocullo and the neighboring villages hosted 7 of 9 species (Di Tizio et al., 2024); only
125 *Vipera ursinii* (Bonaparte, 1835) and *Natrix tessellata* (Laurenti, 1768) are absent.

126 The total number of individuals captured annually ranged from 90 to 186 ($\bar{x} = 115.77 \pm 23.77$)
127 varied significantly among years ($\chi^2 = 58.58$, df = 12, $P < 0.000001$).

128 Average morphometric data (snout-vent length - SVL, tail length and body weight) per year of the
129 three most abundant species (*E. quatuorlineata*, *H. viridiflavus* and *Z. longissimus*) are reported in
130 Table 1, 2, 3. Low number of *C. austriaca*, *C. girondica* and *N. helvetica* did not allow a statistical
131 analysis.

132 The number of *Serpari* ranged from 19 to 35 ($\bar{x} = 24.5 \pm 6.4$) though this variation was not
133 statistically significant ($\chi^2 = 20.13$, df = 12, $P = 0.07$) (Fig. 2). The *Serpari* were mostly men, they
134 ranged from 17 to 29 ($\bar{x} = 21.3 \pm 3.8$), but there were also women ($\bar{x} = 3.2 \pm 3.2$) that ranged from 0
135 to 9. The number of *Serpari* was positively correlated with the number of snakes captured ($r_{(11)} =$
136 0.67, $P < 0.05$).

137 The annual capture numbers of *E. quatuorlineata* ranged from 60 to 93 ($x = 77.77 \pm 10.78$) and did
138 not vary significantly over the study period ($\chi^2 = 17.93$, $df = 12$, $P = 0.12$), unlike the number of the
139 other two most frequently captured species, *H. viridiflavus* (range = 8-63, $x = 21.46 \pm 15.09$, $\chi^2 =$
140 47.89, $df = 12$, $P > 0.000001$) and *Z. longissimus* (range = 7-26, $x = 15.23 \pm 5.96$, $\chi^2 = 27.99$, $df =$
141 12, $P = 0.006$). The captured numbers of *E. quatuorlineata* and the combined total of *H. viridiflavus*
142 and *Z. longissimus* were negatively correlated ($r_{(10)} = -0.34$, $P > 0.05$).

143 No significant trends were observed in the average number of snake captures per *Serparo* across
144 years for the three main species: the average number of *E. quatuorlineata*, *H. viridiflavus*, and *Z.*
145 *longissimus* caught per *Serparo* each year did not differ significantly ($F_{12,295} = 1.24$, $P = 0.26$; $F_{12,295}$
146 = 1.19, $P = 0.28$; $F_{12,295} = 1.82$, $P = 0.05$). Capture trends are shown in Figure 3. A *post-hoc* power
147 analysis, performed by G*Power (Faul et al., 2007), achieved sufficient statistical power (0.99 for
148 the three species) to support the conclusion that average capture numbers of *E. quatuorlineata*, *H.*
149 *viridiflavus*, and *Z. longissimus* captured per *Serparo* remained stable over time.

150 There were also no significant differences in the SVL mean between the years, including repeated
151 snake captures, of *E. quatuorlineata* males ($F_{12,595} = 1.59$, $P = 0.09$), females ($F_{12,591} = 1.67$, $P =$
152 0.07), or in males of *H. viridiflavus* ($F_{12,182} = 1.59$, $P = 0.50$), or *Z. longissimus* males ($F_{11,92} = 1.50$,
153 $P = 0.14$). However, a significant difference was observed in the SVL of female *H. viridiflavus* ($F_{9,56}$
154 = 2.76, $P = 0.01$).

155 A χ^2 test on pooled data showed that sex ratio was similar between years for captured adult *E.*
156 *quatuorlineata* ($\chi^2 = 10.85$, $df = 12$, $P = 0.54$), *H. viridiflavus* ($\chi^2 = 19.75$, $df = 12$, $P = 0.07$) and *Z.*
157 *longissimus* ($\chi^2 = 112.79$, $df = 12$, $P = 0.38$).

158 During the study period, no adverse effects were recorded from microchip implantation, even in
159 individuals recaptured multiple times. For example, a male of *E. quatuorlineata* was captured for
160 the first time in 2011 (SVL: 118,0 cm; tail: 31,0 cm; weight 678 g) and recaptured with increased
161 measurements in 2014 (SVL: 123,5 cm; tail: 31,0 cm; weight 750 g), in 2016 (SVL: 128,0 cm; tail:
162 32,0 cm; weight 846 g) and 2023 (SVL: 143,0 cm; tail: 36,0 cm; weight 948 g) indicating healthy

163 development and no adverse impact from tagging. A female of *E. quatuorlineata* was captured for
164 the first time in 2013 (SVL: 125,0 cm; tail: 28,0 cm; weight 594 g) and recaptured in 2014 (SVL:
165 135,5 cm; tail: 28,0 cm; weight 896 g) and 2022 (SVL: 140,0 cm; tail: 29,0 cm; weight 1240 g).

