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Abstract. The vulnerable Micrurus sangilensis commonly known as the Santander coral snake
distributes in dry and montane forests, ecosystems under severe anthropogenic pressure in
northeastern Colombia. The habitat of this serpent is fragmented, and climate change may
further intensify risks to the vegetation structure. We assessed whether the current distribution
of the snake may be altered under different scenarios with climate change in the 2040-2060
years; aiming to recognize conservation priority areas. With ecological niche modeling we
calculated current values of stability in the distribution range of the species, for the most
conservative emission scenarios of Socio-Economic Pathways (SSP) 126, and 245; and the
expected greater emissions 585 within five different global circulation models. We also
escalated an index of vulnerability to land use change to 2050 in the remaining areas for the
species, detecting prioritizing conservation zones. Our findings reveal a nearly 25% consistency
of loss in the three SSP scenarios, while gaining stability varies between different GCMs. Over
37% of remaining suitable areas were categorized as highly vulnerable to land-use change,
especially at elevations between 900 and 2000 m. We emphasize the need to integrate M.
sangilensis habitats into Colombia’s protected area network, restore degraded ecosystems, and
establish ecological corridors to mitigate fragmentation. While the most vulnerable to changing
areas appear to be the ones with critical requirements for conservation; We recommend
targeting conservation efforts in areas of low to medium vulnerability to change, which are less

likely to undergo significant modifications over the next 30—40 years

Keywords. Biodiversity conservation, climate change, ecological niche modeling, fragmented

landscapes, Micrurus sangilensis
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INTRODUCTION

The rapid changing patterns in climatic regimes have become a central concern in
conservation sciences (Lovejoy, 2006; Young et al., 2011; Yu et al., 2014; Upadhyay, 2020;
Fuentes et al., 2023). In the Americas, home to multiple biodiversity hotspots, ecosystems are
increasingly at risk as altered climatic conditions force species to shift their historical
distribution ranges toward new latitudinal and altitudinal zones in search of suitable habitat
conditions (Allentoft and O’Brien, 2010; Bellard et al., 2012; Vicenzi et al., 2017; Archis et al.,
2018). Furthermore, range-restricted and threatened species often lack the dispersal capacity to
cope with these changes across fragmented landscapes with rapid shifting, among others,
vegetation structures (Kwak and Freeman, 2010; Bestion et al., 2015; Upadhyay, 2020; Fuentes
et al., 2023). While climate change is undoubtedly a major threat to already vulnerable
ecosystems, rapid and drastic land-use changes may pose an even more immediate challenge,
this compromises the structural integrity of habitats and increases barriers to species movement
(Bellard et al., 2012; Kittel, 2013; Staudt, 2013; Bush et al., 2017; Cobos et al., 2018). These
combined pressures underscore the urgent need for conservation strategies that enable the most
threatened, range-restricted species to respond to both climate and land-use changes,
particularly in fragmented landscapes (Heller and Zavaleta, 2009; Mawdsley et al., 2009; Rands
et al., 2010).

In South America Andean ecosystems are important reservoirs of rich and complex
biodiversity (Sarkar et al., 2009; Ramirez-Villegas et al., 2014; Bax and Francesconi, 2019),
where inhabiting hundreds of endemic and range restricted species, some specialized to the
typical habitats in ranges and associated environments; however, also among the most
threatened ecosystems in the world (Young et al., 2011; Bax and Francesconi, 2019; Noh et al.,
2020). Among many other groups affected by the changing landscape conditions in the Andes,

reptiles exhibit high sensitivity to climate change and habitat loss, mainly in relation to their
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reproductive processes (Huey et al., 2009; Gamble, 2010). However, they should be given
higher priority, particularly in the context of climate change impacts (Gumbs et al., 2018).
Residing in delicate ecosystems already imperiled by deforestation and habitat degradation,
many reptile species are categorized as threatened according to the [UCN Red List (Arredondo
et al., 2015; Bolivar et al., 2016; Paez et al., 2016; Calderén et al., 2019; Hladki et al., 2019;
Rainwater et al., 2022). They confront altered temperature and precipitation patterns, imperiling
their ecological niches and reproductive cycles (Brown and Shine, 2006; Gamble, 2010). The
ramifications extend to the intricate balance of their habitats, where some with restricted ranges
and specialized ecological requirements are particularly susceptible to environmental
perturbations (Holt, 1990; Moraes and Recchia, 2011).

