

1 **Dinner Time in the Atlantic Forest: Trophic Niche**

2 **Partitioning of Two Sympatric *Boana* Species in the**

3 **Southern Bahia State, Brazil**

4 **AMANDA S. MARTINS, KÁSSIO C. ARAÚJO, HEITOR Z. FISCHER, MIRCO SOLÉ, DANILÓ S. RUAS,**

5 **CAIO V. DE MIRA-MENDES, IURI R. DIAS**

6 **THIS ARTICLE HAS BEEN ACCEPTED FOR PUBLICATION AND UNDERGONE FULL PEER REVIEW**

7 **BUT HAS NOT BEEN THROUGH THE COPYEDITING, TYPESETTING, PAGINATION AND**

8 **PROOFREADING PROCESS, WHICH MAY LEAD TO DIFFERENCES BETWEEN THIS VERSION AND**

9 **THE VERSION OF RECORD.**

10 **PLEASE CITE THIS ARTICLE AS:**

11 **Martins, A. S., Raújo, K. C., Fischer, H. Z., Solé, M., Ruas, D. S., de Mira-Mendes, C. V.,**

12 **Dias I. R. (2026): Dinner Time in the Atlantic Forest: Trophic Niche Partitioning of Two**

13 **Sympatric *Boana* Species in the Southern Bahia State, Brazil. Acta Herpetol. **21**. DOI:**

14 **10.36253/a_h-18506**

17 **Dinner Time in the Atlantic Forest: Trophic Niche Partitioning of Two Sympatric *Boana***
18 **Species in the Southern Bahia State, Brazil**

19

20 AMANDA S. MARTINS¹, KÁSSIO C. ARAÚJO^{2,*}, HEITOR Z. FISCHER³, MIRCO SOLÉ⁴, DANILo S.
21 RUAS⁵, CAIO V. DE MIRA-MENDES², IURI R. DIAS⁴

22

23 ¹*Programa de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade*

24 *Estadual de Santa Cruz, Ilhéus - UESC, Campus Soane Nazaré de Andrade, Rod. Jorge Amado,*

25 *Km 16 - Salobrinho, CEP 45662-900, Ilhéus, Brasil.*

26 ²*Universidade Estadual do Maranhão - UEMA, Cidade Universitária Paulo VI, Av. Lourenço*

27 *Vieira da Silva, nº 1000, Bairro: Jardim São Cristóvão, CEP 65055-310, São Luís, Brasil.*

28 ³*Universidade de Sorocaba - UNISO, Av. Independência, 210 - Éden, CEP 18087-101,*

29 *Sorocaba, Brasil.*

30 ⁴*Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz - UESC, Campus*

31 *Soane Nazaré de Andrade, Rod. Jorge Amado, Km 16 - Salobrinho, CEP 45662-900, Ilhéus,*

32 *Brasil.*

33 ⁵*Universidade Estadual do Sudoeste da Bahia - UESB, Estrada do Bem Querer, km 4, CEP*

34 *45083-900, Vitória da Conquista, Brasil.*

35 *Corresponding author: kassio.ufpi@gmail.com

36

37 *Submitted on: 2025, 6th October; revised on: 2026, 3th February; accepted on: 2026, 4th*

38 *February.*

39 *Editor: Andrea Costa*

40

41

42 **Abstract.** Understanding the ecological traits of species, such as dietary habits, is important for
43 elucidating their natural history and ecological interactions. Thus, we investigated the trophic
44 ecology and niche partitioning of two treefrog species (*Boana atlantica* and *B. semilineata*) in
45 an Atlantic Forest fragment in southern Bahia, northeastern Brazil. In this study, we obtained
46 the diet of 39 *B. atlantica* and 25 *B. semilineata* through stomach flushing. We recorded 72 prey
47 items in these two hylids organized into 11 categories. The most consumed prey were plant
48 material and Araneae. Although the niche breadth of *B. atlantica* was higher than that of *B.*
49 *semilineata*, these hylids had a substantial trophic niche overlap (Pianka's niche overlap index
50 = 0.89). Our findings provide novel insights into the feeding ecology of these endemic Atlantic
51 Forest treefrogs, enhancing our understanding of their ecological roles and trophic resource
52 partitioning in this biodiversity hotspot.

53

54 **Keywords:** Amphibians, Diet composition, Feeding habit, Hylidae.

55 **INTRODUCTION**

56 To coexist in an environment, a species needs specific resources and conditions that
57 define its ecological niche (Hutchinson, 1957). Processes associated with foraging habitat
58 selection, prey availability, and intraspecific and interspecific competition are crucial to
59 understand the species' trophic niche (Moser et al., 2017). Beyond ecological interactions, this
60 information is important for comprehending the natural history of the species, population
61 fluctuations, and the effects of environmental change on populations and communities
62 (Anderson et al., 1999; Santos et al., 2004; Richter-Boix et al., 2007).

63 Anurans play an important role in maintaining environmental stability, participating in
64 different food networks (Poulin et al., 2001; Egeter et al., 2015; Ceron et al., 2019), and
65 contributing to the energy flow and nutrient cycling (Colón-Gaud et al., 2009; Huckembeck et
66 al., 2014). In general, most anuran species are opportunistic and generalist predators consuming
67 a great diversity of invertebrate prey (Solé and Rödder, 2009). However, amphibians' diets are
68 influenced by various factors, such as prey availability, competition, foraging strategies,
69 ontogeny, morphology, and environmental characteristics (Wells, 2010; Luría-Manzano and
70 Ramírez-Bautista, 2019; Blanco-Torres et al., 2020; Moroti et al., 2021), making it important
71 to study their trophic ecology. A recent review of Brazilian anuran dietary studies shows that,
72 despite increasing research, only about 19% of species have published diet data, with many
73 endemic and threatened taxa still lacking dietary information, particularly outside the Atlantic
74 Forest ecoregion (Moser et al., 2025).

