

# *In-situ assessment of the traditional Lebanese walnut germplasm using morphological characteristics and ISSR markers*



(\*) Corresponding author:  
alichehade@hotmail.com.  
haidar.hamoud.17@gmail.com.

**Citation:**  
CHEHADE A., IBRAHIM F., JIBBAWI F., ELBITAR A., HAMMOUD H., 2025 - *In-situ assessment of the traditional Lebanese walnut germplasm using morphological characteristics and ISSR markers*. - Adv. Hort. Sci., 39(4): 317-330.

**ORCID:**  
CA: 0009-0003-1361-2807  
EA: 0009-0002-5184-2294

**Copyright:**  
© 2025 Chehade A., Ibrahim F., Jibbawi F., Elbitar A., Hammoud H. This is an open access, peer reviewed article published by Firenze University Press (<https://www.fupress.com>) and distributed, except where otherwise noted, under the terms of CC BY 4.0 License for content and CCO 1.0 Universal for metadata.

**Data Availability Statement:**  
All relevant data are within the paper and its Supporting Information files.

**Competing Interests:**  
The authors declare no conflict of interests.  
Credit Author contribution

Received for publication 31 January 2025  
Accepted for publication 22 December 2025

**A. Chehade** <sup>1(\*)</sup>, **F. Ibrahim** <sup>1</sup>, **F. Jibbawi** <sup>1</sup>, **A. Elbitar** <sup>2</sup>, **H. Hammoud** <sup>3(\*)</sup>

<sup>1</sup> *Lebanese Agricultural Research Institute, Tal Amara Station, Department of Plant Biotechnology, Plant Genetic Resources Unit, P.O. Box 287, Zahle, Lebanon.*

<sup>2</sup> *Lebanese Agricultural Research Institute, Tal Amara Station, Department of Plant Biotechnology, Plant Tissue Culture Unit, P.O. Box 287, Zahle, Lebanon.*

<sup>3</sup> *Lebanese University, Faculty of Science, Conservation and Management of Natural Resources (Master program), Hadath, Lebanon.*

**Key words:** Diversity, ISSR markers, *Juglans regia L.*, Lebanon, morphological descriptors.

**Abstract:** The characterization of walnut cultivars is an important step towards conservation and exploitation of the Lebanese walnut diversity. In this study, we aimed to evaluate the genetic and phenotypic diversity within traditional Lebanese walnut cultivars grown in different regions of Lebanon. A total of 35 accessions were submitted to an ampelographic assessment; 26 of them were genetically studied using Inter Simple Sequence Repeat (ISSR) markers. A set of 27 morphological characters, including 13 qualitative traits and 14 quantitative traits related to the tree, leaf, nut, and kernel, was examined. Seven specific characters of the walnut were revealed to be the most discriminating. These characters included: leaflet shape, shell texture, shell color, nut shape, nut weight, kernel weight, and kernel color. Based on these traits, the clustering analysis identified three distinct groups that are clearly differentiated by the leaflet shape and margin. Molecular assessment was conducted using nine ISSR primers already used for walnut trees. These primers generated 72 bands, of which 67 were polymorphic. The average of the observed alleles was equal to eight in each locus. ISSR clustering based on Jaccard distance did not reveal similarity between accessions with the molecular studies. The highest genetic distance was observed between genotypes T34 and T2, differing by 45 bands (62.5%), while the lowest was between genotypes T2 and T6, differing by only four bands (5.5%). Accordingly, the results revealed a high diversity among Lebanese walnut accessions that should be further investigated to determine the major walnut genotypes and to evaluate the effect of agroclimatic conditions on the morphotypes.

## 1. Introduction

Walnuts belong to the genus *Juglans* of the family *Juglandaceae* of which the most commonly grown species is the Persian walnut (*Juglans regia*). Walnuts are native to Central Asia, Eastern Europe and North America. Walnut trees usually require higher altitudes for growing well (1200 -2000 m above sea levels). They are adapted to sunny climate in summers and moderate winters. However, the trees grow well in cool and dry conditions, with optimum rainfall exceeding 800 mm. Walnuts, due to their high nutritional value, are prioritized by the Food and Agriculture Organization (FAO) (Hassan *et al.*, 2013). They are consumed in numerous ways and are also pressed for oil (Gao *et al.*, 2024). Nuts are highly valued in the pharmaceutical and food industries for their high content of proteins, carbohydrates, lipids, and micronutrients. Additionally, walnuts contain bioactive compounds such as sterols, dietary fiber, and polyphenols (Sharma *et al.*, 2022), which possess antimicrobial, antifungal, anti-inflammatory, antiviral, and anticancer properties. Walnuts provide value for the ecosystem in terms of offering a habitat and nourishment for many animals. The wood of some species of walnut is highly prized for its color, hardness, and grain, being used for furniture and other purposes.

The geographical nature of Lebanon is the ideal habitat for the growth of walnut trees. It is considered one of the traditional and economically important crops, and its cultivation is widespread in most Lebanese regions, especially in the north of Lebanon and the Bekaa region, near the rivers (Janta, Labweh, Ajar), in irrigated areas, and in home gardens. According to the agricultural census (MOA, 2012), the area of nut trees was approximately 1282.5 ha, with a majority of walnut trees, covering an approximate area of 1205 ha.

In Lebanon, walnut genotypes are highly diverse, often derived from nuts or cuttings, resulting in numerous landraces that are adapted to different conditions. There are many local traditional accessions but no named cultivars. Walnut accessions are distinguished and denominated according to the shape of the fruit as Dmagh shape (Brain shape), Kalb shape (Heart shape) or the hardness of the nuts (Ferk, Kasi). These accessions may harbor important traits for future breeding programs and for enhancing the genetic database of international cultivars. Over the last few decades, the

traditional walnut germplasm has been threatened by various anthropogenic pressures, particularly the progressive replacement of local cultivars by more advantageous, improved varieties imported from abroad. Moreover, walnut germplasm is threatened by urbanization, climate change, outbreaks of new diseases and pests, and de-vegetation due to timber harvesting. Little information is available about the genetic diversity of Lebanese walnuts. Therefore, the preservation of traditional cultivars, which are at risk of disappearance, is a critical necessity in order to maintain the local genetic diversity of walnuts. Accordingly, characterizing the autochthonous cultivars is an important step towards conserving and exploiting the diversity of the Lebanese walnut.

Several techniques have been developed that can be used to estimate the genetic diversity of walnuts, including morphological characteristics (Atefi, 1997; Einollahi and Khadivi, 2024) and various molecular markers, such as ISSR (Potter *et al.*, 2002; Abbasi Holasou *et al.*, 2023), RFLP (Fjellstrom and Parfitt, 1995; Bernard *et al.*, 2018), SSR (Wang *et al.*, 2008; Wani *et al.*, 2024) and RAPD (Fatahi *et al.*, 2010). The objectives of this study were to determine the level and distribution of genetic diversity of the Lebanese traditional walnut accessions using morphological traits and ISSR markers.

## 2. Materials and Methods

### Field survey

Field survey was performed during vegetation (Early Spring 2024) and production periods (September 2024) with the aim of collecting traditional cultivars growing in family gardens and commercial plantations. Samples of 35 walnut accessions were collected from 12 cultivated stands that are located in major walnut producing villages, which spread over four main agricultural areas (the North plain, Bekaa plain, Mount Lebanon and the South). These sites are subjected to varying climatic conditions (precipitation and temperature) and different agricultural practices. They are situated at an altitude between 262 and 1566 m, a latitude ranging from N33.27762° to N34.46924° and a longitude between E35.34504° and E36.2242° (Table 1, Fig. 1). Trees were selected based on their age (minimum of 10 years) and their sanitary state. Samples consisted of 20 mature fruits and leaves were collected from one tree per accession. The

Table 1 - Geographic and climatic information of 12 walnut sites surveyed in Lebanon

| Sites        | Zone          | Latitude<br>(°N)* | Longitude<br>(°E) <sup>(z)</sup> | Altitude<br>(m) <sup>(z)</sup> | Precipitation<br>(mm) | Average annual<br>mean surface<br>air temperature<br>(°C) | Number<br>of<br>accessions |
|--------------|---------------|-------------------|----------------------------------|--------------------------------|-----------------------|-----------------------------------------------------------|----------------------------|
| Nabi sheeth  | Beqaa         | 33.52478          | 36.06654                         | 1187                           | 570-750               | 13.6                                                      | 5                          |
| Janta        | Beqaa         | 33.51527          | 36.0416                          | 1106                           | 580-750               | 13.2                                                      | 4                          |
| Nahle        | Beqaa         | 34.03535          | 36.17998                         | 1434                           | 500-700               | 13                                                        | 5                          |
| Labweh       | Beqaa         | 34.12528          | 36.20107                         | 872                            | 350-450               | 15.5                                                      | 2                          |
| Anjar        | Beqaa         | 33.44001          | 35.56798                         | 882                            | 550-680               | 15.28                                                     | 5                          |
| Kfardabch    | Beqaa         | 33.94350          | 36.03667                         | 1180                           | 540-640               | 13.10                                                     | 2                          |
| Tal Al-amara | Beqaa         | 33.86388          | 35.98658                         | 910                            | 540-650               | 15                                                        | 1                          |
| sohmor       | Beqaa         | 33.53194          | 35.69833                         | 850                            | 600-800               | 15                                                        | 2                          |
| Maaroub      | south         | 33.27762          | 35.34504                         | 262                            | 650-750               | 20                                                        | 1                          |
| Fnaydeq      | North         | 34.46924          | 36.2242                          | 1566                           | 750-1000              | 14                                                        | 5                          |
| Alay         | Mount Lebanon | 33.80485          | 35.60151                         | 911                            | 1000-1200             | 15.69                                                     | 2                          |
| Bisour       | Mount Lebanon | 33.75450          | 35.57685                         | 350                            | 1000-1200             | 15.69                                                     | 1                          |

<sup>(z)</sup> Data listed by the Global Positioning System (GPS).

