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Abstract. The vulnerable Micrurus sangilensis commonly known as the Santander coral snake 19 

distributes in dry and montane forests, ecosystems under severe anthropogenic pressure in 20 

northeastern Colombia. The habitat of this serpent is fragmented, and climate change may 21 

further intensify risks to the vegetation structure. We assessed whether the current distribution 22 

of the snake may be altered under different scenarios with climate change in the 2040-2060 23 

years; aiming to recognize conservation priority areas. With ecological niche modeling we 24 

calculated current values of stability in the distribution range of the species, for the most 25 

conservative emission scenarios of Socio-Economic Pathways (SSP) 126, and 245; and the 26 

expected greater emissions 585 within five different global circulation models. We also 27 

escalated an index of vulnerability to land use change to 2050 in the remaining areas for the 28 

species, detecting prioritizing conservation zones. Our findings reveal a nearly 25% consistency 29 

of loss in the three SSP scenarios, while gaining stability varies between different GCMs. Over 30 

37% of remaining suitable areas were categorized as highly vulnerable to land-use change, 31 

especially at elevations between 900 and 2000 m. We emphasize the need to integrate M. 32 

sangilensis habitats into Colombia’s protected area network, restore degraded ecosystems, and 33 

establish ecological corridors to mitigate fragmentation. While the most vulnerable to changing 34 

areas appear to be the ones with critical requirements for conservation; We recommend 35 

targeting conservation efforts in areas of low to medium vulnerability to change, which are less 36 

likely to undergo significant modifications over the next 30–40 years 37 
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INTRODUCTION 42 

  The rapid changing patterns in climatic regimes have become a central concern in 43 

conservation sciences (Lovejoy, 2006; Young et al., 2011; Yu et al., 2014; Upadhyay, 2020; 44 

Fuentes et al., 2023). In the Americas, home to multiple biodiversity hotspots, ecosystems are 45 

increasingly at risk as altered climatic conditions force species to shift their historical 46 

distribution ranges toward new latitudinal and altitudinal zones in search of suitable habitat 47 

conditions (Allentoft and O’Brien, 2010; Bellard et al., 2012; Vicenzi et al., 2017; Archis et al., 48 

2018). Furthermore, range-restricted and threatened species often lack the dispersal capacity to 49 

cope with these changes across fragmented landscapes with rapid shifting, among others, 50 

vegetation structures (Kwak and Freeman, 2010; Bestion et al., 2015; Upadhyay, 2020; Fuentes 51 

et al., 2023). While climate change is undoubtedly a major threat to already vulnerable 52 

ecosystems, rapid and drastic land-use changes may pose an even more immediate challenge, 53 

this compromises the structural integrity of habitats and increases barriers to species movement 54 

(Bellard et al., 2012; Kittel, 2013; Staudt, 2013; Bush et al., 2017; Cobos et al., 2018). These 55 

combined pressures underscore the urgent need for conservation strategies that enable the most 56 

threatened, range-restricted species to respond to both climate and land-use changes, 57 

particularly in fragmented landscapes (Heller and Zavaleta, 2009; Mawdsley et al., 2009; Rands 58 

et al., 2010). 59 

 In South America Andean ecosystems are important reservoirs of rich and complex 60 

biodiversity (Sarkar et al., 2009; Ramirez-Villegas et al., 2014; Bax and Francesconi, 2019), 61 

where inhabiting hundreds of endemic and range restricted species, some specialized to the 62 

typical habitats in ranges and associated environments; however, also among the most 63 

threatened ecosystems in the world (Young et al., 2011; Bax and Francesconi, 2019; Noh et al., 64 

2020). Among many other groups affected by the changing landscape conditions in the Andes, 65 

reptiles exhibit high sensitivity to climate change and habitat loss, mainly in relation to their 66 



 

reproductive processes (Huey et al., 2009; Gamble, 2010). However, they should be given 67 

higher priority, particularly in the context of climate change impacts (Gumbs et al., 2018). 68 

Residing in delicate ecosystems already imperiled by deforestation and habitat degradation, 69 

many reptile species are categorized as threatened according to the IUCN Red List (Arredondo 70 

et al., 2015; Bolívar et al., 2016; Páez et al., 2016; Calderón et al., 2019; Hladki et al., 2019; 71 