75 Anuran communities may be structured according to spatial, temporal, and trophic
76 niches, where ecological factors such as competition and historical factors like phylogeny
77 influence these niche dimensions (Leite-Filho et al., 2017; Caldas et al., 2019). Some studies
78 investigated the trophic niche overlap of congeneric anurans (e.g., Oliveira et al., 2015; Moser
79 et al., 2017; Araújo et al., 2023), including *Boana* species (Protázio et al., 2017; Moser et al.,

80 2018). It is generally accepted that, in accordance with Gause's (1932) competitive exclusion
81 principle, species must segregate along at least some niche axes, including trophic niche
82 partitioning, to enable their successful coexistence in sympatry (Kneitel, 2019). Thus,
83 understanding the partitioning of food resources is essential to comprehend species coexistence.

84 *Boana atlantica* (Caramaschi and Velosa, 1996) and *Boana semilineata* (Spix, 1824) are
85 two endemic treefrogs from the Atlantic Forest that occur in sympatry from Alagoas to Bahia
86 (Frost, 2025). *Boana semilineata* is known to have a generalist diet consisting primarily of
87 coleopterans, acari, orthopterans, and plant fragments (Protázio et al., 2017). While some
88 aspects of *B. atlantica*'s natural history are known, including its reproductive biology
89 (Camurugi and Juncá, 2013) and advertisement call (Napoli and Cruz, 2005), its trophic ecology
90 remains understudied. Thus, we aimed to (i) describe the diet of two treefrog species that occur
91 in sympatry in a permanent pond within an Atlantic Forest fragment in southern Bahia, Brazil;
92 (ii) test the trophic niche overlap between these hylids; and (iii) evaluate how body mass, body
93 size, and mouth breadth influence prey volume in these anurans. We expected dietary
94 differentiation between the two sympatric hylid species, resulting in low to moderate trophic
95 niche overlap, and a positive relationship between anuran morphology and prey volume.

96

97 MATERIAL AND METHODS

98 *Study area*

99 This study was conducted in a permanent pond inside the Michelin Ecological Reserve
100 (-13.82348° S, -39.17286° W, WGS84) in Bahia State, northeastern Brazil (Fig. 1). It
101 encompasses a total area of 3.096 ha within the Atlantic Forest Biome, considered a Dense
102 Ombrophilous Lowland Forest (Veloso et al., 1991), and characterized by the presence of
103 Atlantic Forest fragments at various stages of regeneration (Flesher, 2014). It has an average
104 precipitation of 2000 mm and daily temperatures between 18 °C and 30 °C, with rainfall

105 throughout the year (Flesher, 2014). The area of the pond was ca. 450 m², with a maximum
106 depth of 1.5 m, located in a forest fragment embedded within a rubber tree plantation area.
107 Besides trees, the vegetation around the pond edge is composed of shrubs and herbaceous
108 species.

109

110 *Sampling design*

111 We conducted fieldwork to search for specimens of *B. atlantica* and *B. semilineata* at a
112 permanent pond during the night period (18 to 23 h) between March and May 2011, using
113 auditory and visual searches (Heyer et al., 1994). Individuals were identified based on their
114 advertisement calls, dorsal coloration patterns, and morphological traits (see Caramaschi and
115 Velosa, 1996, for the diagnosis of *B. atlantica*, and Izecksohn and Carvalho, 2001, for the
116 diagnosis of *B. semilineata*). We collected and transported the observed individuals in plastic
117 bags to the lab in the Center for Biodiversity Studies of the Michelin Ecological Reserve. To
118 avoid pseudoreplication, specimens were captured and released only at the end of each field
119 campaign, ensuring that no individual was resampled within the same campaign. In the lab, the
120 specimens were weighed on electronic scales and had their snout-vent length (SVL) and mouth
121 breadth (MB) measured with a digital caliper with 0.01 mm precision. Subsequently, they were
122 stomach flushed following the protocol proposed by Solé et al. (2005) and released into the
123 pond, from which they had been collected.

124

125 *Data analyses*

126 In the laboratory, the stomach contents were separated, and the prey items were
127 identified to the lowest possible taxonomic level (usually order) using the specialized literature
128 (Rafael et al., 2024). Then, we calculated the frequency of occurrence (FO% = number of
129 stomachs containing item i / total number of stomachs × 100), and the numeric abundance (N%

130 = number of individuals of item i / total individuals of all items \times 100). Since we did not
131 calculate the volume of each prey item consumed, we used an adapted formula (IRI = (FO% +
132 N%) / 2) for the index of relative importance originally proposed by Pinkas et al. (1971).

133 Additionally, to measure the total volume of prey consumed by the *Boana* specimens,
134 we placed each individual's stomach contents in an oven set to 60°C to dry and stabilize the
135 mass. We used a GEHAKA AG-200 scale (accuracy of 0.1 mg) to weigh the stomach contents.
136 Collinearity among morphological predictors was evaluated using variance inflation factors
137 (VIF). As all VIF values were below 2, no collinearity issues were detected, and all variables
138 were retained for analysis (James et al., 2013). We then fitted generalized linear models (GLMs)
139 to evaluate whether prey volume was influenced by body mass, snout–vent length (SVL), and
140 mouth breadth (MB) in the two *Boana* species. We initially fitted a full model including all
141 predictors simultaneously (Volume \sim Mass + SVL + MB), assuming a Gamma error distribution
142 with a log-link function. Model adequacy was assessed through residual diagnostics appropriate
143 for GLMs. In addition, we evaluated alternative models with reduced sets of predictors and
144 compared model performance using Akaike's Information Criterion (AIC). Models with ΔAIC_c
145 lower than 2 were interpreted as having the most substantial support (Burnham and Anderson,
146 2002).

