https://doi.org/10.36253/a_h-18334

1

16 Subterranean Food-Web Dynamics: A 13-Year Dataset on Strinati's Cave Salamander (Speleomantes strinatii) and Its Prey 17 18 SEBASTIANO SALVIDIO^{1,2*} ¹DISTAV, University of Genova, Corso Europa 26, I-16132 Genova, Italy, ²Gruppo 19 20 Speleologico Ligure Arturo Issel, Villa Borzino C.P. 21, I-16012 Busalla (GE), Italy *Corresponding author. Email: <u>sebastiano.salvidio@unige.it</u> 21 22 Submitted on: 2025, 21th June; revised on: 2025, 19th November; accepted on: 2025, 19th 23 November. 24 25 Editor: David Beamer

GENERAL INFORMATION

27	Species name: Speleomantes strinatii (Aellen, 1959)
28	Geographic area: Italy, Central Liguria, Province of Genova, Municipality of Savignone
29	(study site the Biospelological Station "Arturo Issel").
30	Period : 2013-2025
31	Type of data: Three datasets are presented: two describe a predator-prey system over 13
32	consecutive years. The third provides the spatial distribution of invertebrate prey along the
33	study site over the same time period. Abundance of the predator, Stinati's cave
34	salamander, Speleomantes strinatii, was estimated by three temporary removal samples
35	each year, while the number of invertebrate prey items outside and inside the study site
36	was obtained by entomological sticky traps.
37	
38	Reference to the dataset: The complete files corresponding to this dataset are published
39	on Zenodo with this DOI: 10.5281/zenodo.16261725. These files are publicly accessible
40	from Zenodo: https://zenodo.org/records/16261725.
41	Keywords: Speleomantes, subterranean habitat, predator-prey-system, removal method,
42	entomological traps, ecological time series.
43	
44	ABSTRACT
45	Data Descriptor. Subterranean habitats are simplified ecosystems that have been
46	proposed as models for studying ecological interactions in space and time. The present
47	dataset was obtained inside an artificial subterranean tunnel dedicated to long-term
48	research on the resident terrestrial salamander Speleomantes strinatii. To test the
49	ecological interactions between salamanders and their invertebrate prey, abundances were

assessed using temporal removal methods and entomological sticky traps, respectively. During 13 consecutive years, salamander abundance was estimated by three temporary removal samplings, while invertebrates were captured each year by entomological sticky traps. The sticky traps were placed outside and inside the tunnel to assess the spatial distribution of prey at the site. The present dataset provides two complete times series describing a predator-prey system over 13 consecutive years. There are no missing data.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

55

50

51

52

53

54

METHODOLOGY

This specific dataset is part of ongoing long-term research on the population dynamics, demography and behavioural ecology of a *Speleomantes strinatii* population inhabiting the Biospeleological Station "Arturo Issel" (Salvidio et al., 1994, 2025; Lindström et al., 2010; Oneto et al., 2010; Salvidio and Pastorino, 2002; Costa et al., 2024). The study site is an underground tunnel excavated during World War II, in the Municipality of Savignone (Province of Genova, NW Italy), to be used as an air-raid shelter by civilians (Salvidio et al., 1994). Since 1987, the site has been closed by an iron gate and managed by a speleological group, the "Gruppo Speleologico Ligure A. Issel". A permanent grid with a 1 x 1 m mesh was fixed from the entrance to 21 m inside the tunnel. In the study site, the simplified ecological food web is composed by two top predators (i.e. Strinati's cave salamanders and spiders of the genus *Meta*) and their invertebrate prey. Strinati's cave salamander population abundance was estimated by the same observer annually by means of three temporary removal samplings, starting in July 1996 (Costa et al., 2024). Removal samples were obtained every other day (i.e., over 96 hours). Salamanders active on the cave walls were caught by hand, sexed and measured from the snout to the posterior part of the vent (snout-vent length, SVL). In addition, the individual