Rainwater et al., 2022). They confront altered temperature and precipitation patterns, imperiling 72 

their ecological niches and reproductive cycles (Brown and Shine, 2006; Gamble, 2010). The 73 

ramifications extend to the intricate balance of their habitats, where some with restricted ranges 74 

and specialized ecological requirements are particularly susceptible to environmental 75 

perturbations (Holt, 1990; Moraes and Recchia, 2011). 76 

 Among reptiles, the family Elapidae, which includes coral snakes (Micrurus) have 77 

species with wide distributions such as (Micrurus dumerilli and M. dissoleucus), and a high 78 

tolerance for climatic regimes, as M. mipartitus inhabiting from 0 to near 2500 m (Rey-Suárez 79 

et al., 2016; Herrera-Lopera et al., 2018; Pitalua et al., 2018; Río-Soto et al., 2018). However, 80 

there are also some snakes with reduced distribution such as M. sangilensis, which is especially 81 

affected by the modification, degradation, and loss of natural habitat (Hladki et al., 2019; Flórez 82 

and Montoya-Cruz, 2023).  83 

  Micrurus sangilensis, commonly known as the Santander coral snake, is a triad-colored 84 

species distinguished by specific ring patterns and the absence of supracloacal keels. It differs 85 

from its close relatives, M. dissoleucus and M. dumerilli, by having 16–22 triads and a typical 86 

length of around 60 cm (Morales-Betancourt et al., 2015) (Fig. 1). Endemic to Colombia, its 87 

narrowed distribution within the departments of Cundinamarca, Boyacá, and Santander (Roze, 88 

1996; Campbell et al., 2004; Caicedo-Portilla and Lynch, 2015) and more recently detected in 89 

Casanare (Flórez and Montoya-Cruz, 2023). This species limited to moderate elevations (800–90 

2800 above sea level) along the Middle Magdalena River Basin, primarily inhabiting the 91 



 

vulnerable dry forests (Campbell et al., 2004). Currently classified as Vulnerable by the IUCN, 92 

its historical records show an estimated extent of occupation near 12000 km² (Caicedo-Portilla 93 

and Lynch, 2015; Hladki et al., 2019). Despite its conservation status, critical knowledge gaps 94 

remain regarding its population size, reproductive dynamics, and habitat requirements, which 95 

are essential knowledge when working for effective conservation planning (Van Teeffelen et 96 

al., 2012; Caicedo-Portilla and Lynch, 2015). Species like M. sangilensis may face acute risks 97 

not only from climate change but also from rapid structural changes in vegetation due to habitat 98 

degradation (Caicedo-Portilla and Lynch, 2015; Hladki et al., 2019; Flórez and Montoya-Cruz, 99 

2023).  100 

Given the ongoing changes in land use and the potentially altered climatic regimes in 101 

rainfall and temperature within the degraded dry forests, typical habitat of the restricted 102 

distribution of M. sangilensis, it is necessary to develop management strategies predicting the 103 

potential shifts in the species' distribution under future climate scenarios. This research aims to 104 

assess the species' potential distribution under different Shared Socioeconomic Pathways (SSP) 105 

under climate change, through a vulnerability to change index for land use, using Ecological 106 

Niche Modeling Methodologies (ENM) which are among the most widely used and effective 107 

tools for comparing and predicting historical and future scenarios (Peterson et al., 2011; Rangel 108 

and Loyola, 2012). By relating environmental and climatic variables with species occurrence 109 

data, ENM offers insights into species' range dynamics (Alvarado‐Serrano and Knowles, 2014; 110 

Ramirez-Villegas et al., 2014; Mota-Vargas and Rojas-Soto, 2016; Moreno-Contreras et al., 111 

2020; Sales et al., 2020). This assessment serves as a crucial resource for conservation planning 112 

strategies, highlighting areas for immediate and future protection efforts in landscapes 113 

increasingly fragmented by agriculture and urbanization. 114 

 115 

 116 



 