147 We estimated the numerical trophic niche breadth (B_{num}) of the two *Boana* species
148 using the standardized Levins' index (Levins, 1968), which ranges from 0, indicating dietary
149 specialization, to 1, indicating a generalist diet. Then, we used Pianka's niche overlap index
150 (Pianka, 1973) to calculate the trophic niche overlap (O_{jk}) between *B. atlantica* and *B.*
151 *semilineata*. We used a bipartite network graph as an exploratory tool to visualize prey diversity
152 between the two hylid species, with interaction strength represented by the index of relative
153 importance of each prey item for both *Boana* species. Statistical analyses were done using the
154 R packages *bipartite* (Dormann et al., 2009), *ggraph* (Pedersen et al., 2022), *ggplot2* (Wickham,

155 2016), *igraph* (Csardi and Nepusz, 2006), *spaa* (Zhang, 2016), *tibble* (Müller and Wickham,
156 2023), *vegan* (Oksanen et al., 2019), and *usdm* (Naimi et al., 2014).

157

158

RESULTS

159 We found 64 anuran specimens (39 *B. atlantica* and 25 *B. semilineata*), including 48
160 with stomach contents (30 *B. atlantica* and 18 *B. semilineata*). We found 72 prey items grouped
161 into 11 categories, with plant material (N = 23) and Araneae (N = 20) as the most consumed
162 prey. Plant fragments were found in the stomach contents of 23 individuals, while Araneae
163 appeared in 17.

164 We observed that *B. atlantica* consumed 10 prey categories (*Bnum* = 5.31), with plant
165 material (IRI = 27.1) and Araneae (IRI = 27.0) being the most abundant and frequently
166 encountered prey types. In contrast, Acari, Blattaria, Hemiptera, and Hymenoptera were
167 consumed less frequently (IRI = 2.09), with only one individual recorded for each (Table 1).
168 Additionally, we found no support for the influence of anuran weight ($T = 0.559$, $P = 0.580$),
169 size ($T = -0.584$, $P = 0.564$), and mouth breadth ($T = -0.460$, $P = 0.649$) on the volume of the
170 stomach contents.

171 Likewise, plant material (IRI = 46.5) and Araneae (IRI = 25.5) were the most prominent
172 prey items in the diet of *B. semilineata*. This species consumed only six prey categories and had
173 a narrower numerical trophic niche breadth (*Bnum* = 3.37). Hymenoptera, Lepidoptera, and
174 Odonata were consumed less frequently, with only one individual recorded for each (Table 1).

175 We also observed that the volume of the stomach contents was not influenced by the
176 anurans' weight ($T = 1.194$, $P = 0.250$), size ($T = -1.160$, $P = 0.263$), and mouth breadth ($T =$
177 0.978 , $P = 0.342$). Model comparison based on AIC indicated that the null model best fit the
178 data for both species. Models including morphological predictors (SVL, mouth breadth, or body

179 mass), alone or combined, did not improve performance ($\Delta AIC > 2$), indicating no effect of
180 morphology on prey volume.

181 We observed that the two *Boana* species consumed different numbers of prey categories.
182 *Boana semilineata* exhibited a more specialist dietary strategy ($B_{num} = 0.24$), whereas *Boana*
183 *atlantica* showed an intermediate to generalist strategy ($B_{num} = 0.43$), indicating a broader
184 trophic niche breadth. In addition, the two species exhibited a high trophic niche overlap (O_{jk}
185 = 0.89), with five prey categories shared by both species (Fig. 2).

186

DISCUSSION

188 We observed that the *Boana* species studied had a generalist and opportunistic diet,
189 which is a common pattern for most Neotropical anurans (Toft, 1981; Wells, 2010), including
190 the genus *Boana* (e.g., Araújo et al., 2007; Moser et al., 2018; Rodrigues et al., 2023, Machado
191 et al., 2024). The presence of prey with high mobility in the diet composition of these hylids,
192 such as Araneae, Odonata, Orthoptera, and Diptera, may indicate a sit-and-wait strategy
193 (Parmelee, 1999; Protázio et al., 2017). This foraging strategy pattern seems to be predominant
194 for Hylidae species (e.g., Mahan and Johnson, 2007; Castro et al., 2016; Silva et al., 2021),
195 including the genus *Boana* (e.g., Protázio et al., 2017; Sant'anna et al., 2022; Rodrigues et al.,
196 2023).

197 Although some species, such as *Xenohyla truncata* and *Phrynodermat hexadactylum*,
198 may exhibit an uncommon frugivory or herbivory pattern (Das, 1996; Oliveira-Nogueira et
199 al., 2023), most studies suggest that anurans consume plant material incidentally while
200 preying on invertebrates (Sabagh et al., 2010; Castro et al., 2016, Araújo et al., 2023).
201 However, we observed that the most consumed prey item by both *Boana* species was plant
202 fragments. The consumption of plant material can aid in the elimination of intestinal parasites
203 and provide an additional supply of water and nutrients, provided it is digestible (Anderson et

204 al., 1999; Tupy et al., 2021). Additionally, Silva et al. (1989) demonstrated that during the dry
205 season, when invertebrate populations diminished, *Xenohyla truncata* incorporated fruits and
206 bromeliad seeds into its diet. While the ingestion of plant debris is frequently documented in
207 *Boana* species (e.g., Moser et al., 2018; Tupy et al., 2021; Rodrigues et al., 2023), further
208 research is necessary to elucidate the significance of plant fragments in the diet of these
209 hylids.