166 The maximum lengths observed in our study are presented in Table 4.

167

168 DISCUSSION

169 This long-term citizen science project generated a substantial dataset and our data confirmed known
170 morphometric patterns. In *E. quatuorlineata*, females were on average longer than males,
171 supporting the presence of reversed sexual size dimorphism (RSD) in this species (see Rugiero and
172 Luiselli, 1996; Capizzi and Luiselli, 1997; Filippi et al., 2005). Males had longer tail on average,
173 while adult males and females exhibited comparable body weights. In *H. viridiflavus* and *Z.*
174 *longissimus* males attained on average larger sizes and longer tails (see Scali and Montonati, 2000)
175 and weight. Maximum length (record observed in Italy and published) was observed in *Elaphe*
176 *quatuorlineata* and *Zamenis longissimus* (Corti et al, 2011).

177 We provided the first quantitative characterization of annual snake captures during this traditional
178 ritual. Our results confirmed that the target species of *Serpari* is *E. quatuorlineata*, as qualitatively
179 observed in the past (Filippi and Luiselli, 2003; Pellegrini et al 2017) with lower numbers of *H.*
180 *viridiflavus* and *Z. longissimus* also being captured. This is likely due to the attractive appearance,
181 larger size, and docile nature of *E. quatuorlineata*. Whereas *H. viridiflavus* and *Z. longissimus* and
182 rarer species such as *N. helvetica*, *C. austriaca*, and *C. girondica* are typically captured as
183 supplementary species when fewer *E. quatuorlineata* are caught by *Serpari*. This selective capture
184 may introduce sampling biases, potentially misrepresenting the true composition and structure of
185 the local snake community. For instance, *Elaphe quatuorlineata* is not recognized as the dominant
186 species in other areas of central Italy (Filippi, 2003; Filippi and Luiselli, 2001, 2006; Luiselli and
187 Filippi, 2006). Nonetheless, it remains possible that centuries of selective handling have influenced
188 the current structure of the local snake populations.

189 Moreover, this study enabled a preliminary assessment of capture trends and morphometric stability
190 over time: over this 15-year-old study, based on our results, the average number captured per
191 *Serparo* of *E. quatuorlineata*, *H. viridiflavus*, and *Z. longissimus* and their morphometric parameters
192 have remained stable. Our results confirmed the reliability and safety of microchip tagging for
193 individual identification in wild colubrids (see Taggart et al., 2021).
194 Overall, the collected data can indirectly support the conclusion that the activities of capture,
195 temporary detention, and release are currently sustainable for the local snake populations.
196 It is highly likely that accompanying conservation efforts—such as continuous health monitoring
197 under a One-Health approach and improved temporary housing—have contributed to ensuring the
198 sustainability of the practice (see Mendoza-Roldan et al., 2024; Ugochukwu et al., 2024; Fagundes-
199 Moreira et al. 2025). However, ongoing monitoring remains essential, both to detect potential issues
200 and to guide future conservation or mitigation actions related to the rite and broader environmental
201 changes. In this regard, it will be necessary to combine the current monitoring with standardized
202 field studies, both to observe the emergence of any critical issues, to quantitatively assess the local
203 snake community and to appropriate and/or eventual conservation and/or mitigation actions related
204 to *Serpari* activities and/or related to the environment (see for example, Filippi and Luiselli, 2002;
205 Edgar et al., 2010; Lelievre et al., 2010; Akresh et al., 2017; Filippi, 2019; Assmann, 2013).
206 In conclusion, the monitoring of snakes captured by the Serpari of Cocullo represents a unique
207 convergence of traditional cultural practice, citizen science activities and scientific conservation
208 effort. This case study offers a rare opportunity to assess species status and health under a One-
209 Health framework, while promoting public awareness through citizen science and outreach.
210 Continued research and engagement will be essential to maintain this balance and ensure the long-
211 term well-being of both local wildlife and the human communities involved.
212

213 **ACKNOWLEDGEMENTS**

214 All snake captures were performed under the appropriate authorization numbers from the Italian
215 Ministry of Environment: n. 11279/2009, n. 7290/2011, n. 3094/2014, n. 6265/2017, n. 24610/2020,
216 and n. 6271/2023, as well as welfare and safety guidelines. We would like to express our thanks to
217 the Majors Nicola Risio and Sandro Chiocchio, the municipality, all *Serpari* and the people of
218 Cocullo for supporting conservation actions and preserving this ancient ritual. We would like to
219 thank Gian Lorenzo D'Alterio, Adriano Savoretti, Piero Castellano, Fabio Lofoco, Christoph Otto,
220 Sigrid Lenz, Hubert Laufer, Riccardo Scalera, Stefan Broghammer, Maria Luce Del Vecchio for
221 their support; the researchers of Università di Bari- Dipartimento di Medicina Veterinaria, IZS
222 Lazio e Toscana (I.T. Sez. Viterbo from 2010 to 2012), IZS Abruzzo e Molise for their cooperation
223 in conducting clinical examinations and bacteriological analyses. We are grateful to Rifcon GmbH
224 that sponsored snake bags, PITs, polo shirts, surgical glue and equipped professional terraria to
225 improve the quality of the captivity phase of the snake. The Authors declare no conflict of interest.