Among reptiles, the family Elapidae, which includes coral snakes (Micrurus) have
species with wide distributions such as (Micrurus dumerilli and M. dissoleucus), and a high
tolerance for climatic regimes, as M. mipartitus inhabiting from 0 to near 2500 m (Rey-Sudarez
et al., 2016; Herrera-Lopera et al., 2018; Pitalua et al., 2018; Rio-Soto et al., 2018). However,
there are also some snakes with reduced distribution such as M. sangilensis, which is especially
affected by the modification, degradation, and loss of natural habitat (Hladki et al., 2019; Florez
and Montoya-Cruz, 2023).

Micrurus sangilensis, commonly known as the Santander coral snake, is a triad-colored
species distinguished by specific ring patterns and the absence of supracloacal keels. It differs
from its close relatives, M. dissoleucus and M. dumerilli, by having 16-22 triads and a typical
length of around 60 cm (Morales-Betancourt et al., 2015) (Fig. 1). Endemic to Colombia, its
narrowed distribution within the departments of Cundinamarca, Boyacd, and Santander (Roze,
1996; Campbell et al., 2004; Caicedo-Portilla and Lynch, 2015) and more recently detected in
Casanare (Florez and Montoya-Cruz, 2023). This species limited to moderate elevations (800—

2800 above sea level) along the Middle Magdalena River Basin, primarily inhabiting the
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vulnerable dry forests (Campbell et al., 2004). Currently classified as Vulnerable by the [IUCN,
its historical records show an estimated extent of occupation near 12000 km? (Caicedo-Portilla
and Lynch, 2015; Hladki et al., 2019). Despite its conservation status, critical knowledge gaps
remain regarding its population size, reproductive dynamics, and habitat requirements, which
are essential knowledge when working for effective conservation planning (Van Teeffelen et
al., 2012; Caicedo-Portilla and Lynch, 2015). Species like M. sangilensis may face acute risks
not only from climate change but also from rapid structural changes in vegetation due to habitat
degradation (Caicedo-Portilla and Lynch, 2015; Hladki et al., 2019; Florez and Montoya-Cruz,
2023).

Given the ongoing changes in land use and the potentially altered climatic regimes in
rainfall and temperature within the degraded dry forests, typical habitat of the restricted
distribution of M. sangilensis, it is necessary to develop management strategies predicting the
potential shifts in the species' distribution under future climate scenarios. This research aims to
assess the species' potential distribution under different Shared Socioeconomic Pathways (SSP)
under climate change, through a vulnerability to change index for land use, using Ecological
Niche Modeling Methodologies (ENM) which are among the most widely used and effective
tools for comparing and predicting historical and future scenarios (Peterson et al., 2011; Rangel
and Loyola, 2012). By relating environmental and climatic variables with species occurrence
data, ENM offers insights into species' range dynamics (Alvarado-Serrano and Knowles, 2014;
Ramirez-Villegas et al., 2014; Mota-Vargas and Rojas-Soto, 2016; Moreno-Contreras et al.,
2020; Sales et al., 2020). This assessment serves as a crucial resource for conservation planning
strategies, highlighting areas for immediate and future protection efforts in landscapes

increasingly fragmented by agriculture and urbanization.
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MATERIAL AND METHODS

Occurrences and accessibility area (M)
We obtained records of M. sangilensis from the Global Biodiversity Information

Facility database (GBIF https://doi.org/10.15468/d1.9cjqyy) and literature (Florez and

Montoya-Cruz, 2023), in total 59 Records were used for analyses after deleting duplicates and
reviewing each locality consistency to the known species historical range, following the
methodology based on Cobos and Bosch, (2018). The accessible area, commonly named as M
(Soberon and Peterson, 2005), represents the geographic region that the species could have
potentially occupied over relevant evolutionary time frames, based on its dispersal ability and
known biogeographic barriers, this M is the spatial extent from which environmental variables
are cropped to calibrate the model and generate predictions; by considering at least one
occurrence in terrestrial ecoregions from The Nature Conservancy (Dinerstein et al., 2017),

using the ArcMap 10.8 software (Fig. 2).