position of salamanders within the permanent grid was recorded (Salvidio et al., 2025). After the third removal all individuals were released at the capture site. Population abundance was estimated each year separately, by model M_{bh} of CAPTURE software, which allows capture heterogeneity among capture occasions and evaluates model fitting by a χ^2 test (White et al., 1984). When the population is closed and the sampling effort is maintained constant, removal techniques are a special case of capture-mark-recapture and provide highly reliable estimates (White et al., 1984; Rodriguez de Rivera and McCrea, 2021). Overall, the salamander time series was fluctuating without any directional trend (Costa et al., 2024), and when analysed by autoregressive moving average (ARMA) modelling (Box and Jenkins, 1970), the most parsimonious model was an ARMA(2, 1) (Salvidio et al., 2024). In ecological time series, an ARMA(2,1) model could be describing a stochastic system in which two biological species are strongly interacting, as for example in a prey and predator system or as competitors (Abbott et al., 2009; Zeibarth et al., 2010). In the study case, the working hypothesis was that the two-species system could correspond to a predator-prey system, with invertebrates being the prey and Strinati's cave salamanders the predators. For this reason, starting in 2013 the abundance of the invertebrate prey found inside the tunnel was assessed in parallel while estimating the salamander population size. In fact, invertebrates show a similar pattern of activity as Strinati's salamanders with a clear maximum in August (Oneto and Salvidio, 2005). Every year in July, during the salamander removal experiment, nine sticky traps were used to estimate invertebrate prey outside and inside the Biospeleological Station. Sticky traps were obtained from 210 x 297 mm transparent acetate sheets laminated on one side with transparent entomological glue (Tem-O-Cid, produced by ADAMA Home & Garden). Traps were activated during the first salamander removal, one trap hanging in the open outside the tunnel at a high of 1.20 m, while eight traps hanging from the cave vault were

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

located every three meters from the entrance up to 21 m (i.e., 0, 3, 6, 9, 12, 15, 18 and 21 m) inside the tunnel. All traps were transparent to avoid a well-known colour attractive effect on flying insects (e.g., Dearden et al., 2024). After the third salamander removal, all traps were removed, preserved between two transparent plastic sheets and brought to the laboratory. Invertebrates captured were observed at the stereomicroscope to be identified and classified into functional groups: Diptera (flies), Acarina (mites), Hemiptera (planthoppers), Formicidae (ants), Coleoptera (beetles) and Araneida (spiders). Unclassified prey items were pooled in the category "Indeterminate".

107

108

109

110

111

112

113

114

115

116

117

118

99

100

101

102

103

104

105

106

DATASET DESCRIPTION

The first dataset (01 Speleomantes strinatii removal.txt) reports the data from the three removal occasions and, in the last column, the estimated abundance calculated by model M_{bh} of CAPTURE software (White et al., 1984). All data are integer numbers salamander corresponding individuals. The second dataset to (02 Speleomantes strinatii prey distribution.txt) reports for each year the number of invertebrates trapped by entomological sticky traps outside and inside the Biospeleological Station. This dataset will allow the assessment of the spatial distribution prey of along the subterranean tunnel. Finally the third dataset (03 Speleomantes strinatii and prey time series.txt) reports the complete time series of the subterranean predator-prey system over the 13-year period 2013-2025.

120

119

121

122

SUMMARY OF DATA

125	Over the 13-year study, spanning from 2013 to 2025, a total number of $N = 1152$
126	invertebrate prey were captured, both outside $(N = 684)$ and inside $(N = 468)$ the
127	Biospeloelogical Station. During the same period, the estimated population of
128	Speleomantes strinatii ranged from 126 in 2013 to 62 in 2024. The interannual variation in
129	salamander and invertebrate abundances is illustrated in Fig. 1.
130	The invertebrate community trapped inside the tunnel was largely dominated by flies that
131	represented 90% of all prey items. Conversely, outside the study site the invertebrate
132	community was less dominated by flies (66%), with planthoppers (20%) and beetles (7%)
133	also well represented (Figure 2). Strinati's cave salamanders do not exit subterranean
134	habitats during the dry and hot summer typical of the region (Salvidio et al., 2024).
135	Therefore, in future analyses, only prey groups trapped inside the Biospeleological Station
136	should be considered as available prey to assess the Strinati's cave salamander' population
137	dynamics.
138	X
139	
140	ACKNOWLEDGMENTS
141	Thanks to the "Gruppo Speleologico Ligure Arturo Issel" for securing the access to the
142	Station and managing the site for over 40 years. The constructive comments of an
143	anonymous reviewer and of the Associate Editor improved the manuscript
144	
145	REFERENCES
146	Abbott, K., Ripa, J., Ives A.R. (2009): Environmental variation in ecological communities
147	and inferences from single-species data. Ecology 90: 1268-1278.