226

227

228

REFERENCES

- 229 Akresh, M.E., King, D.I., Timm, B.C., Brooks, R.T. (2017): Fuels Management and Habitat
230 Restoration Activities Benefit Eastern Hognose Snakes (*Heterodon platirhinos*) in a Disturbance-
231 Dependent Ecosystem. *J. Herpetol.* **51**: 468-476.
- 232 Arida, E., Maireda, N.L., Herlambang, A.E.N., Mumpuni, Riyanto, A. Hamidy, A., Shine, R.,
233 Natusch, D.J.D. (2024): Life-history of masked water snakes (*Homalopsis buccata*) in Java:
234 implications for the sustainability of harvesting. *Wildlife Res.* **51**: 1-10.
- 235 Assmann, O. (2013): Artenschutzpraxis: Anlage von Hackschnitzelhaufen als Eiablageplätze für
236 Äskulapnatter und Ringelnatter. *ANLIEGEN NATUR* **35**: 16–21.
- 237 Bruno, S., Maugeri, S. (1990). *Serpenti d'Italia e d'Europa*. Milano, Edit. G. Mondadori.
- 238 Capizzi, D. & Luiselli, L. (1997): The diet of the four lined snake (*Elaphe quatuorlineata*) in
239 Mediterranean central Italy. *Herpetol. J.* **7**: 1-5.

- 240 Corti, C., Capula, M., Luiselli, L., Mazzetti, E., Sindaco, R., Eds. (2011): Fauna d'Italia Vol. XLV
241 Reptilia. Milano, Calderini.
- 242 Di Nicola, M., R., Cavigioli, L., Luiselli, L., Andreone, F. (2021): Anfibi & Rettilli d'Italia. Latina,
243 Edizioni Belvedere.
- 244 Di Tizio, L., Carafa, M., Cameli, A. (2024): Anfibi e Rettilli d'Abruzzo. Atlante e guida. Pescara,
245 Ianieri Edizioni.
- 246 Edgar, P., Foster, J. and Baker, J. (2010): Reptile Habitat Management Handbook. Bournemouth,
247 Amphibian and Reptile Conservation.
- 248 Fagundes-Moreira, R., Otranto, D., Montinaro, G. Filippi, E., Lorusso, A., Petrini, A., De Fazi, L.,
249 Corrente, M.L., Benelli, G., Mendoza-Roldan, J.A. (2025): Cultural human-snake interactions in the
250 festa dei Serpari as an opportunity for the surveillance of bacterial pathogens of zoonotic concern.
251 Comp Immunol Microbiol Infect Dis. **118**: 102325.
- 252 Faul, F., Erdfelder, E., Lang, A.G., Buchner, A. (2007): G.* Power 3: A flexible statistical power
253 analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. **39**: 175–
254 191.
- 255 Filippi, E. (2003): The effects of timbering on the community structure of snakes at a Mediterranean
256 area of central Italy. Amphibia-Reptilia **24**: 75-79.
- 257 Filippi, E. (2019): Effects of restoration habitat on snake species of Dghoumes National Park
258 (Tunisia). Biodivers. J. **10**: 213-220.
- 259 Filippi, E., Luiselli, L. (2000): Status of the Italian snake fauna and assessment of conservation
260 threats. Biol. Conserv. **93**: 219-225.
- 261 Filippi, E., Luiselli, L. (2001): Use of microhabitat and substratum types by sympatric snakes in
262 Mediterranean area of central Italy. Ecol. mediterr. **27**: 141-153.
- 263 Filippi, E., Luiselli, L. (2002): Negative effect of the wild boar (*Sus scrofa*) on the populations of
264 snakes at a protected mountainous forest in central Italy. Ecol. mediterr. **28**: 93-98.

- 265 Filippi, E., Luiselli, L. (2003): Delayed reproduction in snakes subjected to human traditional
266 rituals in central Italy. *Vie Milieu* **53**: 111-118.
- 267 Filippi, E., Luiselli, L. (2006): Changes in community composition, habitats and abundance of
268 snakes after 10+ years at a protected area in Italy: conservation implications. *Herpetol. J.* **16**: 29-
269 36.
- 270 Filippi, E., D'Alterio, G.L., Brozzi, A., Micci, M., Politi, P., Mantero, D. (2010): Note on the intestinal
271 bacterial populations of free living snakes in Italy. *Herpetol. Notes* **3**: 263-265.
- 272 Filippi, E., Rugiero, L., Capula, M., Capizzi, D., Luiselli, L. (2005): Comparative foods habits and
273 body size of five populations of *Elaphe quatuorlineata*: the effects of habitat variation, and the
274 consequences of intersexual body size dimorphism on diet divergence. *Copeia*, **3**: 517-525.
- 275 Haland, E.J. (2011): Saints and Snakes: Death, Fertility and Healing in modern and ancient
276 Greece and Italy. *Performance and Spirituality* **2**: 111-151.
- 277 Hall, S.S. (2025): *Slither*. New York, Grand Central Publishing.
- 278 Hammer, Ø., Harper, D.A.T., Ryan, P.D. (2001): PAST: Paleontological Statistics Software
279 Package for Education and Data Analysis. *Paleontol. Electron.* **4**: 1-9.
- 280 Harrison, M.C. (1907): Serpent-procession at Cocollo. *Folklore* **18**: 187-191.
- 281 Lelièvre, H., Blouin-Demers, G., Bonnet, X., Lourdais, O. (2010): Thermal benefits of artificial
282 shelters in snakes: A radiotelemetric study of two sympatric colubrids. *J. Therm. Biol.* **35**: 324-
283 331.
- 284 Luiselli, L., Filippi, E. (2006): Null models, co-occurrence patterns, and ecological modelling of
285 Mediterranean community of snakes. *Amphibia-Reptilia* **27**: 325-338.
- 286 Marini, D., Filippi, E., Montinaro, G., Olivieri, M., Origgi, F.C. (2023): First screening on absence
287 of *Ophidiomyces ophiodiicola* detection in symptomatic snake community from Rito di San
288 Domenico e dei Serpari (Cocollo, AQ, Italy). *Acta Herpetol.* **18**: 45-52.