210 Anuran-prey selection might be mediated by different traits, such as morphology,
211 foraging strategy, prey mobility, and availability (Lima and Moreira, 1993; López et al., 2009;
212 Blanco-Torres et al., 2020). However, the volume of stomach contents of *B. atlantica* and *B.*
213 *semilineata* was not influenced by their weight, snout-vent length, and mouth breadth. Although
214 some studies support the hypothesis that larger frogs tend to eat a larger prey volume (e.g., Rosa
215 et al., 2011; Pacheco et al., 2017; Araújo et al., 2023), it is still an unclear issue because others
216 do not support this relationship (e.g., Rodrigues et al., 2023; Ferreira et al., 2024). As a result,
217 establishing a link between morphology and prey volume in anurans is difficult, particularly
218 from an intraspecific perspective.

219 We observed that *B. atlantica* and *B. semilineata* had a high trophic niche overlap with
220 opportunist characteristics. These species share five prey categories, including the prey items
221 with the highest IRI such as plant material and spiders (see Fig. 2). Studies encompassing the
222 anuran community (e.g., Protázio et al., 2015; Leite-Filho et al., 2017), as well as investigations
223 focused just on two species (e.g., Sabagh et al., 2010; Araújo et al., 2023), indicate that
224 generalist and opportunistic amphibians frequently share prey items within their diet. Likewise,
225 coexisting *Boana* species have a substantial trophic niche overlap (Moser et al., 2018; Tupy et
226 al., 2021; Sant'anna et al., 2022), which may be related to their opportunistic trophic strategy.
227 Given limited resources, species must segregate into certain niche axes to coexist (MacArthur
228 and Levins, 1967; Gotelli, 2009). However, it is impossible to determine whether or not these

229 species compete for trophic resources in the study area because we did not perform a prey
230 availability analysis there. Thus, further studies are required to determine the mechanisms and
231 processes that may allow *B. atlantica* and *B. semilineata* to coexist.

232 Overall, the studied hylids consume whatever is available in their surroundings,
233 exhibiting a generalist dietary pattern and, as a result, a high degree of overlap in prey items.
234 However, we cannot state that these species are truly competing for trophic resources. Our
235 findings contribute to the understanding of the trophic ecology of two endemic *Boana* species
236 from the Atlantic Forest. It is important to highlight the general lack of research on anuran diets,
237 despite diet representing a fundamental aspect of natural history for understanding predator-
238 prey interactions, hypothesis testing, and the assessment of conservation status (Moser et al.,
239 2025). Consequently, natural history studies play a crucial role in informing conservation
240 planning for species and their environments.

241

242 **Acknowledgments**

243 KCA thanks the Universidade Estadual do Maranhão for granting Institutional Technical
244 Support Scholarships (EDITAL Nº 20/2025 - PPG/CP/UEMA). CVMM thanks the
245 Universidade Estadual do Maranhão (UEMA; sênior productivity grant 05/2023-PPG/UEMA).
246 IRD acknowledges financial support from CNPq (PQ 315362/2021-9 and 311511/2025-2). MS
247 also acknowledges CNPq for financial support (PQ 309365/2019-8 and 306397/2025-0).
248 Permits to capture and handle animals were provided by Biodiversity Authorization and
249 Information System – SISBIO Number: #13708-1.

250

251 **References**

252 Anderson, A.M., Haukos, D.A., Anderson, J.T. (1999): Diet composition of three anurans from
253 the Playa Wetlands of Northwest Texas. *Copeia*. **1999**: 515-520.

254 Araújo, K.C., Cassiano-Lima, D., Brasileiro, A.C., Bezerra, C.H., Ávila, R.W. (2023): What the
255 minute shield frogs *Adelophryne* eat at a humid forest relict in Ceará state, northeastern
256 Brazil. *North-West. J. Zool.* **19**: e231503.

257 Araújo, F.R.R.C., Bocchiglieri, A., Holmes, R.M. (2007): Ecological aspects of the *Hypsiboas*
258 *albopunctatus* (Anura, Hylidae) in central Brazil. *Neotrop. Biol. Conserv.* **2**: 165-168.

259 Blanco-Torres, A., Duré, M.I., Bonilla, M.A., Cagnolo, L. 2020. Predator–prey interactions in
260 anurans of the tropical dry forests of the Colombian Caribbean: A functional approach.
261 *Biotropica*. **2020**: 1-8.

262 Burnham, K.P., Anderson, D.R. (2002): *Model Selection and Multimodel Inference: A Practical*
263 *Information-Theoretic Approach*. New York, Springer-Verlag.

264 Caldas, F.L., Garda, A.A., Cavalcanti, L.B., Leite-Filho, E., Faria, R.G., Mesquita, D.O. 2019.
265 Spatial and trophic structure of anuran assemblages in environments with different seasonal
266 regimes in the Brazilian Northeast Region. *Copeia*. **107**: 567-584.

267 Camurugi, F., Juncá, F. (2013): Reproductive biology of *Hypsiboas atlanticus* (Anura: Hylidae).
268 *Herpetol. Notes*. **6**: 489-495.

269 Caramaschi, U., Velosa, A. (1996). Nova espécie de *Hyla* Laurenti, 1768 do leste brasileiro
270 (Amphibia, Anura, Hylidae). *Bol. Mus. Nac., N. Ser., Zool.* **365**:1-7.