148 Box, G.E.P., Jenkins, J.M. 1(970): Time Series Analysis: Forecasting and Control. USA, 149 Holden-Day. 150 Brockwell, P.J., Davies, R. (2002): Introduction to Time Series Analysis and Forecasting, 151 2nd ed. USA, Springer. 152 Costa, A., Oneto, F., Pastorino, M.V., Rosa, G., Salvidio, S. (2024): Long-term Dynamics 153 of a Cave Salamander Population in a Region under Changing Climate. 154 Herpetologica 80: 209-220. Dearden, A.E., Wood, M.J., Frend, H.O., Butt, T.M., Allen, W.N. (2024): Visual 155 156 modelling can optimise the appearance and capture efficiency of sticky traps used 157 to manage insect pests. J. Pest Sci. 97: 469-479. Lindström, L, Reev, e R., Salvidio, S. (2010): Bayesian salamanders: analysing the 158 159 demography of an underground population of the European plethodontid 160 Speleomantes strinatii with state-space modelling. BMC Ecology 10: 4. Oneto, F., Salvidio, S. (2005): Dati preliminari sulla distribuzione delle prede di 161 162 Speleomantes strinatii (Aellen) nella Stazione Biospeleologica di S. Bartolomeo 163 (GE). Ann. Mus. Civ. Stor. Nat. Giac. Doria 97: 161-168. Salvidio, S., Pastorino M.V. (2002): Spatial segregation in the European plethodontid 164 165 salamander Speleomantes strinatii in relation to age and sex. Amphibia-Reptilia, 166 Leiden 23: 505-510. 167 Salvidio, S., Lattes, A., Tavano, M., Melodia, F., Pastorino, V. (1994): Ecology of a 168 Speleomantes ambrosii population inhabiting an artificial tunnel. Amphibia-169 Reptilia 15: 35-45. 170 Salvidio, S., Costa, A., Oneto, F., Rosa, G., Pastorino, M.V. (2025): No change over three 171 decades in the realized spatial niche of a salamander population living in a 172 subterranean habitat. Curr. Zool. 71: 678-681

173	Rodriguez de Rivera, O., McCrea, R. (2021): Removal modelling in ecology: A
174	systematic review. PLoS ONE 16: e0229965
175	White, G.C., Anderson, D.R., Burnham, K.P., Otis, D.L. (1982): Capture-recapture and
176	removal methods for sampling closed populations. Los Alamos National
177	Laboratory Report LA-8787-NERP, Los Alamos, New Mexico.
178	Ziebarth, N.L., Abbott, K.C., Ives, A.R. (2010). Weak population regulation in ecological
179	time series. Ecol. Lett. 13: 21-31.
180	
181	· V O.
182	
183	
184	X
185	
186	607
187	FIGURE LEGEND
188	
189	Figure 1. Interannual variation over the period 2013-2025 of the cave salamander
190	Speleomantes strinatii and invertebrates outside and inside the Biospeleological
191	Station Arturo Issel.
192	
193	Figure 2. Overall percentages of invertebrate functional groups captured outside and
194	inside the Biospeleological Station Arturo Issel by sticky traps in July, over the
195	period 2013-2025.

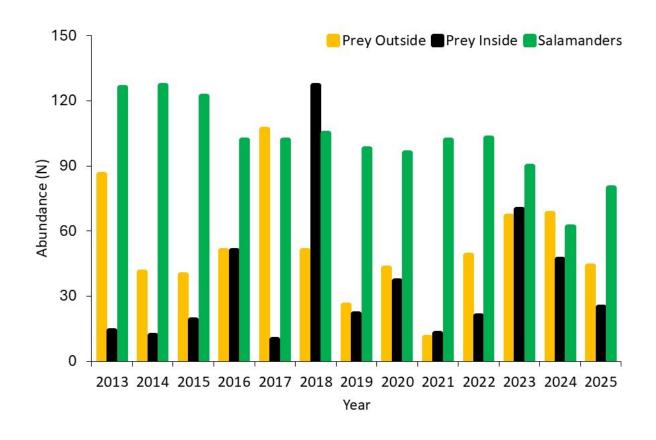


Figure 1.

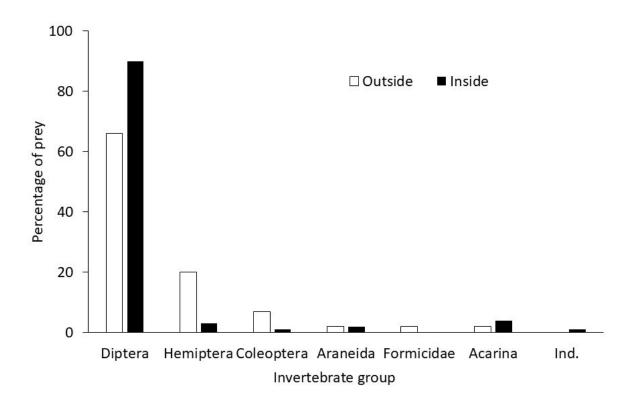


Figure 2.