Environmental variables

We obtained climatic variables to characterize the climatic niche of the M. sangilensis
from the WorldClim 2.1 database (Fick and Hijmans, 2017) at a 30 arc-second resolution (~1
km?). We exclusively used 15 biovariables, excluding bio 8 (mean temperature of wettest
quarter), bio 9 (mean temperature of driest quarter), bio 18 (precipitation of warmest quarter),
and bio 19 (precipitation of coldest quarter); these exclusions reduce redundancy and avoid
potential collinearity, overfitting or misrepresenting the species' niche model (Escobar et al.,
2014; Table 1 in supplementary material). Variables were masked and cropped to the extension
of the accessible area of M. sangilensis. Because some highly correlated variables can be

important for the biology of the species, we created different sets from the 15 biovariables for
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niche modeling evaluation (Cobos and Bosch, 2018; Echeverry-Cardenas et al., 2021). The

specific sets are shown in Table 2 in supplementary material.

Ecological niche modeling (ENM)

We randomly allocated 80% of the occurrence records for model training and the
remaining 20% for evaluation, using the Maxent algorithm (Elith et al., 2011) implemented
through the kuenm package in R (Cobos et al., 2019). We assessed multiple levels of model
complexity following the approach of Warren and Seifert (2011) by varying the regularization
multiplier from 0.1 to 1 in increments of 0.1, and then testing values of 2, 3, 4, and 5. Model
selection was based on performance metrics provided by Kuenm, including the AUC ratio,
omission rate, and AIC. The AUC (Area Under the Curve) ratio measures the model’s ability
to discriminate suitable versus unsuitable areas, while the AICc (corrected Akaike Information
Criterion) evaluates model parsimony by balancing goodness-of-fit and complexity (Phillips et
al. 2006; Pearson et al. 2007; Warren and Seifert 2011; Arango-Lozano et al., 2025). The
selected model was projected without applying extrapolation modes (Extrapolation or
Clamping in Maxent algorithm) onto the accessible area under future climate scenarios,
specifically Shared Socioeconomic Pathways (SSPs) representing minimal and moderate
climatic changes (SSP126 and SSP245), as well as the most extreme scenario (SSP585), a high-
emissions scenario associated with continued fossil fuel use and the most severe climate change
(Echeverry-Cérdenas et al., 2021; Arango-Lozano et al., 2025) for the cumulative years 2041—
2060.

We used five Global Circulation Models (GCMs) for comparing results as: HadGEM3-
GC31-LL (GCM1), IPSL-CM6A-LR (GCM2), ACCESS-CM2 (GCM3), EC-Earth3-Veg
(GCM4) and UKESMI1-0-LL (GCMS5). Each GCM was chosen for its unique approach in

simulating climate dynamics, using distinct datasets, including land cover, oceanic circulation,
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and atmospheric processes (Yu et al., 2014; Padhiary et al., 2020). The variety of GCMs
enhances model robustness, enabling us to assess areas of agreement and divergence via a
broader perspective on future climate variability (Reshmidevi et al., 2018; Padhiary et al.,
2020). For example, HadGEM3-GC31-LL focuses on ocean-atmosphere interactions, while
UKESM1-0-LL includes comprehensive land-use feedback (Reshmidevi et al., 2018; Garcia-
Franco et al., 2020). We reclassified models resulted in presence/absence maps using a
consistent threshold across models (10 percentile training presence Cloghold in Maxent

algorithm).

Gain, loss, and stability

We evaluated the current and future potential distribution by analyzing pixel counts (and
then its scaled values to Km?). First, we calculated the percentage of pixels gained, lost, and
stabilized in each scenario (SSP and GCM) relative to the current distribution. We then
summarized the gained and stabilized pixels for each SSP, identifying areas that remained stable
across future GCMs. To pinpoint regions of consistent stability, we focused on pixels that
persisted in four or more GCMs, allowing us to observe the spatial assemblage of stable areas

under future conditions across all five GCMs.

