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Abstract: Pesticides are applied repeatedly to grain, fruit, and vegetable crops 
for protection against pathogens, pests, and weeds, in short periods of time 
before harvest. The effective and fast monitoring of chemical residues in agri­
cultural products is important for the assurance of healthy food. This study was 
accomplished to evaluate the feasibility to detect and estimate the concentra­
tion of dithiocarbamate fungicide (mancozeb) residues on intact lettuce leaves 
based on Vis/NIR spectral reflectance measurements and multivariate data 
analysis. In the pre­harvest interval, a high initial rate of decline of dithiocarba­
mate residues was observed between one and seven days after pesticide spray­
ing (decrease of 90.3%), while a slower decline was verified from seventh to 
fourteenth day (decrease of 8.7%). The usefulness of this spectrometric method 
has been evidenced by determination of dithiocarbamate residues at concen­
trations between 0.23 and 10.3 mg CS2 kg­1, with detection and quantitation 
limits of 0.49 and 1.41 mg CS2 kg­1, respectively. Vis/NIR spectral reflectance 
combined to the partial least square analysis have potential to be applied for 
estimating dithiocarbamate concentrations on intact lettuce leaves, presenting 
advantages such as real­time measurements and the possibility to be built into 
the industrial processing lines. 
 
 
1. Introduction 
 
     Consumers demand grain, fruits, and vegetables with high sensorial 
and nutritional qualities, but without pesticides. Although the correct use 
of fungicides does not cause problems of public concern in health and 
environmental areas, undesirable residues can remain on agricultural 
products after harvest if inappropriate or abusive treatments are applied 
without respecting safety recommendations indicated by the specialized 
agencies and manufacturers (López­Fernández et al., 2013). 
     In modern agriculture, pesticides are applied repeatedly to grain, fruit, 
and vegetable crops for protection against pathogens, pests, and weeds, 
in short periods of time before harvest (Jankowska et al., 2019). The main 
exposure to pesticides for humans is via food, especially by consumption 
of agricultural products. 
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     Introduced between 1940 and 1980, dithiocarba­
mate fungicides still represent an important class of 
pesticides widely used in agriculture. They are char­
acterized by a broad spectrum of activity against vari­
ous plant pathogens, low acute mammal toxicity, and 
low production costs (Crnogorac and Schwack, 2009). 
However, laboratory studies showed that dithiocar­
bamates can result in neuropathology, thyroid toxici­
ty, and developmental toxicity to the central nervous 
system (IPCS, 1993; Caldas et al., 2006). 
     Mancozeb is an ethylene­bis­dithiocarbamate 
used as fungicide to protect fruit and vegetable crops 
from a range of fungal diseases (Pereira et al., 2014) 
and was considered a multipotent carcinogenic agent 
in a long­term study (Belpoggi, 2002). This fungicide 
is registered to 38 food crops, occupy the third place 
in the ranking of the most commercialized pesticides 
in Brazil in terms of tones of active ingredient 
(ANVISA, 2018; IBAMA, 2018). 
     Caldas et al. (2006) reported data obtained from 
the Program on Pesticide Residue Analysis in Food 
(PARA), coordinated by the Brazilian National 
Sanitary Surveillance Agency (ANVISA), about dithio­
carbamate residues on 34% of lettuce samples in a 
total of 297 analyzed, based on vegetable samples 
collected from 2001 to 2004. In another Brazilian 
study, accomplished from 2005 to 2015, Jardim et al. 
(2018) showed that 14.6% of 1483 lettuces presented 
dithiocarbamate residues. López­Fernández et al. 
(2013) verified the presence of mancozeb and other 
dithiocarbamate residues on 72% of lettuce samples 
collected at Spain, with some samples containing 
residues three times higher than the maximum limit 
(5 mg kg­1). 
     Various methods have been improved for the 
determination of dithiocarbamate residues, including 
gas and/or liquid chromatography, often in conjunc­
tion with mass spectrometry (Crnogorac and 
Schwack, 2009). These current methods requiring 
sample preparation (destructive), time consuming, 
and laboratory labor demanding, well­trained per­
sonnel and relatively expensive process chemistry. 
They also produce chemical and sample waste, which 
adversely affects product traceability by preventing 
real­time decision­making (Salguero­Chaparro et al., 
2013; Steidle Neto et al., 2017). Although more sensi­
tive, these methods are suitable for spot checks. 
     The reasons for Vis/NIR spectroscopy great suc­
cess as one of the most important and versatile tech­
niques in analytical chemistry include its speediness 
and easiness to handle and provide molecular specif­
ic information for different types of samples in any 