- 289 Martinelli, F. (2024): Serpents of the people: how a religious festival helps me to monitor snake
290 behaviour - Where I Work. *Nature* **630**: 702.
- 291 Martinelli, F., Zavoli, E. (2023): A statue draped with snake? In Italy it happens every year. *The*
292 *New York Times*. 29 September 2023.
- 293 Mendoza-Roldan, J.A., Perles, L., Filippi, E., Szafranski, N., Montinaro, G., Carbonara, M.,
294 Scalera, R., de Abreu Teles, P.P., Walochnik, J. Otranto, D. (2024): Parasites and microorganisms
295 associated with the snakes collected for the “*Festa dei Serpari*” in Cocollo, Italy. *PLoS Neglect.*
296 *Trop. D.* **18**: e0011973.
- 297 Natusch D.J.D., Lyons JA, Mumpuni, M., Riyanto A, Shine R. (2016): Jungle Giants: Assessing
298 Sustainable Harvesting in a Difficult-to-Survey Species (*Python reticulatus*). *PLOS ONE* **11**:
299 e0158397.
- 300 Natusch, D.J.D. Lyons, J.A., Riyanto, A., Mumpuni, M., Khadiejah, S., Shine, R. (2019):
301 Detailed biological data are informative, but robust trends are needed for informing sustainability
302 of wildlife harvesting: A case study of reptile offtake in Southeast Asia. *Biol. Conserv* **233**: 83-
303 92.
- 304 Pellegrini, M., Di Francesco, N., Di Tizio, L., Di Toro, F., D’Amico, M., Cameli, A., Ferri, V.,
305 Filippi, E., Montinaro, G., Pinchera, F., Posillico, M. (2017): Action Plan per la conservazione di
306 *Elaphe quatuorlineata* (Lacépède, 1789) in Abruzzo. In: Menegon, M., Rodriguez-Prieto, A.,
307 Deflorian, A. M. (Eds) (2017). *Atti XI Congresso Nazionale Societas Herpetologica Italica*.
308 Pescara, Ianieri Edizioni.
- 309 Reading, C. J., Luiselli, L., Akani, G. C., Bonnet, X, Amori, G., Ballouard, J. M., Filippi, E.,
310 Naulleau, G. Pearson, D, Rugiero, L. (2010): Are snake populations in widespread decline? *Biol.*
311 *Letters* **6**: 777-780.
- 312 Rugiero, L. & Luiselli L. (1996): Ecological notes on an isolated population of the snake *Elaphe*
313 *quatuorlineata*. *Herpetol. J.* **6**: 53-55.

- 314 Savoretti, A. (2016): Dove amano i serpenti. In: Filippi, E. (ed). La fauna ofidologica italiana.
315 Roma, Gazzetta ambiente, XII, 4.
- 316 Scali, S. & Mondonati, S. (2000): Analisi multivariata del dimorfismo sessuale in due specie di
317 colubridi italiani (*Coluber viridiflavus* ed *Elaphe longissima*: Reptilia, Serpentes, Colubridae) su
318 basi biometriche. In: Giacoma, C. (ed). Atti del I Congresso Nazionale della Societas
319 Herpetologica Italica. Torino, Museo Regionale di Scienze Naturali.
- 320 Taggart, P.L., Morris, S., Caraguel, C.G.G. (2021): The impact of PIT tags on the growth and
321 survival of pythons is insignificant in randomised control trial. PeerJ.: e11531.
- 322 Ugochukwu, I.C.I., Mendoza-Roldan, J.A., Rhimi, W., Ugochukwu, Rhimi, W., Miglianti, M.,
323 Odigie, E.A., Mosca, M., Filippi, E., Montinaro, G., Otranto, D., Cafarchia (2024): Snakes as
324 sentinel of zoonotic yeasts and bio-indicators of environmental quality. Sci. Rep. **14**: 22491.
- 325 Zenoni, A. (2019): Etnofilologia agiografica. Il culto di San Domenico di Sora e la tradizione
326 dei serpari a Cocullo (Appennino abruzzese). Quaderni di Semantica **5**: 485-520.
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337

338

339

340

341

342 **Table 1.** Morphometric adult males and females data (n = sample size) of *E. quatuorlineata*: values of snout-
 343 to-vent length (SVL), tail length (TL) and body weight report mean \pm SD per year. Sample size (n) that
 344 differ from the reference column are highlighted with asterisks (*) and listed at the bottom of the table.