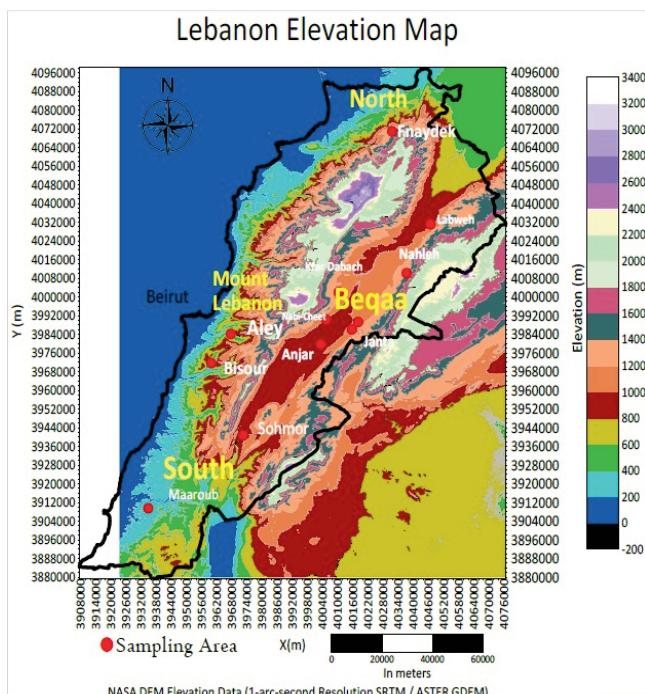



Fig. 1 - Geographic distribution of the studied walnut accessions as visualized with DIVA-GIS program.

sampled young leaves were stored at -20°C pending DNA extraction.

#### Morphological descriptors

Twenty-seven morphological traits related to the tree, leaf, nut and kernel extracted from the list of

walnut descriptors previously developed by International Plant Genetic Resources Institute (IPGRI, 1994) were used in this study, of which thirteen qualitative (Growth habit, leaflet shape, leaflet margin, leaflet color, rachis color, nut shape, shell texture, shell color, shell strength, nut length of tip, nut shape of base, nut shape of apex, kernel color) and fourteen quantitative (Leaf length, leaf petiole, leaf width, number of leaflets, leaflet length, leaflet width, leaflet length/leaflet width, leaflet petiole, nut width, nut length, nut length/ nut width, nut weight, kernel weight, kernel percentage).

#### Molecular characterization

DNA for each walnut accession was extracted from 300 mg of young leaves using cetyl-trimethyl ammonium bromide (CTAB) procedure described by Doyle and Doyle (1987). DNA quantity and quality were determined spectrophotometrically at 260 nm and 280 nm (using a NanoDrop) and by electrophoresis on a 1% agarose gel stained with ethidium bromide and visualised under UV light.

Nine ISSR primers (UBC807, UBC810, UBC811, UBC814, UBC818, UBC819, UBC821, UBC826, UBC865) previously developed for the assessment of the walnut germplasm (Christopoulos et al., 2010; Aiqing et al., 2014; Shamasbi et al., 2018; Çilesiz, 2025) were used in this study based on their good results for amplification and high power of discrimination on walnut.

Microsatellite amplifications were performed in a total volume of 20  $\mu$ l with 2  $\mu$ l of PCR buffer (10mM Tris-HCl, 50 mM KCl, 0.1% Triton x 100 and 0.02% of gelatin), 2.5 mM MgCl<sub>2</sub>, 0.2 mM of each dNTP, 2.5  $\mu$ M primer, 1,5 U of Taq DNA polymerase and 50 ng of walnut genomic DNA. PCR was carried out using a Bio-rad thermocycler. PCR reactions were run with a temperature pattern of initial DNA denaturation at 95°C for 4 minutes, followed by 35 cycles of DNA denaturation at 94°C for 45 seconds, primer annealing at 45-47-51.3°C according to primer for 45 seconds, the extension stage with 72°C for 2 minutes and a final extension step of 7 min at 72°C. Five  $\mu$ l of the PCR products were separated on a 2% agarose gel electrophoresis prepared in TBE 1X stained with ethidium bromide to check the PCR amplification and determine the size of the amplified fragments.

#### Data analysis

Qualitative characteristics have been described and scored according to IPGRI standards (IPGRI, 1994). For quantitative traits, the mean  $\pm$  standard deviation was calculated. Means were compared using analysis of variance (Anova) followed by the Least Significant Difference (LSD) tests, performed with SAS software (SAS, 1995).

Trait evaluation was performed by using the principal component analysis (PCA). The relationships between walnut leaves and fruits based on their quantitative and qualitative traits were analyzed using Hierarchical Cluster Analysis with Euclidean distance in the PAST software (Hammer *et al.*, 2001).

To assess the information given by ISSR markers, amplified bands were scored as 1 for presence or 0 for absence. The following parameters were calculated as follow: number of total alleles per locus, the percentage of polymorphic band (PPB), Polymorphism Information Content for the dominant markers ( $PIC = 2 \times f \times (1-f)$ , where  $f$  is the frequency of present allele) and power of discrimination ( $PD = 1 - \sum gi^2$ , where  $gi$  is the frequency of the  $i_{th}$  genotype). Genetic distances were calculated according to Jaccard. Trees clustering the data with the unweighted pair-group method (UPGMA) with SAHN-clustering and tree programs of PAST software (Krieger *et al.*, 2014).

### 3. Results and Discussion

#### Morphological characterization analysis

In this study, a set of 27 descriptors was examined

for 35 walnut accessions collected from various agroclimatic areas in Lebanon, encompassing 13 qualitative and 14 quantitative traits related to the tree, leaf, nut, and kernel. Residual normality was assessed for 14 quantitative traits using the Shapiro-Wilk test. Six traits (Leaf length, leaf width, leaf petiole, leaflet length, leaflet width and kernel weight) were normally distributed ( $P > 0.05$ ) and were analyzed with Anova test followed by LSD. The walnut samples of these traits showed significant differences among walnut trees ( $p < 0.05$ ) and pairwise comparisons using LSD indicated which walnut trees differed significantly.

The remaining eight traits violated the normality assumption ( $p < 0.05$ ) were showed statistically significant differences between walnut trees by using nonparametric procedures (Mann-Whitney U test, data not shown).

#### Morphological characteristics of the Trees and leaves

The growth habit of the tree showed diversity among the studied accessions, varying between erect, semi-erect, and spreading. Differences were clearly observed in the leaflet shape (Fig. 2), which ranged from narrow elliptic (Two accessions) to elliptic (23 accessions) and broad elliptic (10 accessions), predominantly exhibiting entire margins. The leaflet and rachis color of nearly 71% and 66% of the accessions were green and green to yellow, respectively. The two accessions, T27 (Tal Al-Amara) and T44 (Bisour), exhibit unique traits, such as narrow-elliptic leaflets and serrate margins, which

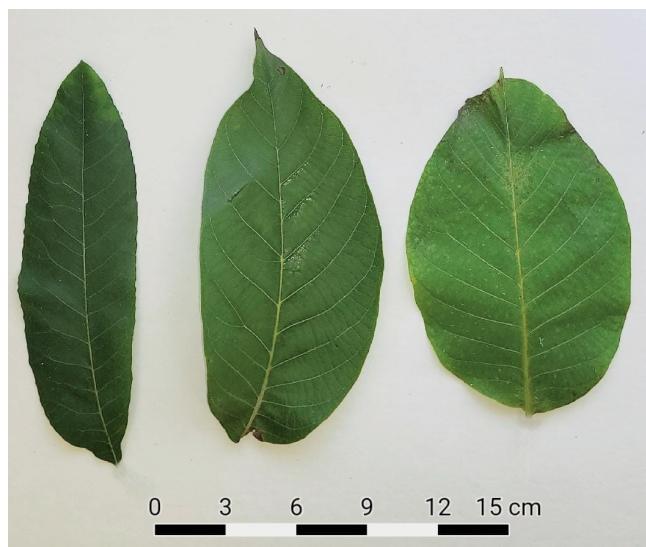



Fig. 2 - Leaflet shapes, from left to right: Narrow elliptic, Elliptic, and Broad elliptic.

emphasise morphological diversity (Table 2).

The accessions showed significant differences in the leaf length ranging from  $21.81 \pm 3.88$  cm (T44, Bisour) to  $44.60 \pm 4.29$  cm (T16, Nahle) and leaf width between  $18.69 \pm 3.66$  cm (T44, Bisour) and  $40.88 \pm 3.75$  cm (T43, Alay) (Table 3). Petiole length average of the leaf was between  $4.20 \pm 0.71$  cm (T44, Bisour) and  $10.75 \pm 1.55$  cm (T43, Alay). The leaflet number of the leaf was between 3 (T11, Janta) to 15 (T27, Tal Amara). The average leaflet length ranged between  $9.32 \pm 1.38$  cm (T44, Bisour) and  $20.59 \pm$

$1.47$  cm (T43, Alay) and width between  $2.70 \pm 0.31$  cm (T44, Bisour) and  $8.99 \pm 0.66$  cm (T43, Alay). The petiole length of the leaflet of nearly 77% of the accessions was 0.1 cm. The ratio leaflet length to leaflet width in the majority of the samples exceeded a ratio of two, reflecting the narrow elliptic shape of the leaflets. Accordingly, Bisour accession (T44) had the lowest leaf length, leaf width, petiole length, leaflet length, leaflet width, while Alay accession (T43) had the highest leaf width, petiole length, leaflet length, and leaflet width.