271 Castro, I.M., Rebouças, R., Solé, M. (2016): Diet of *Dendropsophus branneri* (Cochran, 1948)
272 (Anura: Hylidae) from a cocoa plantation in southern Bahia, Brazil. *North-West. J. Zool.* **12**:
273 159-165.

274 Ceron, K., Oliveira-Santos, L.G.R., Souza, C.S., Mesquita, D.O., Caldas, F.L., Araujo, A.C.,
275 Santana, D.J. (2019): Global patterns in anuran–prey networks: structure mediated by
276 latitude. *Oikos*. **128**: 1537-1548.

277 Colón-Gaud, C., Whiles, M.R., Kilham, S.S., Lips, K.R., Pringle, C.M., Connelly, S., Peterson,
278 S.D. (2009): Assessing ecological responses to catastrophic amphibian declines: Patterns of

279 macroinvertebrate production and food web structure in upland Panamanian streams.

280 *Limnol. Oceanogr.* **54**: 331-343.

281 Csardi, G., Nepusz, T. (2006): The igraph software package for complex network research.

282 *InterJ. Complex Syst.* **1695**: 1-9.

283 Das, I. 1996. Folivory and seasonal changes in diet in *Rana hexadactyla* (Anura: Ranidae). *J. Zool.* **238**: 785-794.

285 Dormann, C.F., Gruber, B., Fründ, J. (2009): Introducing the bipartite package: Analysing

286 ecological networks. *R News.* **8**: 8-11.

287 Egeter, B., Bishop, P.J., Robertson, B.C. (2015): Detecting frogs as prey in the diets of

288 introduced mammals: A comparison between morphological and DNA-based diet analyses.

289 *Mol. Ecol. Resour.* **15**: 306-316.

290 Ferreira, J.L.P., Araújo, K.C., Andrade, E.B., Mira-Mendes, C.V. (2024): Are the males of

291 *Dendropsophus minutus* (Peters, 1872) spider devourers? *Cuad. Herpetol.* **38**:1-5.

292 Flesher, K.M. (2014): Plano de manejo da RPPN Ouro Verde. Igrapiúna: Reserva Ecológica

293 Michelin. Available at: <https://purchasing.michelin.com/wp-content/uploads/2025/01/RPPN-Ouro-Verde-Plano-de-Manejo-Sep-17-2014.pdf>. [Accessed

295 28 July 2025].

296 Frost, D.R. (2025): Amphibian species of the world 6.2, an online reference. American Museum

297 of Natural History, New York.

298 Gause, G.F. (1932): Experimental studies on the struggle for existence I. Mixed population of

299 two species of yeast. *J. Exp. Biol.* **9**:389-402.

300 Gotelli, N.J. (2009): Ecologia. 4th Edition. Londrina, Editora Planta.

301 Heyer, W.R., Donnelly, M.A., McDiarmid, W., Hayek, L.A.C., Foster, M.S. (1994): Measuring

302 and Monitoring Biological Diversity – Standard Methods for Amphibians. Washington,

303 Smithsonian Institution Press.

304 Huckembeck, S., Loebmann, D., Albertoni, E. F., Hefler, S. M., Oliveira, M. C., Garcia, A. M.
305 (2014): Feeding ecology and basal food sources that sustain the Paradoxal frog *Pseudis*
306 *minuta*: a multiple approach combining stomach content, prey availability, and stable
307 isotopes. *Hydrobiologia*. **740**: 253-264.

308 Hutchinson, G.E. (1957): Concluding Remarks. *Cold Spring Harb. Symp. Quant. Biol.* **22**: 415-
309 427.

310 Izecksohn, E., Carvalho, S.P. (2001): Anfíbios do município do Rio de Janeiro. Rio de Janeiro,
311 Editora UFRJ.

312 James, G., Witten, D., Hastie, T., Tibshirani, R. (2013): *An Introduction to Statistical Learning:*
313 *With Applications in R*. New York, Springer.

314 Kneitel, J.M. (2019): Gause' s competitive exclusion principle. In: *Encyclopedia of ecology*,
315 pp. 110-113. Fath, B.D, Eds, Elsevier.

316 Leite-Filho, E., Oliveira, F.A., Eloi, F.J., Liberal, C.N., Lopes, A.O., Mesquita, D.O. (2017):
317 Evolutionary and ecological factors influencing an anuran community structure in an
318 Atlantic Rainforest urban Fragment. *Copeia*. **105**: 64-74.

319 Levins, R. (1968): *Evolution in Changing Environments: Some Theoretical Explorations*.
320 Princeton, Princeton University Press.

321 Lima, A.P., Moreira, G. (1993): Effects of prey size and foraging mode on the ontogenetic
322 change in feeding niche of *Colostethus stepheni* (Anura: Dendrobatidae). *Oecologia*. **95**: 93-
323 102.

324 López, J.A., Scarabotti, P.A., Medrano, M.C., Ghirardi, R. (2009): Is the red spotted green frog
325 *Hypsiboas punctatus* (Anura: Hylidae) selecting its preys?: The importance of prey
326 availability. *Rev. Biol. Trop.* **57**: 847-857.

327 Luría-Manzano, R., Ramírez-Bautista, A. (2019): Ontogenetic variation in the diet of the anuran
328 community from a semi-arid environment in the southeastern Chihuahuan Desert. PeerJ. **7**:
329 e7908.

330 MacArthur, R.H., Levins, R. (1967): The Limiting Similarity, Convergence, and Divergence of
331 Coexisting Species. Am. Nat. **101**: 377-385.

332 Machado, H.T.S., Silva, C.F., Benício, R.A., Ávila, R.W. (2024): Feeding ecology, reproductive
333 biology, and sexual dimorphism of *Boana raniceps* (Anura: Hylidae) in an area of Caatinga,
334 northeastern Brazil. Caldasia **46**: 71-80.

