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Abstract. The ability to tolerate environmental stress may determine invasion success of alien species. Comparative
data on physiological thermal tolerance between native and invasive vertebrates are quite limited. Here, we assessed
the difference in thermal tolerance between a native (Mauremys reevesii) and an invasive (Trachemys scripta elegans)
freshwater turtle species. We incubated eggs of M. reevesii and T. scripta elegans from different cohorts at 29 °C, and
measured the critical thermal minimum (CTMin) and maximum (CTMax) of hatchlings. Our results preliminarily
showed that the hatchlings of T. scripta elegans had a greater high-temperature tolerance and wider tolerance range
than the hatchlings of M. reevesii; in the two-cohort system, individuals from the high-latitude cohort seemed to have
greater low-temperature tolerance but similar high-temperature tolerance compared with those from the low-latitude
cohort. Relatively greater thermal tolerance ability for T. scripta elegans might reflect its environmental adaptability to

thermal stress.
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Introduced alien species must overcome several
potential challenges due to local climatic and biotic con-
ditions to become established and successfully invade a
novel environment (Crowl et al., 2008; Kelley, 2014). Cli-
matic constraints have been considered as the first barrier
for restricting invasion success of alien species (Olyarnik
et al., 2009). The ability of invasive species to withstand
harsh environmental conditions, such as high salinity,
drought and extreme temperatures, may affect their inva-
sive potential (Lee, 2002; Bates et al., 2013; Kelley, 2014).
It has been shown that many invasive species are often
more tolerant to environmental stress than co-occurring
native species (Nyamukondiwa et al., 2010; Lockwood
and Somero, 2011; Zerebecki and Sorte, 2011; Weldon et
al,, 2016).

One of the most important environmental factors
impacting species’” distributions is temperature (Johnston
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and Bennett, 2008; Gallien et al., 2010). Physiological
thermal tolerance for a given species is limited (Angillet-
ta, 2009). Eurythermal species can maintain physiological
function over a wider temperature range and are expect-
ed to have a broader distribution range than stenother-
mal ones (Overgaard and Hoffmann, 2011; Gerick et al.,
2014). Eurythermality may contribute to the successful
invasion of alien species. Consequently, invasive species
are expected to be eurythermal more often than native
species (Zerebecki and Sorte, 2011; Kelley, 2014). A com-
parison of the physiological thermal tolerance between
native and invasive organisms has been made in many
species (e.g., Kimball et al., 2004; Kolbe et al., 2010; Lock-
wood and Somero, 2011; Zerebecki and Sorte, 2011; Yu
et al,, 2012; Ju et al., 2013; Urquhart and Koetsier, 2014;
Davies et al., 2015; Barahonasegovia et al., 2016). These
studies mainly focused on invertebrate species, and some
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results were opposite to the above prediction (Human
and Gordon, 1996; McMahon, 2002; Barahona-Segovia
et al., 2016). For example, two species of aquatic invasive
bivalves (Corbicula fluminea and Dreissena polymorpha)
show lower physiological thermal tolerances than the
correspondent native species, because they experience
less selection pressure for evolution of thermal tolerance
(McMahon, 2002).

The red-eared slider turtle (Trachemys scripta ele-
gans) is native to southern United States and northern
Mexico, and has been introduced in many countries of
Africa, Asia and Europe as a pet, becoming invasive in
many areas, and posing a serious threat to the survival
of native turtle species (Lowe et al., 2000; Cadi and Joly,
2004; Pearson et al., 2015). Previous studies have shown
that T. scripta elegans has a number of distinct competi-
tive advantages over native turtle species, such as a more
aggressive behavior (Cadi and Joly, 2003; Polo-Cavia et
al., 2010, 2011; Pearson et al., 2015), wider niche breadth
(Polo-Cavia et al., 2008; Wang et al., 2013) and greater
thermal inertia (Polo-Cavia et al., 2009). However, none
of these studies has still focused on interspecies differenc-
es in physiological thermal tolerance between invasive T.
scripta elegans and native turtle species. T. scripta elegans
was introduced to China in the 1980s, and spread into
most southern provinces over the last decades (Liu et al,,
2011). Since its introduction, the native Chinese three-
keeled pond turtle, Mauremys reevesii, which is one of the
most common and widespread turtle species in southern
China (Zhao and Adler, 1993), has suffered a consider-
able decline, and started to be displaced by T. scripta
elegans in its natural habitats (Liu et al., 2011). Our aim
here was to compare the thermal tolerance of the invasive
T. scripta elegans and the native turtle species M. reevesii.
For this purpose, we incubated eggs of both species from
two sites at different latitudes and measured the critical
thermal minimum (CTMin) and maximum (CTMax) of
hatchlings.