Table 2 - Qualitative descriptors of the Leaf and tree recorded for the 35 walnut accessions

| Sample | Site         | Growth habit | Leaflet shape   | Leaflet margin | Leaflet color | Rachis color    |
|--------|--------------|--------------|-----------------|----------------|---------------|-----------------|
| T1     | Nabi sheeth  | Spreading    | Broad elliptic  | Entire         | Green         | Yellow          |
| T2     |              | Semi-erect   | Broad elliptic  | Entire         | Green         | Green to Yellow |
| T6     |              | Spreading    | Elliptic        | Entire         | Dark Green    | Green to Yellow |
| T7     |              | Spreading    | Broad elliptic  | Entire         | Green         | Green to Yellow |
| T8     | Janta        | Spreading    | Broad elliptic  | Entire         | Dark Green    | Green to Yellow |
| T9     |              | Spreading    | Broad elliptic  | Entire         | Green         | Green to Yellow |
| T10    |              | Spreading    | Broad elliptic  | Entire         | Green         | Green to Yellow |
| T11    | Nahle        | Semi-erect   | Broad elliptic  | Entire         | Dark Green    | Green to Yellow |
| T12    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T13    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T14    |              | Semi-erect   | Broad Elliptic  | Entire         | Green         | Green           |
| T15    | Anjar        | Semi-erect   | Elliptic        | Entire         | Green         | Green           |
| T16    |              | Erect        | Broad elliptic  | Entire         | Dark Green    | Green           |
| T17    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T18    |              | Spreading    | Elliptic        | Entire         | Green         | Green           |
| T19    | Labweh       | Spreading    | Elliptic        | Entire         | Green         | Green           |
| T20    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T21    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T22    |              | Erect        | Elliptic        | Entire         | Green         | Green to Yellow |
| T23    | kfardabch    | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T24    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T25    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T26    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T27    | Tal Al-amara | Semi-erect   | Narrow elliptic | Serrate        | Dark Green    | Green           |
| T28    | Maaroub      | Semi-erect   | Elliptic        | Entire         | Green         | Green to Yellow |
| T31    | sohmor       | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T32    | Fnaydeq      | Spreading    | Elliptic        | Entire         | Green         | Green           |
| T34    |              | Spreading    | Elliptic        | Entire         | Green         | Green to Yellow |
| T35    |              | Semi-erect   | Elliptic        | Entire         | Green         | Green to Yellow |
| T36    |              | Spreading    | Broad Elliptic  | Entire         | Dark Green    | Green           |
| T37    | Alay         | Spreading    | Elliptic        | Entire         | Dark Green    | Green           |
| T39    |              | Semi-erect   | Elliptic        | Entire         | Green         | Green           |
| T41    |              | Spreading    | Elliptic        | Entire         | Dark Green    | Green to Yellow |
| T43    |              | Spreading    | Elliptic        | Entire         | Dark Green    | Green to Yellow |
| T44    | Bisour       | Erect        | Narrow elliptic | Serrate        | Dark Green    | Green           |

Table 3 - Quantitative characteristics of walnut leaves recorded for the 35 walnut accessions

| Sample | Site         | Leaf length (cm)                  | Leaf width (cm)         | Leaf petiole (cm)  | Leaflet length (cm) | Leaflet width (cm) | Leaflet length/Leaflet width | Leaflet petiole (cm) | Number of leaflet |
|--------|--------------|-----------------------------------|-------------------------|--------------------|---------------------|--------------------|------------------------------|----------------------|-------------------|
| T1     | Nabi sheeth  | 30.90 ± 4.13 cdefg <sup>(z)</sup> | 28.10 ± 4.19 efghijkl   | 8.50 ± 1.66 cdefgh | 14.15 ± 2.10 efgij  | 8.13 ± 1.11 bcd    | 1.11 ± 0.13                  | 0.1                  | 3                 |
| T2     |              | 32.00 ± 4.00 cdefg                | 29.50 ± 0.50 bcdefghijk | 7.75 ± 0.87 fghij  | 14.88 ± 1.81 defg   | 7.00 ± 0.46 fghi   | 2.12 ± 0.15                  | 0.1                  | 7                 |
| T6     |              | 34.75 ± 7.09 cd                   | 30.00 ± 3.56 bcdefghijk | 9.50 ± 1.47 abcde  | 15.55 ± 1.64 cdef   | 6.29 ± 0.49 hijk   | 2.47 ± 0.15                  | 0.1                  | 7                 |
| T7     |              | 29.95 ± 6.06 cdefgh               | 28.30 ± 3.00 defghijkl  | 6.59 ± 1.17 ij     | 13.90 ± 2.29 fghijk | 6.87 ± 0.87 fghi   | 2.04 ± 0.33                  | 0.1                  | 7                 |
| T8     |              | 26.70 ± 6.02 fghijk               | 30.10 ± 5.03 bcdefghij  | 7.90 ± 0.22 efgi   | 14.15 ± 3.03 efgij  | 7.02 ± 1.42 fghi   | 2.01 ± 0.11                  | 0.1                  | 5                 |
| T9     | Janta        | 27.50 ± 3.83 efghijk              | 25.50 ± 3.35 ghijkl     | 6.08 ± 0.80 j      | 10.90 ± 2.04 op     | 5.70 ± 1.18 mn     | 1.93 ± 0.21                  | 0.1                  | 5                 |
| T10    |              | 34.17 ± 7.08 cd                   | 31.67 ± 5.39 bcdefgh    | 8.50 ± 0.87 cdefgh | 14.88 ± 2.91 def    | 7.56 ± 1.43 def    | 1.98 ± 0.23                  | 0.1                  | 7                 |
| T11    |              | 23.33 ± 1.89 ijk                  | 23.33 ± 2.52 jklm       | 7.67 ± 2.52 fghij  | 10.63 ± 2.40 op     | 5.75 ± 1.25 klm    | 1.87 ± 0.30                  | 0.1                  | 3                 |
| T12    |              | 26.46 ± 4.69 fghijk               | 24.48 ± 4.29 iklm       | 7.90 ± 0.82 efgi   | 11.72 ± 2.48 lmno   | 4.78 ± 0.72 n      | 2.44 ± 0.25                  | 0.1                  | 5                 |
| T13    | Nahle        | 29.90 ± 4.16 cdefgh               | 32.10 ± 5.41 bcdefg     | 7.70 ± 0.97 fghij  | 16.10 ± 2.51 cbd    | 7.65 ± 0.41 cdef   | 2.10 ± 0.28                  | 0.1                  | 5                 |
| T14    |              | 41.00 ± 3.67 ab                   | 35.40 ± 3.83 abc        | 8.90 ± 1.43 bcdefg | 17.60 ± 1.97 b      | 8.43 ± 0.93 abc    | 2.09 ± 0.11                  | 0.1                  | 8                 |
| T15    |              | 35.80 ± 3.49 bc                   | 34.70 ± 2.17 abcde      | 9.60 ± 1.08 abcd   | 15.50 ± 1.80 def    | 7.26 ± 0.71 efg    | 2.16 ± 0.38                  | 0.1                  | 7                 |
| T16    |              | 44.60 ± 4.29 a                    | 35.00 ± 2.03 abcd       | 9.50 ± 2.06 abcde  | 17.25 ± 1.18 bc     | 8.80 ± 0.65 ab     | 1.96 ± 0.13                  | 0.1                  | 10                |
| T17    |              | 32.40 ± 3.27 cdef                 | 35.90 ± 3.09 ab         | 9.90 ± 1.14 abc    | 17.60 ± 1.47 b      | 8.02 ± 1.24 bcde   | 2.22 ± 0.25                  | 0.1                  | 5                 |
| T18    | Labweh       | 26.20 ± 2.08 ghijk                | 25.60 ± 1.82 fghijkl    | 7.60 ± 0.96 fghij  | 13.05 ± 1.14 hijklm | 5.53 ± 0.29 klmn   | 2.36 ± 0.17                  | 0.1                  | 7                 |
| T19    |              | 28.00 ± 3.67 efgij                | 26.10 ± 1.78 fghijkl    | 9.68 ± 1.69 abcd   | 13.19 ± 0.99 ghijkl | 6.27 ± 0.59 ijk    | 2.11 ± 0.18                  | 0.1                  | 6                 |
| T20    | Anjar        | 35.40 ± 1.95 bcd                  | 28.30 ± 3.82 defghijkl  | 8.96 ± 2.77 bcdefg | 15.75 ± 1.92 cde    | 6.66 ± 0.62 ghij   | 3.28 ± 0.03                  | 0.3                  | 7                 |
| T21    |              | 35.17 ± 4.67 bcd                  | 30.33 ± 3.44 bcdefghij  | 9.17 ± 0.68 abcdef | 15.36 ± 1.07 def    | 6.88 ± 0.87 fghi   | 2.25 ± 0.17                  | 0.3                  | 7                 |
| T22    |              | 30.33 ± 3.82 cdefg                | 32.50 ± 1.91 bcdef      | 9.50 ± 0.58 abcde  | 14.81 ± 1.30 defg   | 6.06 ± 0.88 jkl    | 2.47 ± 0.23                  | 0.3                  | 7                 |
| T23    |              | 34.17 ± 4.07 cd                   | 29.67 ± 3.06 bcdefghij  | 7.33 ± 0.58 ghij   | 14.60 ± 1.45 defghi | 6.70 ± 0.67 ghij   | 2.19 ± 0.24                  | 0.3                  | 8                 |
| T24    |              | 30.38 ± 2.72 cdefg                | 27.50 ± 3.87 fghijkl    | 7.00 ± 2.71 hij    | 13.25 ± 2.15 ghijkl | 6.03 ± 0.57 jklm   | 2.19 ± 0.29                  | 0.3                  | 7                 |
| T25    | kfardabch    | 32.83 ± 5.48 cde                  | 29.50 ± 6.50 bcdefghijk | 8.00 ± 1.00 defghi | 12.91 ± 3.13 ijkln  | 5.40 ± 0.93 lmno   | 2.37 ± 0.20                  | 0.3                  | 7                 |
| T26    |              | 31.13 ± 4.98 cdefg                | 31.33 ± 4.04 bcdefghi   | 8.33 ± 0.58 cdefgh | 15.69 ± 1.81 cde    | 7.11 ± 0.87 fg     | 2.23 ± 0.32                  | 0.3                  | 6                 |
| T27    | Tal Al-amara | 34.52 ± 4.84 cd                   | 26.16 ± 4.39 fghijkl    | 7.10 ± 1.69 hij    | 10.76 ± 1.10 op     | 3.65 ± 0.50 o      | 2.97 ± 0.25                  | 0.1                  | 15                |
| T28    | Maaroub      | 31.59 ± 6.87 cdefg                | 27.22 ± 7.19 fghijkl    | 8.91 ± 1.42 bcdefg | 12.63 ± 1.45 jklmn  | 5.74 ± 0.41 klm    | 2.20 ± 0.23                  | 0.1                  | 7                 |
| T31    | sohmor       | 23.80 ± 3.59 ijk                  | 21.90 ± 5.59 lm         | 8.30 ± 0.45 cdefgh | 10.98 ± 2.55 op     | 5.25 ± 0.80 mn     | 2.07 ± 0.19                  | 0.1                  | 5                 |
| T32    |              | 26.80 ± 1.52 efgijk               | 24.24 ± 2.13 jklm       | 8.26 ± 1.30 defghi | 12.20 ± 0.92 klmno  | 5.33 ± 0.27 lmno   | 2.29 ± 0.13                  | 0.1                  | 6                 |
| T34    | Fnaydeq      | 22.13 ± 4.84 jk                   | 22.00 ± 4.30 lm         | 8.17 ± 1.26 defghi | 10.73 ± 2.10 op     | 5.51 ± 1.25 klmn   | 1.97 ± 0.18                  | 0.1                  | 6                 |
| T35    |              | 22.90 ± 4.71 jk                   | 24.40 ± 3.23 iklm       | 7.08 ± 0.73 hij    | 11.90 ± 1.61 lmno   | 5.93 ± 0.78 jklm   | 2.02 ± 0.20                  | 0.1                  | 6                 |
| T36    |              | 29.36 ± 5.52 defghi               | 25.10 ± 6.02 hijklm     | 10.50 ± 0.79 ab    | 12.64 ± 2.14 jklmn  | 7.06 ± 1.29 fgh    | 1.80 ± 0.21                  | 0.1                  | 6                 |
| T37    |              | 26.33 ± 7.68 ghijk                | 22.68 ± 8.66 klm        | 7.80 ± 1.15 fghij  | 11.98 ± 1.68 lmno   | 5.94 ± 0.53 jklm   | 2.02 ± 0.20                  | 0.1                  | 6                 |
| T39    |              | 24.00 ± 1.26 hijk                 | 22.67 ± 2.64 klm        | 8.25 ± 1.17 defghi | 11.46 ± 1.20 mno    | 5.42 ± 0.90 lmno   | 2.13 ± 0.07                  | 0.1                  | 7                 |
| T41    | Alay         | 27.67 ± 2.79 efgijk               | 28.75 ± 4.58 cdefghijkl | 8.85 ± 0.90 bcdefg | 14.65 ± 2.35 defgh  | 5.97 ± 0.49 jklm   | 3.16 ± 0.11                  | 0.1                  | 5                 |
| T43    |              | 42.23 ± 5.47 a                    | 40.88 ± 3.75 a          | 10.75 ± 1.55 a     | 20.59 ± 1.47 a      | 8.99 ± 0.66 a      | 3.02 ± 0.11                  | 0.1                  | 5                 |
| T44    | Bisour       | 21.81 ± 3.88 k                    | 18.69 ± 3.66 m          | 4.20 ± 0.71 k      | 9.32 ± 1.38 p       | 2.70 ± 0.31 p      | 1.92 ± 0.04                  | 0.3                  | 11                |
| LSD    |              | 60.565                            | 4.578.488               | 16.962             | 17.163              | 0.78               |                              |                      |                   |