physical state, with little or no previous chemical 
treatment (Gonzálvez et al., 2011). However, one 
possible drawback is the range of concentration of 
the target analyte. Pesticide residues tend to have 
very small concentrations in foods. Despite this, pre­
vious studies proved the feasibility of spectroscopy to 
detect and quantify low concentrations of analytes in 
fruits and vegetables (Saranwong and Kawano, 2005; 
Gonzálvez et al. ,  2011; Acharya et al. ,  2012). 
Nevertheless, very few published studies have 
addressed the use of Vis/NIR spectroscopy for pre­
dicting pesticides residues in harvested intact sam­
ples. The scientific researches of Sánchez et al. 
(2010), for peppers, and Jamshidi et al. (2016), for 
cucumbers, reported estimates of pesticides without 
pre­treatment or preparation of samples. This advan­
tage allows that spectroscopy technique can be built 
into the processing line, enabling large­scale individu­
al analysis and real­time decision­making. Another 
recent technique for trace level detection of pesti­
cides is the Surface Enhanced Raman Spectroscopy 
(SERS), that use noble metal nanostructures (e.g. 
gold) to increase the weak signals from analytes. But, 
SERS requires spectrometer, laser source, probe, 
sample holder, and substrates that are more expen­
sive when compared with spectral reflectance equip­
ment. 
     The present scientific research was carried out to 
evaluate the feasibility to detect and estimate the 
concentration of dithiocarbamate fungicide residues 
on intact lettuce leaves based on Vis/NIR spectral 
reflectance measurements and multivariate data 
analysis. 
 
 
2. Materials and Methods 
 
Lettuce cultivation 
     Lettuce (Lactuca sativa L. cv. Regina) with plain 
green leaves, was cultivated under organic conditions 
in a certified farm located at the Capim Branco city, 
Minas Gerais State, Brazil (19° 34’ S latitude, 44° 10’  
W longitude, and 816 m a.s.l.). According to Köppen 
classification, the region climate is Cwa (warm tem­
perate ­ mesothermal), with dry winter and rainy 
summer. 
     The lettuce seeds were planted in plastic trays 
containing organic substrate. Seedling production 
occurred under a low­density polyethylene cover 
(Suncover Av Blue 120 μm, Ginegar Polysack, São 
Paulo, Brazil), which allowed a better irrigation con­
trol and was internally coated with a photoselective 
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shading mesh (ChromatiNet Raschel Red 35%, 
Ginegar Polysack, São Paulo, Brazil), capable of 
reducing the percentage of beam solar radiation on 
the plants, also increasing the fresh mass production. 
     The vigorous and healthy seedlings were individu­
ally transplanted to plastic pots containing a thin 
gravel layer overlapped by soil mixed with organic 
compound (cattle manure and vegetable biomass). 
The crop irrigation was performed by a drip system, 
controlled by a digital timer. The experiment consist­
ed of 500 lettuce plants. However, 355 plants were 
effectively used as experimental units and 145 plants 
were cultivated for boundary effects. 
     Some days before plants reach the physiological 
maturation, the lettuces were transported to a 
greenhouse with the objective of performing the 
fungicide spraying. The greenhouse is located at the 
Campus Sete Lagoas of the Federal University of São 
João del­Rei, which is distant from the organic farm 
about 22 km. This greenhouse also was covered and 
coated with the same polyethylene film and photo 
selective shading mesh described above. 