We collected a total of 80 fertilized eggs (20 eggs
selected randomly from unidentified clutches (probably
6-8 clutches for M. reevesii and 5-6 clutches for T. scripta
elegans) for each cohort of both cultured turtle species)
that laid within a 2 to 4-day period from two private
hatcheries in Haikou (Hainan province, southern China,
19°46°, 110°19’E, hereafter the low-latitude cohort) on
May 22, and Haining (Zhejiang province, eastern China,
30°19’N, 120°25’E, hereafter the high-latitude cohort)
on June 2 of 2016, respectively. The low-latitude site had
a higher annual mean air temperature with relatively
less thermal variation than the high-latitude site (Fig. 1,
http://data.cma.cn). In both hatcheries, cultured turtles
were kept in outdoor artificial ponds (length x width x
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height: 20 x 15 x 1.5 m*) and thus were exposed to the
local thermal environments.

The eggs were randomly allocated into plastic con-
tainers (25 x 20 x 10 cm?) filled with moist vermiculite
(approximately —12 kPa water potential, 1 g dried vermic-
ulite/2 g water, Du et al., 2007). The eggs were half-buried
in the substrate, with the surface near the embryo exposed
to air inside the container. The containers were placed
into a FPQ incubator (Ningbo Life Science and Technol-
ogy Ltd., China) and held at a temperature of 29 + 1 °C
(this temperature yields an approximate 1:1 offspring sex
ratio for both species; Wibbels et al., 1998; Du et al., 2007,
2009). Every other day, water was added into the substrate
to keep the water potential of the substrate relatively con-
stant. The containers were daily moved among the shelves
to minimize any effects of thermal gradients inside the
incubator. When eggs were found to have pipped, they
were moved individually into glass jars. Body mass of
each turtle was measured once yolk sac was completely
absorbed. Then hatchling turtles were housed individually
in plastic containers (20 x 15 x 12 cm®) with 3 cm water
depth, which placed in a temperature-controlled room at
29 °C with an 11 h light: 13 h dark photoperiod.

Thirty-two hatchlings (8 individuals in each cohort of
both species) were randomly selected to measure CTMin
and CTMax following the procedures by Xu et al. (2015).
The hatchlings were placed into the FPQ incubators that
initially were set at 29 °C, and then cooled or heated at
a rate of 0.3 °C/min (but more slowly, at a rate of 0.1 °C/
min, when temperatures were lower than 5 °C or higher
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Fig. 1. Monthly mean air temperatures at the two sites where the
eggs of Mauremys reevesii and Trachemys scripta elegans were col-
lected.
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than 35 °C). The body temperatures of hatchlings were
measured using an electronic thermometer (UT-325, Uni-
trend Group Ltd., China) when they lost righting response.
All trials were run between 10:00 and 15:00. We first meas-
ured CTMin, and then CTMax a week later to minimize
possible interactions between CTMin and CTMax meas-
urement. The thermal tolerance range (TTR) was calcu-
lated by subtracting the CTMin from the CTMax for each
individual (Xu et al., 2015; Gu et al., 2016).

We used linear regression analysis to examine poten-
tial relationships between turtle body size (mass) and
CTMin, CTMax or TTR. We used nested analysis of
varjiance (ANOVA) or analysis of covariance (ANCOVA)
with cohort being nested within species to determine
whether there were differences in body mass, CTMin,
CTMax and TTR between species and between cohorts.
Normality of data and assumption of homogeneity of var-
iances was checked using Kolmogorov-Smirnov tests and
Bartlett’s test, respectively. All statistical analyses were
performed using SPSS 18.0 for PC. The sex effect was
ignored in this study because of the difficulty in deter-
mining the sex of hatchling turtles.

There was no significant difference in hatchling body
mass between different cohorts (F,, = 2.35, P = 0.114).
However, T. scripta elegans hatchlings were heavier than
M. reevesii hatchlings (F, ,3 = 53.70, P < 0.001) (Table 1).
CTMin differed significantly between different cohorts
(Fy28 = 7.32, P < 0.01) but not between species (F,,3 =
0.26, P = 0.612), whereas CTMax differed between spe-
cies (F 5 = 6.06, P = 0.020) but not between different
cohorts (F,,5 = 0.76, P = 0.479). Overall, the cohorts of
both turtle species from the low-latitude site had higher
mean values of CTMin than the cohorts from the high-
latitude site (Fig. 2A). T. scripta elegans had higher mean
values of CTMax than M. reevesii in both cohorts (Fig.
2B). TTR differed significantly between species (F,,5 =
4.53, P = 0.042) and between cohorts (F,,; = 3.57, P =
0.042). TTR of T. scripta elegans was wider than that of M.
reevesii; and TTR for the high-latitude cohorts was wider
than that for the low-latitude cohorts (Fig. 2C). Linear
regression analysis showed that CTMax and TTR (but not
CTMin) was positively correlated with body mass of tur-
tles (CTMin, r* = 0.03, F, 3, = 0.86, P = 0.361; CTMax, r*

Table 1. Mean hatchling body mass (+ SE) of two turtle species
(Mauremys reevesii and Trachemys scripta elegans) from two differ-
ent cohorts.