<sup>(z)</sup> For each trait, means followed by different letters are significantly different at P≤0.05 (Least Significant Difference (LSD) test).

#### Morphological characteristics of the nuts and kernels

For the 35 accessions, the nut and kernel traits showed significant diversity. The shell texture varies from smooth (Nine accessions) to rough (Four accessions), with medium texture being the most common (22 accessions) (Fig. 3). The shell color ranges from very light to dark shades. Regarding the tip of the nut, 91% of the accessions had a medium

tip, and the rest varied between a long and absent tip, as observed in specific accessions, such as T17 and T27 (Table 4). Significant differences were observed in the nut shape, walnuts exhibit a wide range of forms, including round (Eight accessions), ovate (Three accessions), elliptic (Two accessions), Broad Elliptic (Seven accessions), elongate (One accession), short trapezoid (Seven accessions), long



Fig. 3 - Shell texture, from Left to right: Rough, Medium, and Smooth.

trapezoid (Seven accessions) (Fig. 4). The majority of the walnut accessions had a round apex and base. For instance, the Tal-Amara sample features an ovate nut with a round apex and base. Shell strength is generally intermediate, with some accessions exhibiting strong or weak shells. Kernel coloration ranges from light to amber hues.

Nuts had generally presented an average length ranging from  $2.50 \pm 0.00$  cm (T27, Tal Amara) to  $5.22 \pm 0.26$  cm (T1, Nabi sheeth) and width from  $1.18 \pm 0.10$  cm (T39, Fnaydeq) to  $4.15 \pm 0.15$  cm (T1, Nabi sheeth),

Table 4 - Qualitative traits of nut and kernel recorded for the 35 walnut accessions

| Sample | Site         | Shell texture | Shell color | Nut tip | Nut shape        | Apex shape | Base shape | Shell strength | Kernel color |
|--------|--------------|---------------|-------------|---------|------------------|------------|------------|----------------|--------------|
| T1     | Nabi sheeth  | Rough         | Light       | Medium  | Long trapezoid   | Emarginate | Round      | Intermediate   | Amber        |
| T2     |              | Medium        | Medium      | Medium  | Short trapezoid  | Obtuse     | Round      | Intermediate   | Light amber  |
| T6     |              | Medium        | Medium      | Medium  | Broad Elliptic   | Round      | Round      | Strong         | Light amber  |
| T7     |              | Medium        | Light       | Medium  | Broad Elliptic   | Round      | Round      | Intermediate   | Light        |
| T8     |              | Medium        | Very light  | Medium  | Long trapezoid   | Truncate   | Truncate   | Strong         | Light        |
| T9     | Janta        | Smooth        | Light       | Medium  | Broad Elliptic   | Round      | Cuneate    | Strong         | Light        |
| T10    |              | Rough         | Medium      | Medium  | Short trapezoid  | Truncate   | Truncate   | Intermediate   | Light amber  |
| T11    |              | Smooth        | Medium      | Medium  | Round            | Round      | Round      | Intermediate   | Amber        |
| T12    |              | Medium        | Medium      | Medium  | Short trapezoid  | Truncate   | Truncate   | Intermediate   | Amber        |
| T13    | Nahle        | Medium        | Medium      | Medium  | Round            | Obtuse     | Truncate   | Intermediate   | Light amber  |
| T14    |              | Medium        | Light       | Medium  | Broad Elliptic   | Obtuse     | Round      | Intermediate   | Light amber  |
| T15    |              | Medium        | Medium      | Medium  | Long trapezoid   | Truncate   | Truncate   | Intermediate   | Light        |
| T16    |              | Medium        | Medium      | Medium  | Round            | Round      | Truncate   | Weak           | Light amber  |
| T17    |              | Smooth        | Light       | Absent  | Round            | Round      | Truncate   | Intermediate   | Amber        |
| T18    | Labweh       | Smooth        | Light       | Medium  | Round to ovate   | Obtuse     | Cuneate    | Weak           | Light        |
| T19    |              | Medium        | Dark        | Medium  | Broad Elliptic   | Round      | Round      | Weak           | Light amber  |
| T20    | Anjar        | Medium        | Dark        | Medium  | Short trapezoid  | Truncate   | Round      | Intermediate   | Amber        |
| T21    |              | Medium        | Light       | Medium  | Short trapezoid  | Obtuse     | Truncate   | Intermediate   | Amber        |
| T22    |              | Smooth        | Medium      | Medium  | Round            | Round      | Truncate   | Intermediate   | Light amber  |
| T23    |              | Smooth        | Light       | Medium  | Round to ovate   | Obtuse     | Truncate   | Intermediate   | Light        |
| T24    |              | Rough         | Dark        | Medium  | Short trapezoid  | Truncate   | Round      | Intermediate   | Amber        |
| T25    | kfardabch    | Medium        | Light       | Medium  | Long trapezoid   | Round      | Round      | Intermediate   | Amber        |
| T26    |              | Medium        | Dark        | Medium  | Round            | Round      | Truncate   | Intermediate   | Light amber  |
| T27    | Tal Al-amara | Smooth        | Very light  | Absent  | Ovate            | Round      | Round      | Paper          | Light        |
| T28    | Maaroub      | Smooth        | Very light  | Medium  | Broad Elliptic   | Truncate   | Cuneate    | Intermediate   | Light amber  |
| T31    | sohmor       | Medium        | Dark        | Medium  | Short trapezoids | Emarginate | Round      | Intermediate   | Amber        |
| T32    |              | Medium        | Dark        | Medium  | Round            | Truncate   | Truncate   | Intermediate   | Light        |
| T34    | Fnaydeq      | Medium        | Medium      | Medium  | Broad Elliptic   | Round      | Round      | Intermediate   | Light amber  |
| T35    |              | Medium        | Medium      | Medium  | Long trapezoids  | Round      | Truncate   | Intermediate   | Light amber  |
| T36    |              | Medium        | Medium      | Medium  | Long trapezoid   | Truncate   | Round      | Intermediate   | Light amber  |
| T37    |              | Medium        | Dark        | Medium  | Round            | Truncate   | Truncate   | Intermediate   | Light amber  |
| T39    |              | Medium        | Dark        | Medium  | Long trapezoid   | Obtuse     | Round      | Intermediate   | Amber        |
| T41    | Alay         | Rough         | Dark        | Long    | Elliptic         | Obtuse     | Cuneate    | Weak           | Light amber  |
| T43    |              | Medium        | Medium      | Medium  | Elliptic         | Round      | Round      | Weak           | Amber        |
| T44    | Bisour       | Smooth        | Dark        | Medium  | Elongated        | Round      | Cuneate    | Paper          | Light        |



Fig. 4 - Nut shapes. From left to right, Top: Short trapezoid, Ovate, Long trapezoid; Bottom: Elliptic, Broad elliptic, Round.

resulting in length/width ratios typically around 1.2 (Table 5). The accessions showed significant differences in the nut and kernel weight ranging from  $2.51 \pm 0.02$  g (T27, Tal Amara) to  $19.81 \pm 3.92$  g (T7, Nabi sheeth) and from  $0.70 \pm 0.02$  (T27, Tal Amara) to  $8.06 \pm 0.33$  g (T8, Nabi sheeth) respectively, contributing to kernel percentages from 27% (T36, Fnaydeq) to 60% (T8, Nabi sheeth). Accordingly, Tal Amara accession (T27) was distinguished by the lowest nut length, nut weight, kernel weight while Nabi sheeth accession (T1) showed the highest nut length and nut width. Results from other Research showed that the fruit weight in Iran varied between 8.58 and 19.8 g, and the kernel percentage varied from 17.57 to 62.6% (Sarikhani Khorami *et al.*, 2014). Additionally, research on 58 walnut genotypes in the Himachal Region, India, revealed that fruit weight ranged from 6.4 to 20.55 g, and kernel percentage varied from 12 to 62.5% (Sharma and Sharma, 2001).