335 Mahan, R.D., Johnson, J.R. (2007): Diet of the Gray Treefrog (*Hyla versicolor*) in Relation to
336 Foraging Site Location. J. Herpetol. **41**: 16-23.

337 Moroti, M.T., Soares, P.T., Pedrozo, M., Provete, D.B., Santana, D.J. (2021): The effects of
338 morphology, phylogeny and prey availability on trophic resource partitioning in an anuran
339 community. Basic Appl. Ecol. **50**: 181-191.

340 Moser, C.F., Avila, F.R., Oliveira, M., Tozetti, A.M. (2017): Diet composition and trophic niche
341 overlap between two sympatric species of *Physalaemus* (Anura, Leptodactylidae,
342 Leiuperinae) in a subtemperate forest of southern Brazil. Herpetol. Notes. **10**: 9-15.

343 Moser, C.F., Oliveira, M.D., Avila, F.R.D., Dutra-Araújo, D., Farina, R.K., Tozetti, A.M.
344 (2018): Diet and trophic niche overlap of *Boana bischoffi* and *Boana marginata* (Anura:
345 Hylidae) in southern Brazil. Biota Neotrop. **19**: e20180542.

346 Moser, C.F., Ceron, C., Schuck, L.K., Santana, D.J., Solé, M., Iop, S., Tozetti, A.M. (2025):
347 Current state of the art in anuran dietary studies in Brazil. Discov. Ecol. **1**:1-9.

348 Müller, K., Wickham, H. (2023): tibble: Simple data frames. R package version 3.3.0.

349 Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K., Toxopeus, A.G. (2014): Where is
350 positional uncertainty a problem for species distribution modelling?. Ecography **37**:191-203.

351 Napoli, M.F., Cruz, I.C. (2005): The advertisement call of *Hyla atlantica* Caramaschi & Velosa,
352 1996, with considerations on its taxonomic status. Arq. Mus. Nac. **63**: 283-288.

353 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R.,
354 O'Hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E., Wagner, H.
355 (2019): Vegan: Community Ecology Package. R package version 2.5-6.

356 Oliveira, M., Gottschalk, M.S., Loebmann, D., Santos, M.B., Miranda, S., Rosa, C., Tozetti,
357 A.M. (2015): Diet composition and niche overlap in two sympatric species of *Physalaemus*
358 (Anura, Leptodactylidae, Leiuperinae) in coastal subtemperate wetlands. Herpetol. Notes. **8**:
359 173-177.

360 Oliveira-Nogueira, C.H., Souza, U.F., Machado, T.M., Figueiredo-de-Andrade, C.A., Mônico,
361 A.T., Sazima, I., Sazima, M., Toledo, L.F. (2023): Between fruits, flowers and nectar: The
362 extraordinary diet of the frog *Xenohyla truncata*. Food Webs. **35**: e00281.

363 Pacheco, E.O., Ferreira, V.G., Carvalho, R.M.H. (2017): Diet of *Boana albopunctata* (Anura:
364 Hylidae) in an Atlantic Forest fragment of southeastern Brazil. Phyllomedusa. **16**: 57-62.

365 Parmelee, J.R. (1999): Trophic ecology of a tropical anuran assemblage. Nat. Hist. Mus. Univ.
366 Kans. **11**: 1-59.

367 Pedersen, T.L. (2022): ggraph: An implementation of grammar of graphics for graphs and
368 networks. R package version 2.2.2.

369 Pianka, E.R. (1973): The structure of lizard communities. Annu. Rev. Ecol. Syst. **4**: 53-74.

370 Pinkas, L., Oliphant, M.S., Iverson, I.L.K. (1971): Food Habits of Albacore, Bluefin tuna, and
371 Bonito in California Waters. Fish. Bull. **152**: 1-105.

372 Poulin, B., Lefebvre, G., Ibáñez, R., Jaramillo, C., Hernández, C., Rand, A.S. (2001): Avian
373 predation upon lizards and frogs in a neotropical forest understorey. J. Trop. Ecol. **17**: 21-
374 40.

375 Protázio, A.S., Albuquerque, R.L., Falkenberg, L.M., Mesquita, D.O. (2015): Niche
376 differentiation of an anuran assemblage in temporary ponds in the Brazilian semiarid
377 Caatinga: influence of ecological and historical factors. *Herpetol. J.* **25**: 109-121.

378 Protázio, A.S., Vieira, M.V.D.S.A., Braga, H.S.N., Conceição, L.C., Santos, U.G., Ribeiro,
379 A.C., Cruz, S.J., Protázio, A.S. (2017): Relação de nicho espacial e alimentar entre *Boana*
380 *semilineata* e *Boana pombali* (Anura: Hylidae) em fragmentos de Mata Atlântica no
381 Nordeste da Bahia. *Magistra*. **29**: 315-327.

382 Rafael, J.A., Melo, G.A.R.D., Carvalho, C.J.B.D., Casari, S.A., Constantino, R. (2024): Insetos
383 do Brasil: diversidade e taxonomia. 2nd ed. Manaus: Instituto Nacional de Pesquisas da
384 Amazônia.

385 Richter-Boix, A., Llorente, G.A., Montori, A., Garcia, J. (2007): Tadpole diet selection varies
386 with the ecological context in predictable ways. *Basic Appl. Ecol.* **8**: 464-474.

387 Rodrigues, N.L.A., Araújo, K.C., Ávila, R.W., Andrade, E.B. (2023): Feeding habits of *Boana*
388 *raniceps* (Cope, 1862) in three mountains of Brazilian semiarid. *Univers. Sci.* **28**: 257-277.

