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Abstract. This paper analyses the impacts of the Farm to Fork strategy (F2F) target 
of 25% organic farmland by 2030 in the EU using a farm level model. Two approach-
es are deployed to model conversion to organic agriculture. The first one, the endog-
enous approach, operates under the assumption that farm conversions to organic 
production result from assessing the utility difference between organic and conven-
tional production systems. The exogenous approach relies on econometric estima-
tion of the likelihood of farms to convert to organic driven by a combination of mon-
etary and non-monetary drivers. The simulated impacts of the F2F target at the EU 
level vary depending on the chosen methodology. Gross income changes range from 
+3.8% under the endogenous approach to -1.3% under the exogenous approach. Both 
approaches forecast decreased production (-0.5% to -15%) for most crops and animal 
products upon achieving the organic target.

Keywords: organic farming, farm model, IFM-CAP, Farm to Fork strategy, EU Green 
Deal, EU.
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1. INTRODUCTION

The Farm to Fork (F2F) strategy of the EU Green Deal (European Com-
mission, 2019, 2021) aims to stimulate the transition to a sustainable food 
system that is fair, healthy, and environmentally friendly. Among other pro-
posed solutions, such as nutrient surplus reduction, pesticide risk reduction, 
antimicrobial use reduction, or increase of biodiversity, one of the key tools 
to achieve the transition is to promote the expansion of organic farming. The 
F2F strategy sets the target of 25% of the EU’s agricultural area under organ-
ic farming by 2030 (European Commission, 2020). Currently, only 9% of the 
utilized agricultural area is under organic farming in the EU. Therefore, to 
achieve the F2F goal, a sizable agricultural area (17%) would need to convert 
from conventional to organic agriculture. 

Organic farming is significantly different from conventional farming, 
particularly regarding management practices and productivity (Alvarez, 2021; 
Baker et al., 2020; Bonfiglio et al., 2022; Reganold & Wachter, 2016; Watson 
C.A. et al., 2002). For this reason, the conversion of a large share of the agri-
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cultural area to organic farming may have a significant 
effect on the EU agri-food system. More specifically, 
while organic farming is generally perceived to have 
positive environmental impacts, concerns exist about 
potential decreases in food production when shifting 
from conventional to organic farming methods (Meem-
ken & Qaim, 2018; Reganold & Wachter, 2016; Seufert 
& Ramankutty, 2017; Timsina, 2018). The potential pro-
duction decrease associated with reaching the F2F target 
raises the issue of food security both in the EU and glob-
ally, given that EU is a major food producer and exporter. 
The main contribution of this paper is to shed light on 
these issues by developing (individual) farm level mod-
eling of EU-wide organic conversion in order to bring 
quantitative insights into the potential production effects 
of reaching the 25% organic target in the EU.

Four main modeling approaches have been applied 
in the literature to simulate the impacts of conversion 
to organic farming: (i) spatially explicit agronomic/bio-
physical models, (ii) partial equilibrium agro-economic 
models, (iii) individual or representative agro-economic 
farm models1, and (iv) non-conventional models. In the 
first approach, the interplay between nutrient inputs, 
spatially explicit biophysical characteristics and outputs 
are explored to analyze the impacts of the conversion to 
organic production on the whole food system. The geo-
graphic scope of this approach spans from the regional 
level to world coverage by applying different spatial reso-
lution depending on the study objectives (Barbieri et al., 
2019; Jones & Richard Crane, 2014; Lee et al., 2020; Mul-
ler et al., 2017). The second approach relies on partial 
equilibrium models, which depict the behavioral inter-
actions of economic agents within the agriculture sector 
at the regional, country or global level (Barreiro Hurle 
et al., 2021; Bremmer et al., 2021). In the third approach, 
the study scale is either the individual (Acs et al., 2007, 
2009; Kerselaers et al., 2007) or representative farms 
(Smith et al., 2018), where the allocation of activities is 

1 The main distinction between ‘representative’ and ‘individual’ farm 
modelling considered in this paper refers to the representation of 
production and endowments structure of farms. The ‘representative’ 
farm model considers a virtual farm aggregating the production and 
endowments of several farms. It represents production and endow-
ments structure averaged over all farms across considered dimen-
sions (e.g. by production specialization, farm size, regional level). The 
‘individual’ farm model refers to the production and endowments of a 
real (individual) farm. Note that in statistical terms when representa-
tive sampling is deployed, an individual farm included in the sample 
is representative of the larger farm population from which it is drawn 
in a way that it reflects the characteristics of the farm population (so 
that the sample can accurately represent the whole population). Thus, 
the farms used in the model are individual farms that represent the 
EU farming population. However they are not average ‘representative’ 
farms that are used in models that aggregate many farms into one (e.g. 
the CAPRI model).

usually modeled as a constrained optimization problem. 
This approach captures more disaggregated behavioral 
choices. Finally, the last approach relies on non-conven-
tional modeling methods like agent-based modeling and 
system dynamics (Rozman et al., 2013; Xu et al., 2018).

Each of these modeling approaches has several 
limitations in modelling organic conversion. The main 
limitation of the agronomic/biophysical models is that 
they do not consider the economic dimension of con-
version, neither at the farm level nor at the aggregate 
regional or country level. Hence, they cannot capture 
the organic conversion of specific farms. They usually 
assume full conversion of the modeled food system and 
then compare it with the situation before the conver-
sion (Barbieri et al., 2019; Muller et al., 2017). Although 
partial equilibrium agro-economic models consider the 
economic dimension of organic conversion by construc-
tion they do not capture micro behavior at the farm 
level. Instead, they attempt to model organic production 
and input relationships by adjusting general productiv-
ity parameters (e.g., yields, input use) and/or introduc-
ing organic-related aggregate production constraints. 
Representative farm models suffer from similar limita-
tions as the food system and partial equilibrium agro-
economic models. However, they can capture in greater 
detail some organic farm practices and their differ-
ences across farm types. They also usually assume full 
conversion to organic production of all modeled farm 
types (Smith et al., 2018). Finally, regarding the non-
conventional models, agent-based models can capture 
the organic conversion and specific aspects of organic 
farm practices in more detail. However, they are not 
applied at a larger geographical scale due to their high 
data requirements (Kremmydas et al., 2018). In contrast, 
system dynamic models may represent well the interac-
tions between the elements of the system and provide 
answers to strategic decisions, but they cannot model 
details of organic conversion and organic farm practices 
(Richardson, 2011).

Applying an individual farm-level model for mod-
eling organic conversion has several advantages. First, 
since organic conversion choice and organic produc-
tion practices are farm-specific, applying an indi-
vidual farm-level approach can offer a more accurate 
representation of organic farming without imposing 
strong assumptions on farmers’ behavior. For example, 
detailed agronomic and behavioral constraints repre-
senting the technological differences between the two 
systems (conventional and organic) can be introduced. 
Second, individual farm models incorporate individual 
farms and technology representation, enabling the selec-
tion of specific farms that are more likely to convert. A 
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third advantage is their effectiveness in modeling policy 
incentives, especially those targeting environmental and 
organic production. Indeed, the Common Agricultural 
Policy (CAP), among others, includes farm-specific envi-
ronmental measures (including support for organic pro-
duction) which aim to improve the environmental and 
climate performance of the EU farming sector. Finally, 
an individual farm-level model can provide distribution-
al effects across the farm population, allowing for more 
nuanced impact analyses for policy making (Buysse et 
al., 2007; Ciaian et al., 2013).

However, the individual farm models applied in 
the literature to simulate conversion to organic produc-
tion exhibit several limitations. First, they rely solely 
on expert knowledge, which restricts their applicability 
to a broader geographical scale, such as the entire EU. 
Indeed, they are either applied to a single farm (Acs et 
al., 2007) or a single country (Kerselaers et al., 2007). 
Moreover, these models do not develop a methodol-
ogy for selecting specific farms to undergo conversion; 
instead, they assume the conversion of all farms.