#### Validation of the variables

To validate the descriptors used in this study, a principal component analysis was performed on 27 morphological characters for the 35 different walnut accessions. This analysis will enable us to identify the most discriminating characters.

The principal components revealed that the first three components contributed 68% of the total variation (Table 6). The nut shape dominates the first component, which provides 48% of the total variation. The second component, which accounts for 13% of the total variation, includes leaflet shape, nut,

and kernel weight. The third component, representing 7% of the total variation, comprises the shell texture, nut, and kernel color.

The biplot analysis was performed using PC1 and PC2 (Fig. 5), which together accounted for 61% of the variance (Table 6). The green arrows (Fig. 5) indicate the direction and magnitude of each trait's contribution to the first and second principal components. Among the 27 descriptors used in this study, the biplot analysis allowed to extract four traits (Q: Nut Shape, B: Leaflet shape, W: Nut weight and Y: Kernel weight) contributed strongly to the separation of the accessions. Most of the variation among the accessions was explained by nut shape (Q, component 1), resulting a broad horizontal distribution of the accessions. Highly correlated morphological components pointed in roughly the same direction. Accordingly, nut weight (W) was positively correlated with kernel weight (Y). Positive correlations were also observed among leaf traits such as Leaf length (F), Leaf width (H), leaflet length (J) and leaflet width (K).

PCA biplot segregated walnut accessions based on distinct morphological traits. For example, seven accessions (T1, T2, T7, T8, T9, T10 and T36) with broad elliptic leaflet shape and medium to high nut and kernel weights clustered together. The three accessions T11, T16 and T17 characterized by a round nut shape and intermediate to high leaflet width formed a separate group. Additionally, fourteen accessions (T6, T12, T14, T15, T19, T20, T21, T24, T25, T28, T31, T34, T35 and T39) with elliptic leaflet shape were grouped together.

The results confirmed the efficiency of the ampelographic descriptors in distinguishing among walnut varieties, consistent with previous studies on walnut trees (Karimi *et al.*, 2014), *Ensete ventricosum* (Haile *et al.*, 2023), grapevine (Chehade *et al.*, 2022; Khater *et al.*, 2025).

#### Morphological clustering of the accessions

The dendrogram constructed based on the seven discriminating descriptors validated by PCA allowed for clustering the 35 evaluated accessions into three main groups at an Euclidean distance of -9 (Fig. 6).

The first group clustered 11 accessions: Labweh (T27, T18), Janta (T11), Sohmor (T32), kafardabch (T26), Fnaydeq (T37), Anjar (T22, T23), Nahle (T17, T16, T13). The majority of the accessions in this group share an elliptic leaflet shape, a round nut shape, medium shell color, and low to medium nut

Table 5 - Quantitative traits of nut and kernel recorded for the 35 walnut accessions

| Sample | Site         | Nut length (cm) | Nut width (cm) | Nut length/<br>Nut width | Nut weight (g) | Kernel weight (g)               | kernel %    |
|--------|--------------|-----------------|----------------|--------------------------|----------------|---------------------------------|-------------|
| T1     | Nabi sheeth  | 5.22 ± 0.17     | 4.15 ± 0.15    | 1.26 ± 0.08              | 18.78 ± 4.42   | 5.46 ± 1.49 bcde <sup>(z)</sup> | 30.0 ± 7.0  |
| T2     |              | 3.99 ± 0.15     | 3.27 ± 0.12    | 1.22 ± 0.02              | 12.78 ± 0.90   | 6.31 ± 0.57 ab                  | 50.0 ± 6.0  |
| T6     |              | 3.79 ± 0.46     | 3.17 ± 0.17    | 1.19 ± 0.11              | 12.54 ± 1.11   | 5.19 ± 0.48 bcdefg              | 42.0 ± 4.0  |
| T7     |              | 4.32 ± 0.15     | 3.39 ± 0.29    | 1.28 ± 0.13              | 19.81 ± 3.92   | 6.67 ± 1.35 ab                  | 33.0 ± 7.0  |
| T8     |              | 4.16 ± 0.13     | 3.44 ± 0.24    | 1.22 ± 0.12              | 14.56 ± 5.18   | 8.06 ± 0.33 a                   | 60.0 ± 16.0 |
| T9     | Janta        | 3.93 ± 0.10     | 3.38 ± 0.06    | 1.16 ± 0.02              | 12.84 ± 0.95   | 5.14 ± 0.64 bcdefg              | 40.0 ± 2.0  |
| T10    |              | 4.06 ± 0.19     | 3.24 ± 0.05    | 1.25 ± 0.05              | 12.57 ± 0.79   | 4.11 ± 0.57 fghijk              | 33.0 ± 4.0  |
| T11    |              | 3.18 ± 0.08     | 3.08 ± 0.08    | 1.03 ± 0.00              | 9.70 ± 0.77    | 4.02 ± 0.40 ghijkl              | 41.0 ± 1.0  |
| T12    |              | 3.70 ± 0.26     | 3.58 ± 0.26    | 1.03 ± 0.01              | 13.96 ± 2.05   | 4.87 ± 1.52 cdefgh              | 34.0 ± 8.0  |
| T13    | Nahle        | 3.74 ± 0.11     | 3.39 ± 0.20    | 1.11 ± 0.05              | 13.00 ± 0.98   | 4.47 ± 0.44 efghij              | 34.0 ± 2.0  |
| T14    |              | 3.94 ± 0.23     | 3.25 ± 0.17    | 1.21 ± 0.05              | 12.41 ± 2.33   | 4.53 ± 1.18 efghij              | 36.0 ± 3.0  |
| T15    |              | 4.20 ± 0.28     | 3.45 ± 0.11    | 1.24 ± 0.14              | 15.63 ± 2.53   | 6.25 ± 0.70 abc                 | 38.0 ± 5.0  |
| T16    |              | 3.62 ± 0.28     | 3.00 ± 0.14    | 1.21 ± 0.09              | 9.49 ± 0.52    | 4.33 ± 0.72 efghijk             | 45.0 ± 5.0  |
| T17    |              | 3.65 ± 0.07     | 3.50 ± 0.06    | 1.04 ± 0.01              | 12.16 ± 1.56   | 5.05 ± 0.33 bcdefg              | 39.0 ± 2.0  |
| T18    | Labweh       | 3.49 ± 0.11     | 2.84 ± 0.13    | 1.23 ± 0.08              | 9.55 ± 0.68    | 4.97 ± 0.45 cdefgh              | 52.0 ± 2.0  |
| T19    |              | 3.64 ± 0.11     | 2.77 ± 0.10    | 1.31 ± 0.05              | 9.14 ± 0.27    | 3.45 ± 0.34 jkl                 | 38.0 ± 4.0  |
| T20    | Anjar        | 3.35 ± 0.1      | 3.28 ± 0.03    | 1.02 ± 0.02              | 11.56 ± 2.49   | 5.37 ± 0.26 bcde                | 49.0 ± 19.0 |
| T21    |              | 3.54 ± 0.23     | 3.11 ± 0.13    | 1.14 ± 0.10              | 9.14 ± 1.58    | 3.94 ± 0.90 hijkl               | 43.0 ± 3.0  |
| T22    |              | 3.52 ± 0.23     | 3.29 ± 0.11    | 1.07 ± 0.07              | 12.56 ± 1.07   | 5.52 ± 0.65 bcde                | 44.0 ± 2.0  |
| T23    |              | 3.46 ± 0.18     | 3.31 ± 0.12    | 1.05 ± 0.06              | 10.37 ± 1.24   | 4.58 ± 1.01 efghij              | 44.0 ± 5.0  |
| T24    |              | 3.95 ± 0.11     | 3.23 ± 0.19    | 1.22 ± 0.04              | 11.39 ± 1.90   | 5.93 ± 0.85 bcd                 | 52.0 ± 2.0  |
| T25    | Kfardabch    | 4.43 ± 0.20     | 3.37 ± 0.20    | 1.32 ± 0.08              | 12.79 ± 1.34   | 5.97 ± 0.73 bc                  | 47.0 ± 2.0  |
| T26    |              | 3.71 ± 0.21     | 3.20 ± 0.14    | 1.16 ± 0.05              | 12.87 ± 1.75   | 5.00 ± 0.74 cdefgh              | 39.0 ± 1.0  |
| T27    | Tal Al-amara | 2.50 ± 0.00     | 1.20 ± 0.00    | 2.08 ± 0.00              | 2.51 ± 0.02    | 0.70 ± 0.02 m                   | 28.0 ± 0.0  |
| T28    | Maaroub      | 3.84 ± 0.13 f   | 3.00 ± 0.12    | 1.28 ± 0.06              | 12.23 ± 1.32   | 4.72 ± 0.93 defghi              | 38.0 ± 4.0  |
| T31    | sohmor       | 3.34 ± 0.17     | 3.21 ± 0.14    | 1.03 ± 0.08              | 12.19 ± 3.73   | 5.54 ± 0.45 bcde                | 40.0 ± 2.0  |
| T32    |              | 3.38 ± 0.18     | 3.16 ± 0.19    | 1.07 ± 0.07              | 11.40 ± 1.11   | 4.62 ± 1.01 efghij              | 40.0 ± 6.0  |
| T34    | Fnaydeq      | 3.24 ± 0.09     | 2.82 ± 0.15    | 1.15 ± 0.04              | 8.63 ± 1.63    | 2.97 ± 1.15 l                   | 33.0 ± 8.0  |
| T35    |              | 3.92 ± 0.18     | 3.16 ± 0.09    | 1.24 ± 0.06              | 12.17 ± 1.92   | 4.40 ± 1.08 efghij              | 36.0 ± 7.0  |
| T36    |              | 4.08 ± 0.25     | 3.23 ± 0.15    | 1.26 ± 0.03              | 11.93 ± 2.72   | 3.07 ± 0.30 l                   | 27.0 ± 6.0  |
| T37    |              | 3.28 ± 0.21     | 3.33 ± 0.17    | 0.99 ± 0.05              | 11.23 ± 1.67   | 3.95 ± 1.93 hijkl               | 34.0 ± 13.0 |
| T39    |              | 4.14 ± 0.33     | 1.18 ± 0.10    | 2.14 ± 0.19              | 14.90 ± 2.77   | 5.92 ± 1.42 bc                  | 40.0 ± 8.0  |
| T41    | Alay         | 4.56 ± 0.39     | 1.44 ± 0.12    | 2.44 ± 0.25              | 9.94 ± 1.22    | 3.63 ± 1.03 ijkl                | 36.0 ± 5.0  |
| T43    |              | 3.96 ± 0.43     | 1.31 ± 0.12    | 2.30 ± 0.15              | 9.54 ± 1.50    | 4.10 ± 1.18 fghijkl             | 42.0 ± 7.0  |
| T44    | Bisour       | 3.74 ± 0.30     | 1.95 ± 0.20    | 2.01 ± 0.40              | 6.47 ± 0.38    | 3.17 ± 0.19 kl                  | 49.0 ± 3.0  |
| LSD    |              |                 |                |                          | 12.224         |                                 |             |