Year	Males	SVL	Tail	Weight	Females	SVL	Tail	Weight
	(n)	(cm)	(cm)	(gr)	(n)	(cm)	(cm)	(gr)
2010	36	129.01 \pm 9.23	30.44 \pm 2.60	758.17 \pm 168.40	17	134.44 \pm 10.70	25.65 \pm 3.95	719.65 \pm 188.24
2011	43	123.74 \pm 11.66	30.47 \pm 3.80	692.44 \pm 192.74*	18	127.28 \pm 14.41	26.19 \pm 2.64	704.78 \pm 263.93
2012	47	124.57 \pm 11.19	30.14 \pm 3.06	748.17 \pm 185.08	23	127.43 \pm 17.60	24.08 \pm 6.17	757.39 \pm 242.67
2013	41	123.32 \pm 10.61	29.17 \pm 3.18	738.96 \pm 214.88	24	127.54 \pm 12.07	27.15 \pm 3.18***	699.47 \pm 218.01***
2014	38	121.63 \pm 8.25	29.32 \pm 5.43	725.92 \pm 176.56	32	126.78 \pm 15.07	25.11 \pm 5.16	738.44 \pm 229.90
2015	43	125.84 \pm 9.25	29.89 \pm 4.07	777.02 \pm 176.01	26	130.44 \pm 8.57	26.67 \pm 4.61	772.23 \pm 169.56
2016	48	127.96 \pm 9.41	29.48 \pm 4.72	773.94 \pm 194.11	25	133.16 \pm 10.83	25.92 \pm 3.01	771.44 \pm 202.28
2017	64	126.48 \pm 10.02	29.91 \pm 3.50	736.68 \pm 211.68**	19	134.50 \pm 8.67	24.50 \pm 5.32	722.00 \pm 181.48
2018	52	126.93 \pm 11.60	30.27 \pm 4.11	690.12 \pm 210.13	26	135.63 \pm 10.38	25.12 \pm 4.74	711.08 \pm 197.18
2019	52	126.38 \pm 10.39	30.16 \pm 4.14	715.37 \pm 191.35**	23	134.22 \pm 10.82	25.80 \pm 3.50	708.17 \pm 187.10
2022	40	126.65 \pm 9.44	29.61 \pm 4.66	747.68 \pm 202.56	23	131.07 \pm 12.80	26.17 \pm 5.10	771.96 \pm 230.03
2023	44	126.93 \pm 14.26	29.83 \pm 4.78	705.80 \pm 269.06	19	134.58 \pm 10.36	27.00 \pm 3.64	728.11 \pm 148.02
2024	60	128.23 \pm 13.37	30.28 \pm 4.10	731.98 \pm 227.77	29	131.62 \pm 12.16	26.66 \pm 4.37	643.80 \pm 228.11****

*n = 41

***n = 23

****n = 23

**n = 51

*****n = 28

345

346

347

348

349

350

351

352

353

354

355

356 **Table 2.** Morphometric adult males and females data (n = sample size) of *H. viridiflavus*: values of snout-to-
 357 vent length (SVL), tail length (TL) and body weight report mean \pm SD per year. Sample size (n) that differ
 358 from the reference column are highlighted with asterisks (*) and listed at the bottom of the table.

359

Year	Males	SVL	Tail	Weight	Females	SVL	Tail	Weight
2010	8	87.5 \pm 12.30	28.81 \pm 8.61	178.00 \pm 83.31*	3	87.33 \pm 4.62	28.67 \pm 0.58	166 \pm 21.63
2011	7	88.79 \pm 4.69	31.5 \pm 1.04	199.43 \pm 44.30	5	84.50 \pm 8.72	26.00 \pm 3.52	198 \pm 89.25
2012	8	97.69 \pm 6.42	32.50 \pm 7.22	389.88 \pm 76.21	2	93.50 \pm 0.71	31.50 \pm 2.12	344 \pm 166.88
2013	9	94.78 \pm 8.21	27.44 \pm 6.26	243.78 \pm 76.06	2	94.50 \pm 2.12	30.00 \pm 1.14	188 \pm 5.66
2014	17	89.76 \pm 11.26	30.88 \pm 3.43	259.88 \pm 93.61	2	68.50 \pm 3.54	21.00 \pm 0.00	72.00 \pm 0.00
2015	10	94.60 \pm 5.42	29.65 \pm 5.86	320.80 \pm 52.02	1	84.00	29.50	132.00
2016	7	92.00 \pm 5.71	31.71 \pm 1.22	236.57 \pm 69.62	-	-	-	-
2017	11	91.23 \pm 9.16	31.13 \pm 3.52	226.73 \pm 67.89	1	84.00	27.00	122.00
2018	18	90.53 \pm 8.67	30.67 \pm 4.44	216.59 \pm 73.17**	3	87.00 \pm 4.58	26.50 \pm 4.27	136.67 \pm 30.62
2019	20	92.53 \pm 5.83	29.90 \pm 6.46	269.20 \pm 62.78	8	89.50 \pm 4.81	27.75 \pm 2.48	198.86 \pm 57.62*
2022	21	89.45 \pm 11.06	30.90 \pm 4.69	213.73 \pm 92.90	13	89.12 \pm 8.32	28.85 \pm 2.48	190.75 \pm 68.45
2023	21	92.95 \pm 8.90	30.71 \pm 5.88	228.95 \pm 70.68	5	79.00 \pm 7.97	26.60 \pm 2.61	120.80 \pm 48.90
2024	38	90.66 \pm 9.72	31.01 \pm 4.81	218.00 \pm 75.00	23	83.87 \pm 8.61	26.85 \pm 4.74	140.83 \pm 43.43