MATERIAL AND METHODS 117 

 118 

Occurrences and accessibility area (M) 119 

  We obtained records of  M. sangilensis from the Global Biodiversity Information 120 

Facility database (GBIF https://doi.org/10.15468/dl.9cjqyy) and literature (Flórez and 121 

Montoya-Cruz, 2023), in total 59 Records were used for analyses after deleting duplicates and 122 

reviewing each locality consistency to the known species historical range, following the 123 

methodology based on Cobos and Bosch, (2018). The accessible area, commonly named as M 124 

(Soberon and Peterson, 2005), represents the geographic region that the species could have 125 

potentially occupied over relevant evolutionary time frames, based on its dispersal ability and 126 

known biogeographic barriers, this M is the spatial extent from which environmental variables 127 

are cropped to calibrate the model and generate predictions; by considering at least one 128 

occurrence in terrestrial ecoregions from The Nature Conservancy (Dinerstein et al., 2017), 129 

using the ArcMap 10.8 software (Fig. 2). 130 

 131 

Environmental variables 132 

  We obtained climatic variables to characterize the climatic niche of the M. sangilensis 133 

from the WorldClim 2.1 database (Fick and Hijmans, 2017) at a 30 arc-second resolution (~1 134 

km²). We exclusively used 15 biovariables, excluding bio 8 (mean temperature of wettest 135 

quarter), bio 9 (mean temperature of driest quarter), bio 18 (precipitation of warmest quarter), 136 

and bio 19 (precipitation of coldest quarter); these exclusions reduce redundancy and avoid 137 

potential collinearity, overfitting or misrepresenting the species' niche model (Escobar et al., 138 

2014; Table 1 in supplementary material). Variables were masked and cropped to the extension 139 

of the accessible area of M. sangilensis. Because some highly correlated variables can be 140 

important for the biology of the species, we created different sets from the 15 biovariables for 141 

https://doi.org/10.15468/dl.9cjqyy


 

niche modeling evaluation (Cobos and Bosch, 2018; Echeverry-Cárdenas et al., 2021). The 142 

specific sets are shown in Table 2 in supplementary material. 143 

 144 

Ecological niche modeling (ENM) 145 

  We randomly allocated 80% of the occurrence records for model training and the 146 

remaining 20% for evaluation, using the Maxent algorithm (Elith et al., 2011) implemented 147 

through the kuenm package in R (Cobos et al., 2019). We assessed multiple levels of model 148 

complexity following the approach of Warren and Seifert (2011) by varying the regularization 149 

multiplier from 0.1 to 1 in increments of 0.1, and then testing values of 2, 3, 4, and 5. Model 150 

selection was based on performance metrics provided by Kuenm, including the AUC ratio, 151 

omission rate, and AIC. The AUC (Area Under the Curve) ratio measures the model’s ability 152 

to discriminate suitable versus unsuitable areas, while the AICc (corrected Akaike Information 153 

Criterion) evaluates model parsimony by balancing goodness-of-fit and complexity (Phillips et 154 

al. 2006; Pearson et al. 2007; Warren and Seifert 2011; Arango-Lozano et al., 2025). The 155 

selected model was projected without applying extrapolation modes (Extrapolation or 156 

Clamping in Maxent algorithm) onto the accessible area under future climate scenarios, 157 

specifically Shared Socioeconomic Pathways (SSPs) representing minimal and moderate 158 

climatic changes (SSP126 and SSP245), as well as the most extreme scenario (SSP585), a high-159 

emissions scenario associated with continued fossil fuel use and the most severe climate change 160 

(Echeverry-Cárdenas et al., 2021; Arango-Lozano et al., 2025) for the cumulative years 2041–161 

2060. 162 

  We used five Global Circulation Models (GCMs) for comparing results as: HadGEM3-163 

GC31-LL (GCM1), IPSL-CM6A-LR (GCM2), ACCESS-CM2 (GCM3), EC-Earth3-Veg 164 

(GCM4) and UKESM1-0-LL (GCM5). Each GCM was chosen for its unique approach in 165 

simulating climate dynamics, using distinct datasets, including land cover, oceanic circulation, 166 