This paper aims to fill the gap in the existing lit-
erature on individual farm modelling of organic con-
version. Specifically, it focuses on the challenges of 
adjusting an EU-wide model – IFM-CAP (Individual 
Farm Model for Common Agricultural Policy Analy-
sis) – to account for changes in farm performance and 
management practices associated with organic produc-
tion. Achieving these model adjustments requires con-
ducting several econometric estimations to identify the 
difference in performance between organic and con-
ventional production across individual farms in all EU 
countries. This is due to the scarcity of readily avail-
able expert knowledge for such a wide geographic area 
encompassing a heterogeneous range of production sys-
tems. To fully leverage the farm-level model, we con-
sider behavioral constraints that are relevant to organic 
farming such as crop rotation, nitrogen management, 
maximum stocking density, feed self-sufficiency and 
minimum share of fodder in the diet, respecting the 
heterogeneity across the EU farms. Additionally, to 
simulate the effects of the F2F organic target on farm 
income, production (quantities and value) and produc-
tion costs, we consider two alternative approaches to 
select specific farms for conversion to organic produc-
tion. This differs from the modeling approaches applied 
in the existing literature, which typically assume 100% 
conversion. The first approach, referred to as ‘endoge-
nous’ approach, is based on profitability (utility maxi-
mization) differences between organic and convention-
al production systems. Under this approach, the subset 
of the most profitable farms are assumed to convert to 

organic farming. The second approach, referred to as 
‘exogenous’ approach, employs a probabilistic frame-
work to econometrically estimate the likelihood of 
farms converting to organic production. The underly-
ing idea is that conventional farms sharing characteris-
tics similar to organic farms are more likely to convert 
to organic farming. In econometric estimation, we take 
into account both monetary (e.g. subsidies, intensity of 
input use) and non-monetary factors (e.g. farm struc-
tural characteristics) that are often found in the litera-
ture to affect the likelihood of farmers adopting organ-
ic agriculture (Canavari et al., 2022; Sapbamrer, 2021; 
Serebrennikov et al., 2020; Willock et al., 1999).2 Using 
Farm Accountancy Data Network (FADN), we conduct 
a comparative assessment of multiple probability mod-
els to identify the best-performing approach, which is 
then utilized for the selection of a subset of farms con-
verting to organic production. 

The paper is structured as follows. The next section 
describes the methodology of modelling organic pro-
duction in the IFM-CAP. Section 3 presents the meth-
odology applied for the selection of converting farms to 
organic production. Section 4 describes the simulated 
results, while Section 6 concludes.

2. MODELING ORGANIC PRODUCTION 
IN THE IFM-CAP MODEL

The IFM-CAP model is a static positive mathemati-
cal programming model, which solves a set of micro-
economic models reproducing the behavior of individu-
al farms (Kremmydas et al., 2022). The model assumes 
that farmers maximize their expected utility of income 
subject to technical and policy constraints related to 
resource endowments, production relationships, and 
CAP policy. IFM-CAP models 81,107 individual farms 
from the 2017 FADN database3, covering all 27 Mem-
ber States (MS). Its calibration against the 2017 FADN 
data is performed with a Positive Mathematical Pro-
gramming (PMP) approach. The IFM-CAP model has 
been used in various past studies for ex-ante CAP poli-
cy assessments at the EU level (European Commission, 
2018a; Louhichi et al., 2017, 2018; Petsakos et al., 2022). 

2 For more details see Supplementary material Part A.
3 The FADN is a European system of farm surveys that take place every 
year and collect structural and accountancy information on EU farms, 
such as farm structure and yield, output, land use, inputs, costs, subsi-
dies, income, and financial indicators. The FADN data is unique in the 
sense that it is the only source of harmonized and representative farm-
level microeconomic data for the whole European Union. Farms are 
selected to take part in the survey based on stratified sampling frames 
established for each EU region.
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The generic mathematical formulation for an indi-
vidual farm that follows conventional production system 
is as follows:4

 (1)

subject to:

 (2)

where i ∈ set of “animal activities”

 (3)

where i,j indices denote the agricultural (crop and live-
stock) activities, m denotes marketable commodities 
(i.e., feed purchased and farm output sold in the market 
or used as animal feed),5 t represents the resource and 
policy constraints related to activities (e.g., agricultural 
land, greening obligations), while ν denotes animal feed-
ing constraints and n the different types of nutrients or 
energy requirements. Regarding the decision variables, 
xi is the level of activity i (hectares and head) and ζi,m is 
the amount of feed m given to animal activity i (tons per 
head). Regarding the rest of the elements, E[gmi] is the 
expected gross margin for activity i (EUR/ha or EUR/
head), e denotes decoupled payments (EUR), di is the 
intercept of the activity-specific behavioural (implicit 
cost) function (the linear PMP terms), Qi,j is its slope (the 
nonlinear PMP terms - a diagonal positive semi-definite 
matrix), dF

i,m is the linear term of the behavioural func-
tion related to animal feeding, QF

i,m is the nonlinear part 
of the same function (a diagonal positive semi-definite 
matrix), φ is the farmer’s constant absolute risk aversion 
(CARA) coefficient and Ωij is the covariance matrix of 
activity revenues per hectare or per head. Inequality (2) 
represents the general structure of the animal feeding 
constraints, where AF

n,m,ν is a matrix of coefficients rep-
resenting the content of nutrient n in feed m, while bF

i,n,ν 
is the quantity limit of nutrient n given to animal i (lower 

4 The optimization problem is specific to each farm. However, for sim-
plicity we have suppressed the index for farms, f, in all equations. 
5 Mathematically this means that the set of feeds in IFM-CAP, and the 
set of farm outputs, some of which can be used as feeds themselves, are 
subsets of the set of all marketable commodities included in the model.

or upper, or satisfied as equality),6 and θF
i,n,ν is the shad-

ow price of the ν-th feeding constraint. At,i are coeffi-
cients for resource and policy constraints, bt are available 
resource levels and upper bounds for policy constraints, 
while θt are their corresponding shadow prices. 

The expected activity gross margin is defined as:

 (4)

where yi,m is the expected yield of output from activity i, 
pm denotes the expected price for commodity m (including 
for feed and young animals), ξm are estimated production 
losses, vi are coupled payments linked to activity i, and Ci 
are the accounting variable costs. The calculation of vari-
able costs differs between crop and animal activities. For 
crops, Ci = ∑kci,k, k are intermediate inputs (i.e. fertilizer, 
seeds, crop protection, etc.) and ci,k are the per hectare 
costs of each input type. For animals, Ci = ∑m ∈ Feedpmζi,m, 
feed m given to animal activity i is evaluated at price pm.

The model formulation for organic production sys-
tem changes as follows (the changes are highlighted in 
bold letters):

 (5)

where:

 (6)

for crops, 

 (7)

for animals, 

 (8)

subject to:

6 This equation ensures that animal-specific nutrient demands (require-
ments) are met from on-farm produced or purchased feed (supply). 
Balancing feed supply (availability) and demand (requirements) is done 
through nutrient values. Additionally, we set lower and upper thresh-
olds for feed in animal diets for each animal category to align feed allo-
cation with animals’ physiological requirements and prevent overuse or 
underuse of specific feeds in the diet (Kremmydas et al., 2022).
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 (9)

where i ∈ set of “animal activities”

 (10)

The following are the main model differences 
between conventional and organic management:
- The parameters pG

m, yG
i,m, cG

i,k and AF,G
n,m,ν capture 

percentage differences between conventional and 
organic farming in prices, yields, costs and the con-
tent of nutrients in feeds, respectively.

- A modified set of technical constraints, t’, is consid-
ered in equation (10), which adds farm practices spe-
cific to organic farming, namely crop rotation, nitro-
gen management, maximum stocking density, feed 
self-sufficiency and minimum share of fodder in the 
diet. Additionally, the CAP greening constraints are 
removed because organic farms are exempted from 
complying with the greening requirements. 
The next sections provide a more detailed descrip-

tion of these model changes introduced in IFM-CAP for 
organic farming.