Fungicide spraying 
     A non­systemic fungicide (mancozeb) was used, 
which is classified in the alkylenebis group (dithiocar­
bamate). The active ingredient of this pesticide is a 
Carbon Disulphide (CS2) precursor and is registered in 
the Brazilian Ministry of Agriculture, Livestock, and 
Food Supplies (MAPA) for application on some crops. 
However, the dithiocarbamate (mancozeb) is not 
authorized by the Brazil ian National Sanitary 
Surveillance Agency (ANVISA) for lettuce crop. This 
fungicide was chosen based on reports of the 
Brazilian Monitoring Program for Pesticides Residues 
in Food, developed by ANVISA, that mentioned the 
indiscriminate use of this pesticide on lettuces and 
other crops by some Brazilian farmers. Contrarily, 
this fungicide is authorized for lettuce crop by other 
agencies and committees, such as the European Food 
Safety Authority and the FAO Codex Alimentarius. 
     The solubilization of mancozeb in water was done 
to provide a sufficient volume for uniform and homo­
geneous application on lettuces. The dosage pre­
scribed in the Brazilian package leaflet for other 
green leafy vegetables, such as cabbage, was adopt­
ed (2­3 kg of fungicide ha­1). This dose is recommend­
ed to control the mildew (Peronospora parasítica) 
and the pod spot (Alternaria brassicae). Excepting for 
five plants (control units), which were randomly 
selected in the greenhouse, the application of man­
cozeb to lettuces was performed using an electric 
sprayer (droplets with average diameter of 29 µm). 

The application time and distance from the sprayer 
nozzle to the plants were standardized. 
     Similar to the dosage, the pre­harvest interval for 
consumption of green leafy vegetables informed in 
the Brazilian package leaflet (14 days) was consid­
ered in this study. Samplings for the spectral 
reflectance measurements and laboratory analyzes 
were carried out on alternate days during the pre­
harvest interval, totaling 7 days and starting one day 
after the fungicide spraying. 
     Daily 10 samples were collected, each one weight­
ing more than 500 g and corresponding to five let­
tuce plants randomly selected. The fresh mass was 
determined using a precision balance and discarding 
the roots. Therefore, 50 plants were used per day, 
totaling 350 plants during the sampling period. 
     The statistical design was entirely randomized 
with 7 treatments (alternate days after spraying) and 
10 repetitions (samples). 

Reflectance measurements 
     Spectral reflectance was measured by a miniature 
and hand­held spectrometer (JAZ­EL350, Ocean 
Optics, Dunedin, USA), coupled to a tungsten­halo­
gen light source, and preconfigured to acquire and 
store reflectance data from 350 to 1000 nm, with 
spectral resolution of 1.3 nm. A specific clip probe 
(SpectroClip­R, Ocean Optics, Dunedin, USA) was 
used to collect reflected light from the lettuce leaves 
(Fig. 1). This probe contains an integrating sphere 
that captures diffuse reflected light more efficiently 

Fig. 1 ­ Hand­held spectrometer, clip probe, and diffuse reflec­
tance standard used to collect reflected light from the 
lettuce leaves.
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than lens­based collection optics. The active illumi­
nated leaf area in the clip probe is 5 mm diameter. 
Two premium fibers Vis/NIR (600 μm) interconnect­
ed the spectrometer and the light source to the clip 
probe. A diffuse reflectance standard with 
Spectralon™ was used as a reference to measure 
spectral reflectance. 
     After the warm up time of the light source, the 
reference standard measurements were made 
before the spectral reflectance measurements on let­
tuce leaves. Data acquisitions were performed in a 
temperature­controlled environment with the pur­
pose of avoiding the overheating of the light source 
and the spectrometer detector due to the extended 
using time. The reflectance values were calibrated by 
means of the software (OceanView, Ocean Optics, 
Dunedin, USA) and expressed as a relative percent­
age of the reference standard (Xing et al., 2006): 