Mauremys reevesii  Trachemys scripta elegans

Low-latitude cohort
High-latitude cohort

624+023 g
6.17+023 g

7.69 +0.34 g
847 +0.19 g

85

=028, F,5 = 11.81, P < 0.01; TTR, 12 = 0.22, F, 5, = 8.31,
P < 0.01). Both between-species (CTMax, F,,, = 0.002, P
= 0.967; TTR, F,,, = 0.02, P = 0.887) and between-cohort
(CTMax, F,,, = 0.27, P = 0.763; TTR, F,,, = 2.50, P =
0.101) differences in CTMax and TTR were not significant
after removing the effect of body mass of turtles.
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Fig. 2. Mean values (+ SE) for critical thermal minimum (A),
critical thermal maximum (B) and thermal tolerance range (C) of
hatchlings of Mauremys reevesii and Trachemys scripta elegans from
two different cohorts.
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Our study was limited by relatively small sample size
(8 individuals in each cohort for both species) and by the
lack of cohort replication (one cohort from each site),
but it could allow us to provide a preliminary evaluation
on between-species and between-cohort differences in
thermal tolerance of hatchling turtles. Except for slight-
ly higher CTMax for hatchling M. reevesii, the values of
CTMin and CTMax in this study fell within the ranges
reported in previous studies on these turtle species (Xu et
al., 2015; Gu et al., 2016). Both M. reevesii and T. scripta
elegans are semi-aquatic species. Their critical thermal
limits were similar to the values for other semi-aquatic
turtle species, but seemed to be intermediate between
primarily aquatic (CTMin: 2.7-4.8 °C for Pelodiscus sin-
ensis, Wu et al., 2013; CTMax: 39-41 °C, Hutchison et al.,
1966) and terrestrial turtle species (CTMax: 43-44 °C,
Hutchison et al., 1966).

Despite resulting from a larger body size, higher
CTMax and wider TTR for T. scripta elegans probably
indicated that invasive T. scripta elegans had greater ther-
mal tolerance to high temperature and to thermally vari-
able habitats than native M. reevesii. Such abilities may
enhance invasion success when an alien species expands
its geographic range and frequently faces extreme environ-
mental conditions, such as near-critical high temperatures
(Dukes and Mooney, 1999; Zerebecki and Sorte, 2011; Kel-
ley, 2014). Relatively greater thermal tolerance ability has
been found in most studied invasive species (Lockwood
and Somero, 2011; Yu et al,, 2012; Ju et al., 2013; Lejeusne
et al., 2014; Davies et al.,, 2015). Unfortunately, due to only
one native turtle species in our study, more data from oth-
er native turtle species should be collected before drawing
the conclusion that thermal tolerance ability of invasive
turtles is greater than native turtles.

The mechanistic bases for difference in thermal toler-
ance between native and invasive species may lie in dif-
ferences in the expression of some stress-related genes
and thermal sensitivity of some enzymes (Lockwood et
al., 2010; Kelley et al., 2011; Zerebecki and Sorte, 2011;
Yu et al., 2012). For example, a high level of heat-shock
protein (HSP) 70 and 24 expression in invasive species is
believed to contribute to enhancing their high-tempera-
ture tolerances (Zerebecki and Sorte, 2011). The ability to
stabilize enzymatic activity at relatively high temperature
may be related to high-temperature tolerance of invasive
species (Lockwood and Somero, 2011).

Thermal tolerance abilities differ between low- and
high-latitude populations (or cohorts) of some ectother-
mic species (Fangue et al., 2006; Yang et al., 2008; Kelley
et al., 2011; Gaitan-Espitia et al., 2013). Such differences
were also showed in both M. reevesii and T. scripta ele-
gans, without considering hatchery pond effects. How-
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ever, it was too early to draw a final conclusion due to
the limitation in terms of lack of cohort replication. Our
results preliminarily suggested that high-latitude turtles
had a greater low-temperature tolerance than low-lati-
tude turtles. Geographic difference in thermal tolerance
might result from local adaptation to thermal environ-
ments (Kelley, 2014; Gaitan-Espitia et al., 2014). The
individuals living in thermally variable environments
should have a greater ability to withstand extreme tem-
peratures than those living in relatively stable environ-
ments (Kelley, 2014). Turtles from the high-latitude site
would experience larger daily and seasonal thermal fluc-
tuations than those from the low-latitude site. This might
be the cause of greater thermal (especially low-temper-
ature) tolerances for high-latitude turtles. Furthermore,
thermal tolerance plasticity may play a role in enhancing
invasion potential of alien species (Nyamukondiwa et
al., 2010; Tepolt and Somero, 2014; Davies et al., 2015).
Over similar ranges of acclimation temperatures, CTMin
and CTMax varied by 1.9 and 2.6 °C for M. reevesii
(acclimation temperatures from 17 to 33 °C, Xu et al,,
2015), and by 2.5 and 2.1 °C for T. scripta elegans (from
16 to 32 °C, Gu et al., 2016), respectively. The greater
acclimation response of CTMin in T. scripta elegans
may confer a survival advantage over other native tur-
tles when facing a novel environment. Surprisingly, the
magnitude of acclimation change of CTMax in T. scripta
elegans seemed to be lower than in M. reevesii. It might
probably reflect that the ability to adapt quickly to a low-
temperature environment is more important than to a
high-temperature environment for successful invasion of
species spreading to colder regions.
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