 

and atmospheric processes (Yu et al., 2014; Padhiary et al., 2020). The variety of GCMs 167 

enhances model robustness, enabling us to assess areas of agreement and divergence via a 168 

broader perspective on future climate variability (Reshmidevi et al., 2018; Padhiary et al., 169 

2020). For example, HadGEM3-GC31-LL focuses on ocean-atmosphere interactions, while 170 

UKESM1-0-LL includes comprehensive land-use feedback (Reshmidevi et al., 2018; García-171 

Franco et al., 2020). We reclassified models resulted in presence/absence maps using a 172 

consistent threshold across models (10 percentile training presence Cloghold in Maxent 173 

algorithm). 174 

 175 

Gain, loss, and stability 176 

  We evaluated the current and future potential distribution by analyzing pixel counts (and 177 

then its scaled values to Km2). First, we calculated the percentage of pixels gained, lost, and 178 

stabilized in each scenario (SSP and GCM) relative to the current distribution. We then 179 

summarized the gained and stabilized pixels for each SSP, identifying areas that remained stable 180 

across future GCMs. To pinpoint regions of consistent stability, we focused on pixels that 181 

persisted in four or more GCMs, allowing us to observe the spatial assemblage of stable areas 182 

under future conditions across all five GCMs. 183 

 184 

Vulnerability to change 185 

  Finally, to detect any potential vulnerable areas of habitat lost in the species potential 186 

distribution, we superpose the current and future (assembly pixels in four or more GCMs) 187 

ranges with a “Vulnerability of land cover to anthropogenic change raster” (Esri, 2024). This 188 

layer shows areas where natural vegetation such as forest could be converted to agriculture and 189 

urban lands by 2050, based on the predictions of human-induced land changes. Further, the 190 

layer includes regions susceptible to expansion of agricultural and urban footprints, excluding 191 



 

forecasts for unchanged land cover types like forests unless they are converted to agriculture or 192 

urban areas (available data in: https://livingatlas.arcgis.com/landcover-2050/).  193 

The vulnerability data ranges from zero to one, indicating varying degrees of susceptibility to 194 

natural cover transformation. We classified the raster values into three distinct categories: low 195 

vulnerability (0.0 - 0.3), moderate vulnerability (0.3 - 0.7), and high vulnerability (0.7 - 1) for 196 

the species. Areas with high vulnerability values (0.7 - 1) are identified as the most critical 197 

zones for this snake. These areas are also deemed most at risk of change in future climate 198 

scenarios (Arango-Lozano et al., 2025). 199 

 200 

RESULTS 201 

Ecological niche model selection 202 

  Out of 210 evaluated models, only 3 fulfilled the kuenm criteria, and to streamline niche 203 

model comparisons between scenarios, we selected the first exhibiting the lowest AIC and AUC 204 

results M_0.7_F_lq_Set 5. Set 5 consists of biovariables 2, 3, 4, 7, 16, and 17, representing a 205 

combination of precipitation and temperature conditions. (Table 2, Table 3 in supplementary 206 

material). 207 

 208 

Gain, loss, and stability 209 

  For the current scenario of M. sangilensis, 19873 predicted pixels were identified, which 210 

translate into over 16879 km² of suitable environmental conditions (Fig. 4A). Building on this 211 

baseline, future projections indicate substantial variability in potential range across General 212 

Circulation Models (GCMs) and Shared Socioeconomic Pathways (SSPs), yet certain 213 

consistent patterns emerge that strengthen confidence in key findings. Across all scenarios, 214 

significant stability areas are consistently predicted, particularly in the lower-emission scenario 215 

https://livingatlas.arcgis.com/landcover-2050/
https://livingatlas.arcgis.com/landcover-2050/


 

(SSP126). For instance, stability remains high in models M2 and M4 under SSP126, with over 216 