                Rλ
cal = [(Rλ

leaf ‐ Rλ
dark)/(Rλ

ref ‐ Rλ
dark)] x 100                 (1) 

     where Rl
cal is the calibrated spectral reflectance 

from the leaves (%), Rl
leaf is the spectral reflectance 

from the leaves (dimensionless), Rl
dark is the spectral 

reflectance considering light absence (dimension­
less), and Rl

ref is the spectral reflectance from the dif­
fuse reflectance standard (dimensionless). 
     Three leaves of each plant were randomly select­
ed from the external, middle, and central parts of the 
lettuce head. Three separate measurements on stan­
dardized and equidistant locations of the adaxial sur­
face were performed in each leaf, avoiding its central 
vein and boundaries. Thus, 3195 spectral signatures 
were obtained during the sampling period, consider­
ing the 350 sprayed plants and the five control let­
tuces (without dithiocarbamate). 
     The electronic files containing the spectral signa­
tures were stored in a memory card and later trans­
ferred to a notebook for analyzes performed with 
electronic spreadsheets. During the analyzes, spec­
tral signature averages were obtained for each let­
tuce sample. After this, data was stored in an exter­
nal hard disk. 

Dithiocarbamate analytical determination 
     Samples were quartered, milled in an electric 
grinder, placed in hermetic packages, and frozen at ­
30°C in an ultrafreezer for minimizing the degrada­
tion and metabolization of the dithiocarbamate. 
     The analytical determination of the concentration 
of dithiocarbamate was performed based on the 
method proposed by Cullen (1964) and improved by 
Keppel (1971). Mancozeb residues were measured by 
the spectrophotometric determination of the cupric 

complex formed with the CS2 evolved from the acid 
decomposition of dithiocarbamate in the presence of 
stannous chloride as a reducing agent (Caldas et al., 
2004). The solution of the complex formed from the 
reaction between CS2 and copper (II) acetate mono­
hydrate was measured at 435 nm in UV/Vis spec­
trophotometer (Cary 50, Varian, Agilent Technologies 
Inc., USA). At the end of the laboratory analyzes, 70 
reference measurements were obtained, corre­
sponding to 10 values for each treatment. 

Data analysis 
     The Partial Least Squares (PLS) multivariate analy­
sis was applied with the purpose of developing a 
mathematical model capable of predicting the dithio­
carbamate concentrations based on lettuce pre­
treated spectral signatures. Thus, a response matrix, 
composed by the dithiocarbamate concentrations 
obtained by laboratory analytical measurements, was 
correlated with a spectral matrix, containing the 
average reflectance measurements. An orthogonal 
basis of latent variables was constructed one by one 
in such a way that they were oriented along the 
directions of maximal covariance between the two 
original spaces (response and spectral matrices), try­
ing to achieve an optimal prediction for new data 
(Wold et al., 2001; Anderson, 2009; Cozzolino et al., 
2011). 
     The latent variables were calculated by iterative 
methods as linear combinations of the original inde­
pendent variables (spectral reflectances) and the 
dependent ones (dithiocarbamate concentrations). 
New variables were found, representing estimates of 
the latent variables or their rotations. These new 
variables were called X­scores and were predictors of 
the response ones. A weight matrix was also calculat­
ed so that each of their elements maximized the 
covariance between response variables and the cor­
responding latent variable scores. The unexplained 
part of the predictor variables was represented by 
the deviations between the measured and predicted 
responses, which were also calculated and called Y­
residuals (Wold, 2001; Lopes and Steidle Neto, 2018). 
     The detrending pre­treatment was applied to the 
spectral signatures prior to the model calibration and 
external validation. The detrending algorithm cor­
rected scatter and simple deformations of the spec­
tra baseline as vertical shift and slope (Barnes et al., 
1989; Steidle Neto et al., 2016). According to Moura 
et al. (2016), this was the most effective pre­treat­
ment for removing irrelevant information which 
could not be handled by the regression technique 
and principal component analysis. 
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     As recommended by Huang et al. (2008), two 
thirds of the data for each response variable were 
used as the calibration with cross­validation set, 
whereas one third of the data as the external valida­
tion set. The calibration set was used for developing 
the model and the external validation set was 
employed for assessing the calibrated model predic­
tion performance. This procedure was applied for 
predicting independent data, not related with those 
included in the calibration with cross­validation set 
(Agelet and Hurburgh, 2014). During calibration the 
leave­group­out cross­validation technique was 
applied to data. This sampling plan also agrees with 
the suggested by Kramer (1998), who affirmed that 
the number of data in the calibration set should be 
more than 10 times the number of variable compo­
nents in the experiment. In this study the dithiocar­
bamate residues represented the independent 
source of significant variation in the data. 
     The software SPECTOX was specifically developed 
for this study with the purpose of assisting in the 
spectral reflectance data processing and the multi­
variate analysis (calibration and validation), also 
allowing the performance evaluation of the predic­
tion model for dithiocarbamate concentrations. The 
SPECTOX was written in Java language, by using the 
free NetBeans IDE (Apache Software Foundation, 
Maryland, USA). Additional algorithms of the pre­
treatments and multivariate methods were included 
in the SCILAB software (Scilab Enterprises, Versailles, 
France). 
     The optimal number of latent variables was deter­
mined as recommended by Jha (2010), considering 
the minimum value for the root mean square error to 
avoid over fitting (Eq. 2). 
                                  