2.1 Output prices and yields of organic crops 

The findings from the literature indicate that in 
general, organic farms tend to achieve lower crop 
yields and to obtain price premiums compared to con-
ventional farms (Alvarez, 2021; De Ponti et al., 2012; 
Offermann & Nieberg, 2000; Seufert et al., 2012). To 
account for these effects, we apply a log-linear econo-
metric specification to estimate the relative differ-
ence in the expected output prices and yields of crops 
between organic and conventional production systems. 
The advantage of the econometric approach is that we 
can control for a series of factors potentially affecting 
prices and yields, which can bias the estimated results 
if not accounted for. As covariates, we use a set of farm 
structural characteristics such as farm specialization, 
farm size, altitude of the farm, presence of natural con-
straints, the share of irrigated land and time dummy. 
To isolate the effect of organic farming on yields and 
prices, we do not include proxies of input use in the 
econometric estimations due to their high correlation 
with the organic status of the farm. Their inclusion in 
the estimated equation would likely bias downwards the 
estimates (particularly yield gaps).7 

7 For more details on the summary statistics of costs, prices and yields, 
distribution of organic farms, and econometric models see supplemen-
tary material Part B.

The estimations are based on FADN data for 2007-
2016, covering the whole EU. We perform estimations 
for main crop products and for different geographi-
cal regions (FADN regions) to account for heterogene-
ity in technology, local characteristics, and farming sys-
tems. The estimated price and yield differences are then 
pooled together by five macro-regions: Central Europe 
North, Central Europe South, Northern Europe, South-
ern Europe and UK & Ireland. The median values8 are 
extracted for each macro-region and used as price, pG

m, 
and yield, yG

i,m, differences between conventional and 
organic farming in the IFM-CAP model.

Overall, the estimated results show that organic 
farms attain higher output prices and lower yields than 
conventional farms. For most crops and macro-regions, 
the difference in prices varies between around 10% and 
60%, while for yields, between -5% and -45%. The high-
est absolute difference in prices and yields is observed 
in UK & Ireland and Central Europe North, while the 
smallest differences tend to be in Southern Europe.9 

2.2 Variable cost of organic crop production 

Due to different technologies applied by organic 
and conventional farms, variable crop production costs 
are expected to differ between the two farming systems. 
Therefore, we conduct econometric estimations for four 
types of variable cost categories (per-hectare) – seeds, 
fertilizers, crop protection, and other crop-specific costs 
– to identify the differences induced by different tech-
nologies applied by the two farming systems. A linear 
econometric model was used to estimate these differen-
tials between organic and conventional farms. The esti-
mations are based on FADN data for 2007-2016, covering 
the whole EU.10 Given that technologies and production 
mixes are expected to differ between farm types and 
regions, we econometrically estimate cost differences for 
each FADN region and for each production specialization 
separately. The estimated percentage difference in costs, 
cG

i,k, between organic and conventional farms for each 
cost category, region, and farm specialization are then 
used to adjust the costs for converted farms in IFM-CAP.

Overall, the estimates indicate that organic farms 
generally have lower variable costs than conventional 
farms across most farm specializations and cost cat-
egories. This is particularly the case for fertilizers and 

8 The median price and yield differences between conventional and 
organic farming are expected to be robust against potential data outliers 
and model misspecification.
9 For more information see Table A1 and Table A2 in Appendix.
10 For more details, see the part of ‘Part B: Econometric estimations’ in 
the supplementary material.
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crop protection costs. However, more mixed results are 
obtained for seeds and other crop-specific costs, where 
higher values for organic farms than conventional farms 
are more common across different farm specializations.11 

2.3 Organic livestock output and feed prices, yields and 
feed efficiency

Similar as in the case of crops, for dairy milk, we esti-
mated the differences in prices and yields between organic 
and conventional farming using FADN data for 2007-2016, 
covering the whole EU. Data for other livestock activities 
are not directly available in the FADN. These activities are 
derived from the livestock module in IFM-CAP (Krem-
mydas et al., 2022). Thus, for other livestock activities, we 
performed an econometric analysis of yield and price dif-
ferences between conventional and organic farms using 
derived data from the livestock module in IFM-CAP for 
the period 2012-2016. As in the case of crops, the estima-
tions were done by using the log-linear regression models 
of livestock yields and prices (for different FADN regions) 
by accounting for a set of explanatory variables relating to 
farm characteristics and to the characteristics of the oper-
ating environment. Note that in some cases (e.g. poultry 
meat) when data did not allow to conduct econometric 
estimations (e.g. small sample size), we relied on literature 
estimates from the meta-analysis conducted by Gaudaré et 
al. (2021). Their study compared the evidence from litera-
ture on the productivity and feed-use efficiency between 
conventional and organic livestock animals. 

Overall, organic livestock farms have higher output 
prices and lower yields than conventional farms. For 
most crops and macro-regions, the difference in prices 
varies between around 5% and 50%, while for yields, 
between -1% and -25%. The highest absolute differ-
ence in prices seem to be in Northern Europe, while the 
smallest differences tend to be in Central Europe South, 
Southern Europe and UK & Ireland. For yields, there is 
no clear pattern across macro-regions.12

IFM-CAP models explicitly animal feed in terms of 
its physical quantity and nutrient value by balancing feed 
demand (determined by animal nutrient requirements) 
and feed supply/availability (determined by on-farm 
produced and purchased feed and its feed nutrients con-
tent). The utility maximization problem then determines 
endogenously the most cost-efficient selection of specific 
feeds in each animal’s diets (Kremmydas et al., 2022)13. 

11 For more information see Table A3 in Appendix.
12 For more information see Table A4 and Table A5 in Appendix. 
13 Livestock costs and feed requirements per head in IFM-CAP are 
derived based on FADN data and external data sources. This was 
applied because FADN does not contain all relevant information needed 

In line with the prerequisite to use organic feeds in 
organic livestock farms, we use price differences between 
organic and conventional feed, pG

m, estimated for crops 
in the previous section for organic purchased feeds. Since 
most organic crop prices are usually higher than conven-
tional crop prices, the cost of purchased feed is expected 
to be greater in organic than in conventional farms. Fur-
ther, according to the Gaudaré et al. (2021), organic live-
stock farming shows lower feed efficiency by between 6% 
and 20% as compared to conventional farms. Following 
this evidence, we apply a 13% decrease in organic feed 
efficiency in IFM-CAP, AF,G

n,m,ν, by reducing nutrient 
content in the organic feed as compared to conventional 
feed. The lower feed efficiency for organic farms may be 
explained, among others, by differences in feeding strate-
gies (e.g., a higher share of rough fodders in animal diets 
in organic compared to conventional farming) and dif-
ferences in herd management practices as compared to 
conventional farms (e.g., more extended resting period 
between lactations for dairy).

2.4 Behavioral constraints of organic farms

As indicated in equation (10), we consider five 
behavioral constraints in IFM-CAP identified in the lit-
erature to characterize the organic production system 
and differentiate it from the conventional system: crop 
rotation, nitrogen management, maximum stocking 
density, feed self-sufficiency, and minimum share of fod-
der in the diet (Barbieri et al., 2017; Reimer et al., 2020; 
Gaudaré et al., 2021).

Crop rotation

In organic farming, crop rotation is used to manage 
the nutrient balance in the soil, address weed problems 
and prevent soil diseases and insect pests. It also facili-
tates farmers to substitute for chemical fertilizers and 

to parameterize the feed in IFM-CAP (in contrast to crop activities). 
FADN contains only aggregated economic data on feed availability and 
costs at farm level. The disaggregated feed data such as feed use by each 
animal category, nutrient content of feed, animal nutrient requirements 
are not available in FADN. The High Posterior Density (HPD) estima-
tion approach was used to estimate animal-level feed data by com-
bining FADN and external data, where external data are used only as 
prior information in the estimation approach. The estimation approach 
combines these different data sources by taking into consideration the 
minimization of deviation of estimated data values from the available 
prior information, the minimization of feed costs, balancing between 
feed nutrient requirements of livestock and feed availability, and data 
constraints to ensure that the sum of animal-level feed costs is as close 
as possible to the aggregated cost values reported in FADN. For more 
details see (Kremmydas et al., 2022).
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plant protection, which is strictly limited in the organic 
production system (Reganold & Wachter, 2016; Baker 
et al., 2020). Ideally, modeling crop rotation requires a 
multi-annual model with detailed agronomic informa-
tion at the plot level (Castellazzi et al., 2008; Dury et al., 
2012). Since the IFM-CAP model is a comparative static 
model and does not consider time dynamics, we model 
differences in crop rotation between organic and con-
ventional management indirectly by introducing empiri-
cally estimated farm-specific flexibility cropping con-
straints for main crops as follows:14

Sc
org ≤ (1 + rc) ∙ Sc

conv    ∀ c (11)

Where Sc
org is the share of main crop c in total area 

of farm converted to organic production, Sc
conv is the 

observed share of main crop c on conventional farm, 
and rc is a crop-specific coefficient representing the 
reduction of the main crop share due to the farm con-
verting to organic.