<sup>(z)</sup> For each trait, means followed by different letters are significantly different at  $P \leq 0.05$  (Least Significant Difference (LSD) test).

and kernel weight.

The second group contained eight accessions: Janta (T10, T9), Nabi-Sheeth (T1, T2, T7, T8), Fnaydeq (T36) and Nahle (T14), which share, on one hand, broad elliptic leaflet shapes. On the other hand, the majority of these accessions had medium to high nut and kernel weight.

The third and largest group consisted of 16 accessions: Alay (T41, T43), Kfardabch (T25), Bisour (T44), Maaroub (T28), Nabi-Sheeth (T6), Labweh

(T19), Nahle (T15), Fnaydeq (T34, T35, T39), Janta (T12), Anjar (T21, T24, T20), Sohmor (T31). The majority of these accessions are characterised by an elliptic leaflet shape, an amber shell color, and low to medium nut and kernel weights.

Three cases of similarity were observed within the evaluated accessions: the first case was revealed between T18 (Labweh) and T23 (Anjar), the second case between T26 (Kafardabch) and T37 (Fnaydeq) and the third case was detected between T20 (Anjar)

Table 6 - Principal components analysis of the 27 morphological characters evaluated for the 35 walnut accessions

| Variables                            | Factor 1       | Factor 2        | Factor 3        |
|--------------------------------------|----------------|-----------------|-----------------|
| Growth Habit                         | -0.2605        | 0.1511          | -0.4106         |
| <b>Leaflet Shape</b>                 | -0.1451        | <b>0.9298 *</b> | 0.1581          |
| Leaflet Margin                       | 0.1059         | -0.4854         | 0.5637          |
| Leaflet Color                        | 0.28           | 0.0429          | 0.2204          |
| Rachis Color                         | -0.07275       | 0.3707          | -0.1822         |
| Leaf Length                          | 0.1052         | 0.2692          | -0.004267       |
| Leaf Petiole                         | 0.1797         | -0.0005028      | -0.3164         |
| Leaf Width                           | 0.07981        | 0.2107          | 0.01889         |
| Number of Leaflet                    | 0.1045         | -0.4429         | 0.4273          |
| Leaflet Length                       | 0.1623         | 0.2281          | -0.3419         |
| Leaflet Width                        | 0.1665         | 0.4709          | -0.3174         |
| leaflet L/ Leaflet W                 | 0.006946       | -0.5072         | 0.07997         |
| Leaflet Petiole                      | 0.007297       | -0.3471         | -0.09709        |
| <b>Shell Texture</b>                 | -0.4299        | 0.2027          | <b>-0.62417</b> |
| <b>Shell Color</b>                   | 0.03561        | -0.3428         | <b>-0.6081</b>  |
| Nut tip                              | -0.2038        | 0.06415         | -0.2275         |
| <b>Nut Shape</b>                     | <b>-0.9978</b> | -0.05072        | 0.02065         |
| apex shape                           | -0.243         | 0.2149          | -0.3307         |
| base shape                           | 0.2937         | 0.1901          | -0.4649         |
| shell strength                       | -0.2361        | 0.5061          | -0.2951         |
| Nut Length                           | -0.2389        | 0.3161          | -0.1177         |
| Nut width                            | -0.184         | 0.4765          | -0.5116         |
| Nut L/Nut W                          | -0.02781       | -0.4988         | 0.1539          |
| <b>Nut Weight</b>                    | -0.1082        | <b>0.6299</b>   | -0.2755         |
| <b>Kernel Weight</b>                 | -0.1296        | <b>0.6</b>      | -0.1125         |
| Kernel Percentage                    | -0.02273       | -0.195          | 0.1534          |
| <b>Kernel Color</b>                  | -0.1722        | 0.01275         | <b>-0.6292</b>  |
| <b>Percentage of total variation</b> | <b>48</b>      | <b>13</b>       | <b>7</b>        |

\*= The characters in bold are discriminant.

and T31 (Sohmor).

#### Analysis of ISSR

The molecular analysis of walnut accessions revealed a high degree of variability. The ISSR markers exhibited distinct polymorphism among the various *Juglans* accessions. A total of 67 polymorphic bands were detected across 26 accessions out of 35 studied (nine accessions not amplified) through the use of 9 ISSR primers: UBC 807, UBC 810, UBC 814, UBC 811, UBC 819, UBC 865, UBC 818, UBC 821, and UBC 826 (Table 7). Similarly, 67 polymorphic bands were reported in Kashmir valley by Shah *et al.* (2019) in studying the genetic diversity 96 walnut genotypes using 19 ISSR markers, while 82 polymorphic bands were obtained in Iran by Sharifi *et al.* (2021) in studying 82 walnut accessions using 10 ISSR markers; 123 polymorphic bands were obtained by Kabiri *et al.* (2019) for 66 Moroccan walnuts using 11 ISSRs

markers.

The size of the amplified products ranged from 195 to 1300 bp (Table 7). The number of polymorphic bands varied between five (UBC810) and nine (UBC818 and UBC821), with an average of 7.4 per primer. Five primers had one monomorphic band (UBC 810, UBC814, UBC819, UBC826 and UBC 865). The percentage of polymorphism varied between 83% for the ISSR primer UBC 810 and 100%

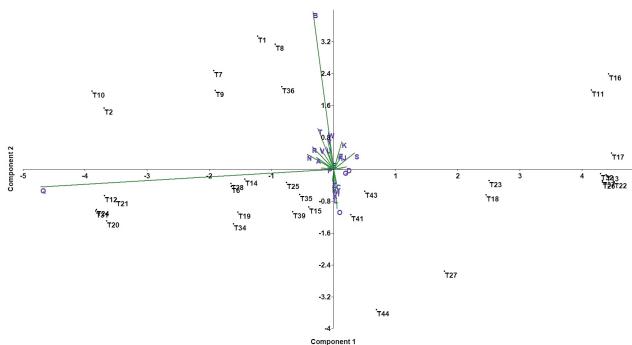



Fig. 5 - PCA biplot for 27 traits among 35 walnut accessions. The contribution of each trait to principal components 1 and 2 is shown in green arrows. A: growth habit; B: leaflet shape; C: leaflet margin; D: leaflet color; E: rachis color; F: leaf length; G: Leaf petiole; H: leaf width; I: number of leaflets; J: leaflet length; K: Leaflet width; L: leaflet length/leaflet width; M: leaflet petiole; N: Shell texture; O: Shell color; P: nut tip; Q: Nut shape; R: apex shape; S: base shape; T: shell strength; U: nut length; V: nut width; W: Nut weight; X: nut length/nut width; Y: Kernel weight; Z: kernel percentage; kernel color.

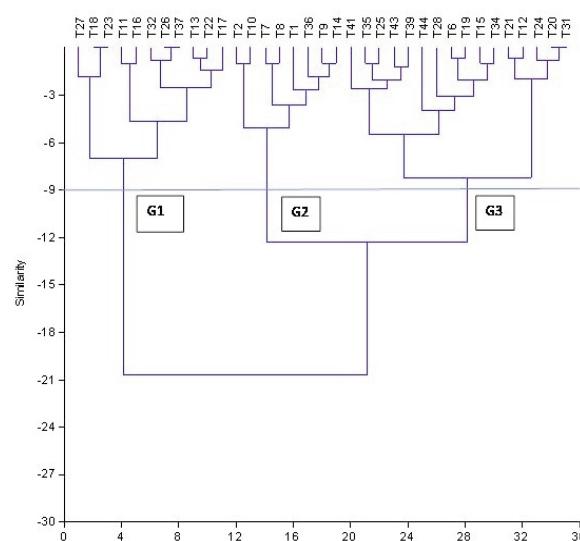



Fig. 6 - Dendrogram of the 35 Lebanese walnut accessions, constructed with the most seven discriminant morphological traits, using Euclidean distance and UPGMA clustering.