RMSE =    ∑ (Yo ­ Yp)²                       (2)                                                     n
 

 
Where RMSE is the root mean square error (mg kg­1), 
Yo are the values measured by the UV/Vis spec­
trophotometer (mg kg­1), Yp are the values predicted 
by the model (mg kg­1), and n is the number of sam­
ples (dimensionless). 
     The calibration and cross­validation processes were 
evaluated by the root mean square errors for calibra­
tion (RMSEC) and cross­validation (RMSECV) sets, 
respectively. Additionally, the predictive capacity of 
the adjusted model regarding external validation was 
evaluated by the statistical parameters mean absolute 
error (MAE), mean bias error (BIAS), coefficient of 
determination (R2), and index of agreement (d). 
     Willmott and Matsuura (2005) pointed out that 

MAE (Eq. 3) is unambiguous and the most natural 
measure of the mean error magnitude. These 
authors considered that MAE should be used as the 
basis for all dimensioned evaluations and inter­com­
parisons of model performance. The BIAS (Eq. 4) rep­
resents the average difference between measured 
and predicted data. Thus, values close to zero indi­
cate low systematic error between the measured and 
predicted values (high accuracy of the model). Also, 
negative BIAS values indicate underfitting, while posi­
tive BIAS values reveal overfitted predictions (Steidle 
Neto et al., 2016). The coefficient of determination 
(Eq. 5) represents the proportion of explained vari­
ance of the response variable in the validation set, 
with results varying from 0 to 1, and the maximum 
value reflecting a perfect agreement between mea­
sured and predicted data (Steidle Neto et al., 2017). 
Finally, index of agreement (Eq. 6) varies from 0 to 1, 
where the maximum value reflects a perfect agree­
ment between measured and predicted data. As 
affirmed by Willmott (1981), this is an important 
index since it is not a measure of correlation or asso­
ciation in the formal sense but rather a measure of 
the degree to which the model’s predictions are 
error free. 
                        MAE =  ∑│Yp ­ Yo│                                             (3) 
                                          n 
 
                        BIAS =    ∑(Yo ­ Yp)                                              (4) 
                                          n 
 
                      R² = [∑(Yp ­ Ȳp)(Yo ­ Ȳo)]²                                      (5) 
                              ∑(Yp ­ Ȳp)²∑(Yo ­ Ȳo)² 

                                                                                                                    
                  d = 1­      

    ∑(Yp ­ Yo)²
                                     (6) 

                            ∑(│Yp ­ Ȳo│+│Yo ­ Ȳo│)² 

Where MAE is mean absolute error (mg kg­1), BIAS is 
the mean bias error (mg kg­1), R2 is the coefficient of 
determination (dimensionless), and d is index of 
agreement (dimensionless). 
     The limit of detection (LOD) and limit of quantita­
tion (LOQ) are frequently used to describe the small­
est concentrations of a sample that can be reliably 
measured by an analytical procedure. The LOD corre­
sponds to the lowest analyte concentration at which 
detection is feasible, while the LOQ is the lowest con­
centration at which the analyte can be effectively 
quantified. Thus, LOQ tends to be equivalent or high­
er than LOD (Armbruster and Pry, 2008). In this 
study, the statistical LOD and LOQ determinations 
were applied (CLSI, 2004; Jeon et al., 2007). That is, 
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the spectra of five representative blank lettuce sam­
ples (containing no dithiocarbamate residues) were 
measured, following the same procedures used dur­
ing the calibration and external validation of the PLS 
model. The mean and standard deviation of the pre­
dicted CS2 concentrations were calculated based on 
these spectra, which were used as input for the 
developed model. The LOD and LOQ were equal to 
the mean of the predicted CS2 concentrations plus 
three times or ten times the standard deviation of 
the mean, respectively. According to CLSI (2004) and 
Armbruster and Pry (2008), although the blank sam­
ples are devoid of analyte, they can produce an ana­
lytical signal that might be consistent with a low con­
centration of dithiocarbamate. 
 