The motivation for applying flexibility constraint 
(11) comes from the observation that organic rotations 
are more complex and diversified than conventional 
ones. For example,(Barbieri et al., 2017) based on a 
meta-analysis of literature evidence comparing crop 
rotation differences between organic and conventional 
farming, Barbieri et al. (2017) estimated that, on aver-
age, at the global scale, organic rotations last for 4.5 ± 
1.7 years. This duration is approximately 15% longer 
than their conventional counterparts and include 48% 
more crop categories.

The f lexibility cropping constraints (11) repre-
sent the extensification of the main crops’ area allowed 
under the organic production system in IFM-CAP. It 
sets the crop specific maximum thresholds that a crop 
can represent in the total farm area such that to repli-
cate the distribution observed on organic farms. This 
modeling of crop rotation means that the most frequent 
crops of the rotation will be cultivated less frequently 
by organic farms than by conventional farms reflecting 
the observed distribution. The rc coefficient is estimated 
based on FADN data15 aiming to shift the distribution 
of the area shares of the crops of the converted farms 
towards the distribution of area shares empirically 
observed among organic farms.

14 We introduce the flexibility constraint for the following main crops: 
soft wheat, durum wheat, barley, grain maize, fodder maize, rape seed, 
sugar beet, sun flower, potatoes.
15 For more details on the estimation methodology, see supplementary 
material Part C.

Nitrogen management 

The organic farm’s nitrogen management is expected 
to impact the area devoted to the cultivation of nitrogen-
fixing crops. Organic farms are expected to cultivate 
more nitrogen-fixing crops than conventional farms, pri-
marily to maintain land fertility through the ability of 
these crops to fix nitrogen from the air and thus provide 
a source of nitrogen that could serve as a substitute for 
inorganic fertilizers (Barbieri et al., 2017). Additionally, 
the EU organic regulation 848/2018 requires the cultiva-
tion of leguminous crops by organic farms to maintain 
the soil’s fertility and biological activity. Farms can also 
use other practices for nitrogen management, such as 
green and animal manure, leaving land fallow or grass-
land (Chmelíková et al., 2021; Lin et al., 2016).

Modeling the farm’s nitrogen management is rela-
tively complex and requires information unavailable in 
FADN (Küstermann et al., 2010; Thomas, 2003). Moreo-
ver, this is further complicated because nitrogen man-
agement practices could be very heterogeneous across 
organic farms, with some not using nitrogen-fixing 
crops. Indeed, according to FADN data, around 40% of 
organic farms did not cultivate nitrogen-fixing in the EU 
in 2017, varying between 19% and 77% across different 
farm specializations. Instead, according to FADN data, 
organic farms without nitrogen-fixing crops have a sig-
nificantly higher share of fallow land and grassland in 
the total land than farms that cultivate nitrogen-fixing 
crops. This higher share is likely explained by the fact 
that the farms without nitrogen-fixing crops maintain 
land fertility through animal manure, fallow land, or 
grassland management.

To model nutrient management in IFM-CAP, we 
apply a simplified approach to model nitrogen man-
agement. We combine the agronomic knowledge with 
a data-driven approach to approximate the changes 
that converted farms need to undertake in their area 
allocation to account for nutrient management prac-
tices. More specifically, we assume that farms that 
convert to organic farming will cultivate a more sig-
nificant share of their arable area with nitrogen man-
agement related crops16 determined by the following 
flexibility constraint:

(Sc
org) ≥ (1 + η) ∙ (Sc

conv) (12)

Where, N is the set of the crops related to nitrogen 
management, Sc

org and Sc
conv are the area shares of crop 

16 The nitrogen related crops in IFM-CAP are soybean, pulses, other 
fodder, permanent grassland and fallow land. 
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c in total farm area when in the organic and conven-
tional status, respectively, and η is a farm specific coeffi-
cient representing the increase of nitrogen related area in 
organic farming compared to conventional ones.

The constraints (12) defines the minimum area share 
of nitrogen related crops that organic farms need to 
maintain on farm. These minimum area shares are farm 
specific and are defined in such a way that the distribu-
tion of the nitrogen-fixing, fallow and grassland area 
shares of the converted farms shifts such that to resem-
ble the observed ones on organic farms in FADN.17 

Maximum stocking density requirements

The EU organic regulation (European Commission, 
2018) requires that the total stocking density does not 
“exceed the limit of 170 kg of nitrogen per year and hec-
tare”. The regulation also indicates the number of live-
stock units (LSU) per hectare.

Based on this, we introduce the maximum stocking 
density constraint in the IFM-CAP for organic farms 
specifying that the total livestock units multiplied by the 
maximum number of hectares allowed per one livestock 
unit18 across all animal categories of the farm cannot 
exceed the total farm area. This constraint requires the 
converted farms to adjust their number of animals to the 
available farm area such that to respect the maximum 
thresholds set by the EU organic regulation.

Feed self-sufficiency

The organic production system is characterized by a 
high degree of self-sufficiency of animal feed to reduce 
the risks of uncertain availability of organic feed on the 
market (especially for fodder). It also allows to sustain 
a better nutrient management at the farm level (Lamp-
kin et al., 2017). To account for this aspect of an organic 
production system, we consider a feed self-sufficiency 
constraint in IFM-CAP. The constraint is based on the 
requirement set by the EU organic regulations regard-
ing the animals’ feed sourcing. The legislation requires 
a minimum percentage of the animal’s feed to come 
from on-farm production: 60% for bovine and ovine 
and caprine and 30% for porcine and poultry (European 
Commission, 2008, 2018b). In IFM-CAP, we constraint 
the maximum share of purchased feed at the farm level 
in line with the thresholds provided in the EU organ-

17 For more details on the estimation of the minimum shares see the 
supplementary material Part C.
18 For more information see Table A6 in Appendix.

ic regulations (e.g., 40% for bovines). The constraint 
ensures that the purchased feed (expressed in dry matter 
terms) does not exceed the maximum share of the total 
feed use at the farm level.

Minimum share of fodder in diet

Organic farms usually use a higher proportion of 
fodder in animal feed due to the lower possibility of 
acquiring organic concentrate feed on the market (lower 
diversity and higher prices than for conventional feed) 
and the rules set by the EU organic regulation (Flaten & 
Lien, 2009; Gaudaré et al., 2021; Lampkin et al., 2017). 
The EU organic regulations (European Commission, 
2008, 2018b) require that all animals should have access 
to roughage. For bovine, ovine, and caprine animals, the 
percentage of dry matter that should come from rough-
age, fresh or dried fodder, or silage is 60%. However, this 
percentage may be reduced to 50% for female animals in 
milk production for a maximum period of three months 
in early lactation. In addition, the regulation specifies 
that roughage, fresh or dried fodder, or silage should be 
added to the daily ration for porcine and poultry, but 
without providing a specific minimum share.

Following the EU organic regulations, we introduce 
a constraint in IFM-CAP that defines the minimum 
share of fodder in the animal diet (represented in dry 
matter) for each farm animal. We use a minimum share 
57.5% fodder for bovine, ovine and caprine animals19 
and 0.5% for porcine and poultry animals20. 