389 Rosa, I., Canavero, A., Maneyro, R., Camargo, A. (2011): Trophic niche variation and
390 individual specialization in *Hypsiboas pulchellus* (Duméril and Bibron, 1841) (Anura,
391 Hylidae) from Uruguay. *South Am. J. Herpetol.* **6**: 98-106.

392 Rossa-Feres, D.C., Garey, M.V., Caramaschi, U., Napoli, M.F., Nomura, F., Bispo, A.A.,
393 Haddad, C. (2017): Anfíbios da Mata Atlântica: Lista de Espécies, Histórico dos Estudos,
394 Biologia e Conservação. *Rev. Zool. Mata Atlântica, Sér. Pesq.* **310**: 231-314.

395 Sabagh, L.T., Ferreira, V.L., Rocha, C.F.D. (2010): Living together, sometimes feeding in a
396 similar way: the case of the syntopic hylid frogs *Hypsiboas raniceps* and *Scinax acuminatus*
397 (Anura: Hylidae) in the Pantanal of Miranda, Mato Grosso do Sul State, Brazil. *Braz. J. Biol.*
398 **70**: 955-959.

399 Sant'anna, B.S., Fonseca, A.M., Ferreira, R.F.B. (2022): Diet composition and coexistence of
400 *Boana geographica* and *Boana raniceps* (Anura: Hylidae) from Central Amazonia, Brazil.
401 North-West. J. Zool. **18**: 170-183.

402 Santos, E.M., Almeida, A.V., Vasconcelos, S.D. (2004): Feeding habits of six anuran
403 (Amphibia: Anura) species in a rainforest fragment in Northeastern Brazil. Iheringia. S.
404 Zool. **94**: 433-438.

405 Silva, I.C.O., Soares, P., Ribas, A.C.A., Santana, D.J., Campiao, K.M., Tavares, L.E.R. (2021):
406 *Scinax fuscovarius* (Anura, Hylidae) diet assessment at Serra da Bodoquena, Mato Grosso
407 do Sul, Brazil. North-West. J. Zool. **17**: 29-33.

408 Silva, H.R., Britto-Pereira, M.C., Caramaschi, U. (1989): Frugivory and seed dispersal by *Hyla*
409 *truncata*, a Neotropical tree-frog. Copeia. **1989**: 785-794.

410 Solé, M., Beckmann, O., Pelz, B., Kwet, A., Engels, W. (2005): Stomach-flushing for diet
411 analysis in anurans: an improved protocol evaluated in a case study in Araucaria forests,
412 southern Brazil. Stud. Neotrop. Fauna Environ. **40**: 23-28.

413 Solé, M., Rödder, D. (2009): Dietary assessments of adult amphibians. In: Amphibian Ecology
414 and Conservation: A Handbook of Techniques, pp. 167-184. Dodd, K.C., Eds, Oxford
415 University Press.

416 Toft, C.A. (1981): Feeding ecology of Panamanian litter anurans: patterns in diet and foraging
417 mode. J. Herpetol. **15**: 139-144.

418 Tupy, G.S., Cardoso, G.S., Vilanova-Júnior, J.L., Pinto, R.S.S., Vieira, S.S., Gomes, V.M.S.,
419 Rodrigues, W.S., Faria, R.G., Caldas, F.L.S. (2021): Trophic ecology of *Boana*
420 *albomarginata* and *Boana pombali* (Anura: Hylidae) during the dry season in the Serra de
421 Itabaiana National Park, Northeast Brazil. North-West. J. Zool. **17**: 220-226.

422 Veloso, H.P., Rangel-Filho, A.L.R., Lima, J.C. (1991): Classificação da vegetação brasileira,
423 adaptada a um sistema universal. Rio de Janeiro, IBGE.

424 Wells, K.D. (2010): The ecology and behavior of amphibians. University of Chicago Press.

425 Wickham H (2016) *ggplot2: Elegant graphics for data analysis*. 3rd ed. New York, Springer-

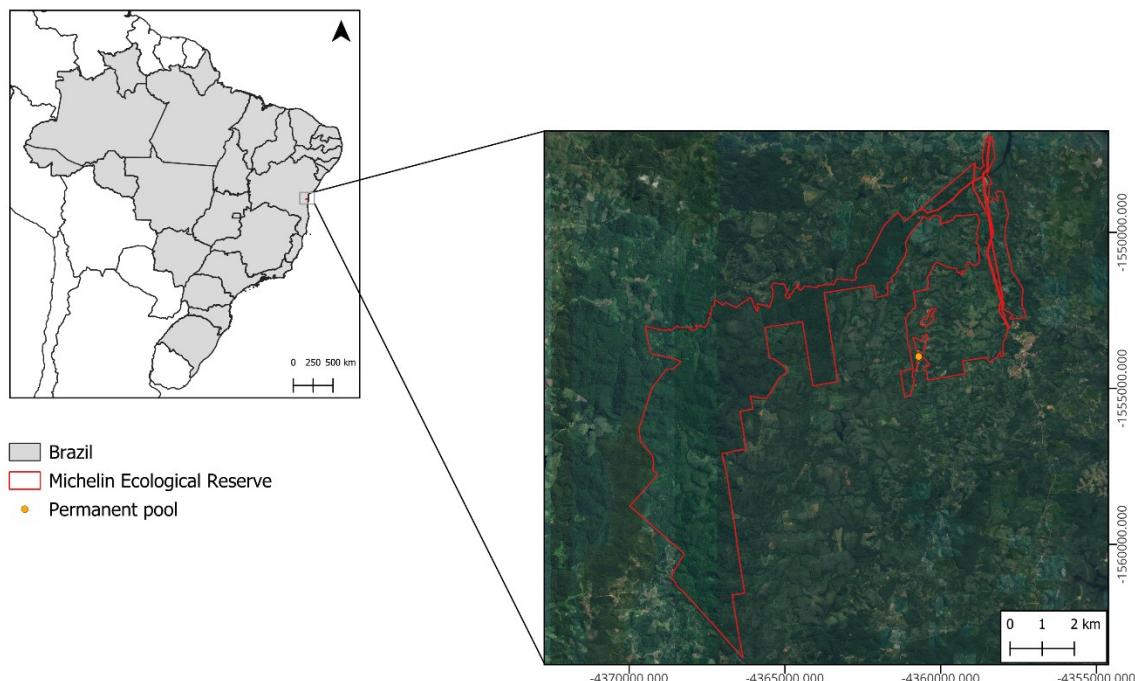
426 Verlag, 2016.