*n=7

*n=7

**n=17

360

361

362

363

364

365

366

367

368

369

370

371

372 **Table 3.** Morphometric adult males and females data (n = sample size) of *Z. longissimus*: values of snout-to-
 373 vent length (SVL), tail length (TL) and body weight report mean \pm SD per year. Sample size (n) that differ
 374 from the reference column are highlighted with asterisks (*) and listed at the bottom of the table.

375

Year	Males	SVL	Tail	Weight	Females	SVL	Tail	Weight
2010	12	98.54 \pm 21.49	21.00 \pm 5.31	260.00 \pm 156.37	7	84.57 \pm 8.81	18.21 \pm 2.55	163.43 \pm 54.69
2011	5	88.00 \pm 11.25	20.90 \pm 3.05	178.40 \pm 75.86	4	82.75 \pm 8.18	17.88 \pm 2.02	184.50 \pm 38.79
2012	7	96.79 \pm 11.46	23.64 \pm 3.47	282.29 \pm 99.30	2	79.00 \pm 16.97	12.00 \pm 0.00	212.00 \pm 84.85
2013	11	95.10 \pm 13.13	22.68 \pm 4.29	228.00 \pm 64.63	11	85.00 \pm 9.33	18.64 \pm 5.45	170.36 \pm 50.17
2014	9	95.72 \pm 11.23	22.56 \pm 3.57	248.00 \pm 94.87	5	86.50 \pm 4.56	19.10 \pm 1.85	188.40 \pm 44.71
2015	4	96.50 \pm 12.66	22.38 \pm 1.25	260.50 \pm 202.76	3	84.67 \pm 5.51	20.33 \pm 0.58	198.67 \pm 23.35
2016	8	105.86 \pm 14.13	23.00 \pm 4.87	324.50 \pm 131.39	7	83.86 \pm 12.06	17.58 \pm 2.11***	220.00 \pm 186.23
2017	1	140.00 \pm 0.00	32.50 \pm 0.00	972.00 \pm 0.00	5	91.00 \pm 11.20	18.50 \pm 6.06	210.00 \pm 68.69
2018	10	106.45 \pm 6.86	22.45 \pm 5.00	272.60 \pm 62.40	6	90.42 \pm 4.59	18.83 \pm 2.99	171.67 \pm 31.17
2019	5	102.80 \pm 8.50	24.00 \pm 2.35	272.00 \pm 94.45	8	88.63 \pm 4.73	17.63 \pm 3.65	191.50 \pm 49.13
2022	5	94.70 \pm 10.29	21.80 \pm 5.07	220.50 \pm 56.25*	1	96.00 \pm 0.00	21.00 \pm 0.00	228.00 \pm 0.00
2023	11	89.00 \pm 10.77	21.73 \pm 4.58	146.72 \pm 57.56	3	80.00 \pm 1.00	17.00 \pm 1.00	101.33 \pm 3.06
2024	17	96.26 \pm 25.11	28.65 \pm 21.30	221.06 \pm 134 \pm 66**	9	90.67 \pm 8.29	16.55 \pm 4.44	171.11 \pm 69.47

*n=4

***n=6

**n=16

376

377

378 **Table 4.** Maximum total length (Tl), snout-to-vent length (SVL), tail length, body weight, and year
379 of capture of the three most abundant species: *E. quatuorlineata* (Eq), *H. viridiflavus* (Hv) and *Z.*
380 *longissimus* (Zl).