3. THE SELECTION OF CONVERTING FARMS

Alongside modelling the effects of organic conver-
sion at the farm level, the selection of specific farms that 
convert to organic production system needs to be con-
sidered in an individual farm model. This is particularly 
relevant for policies that aims to achieve a partial con-
version to organic such as the F2F strategy which sets 
the 25% area target. To the best of our knowledge, there 
is no consistent theoretical framework available in the 
literature that would provide modelling framework for 
selecting the farm that will convert. We consider two 
alternative selection approaches that build on different 

19 This share is calculated as follows: [60% for nine months]*(9/12) + 
[50% for three months]*(3/12)
20 Note that the 0.5% share for porcine and poultry is set ad-hoc since 
a specific value is not provided in the regulation. This share is based on 
literature findings indicating that porcine and poultry in organic farms 
often have a proportion of their diet in form of roughage (e.g. Her-
mansen et al., 2004; Sossidou et al., 2015).
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grounds. One is based on IFM-CAP modeling results 
(utility maximization) and is referred to as ‘endogenous’ 
approach. The second one is based on external driv-
ers affecting organic conversion determined outside the 
IFM-CAP model referred to as ‘exogenous’ approach. 

3.1 Endogenous selection

In the endogenous approach, we assume that the 
propensity to convert is proportional to the utility dif-
ference between conventional production system and 
organic production system. The endogenous selection 
approach solely relies on the IFM-CAP model simula-
tion results. First, we simulate the utility obtained with 
the conventional farming practices in place by solving 
the utility maximization problem outlined in equa-
tions (1) to (4), Uconv = E[U]. Second, we run the utility 
maximization problem of organic production provided 
in equations (5) to (10), Uf

org = Ef[U]’. Finally, we order 
farms in decreasing order in terms of utility difference 
between organic and conventional farming obtained for 
each farm, ∆U = Uorg - Uconv. The best-performing farms 
are selected to convert to the organic production sys-
tem. The number of selected converting farms depends 
on the simulated scenario (e.g. on the organic area tar-
get considered).

3.2 Exogenous selection

The exogenous approach is based on estimation 
of the likelihood of individual farms converting to 
the organic farming using FADN data. This approach 
does not rely on IFM-CAP model simulation results 
but is exogenously introduced in the model based on 
results obtain from econometric estimations. Our main 
assumption is that the likelihood of conversion depends 
on the similarity of conventional farms with respect to 
organic ones: conventional farms that are more simi-
lar to organic ones − in terms of farm characteristics, 
performance, behavior and the environment in which 
they operate − are assumed to be more likely convert 
to organic farming. Farms that are already similar to 
organic ones will find it less costly to make additional 
changes to their production methods to make it in line 
with the organic farming requirements. 

Using probability models, we estimate the conver-
sion likelihood for all farms included in the IFM-CAP 
base year (i.e., for FADN farms in 2017). We apply sev-
en different probability models commonly used in the 
literature to estimate organic farm conversion: (i) lin-
ear probability model (LP), (ii) the linear probability 

model with stepwise selection algorithm (LP + SSA),21 
(iii) the logit model (LOGIT), (iv) the logit model using 
the covariates of model LP + SSA (LOGIT + SSA), (v) 
the probit model (PROBIT), (vi) the probit model using 
the covariates of model LP + SSA (PROBIT + SSA), and 
(vii) the random forest algorithm (RANDOM FOREST) 
(Basnet et al., 2018; Burton et al., 1999; Chatzimichael et 
al., 2014; Chmielinski et al., 2019; Djokoto et al., 2016; 
Genius et al., 2006; Hattam & Holloway, 2005; Läpple 
& Rensburg, 2011; Lohr & Salomonsson, 2000; Malá & 
Malý, 2013; Parra López & Calatrava Requena, 2005; 
Serebrennikov et al., 2020). The dependent variable used 
in all models is binary taking value of 1 if the farm is 
organic and 0 if the farm is conventional (non-organic). 
The choice of explanatory variables used in these mod-
els has been guided by previous empirical literature 
that suggested that several drivers may impact farmers’ 
decision to convert to organic farming. These drivers 
include quantifiable monetary factors, such as subsidies 
and input expenditures, as well as non-monetary fac-
tors, such as structural characteristics, access to farm 
organic buyers/markets, and farmer believes and atti-
tudes towards the environment22 (Canavari et al., 2022; 
Sapbamrer, 2021; Serebrennikov et al., 2020; Willock et 
al., 1999)23. The set of selected covariates have been con-
structed using FADN data for 2014-2017 period to proxy 
these monetary and non-monetary drivers24. 

We compare the results obtained from all estimated 
probability models and choose the predictions gener-
ated by the model with the best prediction accuracy. 
FADN farms (in each MS or at the EU level, depending 

21 A stepwise selection algorithm based on the AIC criterion is applied 
to the full specification of the LP model. This selection algorithm allows 
reducing the number of covariates used in the estimation phase and, 
possibly, increasing the accuracy (goodness of fit) of the predictions. 
This reduced equation is then used to re-estimate the linear model, the 
logit and the probit model.
22 For more details see supplementary material Part A. 
23 Note that unlike studies typically done in the literature on adoption 
of organic farming (Bravo-monroy et al., 2016; Darnhofer et al., 2005; 
Fairweather, 1999; Hattam & Holloway, 2005; Kallas et al., 2009; Lohr 
& Salomonsson, 2000; Parra López & Calatrava Requena, 2005; Yu et 
al., 2014), our approach is a prediction exercise. Our aim is to assign a 
probability of conversion to FADN farms rather than apply an explana-
tory model of conversion (Shmueli, 2010). 
24 More specifically, the monetary covariates considered in the estima-
tions capture the amount of subsidies received, the performance of 
organic farms in the region relative to conventional ones, regional land 
prices, input expenditure. On the other hand, non-monetary covariates 
capture different farm characteristics such as the structural character-
istics of the farm, production specialization, the characteristics of the 
geographical location in which farm operates, the type of farm activi-
ties, crop biodiversity index, yield gaps, labor use, and the presence of 
organic farming in the region. For the full list of covariates, see part D 
of the supplementary material. 
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on the type of simulated policy target)25 are then ranked 
according to their estimated likelihood of converting to 
the organic status, and those with the highest probabil-
ity are assumed to convert to organic production.26 This 
implies that the selection of farms that convert to organ-
ic production in the exogenous approach is not neces-
sarily those that gain the most in terms of profit (utility) 
but instead, those are estimated to be most likely con-
verting determined by the various monetary and non-
monetary related factors considered in the estimations.

The prediction accuracy of the seven estimated 
models varies between 0.51 and 0.99, with most mod-
els across MS and EU having an accuracy greater than 
0.8.27 For the majority of MS, as well as for the EU as 
a whole28, the random forest algorithm outperformed 
the other six models in terms of prediction accuracy. 
Exceptions are Luxemburg and Ireland, for which the 
Logit model and the Logit model with a stepwise selec-
tion algorithm have shown a higher prediction accuracy, 
respectively. The prediction accuracy for the selected 
model is greater than 0.88 across MS and EU.

4. RESULTS

We apply the modified IFM-CAP model defined by 
equations (5) - (10) to simulate the 25% target set in the 
F2F strategy. We consider the implementation of the tar-
get both at the MS and EU levels. The ‘MS level’ imple-
mentation considers reaching the 25% target for each EU 
MS. The ‘EU level’ implementation means that the 25% 
target is set at the EU level and thus, some MS may have 
an organic area share lower or greater than 25%. We use 
those two scenarios because the actual policy implemen-
tation seems not to be clearly defined. While the target 
is set at the EU level, Member States have the primary 
obligation to implement it, but the target is not manda-
tory for them (European Commission, 2020). Thus, the 
two considered scenarios represent bounds within which 
the impact of the target is expected to lie. 

The simulated impact of the organic target were 
compared against a reference, or ‘baseline’ scenario 
which represents the base year situation without organic 

25 The estimated MS conversion probabilities are more appropriate when 
modeling the policy target set at the MS level. In contrast, the EU level 
conversion probabilities are more appropriate when modeling the policy 
target set at the EU level. 
26 For more details see supplementary material Part D.
27 The performance metric of the seven models and the best perform-
ing model for MS and EU level estimations are reported in Table A8 in 
Appendix.
28 Due to its computation complexity, the stepwise selection algorithm is 
not performed with the sample of EU as whole. 

conversion (i.e. 2017). The baseline simulations are based 
on equations (1)-(4). 