 
3. Results 
 
     Figure 2 presents the degradation curve of dithio­
carbamate residues on lettuce leaves during the pre­
harvest interval, obtained from average values of lab­
oratory analytical measurements. The estimated half­
life of the dithiocarbamate residues was 5­7 days. The 
rates of decline of dithiocarbamate concentration in 
two­day intervals were quite variable from first to 
seventh day after spraying (4.7, 3.2, and 1.4 mg CS2 
kg­1), corresponding to a decrease of 90.3%. After the 
seventh day, the rates of decline were 0.3 mg CS2 kg­1, 
indicating a decrease of 8.7%. Although very small 
concentration residues persisted at the final of pre­
harvest interval, the results indicate that after this 
period the pesticide metabolization is advanced, 
assuring reliability for lettuce consumption. 
     The PLS model for dithiocarbamate concentration 
on lettuces was more precise and accurate when 
detrending pre­treatment was applied to spectral sig­
natures, compared with predictions obtained from 
spectra without pre­treatment or treated with other 
methods (centering, standardization, first and second 
derivatives). Despite NIR bands were more sensible, 

all wavelengths (350­1000 nm) presented potential 
to explain the dithiocarbamate concentration 
residues on lettuce leaves from spectral reflectance, 
contributing to the good performance of the predic­
tion PLS model. 
     Table 1 shows the statistical results for the dithio­
carbamate concentration model, considering the cali­
bration with cross­validation and external validation 
datasets. The data processing showed that the use of 
more than four latent variables for dithiocarbamate 
concentrations resulted in an over­fitting, character­
ized by a slight divergence in the downward trend of 
the RMSE, which continued to decrease for calibra­
tion (RMSEC), but almost established for cross­valida­
tion (RMSECV). 
     The proposed PLS model was satisfactory since 
presented low RMSEC, RMSECV, RMSE, MAE, and 
BIAS when compared to the range values (Table 1). 
Additionally, the performance of the model for the 
external validation presented high index of agree­
ment (0.94), reflecting a good accuracy for indepen­
dent predictions of the dithiocarbamate concentra­

Fig. 2 ­ Dithiocarbamate concentration decay (mg CS2 kg­1) on 
lettuce leaves at seven intervals after mancozeb 
spraying. Vertical bars represent the standard error of 
the average values.

Table 1 ­ Statistical parameters of calibration with cross­validation and external validation processes for the estimation model of dithio­
carbamate concentration on lettuces

Calibration External validation

Number of latent variables 4 R2 (dimensionless) 0.87
RMSEC (mg CS2 kg­1) 1.86 RMSE (mg CS2 kg­1) 1.41
RMSECV (mg CS2 kg­1) 2.74 MAE (mg CS2 kg­1) 1.24
Range (mg CS2 kg­1) 0.23­10.3 BIAS (mg CS2 kg­1) ­0.37

d (dimensionless) 0.94
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tions on lettuces. The negative BIAS value indicated a 
majority tendency of underfitting predictions by the 
model, mainly from 2.3 mg CS2 kg­1 (Fig. 3). Also, low 
BIAS value represented small systematic error (Table 
1). 
     Regarding the differences among statistics pre­
sented in Table 1, the spectral measurements and 
predictions of external validation may deviate from 
the calibration as they originate from different sam­
ple sets. As mentioned by Liu and Ying (2005), in this 
way, the ability of the calibration model to withstand 
unknown variability is assessed. 
     The correlations between values determined by 
the reference analytical method and those predicted 
by the external validation of the PLS model are pre­
sented in figure 3. Prediction performance resulted in 
good agreement between reference and estimated 
values, with R2 of 0.87 (Table 1), indicating that 87% 
of the measured values were accurately represented 
by the model. 
     The comparison of parameters (LOD, LOQ, and 
range) associated to different methods of determina­
tion of dithiocarbamates on lettuces are showed in 