Vulnerability to change

Finally, to detect any potential vulnerable areas of habitat lost in the species potential
distribution, we superpose the current and future (assembly pixels in four or more GCMs)
ranges with a “Vulnerability of land cover to anthropogenic change raster” (Esri, 2024). This
layer shows areas where natural vegetation such as forest could be converted to agriculture and
urban lands by 2050, based on the predictions of human-induced land changes. Further, the

layer includes regions susceptible to expansion of agricultural and urban footprints, excluding
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forecasts for unchanged land cover types like forests unless they are converted to agriculture or

urban areas (available data in: https://livingatlas.arcgis.com/landcover-2050/).

The vulnerability data ranges from zero to one, indicating varying degrees of susceptibility to
natural cover transformation. We classified the raster values into three distinct categories: low
vulnerability (0.0 - 0.3), moderate vulnerability (0.3 - 0.7), and high vulnerability (0.7 - 1) for
the species. Areas with high vulnerability values (0.7 - 1) are identified as the most critical
zones for this snake. These areas are also deemed most at risk of change in future climate

scenarios (Arango-Lozano et al., 2025).

RESULTS
Ecological niche model selection
Out of 210 evaluated models, only 3 fulfilled the kuenm criteria, and to streamline niche
model comparisons between scenarios, we selected the first exhibiting the lowest AIC and AUC
results M_0.7 F lq Set 5. Set 5 consists of biovariables 2, 3, 4, 7, 16, and 17, representing a
combination of precipitation and temperature conditions. (Table 2, Table 3 in supplementary

material).

Gain, loss, and stability

For the current scenario of M. sangilensis, 19873 predicted pixels were identified, which
translate into over 16879 km? of suitable environmental conditions (Fig. 4A). Building on this
baseline, future projections indicate substantial variability in potential range across General
Circulation Models (GCMs) and Shared Socioeconomic Pathways (SSPs), yet certain
consistent patterns emerge that strengthen confidence in key findings. Across all scenarios,

significant stability areas are consistently predicted, particularly in the lower-emission scenario
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(SSP126). For instance, stability remains high in models M2 and M4 under SSP126, with over
80% of predicted pixels showing little change (Fig. 3).

As emissions concentrations increase (SSP245 and SSP585), a marked rise in habitat
gain is observed. Under SSP585, models such as M1 and M5 predict substantial habitat gains,
with M5 showing a gain of 38.7% of pixels. This indicates possible new areas as climatic
conditions shift, though this expansion comes with increased variability in predicted losses,
particularly in M3 and M4 (Fig. 3). The appearance of these gained pixels under higher
emissions scenarios reflects potential new suitable habitats as the climate changes. While the
model variability shows the inherent uncertainties tied to different GCMs, the overall trends of

habitat stability and gains under higher emissions scenarios are robust across models.

Vulnerability to change

We identified a mean reduction of at least 25% of suitable future areas for the species
with respect to the current scenario. However, when contrasting the stability values with the
vulnerability to change 2050 layer, we recognized that at least 37% of the remnant areas in the
different future scenarios (each SPP) may be experiencing a high vulnerability, 30% a medium
and almost just 23% a low vulnerability (Fig. 4). There was identified loss of areas in all
elevation between 900 and 2000 m, Furthermore, these areas consistently show both lost in

predicted presence and where not, are the ones with greater vulnerability values (0.7 - 1).

DISCUSSION

The predictions for Micrurus sangilensis are influenced by the inherent uncertainties
associated with the different General Circulation Models (GCMs), each of which makes varying
assumptions about climate processes (Reshmidevi et al., 2018; Padhiary et al., 2020). By

narrowing our analysis to pixels that remained stable across four or more GCMs, we were able
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to highlight regions that are likely to maintain suitable conditions for M. sangilensis even under
varying future climate scenarios. This method provided a clearer spatial picture of potential
refugia and stable areas, ensuring that our findings reflect consistent patterns of stability rather
than relying on any single model. The identification of these stable regions across multiple
GCMs strengthens the forecasting future conditions for this coral snake.

Our study projects a significant contraction in the potential suitable habitat for Micrurus
sangilensis due to climate change across all SSP scenarios. These findings are consistent with
other studies on coral snakes, such as M. lemniscatus, where a similar vulnerability to habitat
loss in lowland regions was observed (Terribile et al., 2018). For M. fulvius, a potential range
shift into unsuitable areas was predicted, highlighting the species' inability to keep pace with
changing climatic conditions (Archis et al., 2018). Similarly, M. brasiliensis faces the potential
loss of 60% of its ideal habitat under future climate projections (Caten et al., 2017), further
underscoring the widespread impact of climate change on coral snake distributions.