4.1 Comparison of the farms selected in the endogenous 
and exogenous approaches

Table 1 shows the share of farms ranked in the first 
two quantiles (Q1 and Q2) of the distribution selected 
for organic conversion that overlaps in both the endog-
enous and exogenous approaches. In general, the two 
selection approaches select different farms to convert. In 
both the endogenous and exogenous approaches, there is 
only 5% overlap of farms selected for conversion in the 
first quantile (Q1), and only 25% overlap in the first two 
quantiles (Q1Q2) of the distribution. The discrepancy 
in these results arise from the selection criteria used by 
the two approaches. The profit maximization rule in the 
endogenous approach selects the most performant farms 
for organic conversion, most of which, as shown in Table 
1, are different from the farms selected in the exogenous 
approach where the selection is based on the similarity 
of farms in monetary and non-monetary characteristics, 
such as farm structural characteristics.

When we break down the converting farms by farm 
specialization, we find that only for a few farm spe-
cializations, most farms selected in both approaches 
overlap (more than 60% in Q1 and Q2), namely spe-
cialist olives, specialist wine and permanent crops 
combined. This implies that drivers considered in 
the exogenous approach are relatively well aligned 
with the performance related rule in the endogenous 
approach for these farm groups. On the contrary, in 
specialist orchards, specialist granivores, specialist 
milk, mixed crops and livestock and specialist cereals, 
oilseed, protein crops, the majority of farms selected 
in one approach are generally not selected in the other 
approach and vice versa (more than 80% in Q1 and Q2). 
In other farm specializations, there is a 30% to 50% 
overlap in the selected farms between the two approach-
es for Q1 and Q2 quantiles. A similar pattern holds 
when we break down the converting farms by economic 
size. For all economic size classes, farms selected in one 
approach are generally not selected in the other: only 
between 21% and 31% of selected farms in Q1 and Q2 
overlap in both approaches (Table 1).

Additionally, as reported in Table A9 in Appendix29, 
the endogenous approach tends to select for organic con-
version mainly farms specialized in field crops, special-
ist horticulture and mixed crops and livestock, while 

29 Table A9 in Appendix shows the share of the selected farms by spe-
cialization, economic size and selection approach.
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the exogenous approach makes a more balanced selec-
tion, although it still favours certain farm types, such 
as farms specializing in permanent crops, field crops, 
specialist milk and mixed livestock farms over other 
specializations (particularly when compared to special-
ist other field crops, specialist cattle and other mixed 
crops). In terms of economic farm size, both approaches 
tend to select primarily small farms. 

4.2 The economic impacts of the 25% organic target

Simulation results show that the aggregate farm 
income30 in the EU increases compared to baseline in 
the endogenous approach and decreases in the exogenous 
approach (Table 2).31 These results are expected because 

30 Farm income is calculated as the difference between total revenues 
(output value and subsidies, excluding organic payments) and variable 
costs (e.g., fertilisers, pesticides, seeds, feeding).
31 Note that the farm income change does not include organic payments 
for the converted farms. This implies that a decrease in income repre-

the endogenous approach selects farms for conversions 
based solely on profitability, resulting in only the best-
performing farms converting and thus leading to higher 
farm income as compared to the baseline scenario. In 
contrast, the exogenous approach selects farms for conver-
sion based on factors not always directly related to profita-
bility (particularly non-monetary ones), meaning that the 
converting farms may not necessarily be the most profit-
able ones. For the target set at the EU level, the aggregate 
farm income in the EU increases compared to the base-
line by 3.8% in the endogenous approach and decreases 
by 1.2% in the exogenous approach. For the targets set at 
MS level, the farm income change is slightly smaller (3.6% 
in the endogenous approach and -1.3% in the exogenous 
approach) compared to the EU-level target (Table 2). 

The income effects are determined by changes in the 
output value and production costs. In the endogenous 
approach, both F2F target scenarios lead to an increase 

sents a proxy for the minimum budgetary support required to offset the 
income loss.

Table 1. Share of same farms in the endogenous and exogenous approaches ranked top of the conversion selection list in the EU by farm 
specialization and economic farm size.

Share of selected farms overlapping in both 
approaches in Q1 (%)

Share of selected farms overlapping in both 
approaches in Q1 and Q2 (%)

Farm specialization
Specialist cereals, oilseed, protein crops (15) 1% 18%
Specialist other field crops (16) 3% 32%
Specialist horticulture (20) 6% 38%
Specialist wine (35) 26% 74%
Specialist orchards - fruits (36) 1% 7%
Specialist olives (37) 49% 97%
Permanent crops combined (38) 12% 67%
Specialist milk (45) 1% 10%
Specialist sheep and goats (48) 6% 34%
Specialist cattle (49) 0% 10%
Specialist granivores (50) 1% 7%
Mixed crops (60) 8% 49%
Mixed livestock (70) 5% 15%
Mixed crops and livestock (80) 2% 14%

Economic farm size
Small farms 5% 31%
Medium sized farms 5% 26%
Large farms 4% 21%
Total 5% 25%

Notes: The table shows the share of overlapping farms ranked in Q1 and Q2 in both endogenous and exogenous approaches. Q1 and Q2 
refer to the first and second quantile of the ordered distribution of the two approaches. The farms that belong to the top two quantiles are 
likely to be selected to convert to organic farming.
Small farms: includes commercial farms with a standard output of less or equal to 25,000 euros; Medium farms: standard output greater 
than 25,000 euros and less or equal than 100,000 euros; Large farms: standard output greater than 100,000 euros.
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in the aggregate output value compared to the baseline: 
2.9% for the EU target and 2.8% for the MS target. The 
output value increases is driven by the organic price 
premium, which more than offsets the reduction in the 
output quantity resulting from the switch to organic 
production. In contrast, the exogenous approach results 
in a decrease in the aggregate output value for both MS 
and EU level targets: -2.3% for the EU target and -2.2% 
for the MS target. This implies that, in the exogenous 
approach, the organic price premium does not fully off-
set the reduction in the output quantity caused by the 
switch to organic production (Table 2).

Regarding production costs, they generally decrease 
across the simulated scenarios compared to the base-
line. The exception is livestock feed costs for the endog-
enous approach, which show a slight increase (Table 2). 
The cost reduction across simulated scenarios is primarily 
driven by lower expenditure on fertilizers and plant pro-
tection in the organic production system. In the endog-
enous approach, the cost reduction reinforces the increase 
in output value thus contributing to an improvement in 
farm income in both F2F target scenarios. The production 
cost reduction in the exogenous approach is not sufficient 
to offset the decrease in output value, resulting in lower 
farm income in these scenarios compared to the baseline.

Overall, the EU-level target results in slightly more 
favourable aggregate income change (either more posi-
tive or less negative) for farms compared to the MS 
target, with a stronger effect observed in the endog-
enous approach. This outcome can be attributed to the 
differences in the farm selection process for conversion 
between the two scenarios: the EU target selects from a 
combined pool of all EU farms, whereas the MS target 
involves farm selection split by MS sub-pools. In other 
word, the EU target allows a more profitable allocation 
of organic land, enabling countries in which organ-
ic farming is more profitable to exceed the 25% target, 
while other countries remain below this threshold.

When considering farm income across farm spe-
cializations, the impacts of the F2F target are relatively 
highly heterogeneous, with effects varying in magni-

tude and direction. For example, the specialist wine, 
specialist other field crops, and mixed livestock tend 
to perform better than the other specializations. Simi-
lar to above, when comparing the income performance 
between the endogenous and exogenous approaches, 
the former approach generally yields more favour-
able results across different farm specializations, but 
both approaches result in heterogeneous impacts across 
farm groups. On the other hand, the income effects are 
more consistent in magnitude and direction across eco-
nomic size classes. Under the endogenous approach, all 
economic size classes experience an improvement in 
income, while the exogenous approach results in nega-
tive impacts. Small and/or large farms tend to be more 
affected than medium-sized farms (Table 3). These 
income effects across farm types depend on a combina-
tion of performance-related factors that undergo change 
when farms convert to the organic production system. 
These factors encompass changes in yields, organic price 
premiums, and variable costs. The estimations provided 
in Section 2 reveal that they vary across regions, prod-
ucts, and farm types. The actual income effect of the 
F2F target is, therefore, contingent on the importance 
of specific product and cost types within different farm 
groups. Additionally, the proportion of farmers selected 
for conversion within a specific group plays a significant 
role. Specifically, farms groups with organic conversion 
resulting in lower yield reductions (e.g. permanent crops, 
fodder crops), higher price premiums (e.g. vegetables, 
sugar beet, pork, poultry and sheep/goats meat), greater 
cost reductions (e.g. specialist other field crops, special-
ist cereals, oilseed, protein crops, mixed livestock) and 
smaller proportion of converted farms (e.g. mixed crops, 
specialist cattle, large farms) tend to experience lower 
adverse impact or achieve more favorable income effects 
compared to other farm groups. However, the varying 
importance of these factors and the offsetting effects 
between them (e.g. reduction in variable costs versus 
reduction in yields) across farm groups determine the 
actual income outcome, which makes it complex to iden-
tify more specific income patterns across farm groups. 