Table 2. The LOD and LOQ values verified in this 
study were higher than those obtained with the gas 
or liquid chromatography, as well as the spectropho­
tometric method. 
     The usefulness of the methodology presented in 
this study has been evidenced by the determination 
of dithiocarbamate residues on lettuce samples at 
concentrations between 0.23 and 10.3 mg CS2 kg­1. 
This range can be considered appropriated when the 
results of previous studies are used as reference 
(Table 2). Further, values between these lower and 
upper limits are sufficient to measure a wide range of 
dithiocarbamate concentrations on lettuces. 
 
 
4. Discussion and Conclusions 
 
     Past studies showed dithiocarbamate degradation 
profiles for lettuces similar to those found in this 
study. Yip et al. (1971) found that the dithiocarba­
mate concentration (maneb) from a single spray on 
lettuces declined from 45 mg kg­1 initially to about 5 
mg kg­1 after 15 days (decrease of 89%). On the other 
hand, Hughes and Tate (1982) monitored mancozeb 
residues on lettuces and verified a reduction of 90 
mg kg­1 after a 14­day interval (decrease of 72%). 
These authors also reported a high initial rate of 
decline in dithiocarbamate concentration during the 
first seven days after spraying, confirming the high 
degradation of analyte. 
     Despite of the dithiocarbamates with active ingre­
dient based on mancozeb are not authorized by 
ANVISA for lettuces in Brazil, the European Food 
Safety Authority (EFSA) allows the use of this pesti­
cide on lettuce crop in the countries that integrate 
the European Union, considering a maximum residue 
limit of 5 mg kg­1 (EFSA, 2013). In addition to the 
dietary risk, the edafoclimatic differences and dietary 
patterns of the countries justify the distinct positions 
between ANVISA and EFSA. Based on the results, let­
tuces presented dithiocarbamate concentrations 

Fig. 3 ­ External validation of the PLS model for estimating 
dithiocarbamate concentrations (mg CS2 kg­1) on lettuce 
leaves.

Table 2 ­ Limit of detection, limit of quantitation, and range (expressed in mg CS2 kg­1) for different methods of determination of dithio­
carbamates on lettuces

Method Limit of  
detection

Limit of  
quantitation Range Reference

Gas chromatography 0.004 0.013 0.04­5.0 Česnik and Gregorčič (2006)
Liquid chromatography 0.04 0.11 0.50­9.3 López­Fernández et al. (2012)
Gas chromatography 0.02 0.05 0.04­1.0 Pizzutti et al. (2017)
Spectrophotometric 0.28 0.40 0.20­4.5 Pizzutti et al. (2017)
Spectrometric 0.49 1.41 0.23­10.3 Present study
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mancozeb has 2 NH and 2 CH2, and that the NH bond 
position is unhindered within the chemical structure, 
there is a high likelihood it will produce a sharp and 
strong absorption band, which should improve detec­
tion of mancozeb. 
     The mean spectral signatures of intact lettuce 
leaves with absence and presence of fungicide pre­
sented differences mainly in NIR region, with fungi­
cide­contaminated samples resulting in greater 
absorbance than that in the fungicide­free lettuce 
leaves. According to that reported by Sánchez et al. 
(2010) and Jamshidi et al. (2016), increase of the 
absorbance in NIR region after 900 nm could be due 
to the C­H absorption. 
     Based on the results, it can be said that the 
Vis/NIR spectroscopy combined to the multivariate 
data analysis have potential to be applied as an alter­
native method to estimate dithiocarbamate concen­
trations on lettuce leaves. However, the success and 
widespread adoption of this method also depends of 
suitable measurement practices. It is important that 
measurements are performed using a spectrometer 
with high spectral resolution, after the time required 
to warm­up the light source, and after adequate 
spectrometer calibration (proper sampling of refer­
ence standard). Additionally, important factors to 
achieve good results include the standardization of 
the measurement points in the samples, the homo­
geneity of the target area, and the positioning of 
samples on a black non­reflective panel with the pur­
pose of prevent the light reflection going through the 
leaf. Another essential aspect is related to the inci­
dence angle of the light bunch, which is emitted by 
the light source over the sample and directly influ­
ences the light reflection by sample (Steidle Neto et 
al., 2017). Although the effects of the abovemen­
tioned individual error sources may appear small, 
their combined presence may result in measure­
ments with significant errors, influencing the spectral 
reflectance independently of dithiocarbamate con­
centrations, as well as, the model predictions. 
     Vis/NIR spectral reflectance measurements com­
bined to the partial least square analysis showed to 
be feasible and effective as a promising method for 
estimating concentration of dithiocarbamate fungi­
cide residues on intact lettuce leaves. The developed 
PLS model allowed the detection and quantification 
of the dithiocarbamate without any preparation 
and/or processing of lettuce samples. This method 
offers advantages over traditional laboratory meth­
ods, such as real­time measurements and the possi­
bility to be built into the industrial processing lines, 