427 Zhang, J. (2016): *Spaa: Species association analysis*. R package version 0.2.2.

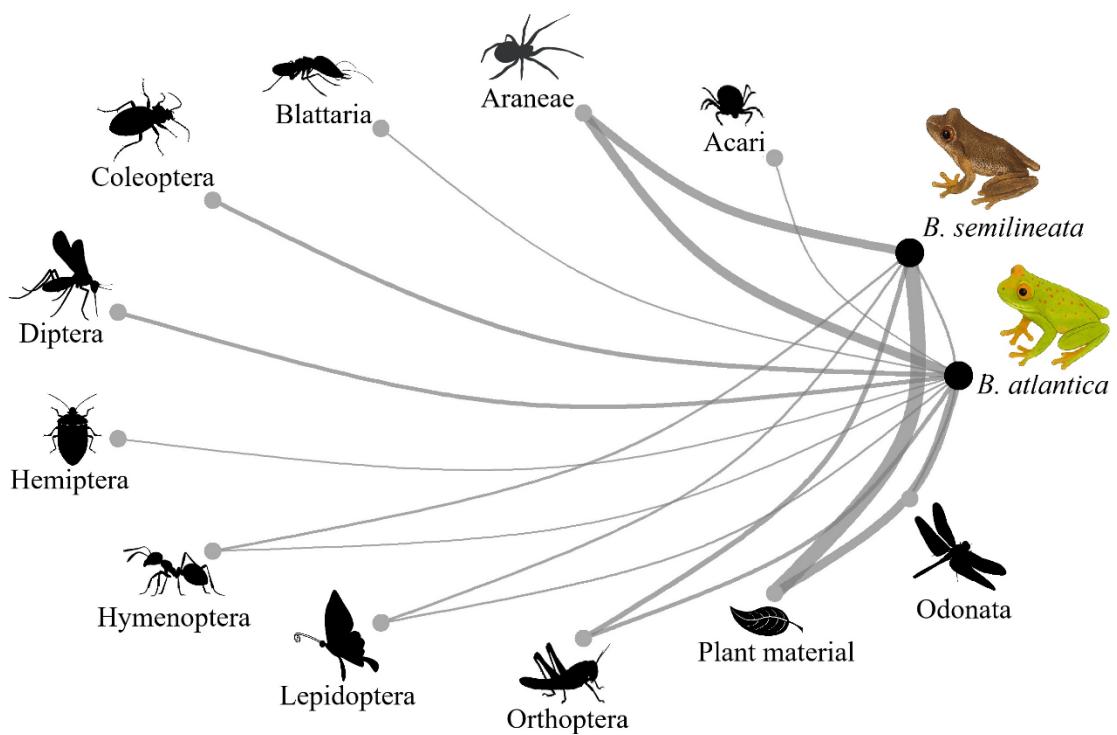
428 **Table 1.** Absolute values and proportions (%) of frequency of occurrence (FO), abundance
 429 (N), and index of relative importance (IRI) of each prey category consumed in the diet of
 430 *Boana atlantica* and *Boana semilineata*.

	<i>Boana atlantica</i>					<i>Boana semilineata</i>				
	FO	FO%	N	N%	IRI	FO	FO%	N	N%	IRI
ARACHNIDA										
Acari	1	2.0	1	2.17	2.09	-	-	-	-	-
Araneae	14	28.0	12	26.1	27.0	6	27.3	5	23.8	25.5
HEXAPODA										
Blattaria	1	2.0	1	2.17	2.09	-	-	-	-	-
Coleoptera	6	12.0	6	13.0	12.5	-	-	-	-	-
Diptera	5	10.0	5	10.9	10.4	-	-	-	-	-
Hemiptera	1	2.0	1	2.17	2.09	-	-	-	-	-
Hymenoptera	1	2.0	1	2.17	2.09	1	4.55	1	4.76	4.65
Lepidoptera	2	4.0	2	4.35	4.17	1	4.55	1	4.76	4.65
Odonata	-	-	-	-	-	1	4.55	1	4.76	4.65
Orthoptera	6	12.0	4	8.70	10.3	3	13.6	3	14.2	14.0
OTHER ITEMS										
Plant material	13	26.0	13	28.3	27.1	10	45.5	10	47.6	46.5
TOTAL	50	100	46	100	100	22	100.0	21	100	100

431


432

433


434

435

436 **Figure 1.** Schematic map of the study site in the Michelin Ecological Reserve, Bahia State,
437 northeastern Brazil.

451 **Figure 2.** Schematic graph of the prey items consumed by the two *Boana* species studied in
452 the Michelin Ecological Reserve, Bahia State, northeastern Brazil.

453