381

Species	Sex	SVL (cm)	Tail (cm)	Tl (cm)	Weight (gr)	Year
<i>Eq</i>	M	154.0	37.0	191.0	1156	2015
<i>Eq</i>	F	159.0	31.0	190.0	1064	2023
<i>Zl</i>	M	140.0	32.5	172.5	972	2017
<i>Zl</i>	F	106.0	22.0	128.0	288	2017
<i>Hv</i>	M	108.0	38.5	146.5	334	2022
<i>Hv</i>	F	105.0	25.0	130.0	368	2023

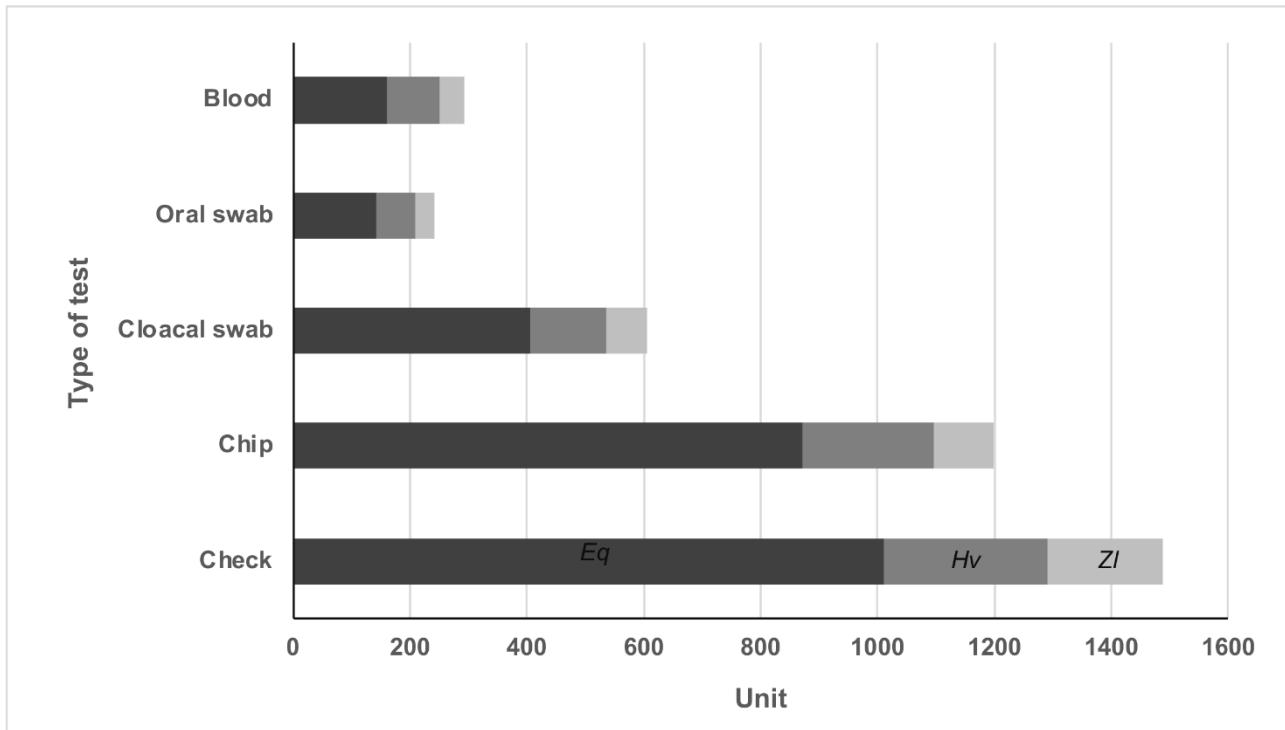
382

383

384

385

386


387

388

389

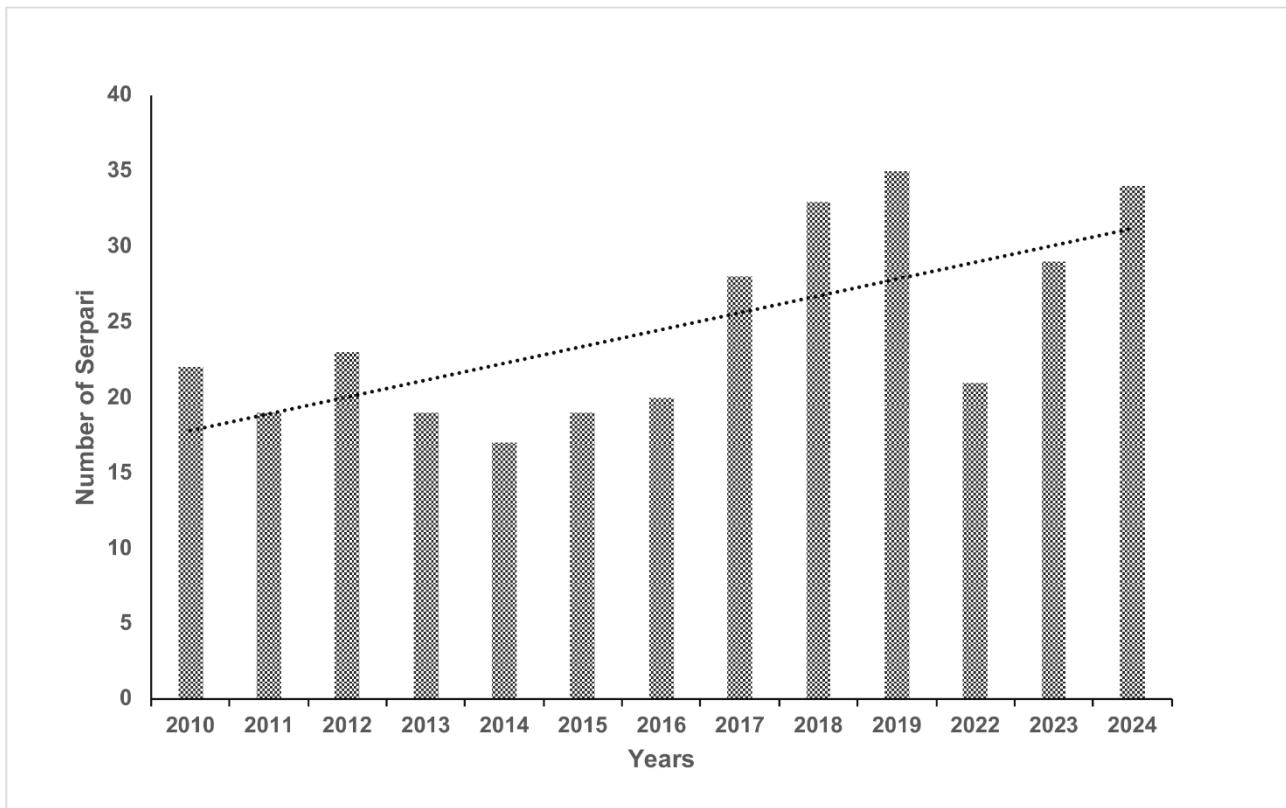
390

391

392

393 **Fig. 1.** Total check, oral and cloacal swabs, blood samples taken, and microchips inserted in the