Table 2. Simulated impacts of MS and EU organic targets on aggregate farm income, output value and costs in the EU (% change to the 
baseline)

Targets set at EU level Targets set at MS level

Endogenous Exogenous Endogenous Exogenous 

Farm income (excl. organic payments) +3.8% -1.2% +3.6% -1.3%
Output Value +2.9% -2.3% +2.8% -2.2%
Crops specific costs -5.3% -2.7% -4.9% -3.7%
Livestock feed costs +0.7% -5.1% +0.7% -4.0%
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Figure 1 shows more disaggregated results on the 
distribution of the farm income change among con-
verted farms for both the MS and EU organic targets, as 
well as for the two conversion selection approaches. The 
distribution of farm income change in the endogenous 
approach is shifted to the right, with most farms (more 
than 90% of converted farms) experiencing an improve-
ment in income in both targets. In contrast, the distribu-
tion for the exogenous approach is shifted to the left and 
the negative income change tends to predominate among 
converted farms (for more than 50% of converted farms) 

in both targets. As discussed previously, these results 
are explained by the fact that the endogenous approach 
selects better-performing farms for conversion, whereas 
the exogenous approach considers both monetary and 
non-monetary factors, resulting in the selection of less 
profitable farms, as shown in Figure 1.

Table 4 shows more detailed results on the changes 
in aggregate production quantity for the main crop and 
animal products. As expected, the production quantity 
decreases for most crop and animal products (between 
-0.5% and -15%) in the simulated scenarios compared to 

Table 3. Simulated impacts of MS and EU organic targets on aggregate farm income in the EU by farm specialization and economic size (% 
change to the baseline).

Targets set at the EU level Targets set at ΜS level

Endogenous Exogenous Endogenous Exogenous

Farm specialization
Specialist cereals, oilseed, protein crops (15) 4.7% -0.4% 4.2% -0.3%
Specialist other field crops (16) 6.4% 0.1% 5.8% 0.0%
Specialist horticulture (20) 2.9% 1.1% 2.8% 0.2%
Specialist wine (35) 10.1% 4.5% 9.4% 4.7%
Specialist orchards - fruits (36) 0.1% -5.1% 0.1% -5.7%
Specialist olives (37) 2.4% 2.5% 2.3% 1.3%
Permanent crops combined (38) 1.6% 0.5% 1.5% -0.3%
Specialist milk (45) 0.3% -2.0% 0.3% -1.7%
Specialist sheep and goats (48) 2.2% -3.8% 1.7% -2.4%
Specialist cattle (49) 0.1% -2.2% 0.0% -3.3%
Specialist granivores (50) 7.6% -5.6% 7.4% -6.0%
Mixed crops (60) 4.2% 0.2% 3.7% -0.6%
Mixed livestock (70) 7.4% 0.2% 7.3% 0.3%
Mixed crops and livestock (80) 10.6% -1.4% 10.5% -1.1%

Economic farm size
Small farms 3.70% -0.60% -1.50% 3.40%
Medium sized farms 3.30% -1.10% -1.00% 3.00%
Large farms 4.10% -1.40% -1.30% 3.90%

Figure 1. Probability density of the farm income change of converted farms in the EU in the MS and EU organic targets (% change to the 
baseline).
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baseline due to the generally lower yields achieved fol-
lowing farm conversion to an organic production sys-
tem. These changes tend to be more pronounced for the 
MS target than for the EU target, contributing to the 
more adverse income effects observed for the MS target 
compared to the EU target reported in Table 2.

Production effects are somehow different between 
the endogenous and exogenous approaches, with perma-
nent crops and animal products having smaller decreas-
es in the former than the latter approach. This result is 
expected because, by design, the endogenous approach 
selects better-performing farms for conversion compared 
to the exogenous approach. For arable crops, the results 
are mixed between the endogenous and exogenous 
approaches, although the production changes tend to be 
greater in the former than the latter approach (Table 4). 
These differences in production changes are driven by 
the types of farms selected in a given approach. In the 
endogenous approach, farms specialized in some arable 
crops (e.g. field crops) are selected to a greater extent 
than in the exogenous approach. The reverse is valid for 

some permanent crops and animal activities (e.g. spe-
cialist wine and specialist milk), where a greater share 
of farms tend to be selected in the exogenous than in 
the endogenous approach. Additionally, the exogenous 
approach selects farms for conversion that share simi-
lar non-monetary characteristics with organic farms, 
including factors related to production structure. Conse-
quently, they are expected to be less affected by certain 
organic requirements, such as crop rotation and nitrogen 
management, resulting in a smaller adjustment in ara-
ble crop area and overall production levels. In contrast, 
the endogenous approach selects the best-performing 
farms for conversion, which may not necessarily resem-
ble organic farms in these non-monetary characteris-
tics. This, among other factors, is expected to have a less 
adverse impact on the economic variables of these farms 
(e.g., potentially resulting in lower yield reductions). 
However, it leads to a more significant adjustment in the 
allocation of arable crop area (and thus overall produc-
tion levels) to ensure compliance with crop rotation and 
nitrogen management requirements.

Table 4. Simulated impacts of MS and EU level organic targets on aggregate production quantity in the EU (% change to the baseline).

Targets set at the EU level Targets set at ΜS level

Endogenous Exogenous Endogenous Exogenous

Soft wheat -8.7% -3.5% -7.8% -5.8%
Barley -9.0% -3.4% -9.2% -5.2%
Other cereals -1.0% -2.3% -2.6% -3.5%
Grain maize -6.2% -3.5% -4.8% -4.8%
Soybean 0.4% 0.6% 0.7% 0.5%
Pulses -3.8% -2.5% -4.1% -5.3%
Sunflower seed 2.7% -1.2% 4.3% -2.6%
Rape seed -2.2% -1.7% -1.1% -6.4%
Potatoes -11.7% -5.6% -12.0% -9.8%
Vegetables -4.9% -4.7% -5.2% -6.7%
Fodder maize -1.4% -4.2% -2.8% -6.5%
Fodder other 1.4% -0.5% 1.5% -0.2%
Permanent grass -0.3% -1.9% -1.2% -3.1%
Table wine -10.2% -5.0% -9.4% -3.9%
Apples and pears -0.4% -8.4% -0.5% -13.1%
Berry species -0.7% -6.4% -1.0% -22.2%
Citrus fruits -0.4% -8.9% -0.4% -5.7%
Olive oil -4.2% -5.2% -3.9% -2.2%
Cow milk for sales -0.2% -2.8% -0.7% -3.3%
Beef -0.9% -4.3% -1.6% -5.7%
Sheep & goat milk -0.7% -16.8% -0.4% -11.4%
Sheep & goat meat -0.1% -7.1% -0.2% -6.2%
Pork meat 0.0% -4.2% -0.3% -5.2%
Poultry meat -0.4% -12.6% -0.4% -7.8%
Eggs -3.9% -9.0% -3.8% -10.5%
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Among specific products, only soybean, sunflower 
and other fodder exhibit production increases in at least 
endogenous approach. These positive effects are largely 
driven by the rotation requirement in organic farming 
to replace main crops with smaller ones, such as soy-
bean and sunflower. Additionally, the feed self-sufficien-
cy condition requires a higher proportion of on-farm 
feed production for animals, such as soybean or other 
fodder, in organic farming. In contrast, most other 
products experience a decrease in production quantity 
across all scenarios. In the case of the animal sector, all 
products are negatively affected, with less heterogene-
ity observed compared to the crop sector (Table 4). This 
reduced variability in production changes across animal 
products may result from lower variation in the organic 
production-related parameters across different animal 
activities, especially yield decreases in organic animal 
production. Furthermore, organic behavior constraints 
may have a less differential impact across animal cat-
egories compared to crops32. 