Table 7 - Primer sequences, annealing temperature, band sizes, monomorphic band, polymorphic band, percentage of polymorphism, polymorphic information content and discriminating power of the nine ISSR markers used in this study

| Primers | Sequence 5' to 3' | Annealing temperature (°C) | Band sizes (bp) | Total number of bands | Mono-morphic band | Poly-morphic band | % Poly-morphism | Polymorphic Information Content (PIC) | Dicrimination power |
|---------|-------------------|----------------------------|-----------------|-----------------------|-------------------|-------------------|-----------------|---------------------------------------|---------------------|
| UBC 807 | A(GA)7GGT         | 45                         | 225-800         | 7                     | 0                 | 7                 | 100%            | 0.29                                  | 0.9                 |
| UBC 810 | (GA)8T            | 45                         | 225-800         | 6                     | 1                 | 5                 | 83%             | 0.27                                  | 0.78                |
| UBC 811 | CAC(CA)6AT        | 47                         | 250-1100        | 8                     | 0                 | 8                 | 100%            | 0.29                                  | 0.79                |
| UBC 814 | (CT)8A            | 45                         | 275-1200        | 8                     | 1                 | 7                 | 88%             | 0.35                                  | 0.87                |
| UBC 818 | (CA)8G            | 45                         | 250-700         | 9                     | 0                 | 9                 | 100%            | 0.31                                  | 0.914               |
| UBC 819 | (GT)8A            | 47                         | 250-900         | 8                     | 1                 | 7                 | 88%             | 0.26                                  | 0.86                |
| UBC 821 | (GT)8T            | 51.3                       | 260-1300        | 9                     | 0                 | 9                 | 100%            | 0.41                                  | 0.94                |
| UBC 826 | (AC)8C            | 51.3                       | 195-650         | 8                     | 1                 | 7                 | 88%             | 0.24                                  | 0.8                 |
| UBC 865 | (ATG)5TCC         | 47                         | 275-950         | 9                     | 1                 | 8                 | 89%             | 0.37                                  | 0.9                 |
| Mean    | -                 | -                          | -               | 8                     | -                 | 7.4               | 92.8            | 0.31                                  | 0.86                |

for UBC 807, UBC 811, UBC 818 and UBC 821, with an average 92.8%. This finding is higher than that shown by Malvolti *et al.* (2010) for Italian walnut (73.8%) and Christopoulos *et al.* (2010) for Greek walnut (82.8%). Nevertheless, it is similar with the result reported by Aiqing *et al.* (2014) for Chinese walnut (92.31%).

The Polymorphism Information Content (PIC) of the 9 primers varied from 0.24 to 0.41 with an average of 0.31. The results indicate that UBC 821 with GT dinucleotide repeat which has the highest polymorphism. The minimum polymorphism content was obtained from the UBC826 with AC dinucleotide repeat. The average PIC obtained in our present results was higher than those previously found in ISSR studies in walnut by Potter (2002), Christopoulos (2010), Mahmoodi *et al.* (2012), Ji *et al.* (2014) and Shah *et al.* (2019).

The calculated discrimination power (PD) ranged from 0.78 for the ISSR primer UBC 810 to 0.94 for the ISSR primers UBC 821, with an average of 0.86, indicating a high diversity of the loci and confirming the efficiency of these primers in studying the polymorphism of the Lebanese walnut accessions. This value is similar to the work of Kabiri *et al.* (2019) for 66 Moroccan walnuts using ISSRs markers.

#### Molecular classification of the accessions

The allelic data were utilized to generate a dendrogram through the Jaccard distance and the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) clustering method, revealing the genetic relationships among walnut accessions (Fig.

7). The dendrogram did not reveal similarity between accessions as observed in the molecular studies. The highest genetic distance was observed between genotypes T34 (sohmor) and T2 (Nabi sheeth), differing by 45 bands (62.5%), while the lowest was between two genotypes from the same location (Nabi sheeth) T2 and T6, differing by only 4 bands (5.5%). In addition, this dendrogram enabled the distinction of four groups at a Jaccard similarity distance of -9.

Group 1 included seven accessions with an elliptic leaflet shape and an entire margin. These accessions shared a common amplification of 225 bp and 275 bp

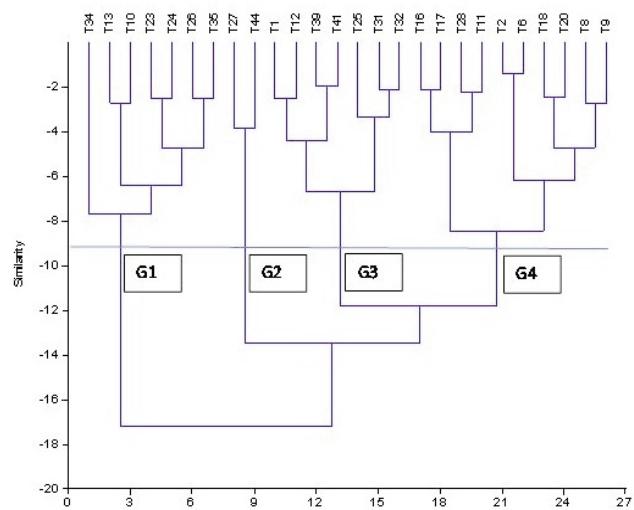



Fig. 7 - Dendrogram of the 26 Lebanese walnut accessions, constructed from 9 ISSR, using Jaccard distance and UPGMA clustering.

using the UBC 807 primer, 300 bp and 400 bp using the UBC 818 primer, and 275 bp using the UBC 814 primer.

Group 2 consisted of two accessions (T27 and T44), which had a narrow, elliptic leaflet shape with a serrate margin and a dark green color. The two accessions had 19 common bands, including: five bands of UBC 821 (400 bp, 480 bp, 600 bp, 700 bp, and 900 bp), three bands of each: UBC 807 (300 bp, 400 bp, and 500 bp) and UBC 818 (275 bp, 350 bp, and 500 bp), two bands of each: UBC 819 (450 bp, and 500 bp) and UBC 826 (400 bp, and 650 bp), one band of each: UBC 810 (300 bp), UBC 814 (375 bp), UBC 811 (680 bp) and UBC 865 (750 bp). Indeed, this group exhibits a specific molecular pattern characterized by the presence of a unique band at 250 bp for UBC 811 and the absence of two bands that are present in other groups (275 bp at UBC 807 and 300 bp at UBC 818). This result confirms that these two accessions are not related to *Juglans regia* L, but they are related to *Carya illinoiensis* (Pecan) L.

Group 3 included seven accessions characterized by an elliptic leaflet shape with entire margin and medium nut tip which share 23 bands, comprising: five bands of UBC 818 (275 bp, 300 bp, 350 bp, 550 bp, and 700 bp), four bands of UBC 807 (225 bp, 275 bp, 400 bp, and 500 bp), three bands of each: UBC 810 (300 bp, 350 bp, and 480 bp), UBC 811 (425 bp, 680 bp, and 750 bp), UBC 819 (500 bp, 600 bp, and 800 bp), two bands of each: UBC 865 (700 bp, and 750 bp), UBC 826 (400 bp, and 550 bp) and one band of UBC 814 (700 bp)

Group 4 included ten accessions characterized by entire leaflet margin with twenty one common bands comprising: four bands of UBC 807 (275 bp, 400 bp, 500 bp and 800 bp), three bands of each: UBC 865 (700 bp, 750 bp and 950 bp), UBC 814 (275 bp, 375 bp and 700 bp), UBC 811 (425 bp, 680 bp and 750 bp), UBC 818 (275 bp, 300 bp and 700 bp), two bands of UBC 826 (225 bp and 550 bp), one band of each: UBC 810 (480 bp), UBC 819 (500 bp), UBC 821 (700 bp). Indeed, this group exhibits a specific molecular pattern characterized by the presence of a unique band at 800 bp for UBC 807.

Accordingly, the results of the genetic structure by using ISSR markers of the walnut trees were not correlated with the geographical regions of the sites. All the groups comprised accessions from different geographical regions.

The results of this study revealed a large morphological diversity and high genetic variation

among the Lebanese walnut accessions. The dendrogram based on ISSR markers did not correspond to the one generated from morphological traits. These traits can be influenced by environmental factors, whereas molecular data are largely unaffected by such factors. Therefore, results derived from molecular data are generally considered more precise and reliable for assessing genetic relationships. Similar results were obtained in Iran by Sharifi *et al.* (2021) in studying walnut genetic diversity investigation using phonological and morphological characteristics and ISSR markers.

#### 4. Conclusions

This study involves a morphological and molecular characterization of walnut accessions grown in various areas of Lebanon, with the objective of assessing the genetic diversity among walnut cultivars. Numerous discriminant traits were initially responsible for the diversity detected within the accessions, such as leaflet shape, shell texture, shell color, nut Shape, nut weight, kernel weight, and kernel color. These traits can be used by researchers and nursery owners to select the best single accession of walnut cultivars and meet the needs of growers for particular desired traits. Such traits include kernel weight and kernel percentages are a desirable character for commercial acceptance of a variety. In this context, T8 accession had the highest kernel weight and kernel percentages, making it suitable for propagation by nursery owners to meet farmers' demand.

No clear structure of the accessions with their geographical growing areas was observed in this study. Such results have been reported in different crops by several studies, e.g. on chest-nut (Marinoni *et al.*, 2013), almond (Chalak *et al.*, 2007) and olives (Chehade *et al.*, 2015). This variability could be attributed to the free exchange of planting material between different Lebanese villages. The combination of ampelographic descriptions and molecular markers generated effective differentiation of potential clones within the walnut cultivars studied. No significant correlation was found between the results of morphological and molecular characterization. This correlation could be further improved, first by extending the number of accessions, second by involving more descriptors allowing for the characterization of more traits and

secondly, at the molecular level, by using a larger set of molecular markers such (SSR, SNP).

Finally, the walnut accessions listed in our study should be gathered into specific collections located in different environmental conditions, in order to evaluate their agronomic potential (bloom, maturity dates, yield, nutritive composition and disease resistance). Based on the morphological, molecular characterization and agronomic evaluation of walnut accessions, conservation strategies should be implemented. The selected material should constitute a potential wealth of genetic diversity, which can be used for the improvement of walnut trees in Lebanon and elsewhere.