80% of predicted pixels showing little change (Fig. 3). 217 

  As emissions concentrations increase (SSP245 and SSP585), a marked rise in habitat 218 

gain is observed. Under SSP585, models such as M1 and M5 predict substantial habitat gains, 219 

with M5 showing a gain of 38.7% of pixels. This indicates possible new areas as climatic 220 

conditions shift, though this expansion comes with increased variability in predicted losses, 221 

particularly in M3 and M4 (Fig. 3). The appearance of these gained pixels under higher 222 

emissions scenarios reflects potential new suitable habitats as the climate changes. While the 223 

model variability shows the inherent uncertainties tied to different GCMs, the overall trends of 224 

habitat stability and gains under higher emissions scenarios are robust across models.  225 

 226 

Vulnerability to change 227 

  We identified a mean reduction of at least 25% of suitable future areas for the species 228 

with respect to the current scenario. However, when contrasting the stability values with the 229 

vulnerability to change 2050 layer, we recognized that at least 37% of the remnant areas in the 230 

different future scenarios (each SPP) may be experiencing a high vulnerability, 30% a medium 231 

and almost just 23% a low vulnerability (Fig. 4). There was identified loss of areas in all 232 

elevation between 900 and 2000 m, Furthermore, these areas consistently show both lost in 233 

predicted presence and where not, are the ones with greater vulnerability values (0.7 - 1). 234 

 235 

DISCUSSION 236 

  The predictions for Micrurus sangilensis are influenced by the inherent uncertainties 237 

associated with the different General Circulation Models (GCMs), each of which makes varying 238 

assumptions about climate processes (Reshmidevi et al., 2018; Padhiary et al., 2020). By 239 

narrowing our analysis to pixels that remained stable across four or more GCMs, we were able 240 



 

to highlight regions that are likely to maintain suitable conditions for M. sangilensis even under 241 

varying future climate scenarios. This method provided a clearer spatial picture of potential 242 

refugia and stable areas, ensuring that our findings reflect consistent patterns of stability rather 243 

than relying on any single model. The identification of these stable regions across multiple 244 

GCMs strengthens the forecasting future conditions for this coral snake. 245 

  Our study projects a significant contraction in the potential suitable habitat for Micrurus 246 

sangilensis due to climate change across all SSP scenarios. These findings are consistent with 247 

other studies on coral snakes, such as M. lemniscatus, where a similar vulnerability to habitat 248 

loss in lowland regions was observed (Terribile et al., 2018). For M. fulvius, a potential range 249 

shift into unsuitable areas was predicted, highlighting the species' inability to keep pace with 250 

changing climatic conditions (Archis et al., 2018). Similarly, M. brasiliensis faces the potential 251 

loss of 60% of its ideal habitat under future climate projections (Caten et al., 2017), further 252 

underscoring the widespread impact of climate change on coral snake distributions. 253 

  In the case of our study species M. sangilensis, our results indicate a potential loss of 254 

25% of its ideal habitat by 2040–2060, with the species currently occupying degraded dry forest 255 

ecosystems, some of the most threatened habitats globally (Miles et al., 2006). Additionally, a 256 

30% increase in the vulnerability of remaining suitable areas, particularly from land-use 257 

changes in forests (Galindo-Cruz et al., 2024). Within less than two decades, these critical 258 

habitats could undergo significant alterations, threatening the species' long-term survival 259 

(Hladki et al., 2019).  260 

  The broader implications of these results become clear when considering that future 261 

suitable habitats for this species may be out of reach. As observed in other species, the pace of 262 

climate-driven habitat change may exceed the distribution capabilities of an animal (Schloss et 263 

al., 2012; Bush and Hoskins, 2017; Sales et al., 2020). Furthermore, factors such as habitat 264 

fragmentation and population isolation could further limit the species' ability to migrate to 265 



 

newly suitable areas (Le Galliard et al., 2012; Bestion et al., 2015). As a result, even with new 266 

habitats emerging and stabilizing under future climatic conditions, the species may not be able 267 

to reach or colonize them effectively (Loarie et al., 2009; Le Galliard et al., 2012; Sales et al., 268 

2020; Arango-Lozano et al., 2025). 269 

  The conservation implications of our results underscore the need for both immediate 270 

and long-term strategies. Areas of high vulnerability (with values between 0.7 and 1), as 271 

identified in this study, represent critical zones where habitat transformation is likely imminent. 272 