In the case of our study species M. sangilensis, our results indicate a potential loss of
25% of its ideal habitat by 2040-2060, with the species currently occupying degraded dry forest
ecosystems, some of the most threatened habitats globally (Miles et al., 2006). Additionally, a
30% increase in the vulnerability of remaining suitable areas, particularly from land-use
changes in forests (Galindo-Cruz et al., 2024). Within less than two decades, these critical
habitats could undergo significant alterations, threatening the species' long-term survival
(Hladki et al., 2019).

The broader implications of these results become clear when considering that future
suitable habitats for this species may be out of reach. As observed in other species, the pace of
climate-driven habitat change may exceed the distribution capabilities of an animal (Schloss et
al., 2012; Bush and Hoskins, 2017; Sales et al., 2020). Furthermore, factors such as habitat

fragmentation and population isolation could further limit the species' ability to migrate to
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newly suitable areas (Le Galliard et al., 2012; Bestion et al., 2015). As a result, even with new
habitats emerging and stabilizing under future climatic conditions, the species may not be able
to reach or colonize them effectively (Loarie et al., 2009; Le Galliard et al., 2012; Sales et al.,
2020; Arango-Lozano et al., 2025).

The conservation implications of our results underscore the need for both immediate
and long-term strategies. Areas of high vulnerability (with values between 0.7 and 1), as
identified in this study, represent critical zones where habitat transformation is likely imminent.
However, it is essential to recognize that focusing solely on these high-risk areas may not
prevent transformation, as rapid environmental changes might already be underway (Global
Forest Review, 2024). This introduces a crucial discussion point: should conservation efforts
be prioritized in areas of highest vulnerability, or should a broader approach be taken, including
areas with moderate vulnerability?

Given the lack of clear protocols for prioritizing conservation actions in snakes
(Terribile et al., 2009; Andrade-Diaz et al., 2019), it might be strategic to include areas across
the vulnerability spectrum. For instance, regions with moderate vulnerability (‘yellow zones')
are less likely to undergo immediate change compared to high-risk areas (‘red zones'), but they
remain vital for habitat connectivity and the long-term survival of species like Micrurus
sangilensis. Conservation efforts in these areas could help buffer against habitat fragmentation
and provide refugia as the more vulnerable areas degrade.

In Colombia, existing conservation plans and frameworks provide an opportunity to
safeguard the critical habitats for Micrurus sangilensis. The dry forests of Santander, where
suitable areas for this species have been identified, are adjacent to over 60 different protected
areas (Fig. 5). These areas include National Natural Parks, regional integrated management

districts, national reserves, and forest reserves, all recognized under the National Register of
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Protected Areas (RUNAP). This network of protected zones represents a significant collective
effort to preserve the country’s biodiversity.

Although M. sangilensis may benefit from the protection offered by some of these
existing areas, additional conservation strategies will be vital (Mi et al., 2023). Expanding the
coverage of protected areas, restoring degraded habitats, and establishing ecological corridors
to link fragmented landscapes are key steps to enhancing the resilience of this species under
changing climate conditions (Terribile et al., 2009; Andrade-Diaz et al., 2019). Moreover,
incorporating climate-adaptive conservation actions into these plans could help ensure that M.
sangilensis can persist in its shrinking habitat. Ongoing monitoring of land-use changes and the
potential threats posed by human activities will also be essential in aligning conservation efforts
with the species' emerging vulnerabilities (Fordham et al., 2012; Mi et al., 2023). A
collaborative, multidisciplinary approach is crucial to create effective conservation strategies,

safeguard the species' habitat, and ensure the long-term survival of the Santander coral snake.
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529  Fig. 1. Photograph of a living adult of Micrurus sangilensis with its characteristic coral pattern.
530  Photo by: Elson Meneses-Pelayo.
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550  Fig. 5. Description of the sloping between the suitable areas for the distribution of Micrurus
551  sangilensis and surrounding protected areas in the surrounding region of Santander Colombia.
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