## Acknowledgements

This study is part of the research activities of the Plant Genetic Resources Unit funded by the Lebanese Agricultural Research Institute (LARI). Authors would like to thank Dr. Michel Afram, President Director General of LARI for his valuable support.

## References

ABBASI HOLASOU H., MOHAMMADZADEH JALALY H., MOHAMMADI R., PANAHY B., 2023 - *Genetic diversity and structure of superior spring frost tolerant genotypes of Persian walnut (Juglans regia L.) in East Azerbaijan province of Iran, characterized using inter simple sequence repeat (ISSR) markers.* - *Genetic Res. Crop Evol.*, 70(2): 539-548.

AIQING J., YINA W., GUOLIANG W., WENJIANG W., HONGYAN Y., QIHAI W., 2014 - *Genetic diversity and population structure of North China Mountain walnut revealed by ISSR.* - *Am J Plant Sci.*, 5: 3194-3202.

ATEFI J., 1997 - *Study on phenological and pomological characters on walnut promising clones in Iran.* - *Acta Horticulturae*, 442: 101-108.

BERNARD A., BARRENECHE T., LHEUREUX F., DIRLEWANGER E., 2018 - *Analysis of genetic diversity and structure in a worldwide walnut (Juglans regia L.) germplasm using SSR markers.* - *PLOS ONE*, 13(11): e0208021.

CHALAK L., CHAHADE A., KADRI A., 2007 - *Morphological characterization of cultivated almonds in Lebanon.* - *Fruits*, 62(3): 113.

CHEHADE A., CHALAK L., MERHEB J., ELBITAR A., RMEILY E., MADI N., MASSAAD M., 2022 - *Genetic and ampelographic characterization of grapevine accessions maintained in the Lebanese national collection.* - *Adv. Horti. Sci.*, 36(3): 215-226

CHEHADE A., EL BITAR A., KADRI A., CHOUEIRI E., NABBOUT R., YOUSSEF H., SMEHA M., AWADA A., AL CHAMI Z., DUBLA E., TRANI A., MONDELLI D., FAMIANI F., 2015 - *In situ evaluation of the fruit and oil characteristics of the main Lebanese olive germplasm.* - *J. Sci. Food Agric.*, 96: 2532-2538

CHRISTOPOULOS V.M., ROUSKASB D., TSANTILI E., BEBELI P.J., 2010 - *Germplasm diversity and genetic relationships among walnut (Juglans regia L.) cultivars and Greek local selections revealed by Inter-Simple Sequence Repeat (ISSR) markers.* - *Sci Hortic.*, 125: 584-592.

ÇILESİZ Y., 2025 - *Genetic diversity assessment of walnut (Juglans regia L.) genotypes from inner Anatolia region Türkiye using ISSR and RAPD markers.* - *Scientific Reports*, 15(1): 30850.

DOYLE J.J., DOYLE J.L., 1987 - *A rapid DNA isolation procedure for small quantities of fresh leaf tissue.* - *Phytochemical Bulletin*, 19(1): 11-15.

EINOLLAHI F., KHADIVI A., 2024 - *Morphological and pomological assessments of seedling-originated walnut (Juglans regia L.) trees to select the promising late-leaving genotypes.* - *BMC Plant Biol.*, 24(1): 253.

FATAHI R., EBRAHIMI A., ZAMANI Z., 2010 - *Characterization of some Iranians and foreign walnut genotypes using morphological traits and RAPDs markers.* - *Agric. Food Sci., Hort. Environ. Biotechnol.*, 51(1): 51-60.

FJELLSTROM R.G., PARFITT D.E., 1995 - *Phylogenetic analysis and evolution of the genus Juglans (Juglandaceae) as determined from nuclear genome RFLPs.* - *Plant Systematics Evol.*, 197: 19-32.

GAO Y., HU J., SU X., LI Q., SU C., LI Y., MA G., ZHANG S., YU X., 2024 - *Extraction, chemical components, bioactive functions and adulteration identification of walnut oils: A review.* - *Grain Oil Sci. Technol.*, 7(1): 30-41.

HAILE B., TESFAYE B., OLANGO T.M., 2023 - *Fruit and seed morphological divergence between wild and cultivated enset (Ensete ventricosum [Welw.] Cheesman).* - *South Afr. J. Bot.*, 163: 87-94.

HAMMER Ø., HARPER D.A.T., RYAN P.D., 2001 - *PAST: Paleontological statistics software package for education and data analysis.* - *Palaeontologia Electronica*, 4(1): 1-9.

HASSAN G., BILAL A., AHMAD B., SAMEENA W., IRSHAD A., 2013 - *Economic and ethno-medicinal uses of Juglans regia L. Kashmir Himalaya.* - *Unique J. Ayurvedic Herbal Med.*, 1: 64-67.

IPGRI, 1994 - *Descriptors for Walnut (Juglans spp.).* - *International Plant Genetic Resources Institute, IPGRI, Rome, Italy*, pp. 54.

JI A., WANG Y., WU G., WU W., YANG H., 2014 - *Genetic diversity and population structure of North China mountain walnut revealed by ISSR.* - *AJPS*, 5: 3194-3202.

KABIRI G., BOUDA S., ELHANSALI M., HADDIOUI A., 2019 - *Genetic diversity and structure of walnut (Juglans regia L.) genotypes from Middle and High Atlas mountains of Morocco as investigated by Inter-Simple Sequence Repeat (ISSR) markers.* - AJCS, 13(12): 1983-1991

KARIMI R., ERSHADI A., EHTESHAM NIA A., SHARIFANI M., RASOULI M., EBRAHIMI A., VAHDATI K., 2014 - *Morphological and molecular evaluation of Persian walnut populations in northern and western regions of Iran.* - J. Nuts, 5(02): 21-31.

KHATER A., CHEHADE A., ELBITAR A., MERHEB J., KARAM N., CHALAK L., 2025 - *Intra-varietal genetic diversity in grapevine (Vitis vinifera L.) cultivars of Lebanon as revealed by ampelographic descriptors and ISSR markers.* - Acta Horticulturae, 1418: 259-266.

KRIEGE N., MUTZEL P., SCHAFER, T., 2014 - *Practical SAHN clustering for every large data set and expensive distance metrics.* - J. Graph Algor. Applic., 18(4): 577-602.

MALVOLTI M.E., POLLEGIONI P., BERTANI A., MAPELLI S., CANNATA F., 2010 - *Juglans regia provenance research by molecular, morphological and biochemical markers: A case study in Italy.* - Biorem. Biodiv. Bioavail, 4: 84-92.

MARINONI D., AKKAK A., BETRAMO C., GUARALDO P., BOCCACCI P., BOUNOUS G., FERRARA A.M., EBONE A., VIOTTO E., BOTTA R., 2013 - *Genetic and morphological characterization of chestnut (Castanea sativa Mill.) germplasm in Piedmont (north-western Italy).* - Tree Genet. Genomes, 9: 1017-1030.

MAHMOODI R., RAHMANI F., PAKTARMANI R., 2012 - *Genetic diversity of Persian walnut from Iran as revealed by inter-simple sequence repeat (ISSR) markers.* - J. Am. Pomol. Soc., 125: 584-592.

MOA, 2012 - *Resultats globaux du module de base du recensement de l'agriculture 2010.* - Projet Observatoire Libanais de Développement Agricole. - Ministry of Agriculture, MOA, FAO, Rome, Italy, pp. 125-127.

POTTER D., GAO F., AIELLO G., LESLIE C., MCGRANAHAN G.H., 2002 - *Inter-simple sequence repeats markers for fingerprinting and determining genetic relationships of walnut (Juglans regia L.) cultivars.* - J. Amer. Soc. Hortic. Sci., 127: 75-81.

SARIKHANI KHORAMI S., ARZANI K., ROOZBAN M.R., 2014 - *Correlations of certain high-heritability horticultural traits in Persian walnut (Juglans regia L.).* - Acta Horticulturae, 1050: 61-68.

SAS, 1995 - *Survival analysis using the SAS® System: A practical guide.* - SAS Institute Inc., Cary, NC, USA, pp. 292.

SHAH U.N., MIR J.I., AHMED N., FAZILI K.M., 2019 - *Genetic diversity analysis of walnut (Juglans regia L.) from Kashmir valley using RAPD and ISSR markers.* - Agrotechn., 8: 185.

SHAMASBI F.V., NASIRI N., SHOKRI E., 2018 - *Genetic diversity of Persian ecotypes of Indian Walnut (Aeluropus littoralis (Gouan) Pari.) by AFLP and ISSR Markers.* - Cytol Genet. 52(3): 222-230.

SHARIFI S., AMIRI-FAHLIANI R., KAVOOSI B., MASOUMI ASL A., 2021 - *Walnut genetic diversity investigation using phenological and morphological characteristics and ISSR markers.* - J. Agr. Sci. Tech., 23(1): 187-200.

SHARMA M., SHARMA M., SHARMA M., 2022 - *A comprehensive review on ethnobotanical, medicinal and nutritional potential of walnut (Juglans regia L.).* - Proc. Indian Nat. Sci. Academy, 88(4): 601-616.

SHARMA S.D., SHARMA O.C., 2001 - *Genetic divergence in seedling trees of Persian walnut (Juglans regia L.) for various metric nut and kernel characters in Himachal Pradesh.* - Scientia Hortic., 88: 163-171.

WANG H., PEI D., GU R-S., WANG B-Q., 2008 - *Genetic diversity and structure of walnut populations in central and southwestern China revealed by microsatellite markers.* - J. Am. Soc. Hortic. Sci., 133(2): 197-203.

WANI A.W., HASSAN G.I., BHAT K.M., AHMAD M., SIDDIQUI M.H., KUMAR S., NARESH R.K., GUPTA R.K., 2024 - *Utilizing SSR markers to examine the population structure and molecular genetic diversity of walnut (Juglans regia L.) genotypes in the Northwestern Himalayan region of Jammu and Kashmir.* - BioResources, 19(3): 4213-4237.