However, it is essential to recognize that focusing solely on these high-risk areas may not 273 

prevent transformation, as rapid environmental changes might already be underway (Global 274 

Forest Review, 2024). This introduces a crucial discussion point: should conservation efforts 275 

be prioritized in areas of highest vulnerability, or should a broader approach be taken, including 276 

areas with moderate vulnerability? 277 

  Given the lack of clear protocols for prioritizing conservation actions in snakes 278 

(Terribile et al., 2009; Andrade-Díaz et al., 2019), it might be strategic to include areas across 279 

the vulnerability spectrum. For instance, regions with moderate vulnerability ('yellow zones') 280 

are less likely to undergo immediate change compared to high-risk areas ('red zones'), but they 281 

remain vital for habitat connectivity and the long-term survival of species like Micrurus 282 

sangilensis. Conservation efforts in these areas could help buffer against habitat fragmentation 283 

and provide refugia as the more vulnerable areas degrade. 284 

  In Colombia, existing conservation plans and frameworks provide an opportunity to 285 

safeguard the critical habitats for Micrurus sangilensis. The dry forests of Santander, where 286 

suitable areas for this species have been identified, are adjacent to over 60 different protected 287 

areas (Fig. 5). These areas include National Natural Parks, regional integrated management 288 

districts, national reserves, and forest reserves, all recognized under the National Register of 289 



 

Protected Areas (RUNAP). This network of protected zones represents a significant collective 290 

effort to preserve the country’s biodiversity. 291 

  Although M. sangilensis may benefit from the protection offered by some of these 292 

existing areas, additional conservation strategies will be vital (Mi et al., 2023). Expanding the 293 

coverage of protected areas, restoring degraded habitats, and establishing ecological corridors 294 

to link fragmented landscapes are key steps to enhancing the resilience of this species under 295 

changing climate conditions (Terribile et al., 2009; Andrade-Díaz et al., 2019). Moreover, 296 

incorporating climate-adaptive conservation actions into these plans could help ensure that M. 297 

sangilensis can persist in its shrinking habitat. Ongoing monitoring of land-use changes and the 298 

potential threats posed by human activities will also be essential in aligning conservation efforts 299 

with the species' emerging vulnerabilities (Fordham et al., 2012; Mi et al., 2023). A 300 

collaborative, multidisciplinary approach is crucial to create effective conservation strategies, 301 

safeguard the species' habitat, and ensure the long-term survival of the Santander coral snake. 302 
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The supplementary materials include three (3) tables describing the use of climatic variables 311 

and the results selected in this study ecological niche models, annexed to this manuscript. 312 

Additionally, we have made available online the resulted raster files with current and projected 313 

future species distributions at: OSF https://osf.io/h9srj/. 314 
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 528 

Fig. 1. Photograph of a living adult of Micrurus sangilensis with its characteristic coral pattern. 529 

Photo by: Elson Meneses-Pelayo. 530 

 531 



 

 532 

Fig. 2. Historically known distribution of Micrurus sangilensis and its generated accessible area 533 

(M). 534 

 535 

 536 

Fig. 3. Percentage of gained loss and stability of predicted pixels (occurrence likelihood = 1) 537 

under future scenarios for Micrurus sangilensis. Results are shown for different General 538 

Circulation Models (GCMs, labeled M1–M5) across the Shared Socioeconomic Pathways 539 

(SSPs: ssp126, ssp245, ssp585). 540 



 

 541 

Fig. 4. Comparison of suitable conditions for Micrurus sangilensis across different scenarios. 542 

The subsequent maps depict the accessibility area (M) under various shared socioeconomic 543 

pathways and timeframes: (A) current conditions with occurrences (black dots), (B) assembly 544 

of consistent ideal areas in SSP126, (C) assembly of consistent ideal areas in SSP245, (D) 545 

assembly of consistent ideal areas in SSP585. Colored pixels indicating values of vulnerability 546 

to change in the land use: green = Low, yellow = Mid, red = High. 547 

 548 

 549 



 

Fig. 5. Description of the sloping between the suitable areas for the distribution of Micrurus 550 

sangilensis and surrounding protected areas in the surrounding region of Santander Colombia. 551 
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