lower than the maximum residue limit established by 
EFSA from the fourth day after spraying. 
     According to Lopes and Steidle Neto (2018) 
detrending, which was the most appropriated spec­
tral pre­treatment in this study, is usually used to 
remove specific data offsets that are not related to 
the chemical or physical properties of interest for the 
chemometric modeling. Sánchez et al. (2010) also 
developed PLS models for predicting pesticide 
residues on intact peppers using near­infrared 
reflectance spectroscopy, applying detrending 
method for scatter correction in data, and obtaining 
good results. Steidle Neto et al. (2016) affirmed that 
detrending was the best spectra pre­treatment when 
predicting chlorophyll content in lettuces, helping to 
remove non­linear trends in spectroscopic data, and 
consequently correcting scatter. 
     The number of latent variables considered ade­
quate for predicting dithiocarbamate concentrations 
on lettuce leaves in this study agree with Cozzolino et 
al. (2011), who affirmed that if more than optimum 
number of latent variables is used, the solution can 
become over­fitted and the model will be very 
dependent on the dataset, giving poor predictions. 
Otherwise, using less than the optimum number of 
latent variables will cause under­fitting and the 
model will not be accurate enough to capture the 
variability in the data. This result also agrees with 
other researchers who applied spectroscopy and PLS 
models to non­destructively predict of pesticide con­
centrations. Jamshidi et al. (2016) showed that 5­7 
latent variables were required for PLS models when 
predicting diazinon residues on cucumbers. 
     Although the proposed model tended to underes­
timate the pesticide concentrations, slight overesti­
mates were verified for low dithiocarbamate concen­
trations, evidenced in this study until the fifth day 
after spraying. 
     The method based on spectral reflectance provid­
ed sufficient sensibility for detecting and quantifying 
concentrations lower than the maximum residue 
limit allowed by the European Food Safety Authority 
for mancozeb­based dithiocarbamates on lettuces (5 
mg kg­1).  Makino et al.  (2009) used spectral 
reflectance for detection and quantification of chlor­
pyrifos residues on apple surface, also demonstrating 
the feasibility of spectroscopy for estimating low con­
centrations of pesticide residues in fruits. 
     According to Acharya et al. (2012), the spectral 
features can be assigned to overtone and combina­
tion bands of various C­H and N­H bonds within these 
molecules. Considering that the chemical structure of 
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enabling large­scale individual analysis in 100% of the 
lettuces. 
     The spectral behavior of other vegetable species 
certainly will differ from that of lettuce, as well as, 
different dithiocarbamate types (thiram, metiram, 
propineb, zineb, ziram, and maneb) tend to cause 
variations in the estimating models. Future research­
es will be performed in order of evaluating these 
effects when detecting and quantifying fungicide 
residues in vegetable crops. The results of these new 
studies will complement the findings of the present 
work, making this a more wide­ranging method. 
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