 394 three most frequently caught snake species in Cocollo: *E. quatuorlineata* (*Eq* - black), *H.*
 395 *viridiflavus* (*Hv* - dark grey), *Z. longissimus* (*Zl* - light grey).

396


397

398

399

400

401

402

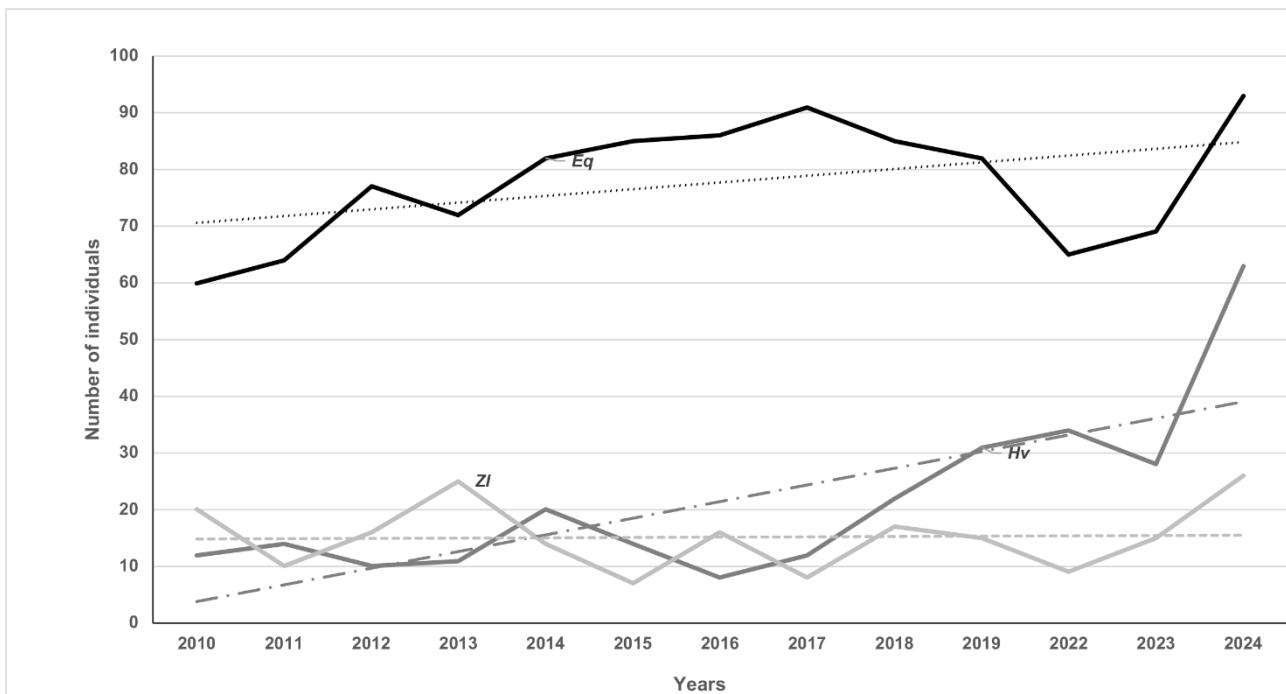
403 **Fig 2.** Number of *Serpari* per year and trend line

404

405

406

407


408

409

410

411

412

413

414 **Fig. 3.** Total of captures per year and trend of three most frequently caught snake species in
 415 Cocullo: *E. quatuorlineata* (Eq - black), *H. viridiflavus* (Hv- dark grey), *Z. longissimus* (Zl – light
 416 grey).
 417