5. DISCUSSION AND CONCLUSIONS

This paper presents the modelling of organic farm 
conversion in an individual farm-level model (IFM-
CAP) aiming to study the methodological challenges 
related to modelling specific farm selection into organic 
production and the parametrization of the converted 
farms. The developed model is applied to simulate eco-
nomic impacts of the organic area targets adopted in 
the EU’s F2F strategy. The paper’s main contribution to 
the literature lies in providing a framework for mod-
eling organic farm conversion within an EU-wide indi-
vidual farm model (IFM-CAP) and bringing quantitative 
insights into the potential income and production effects 
of reaching the 25% organic target in the EU. 

The results show that the simulated economic impacts 
based on individual farm model for the F2F organic tar-
get strongly depends on modelling assumptions, with 
implications that appear to be more significant than 
whether the organic target is set in the EU or MS level. 
Model simulations of the F2F organic target using the 
exogenous approach – under which the combination of 
monetary and non-monetary drivers determine farm con-
version – result in more adverse aggregate farm income 
effects and a greater decrease in aggregate production val-
ue compared to the endogenous approach – under which 

32 For example, the maximum stocking density requirement imposes 
constraints on all animal categories (represented in LSU), while the 
nitrogen management requirement affects only specific crops, namely 
nitrogen-fixing crops.

profitability drives the farm conversion. These divergent 
result are driven by the fact that each approach tends to 
select different farms for conversion. In the endogenous 
approach, conversion to organic production significantly 
increases farm income for many farms that undergo con-
version (for more than 90% of converted farms). Con-
versely, the exogenous approach shows negative income 
change for most converted farms (for over 50% of con-
verted farms). While the F2F target may not necessarily 
have an adverse effect on the aggregate production value 
(especially in the endogenous approach) due to the organ-
ic price premiums offsetting the impact, the lower yields 
in organic production systems are expected to lead to a 
decrease in production quantity for most EU crop and 
animal products, ranging from -0.5% to -15%.

The literature on the profitability of organic farms 
presents mixed findings, often suggesting that organic 
farms have similar profitability levels to conventional 
farms. This implies that price premiums of organic prod-
ucts may offset the higher costs and lower yields associ-
ated with organic production (Alvarez, 2021; De Ponti 
et al., 2012; Offermann & Nieberg, 2000; Seufert et al., 
2012). Hence, the positive income effect simulated in the 
endogenous approach raises the question about its accu-
racy in modeling farmers’ conversion decisions. Moreo-
ver, the fact that farms are conventional in the baseline, 
yet the organic production is profitable in the endoge-
nous approach, further highlights concerns about poten-
tial inaccuracies in capturing farmers’ conversion deci-
sions. This may suggest that certain behavioral effects of 
organic conversion, such as non-monetary factors that 
entail costs and benefits for converting farms (e.g., farm-
ers’ education and experience, willingness to adopt new 
technologies, access to organic markets), may not have 
been adequately accounted for. 

In contrast, the exogenous approach aligns more 
closely with the literature’s findings on simulated income 
changes and the role of non-monetary factors as essen-
tial drivers of farm conversion decisions to organic pro-
duction (Canavari et al., 2022; Sapbamrer, 2021; Ser-
ebrennikov et al., 2020; Willock et al., 1999). However, 
the exogenous approach may reduce the role of profit-
ability in influencing farmers’ conversion decisions, as 
conversion probabilities are estimated based on both 
non-monetary and monetary factors. Consequently, this 
approach leads to lower responsiveness of the organic 
conversion to changes in profit-related incentives such 
as organic price premiums or subsidies. For instance, 
scenario simulations run with varying levels of organic 
payments is expected to yield a relatively minor response 
in terms of organic conversion under the exogenous 
approach, while the endogenous approach demonstrates 
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a more significant impact. Additionally, the exogenous 
approach does not consider endogenous conversion 
choice, within the model which limits its applicability 
for policy impact simulations involving various types of 
subsidies (e.g. different types of environmentally relat-
ed subsidies relevant to the CAP and F2F strategy) and 
their interactions.

Overall, both the endogenous and exogenous 
approaches may have limitations in accurately captur-
ing farmers’ conversion decisions. The two approaches 
represent different ways of modeling the organic con-
version decision. While the former assumes farm con-
version solely based on profitability, the latter relies on 
exogenously introduced non-monetary and monetary 
drivers. An approach that combines both non-monetary 
and monetary factors in an endogenous manner appears 
more promising. Such an approach would require link-
ing unobserved costs and benefits associated with non-
monetary drivers to observed costs and benefits (profits). 
However, deriving these unobserved costs and benefits 
presents a significant theoretical and empirical challeng-
es when integrating the two approaches (Esposti, 2022; 
Kuminoff & Wossink, 2010). 

While we have implemented the organic conversion 
selection in an individual farm model, it is important to 
note that this issue is relevant to other modeling meth-
ods as well. For instance, when modeling the organic 
target with a partial equilibrium model, it becomes 
necessary to introduce appropriate supply shocks. This 
process involves implicit assumptions about the share 
of different activities that will switch to organic produc-
tion, along with the magnitude of yield and cost changes 
for each activity. Essentially, this assumption indirectly 
represents the farm selection process in an individual 
farm model. In essence, the selection approach used in 
an individual farm model explicitly determines which 
types of farms are more likely to convert to organic pro-
duction. However, this is not an additional assumption 
compared to more aggregated models; instead, it offers 
greater transparency. Therefore, modelling organic tar-
gets in aggregated models may benefit from integration 
with individual farm models to enhance the accuracy of 
organic conversion modeling.

The findings of this paper have also some policy 
implications. The simulations show that a consider-
able share of farms experience a positive income change 
when converting to organic production (including in the 
exogenous approach). This result aligns with the find-
ings of Kerselaers et al. (2007) for Belgium, who esti-
mate a sizable positive ‘economic conversion potential’33 

33 They define ‘economic conversion potential’ as ‘the potential differ-
ence in individual farm income obtained under the current convention-

compared to the conventional production system. These 
findings indirectly suggest the presence of non-mone-
tary factors that may constrain farms from converting. 
Therefore, in the context of the F2F strategy’s objective 
of promoting organic production, it may be necessary 
for the policy mix to address non-monetary factors (e.g., 
training, networking, and market access) in addition 
to providing monetary incentives. This approach could 
enhance the F2F strategy’s effectiveness in achieving its 
goal of reaching 25% organic area in the EU.

The paper’s findings suggest that the F2F organ-
ic target could have significant implications for food 
security. Simulations indicate a potential substantial 
decrease in the production of major crop and livestock 
products within the EU. To fully assess its impact on 
global food security – including the overall supply of 
agricultural commodities, market impacts, and access 
to food for vulnerable consumers – conducting further 
analysis using global market models is essential. This 
becomes particularly important in the current global 
context marked by food inflation and the ongoing war in 
Ukraine (European Commission, 2023).

When drawing conclusions from our findings, it is 
necessary to recognize the assumptions inherent in our 
model. First, our simulation results are conditional on 
the assumption that the organic price premiums over 
conventional products remain unchanged from the cur-
rent (pre-target) level. However, an increased supply of 
organic products could potentially lead to a decrease 
in the price premiums, potentially impacting farm 
income more adversely than simulations suggest. Sec-
ond, our model assumes a fixed farm structure, meaning 
that farms’ production specialization and size remain 
unchanged following conversion to organic production. 
In reality, converted farms may make more significant 
adjustments in production structure and scale than 
model accounts for. A third potential caveat is that our 
analysis does not include market price feedback effects. 
The substantial production decrease simulated for the 
F2F organic target is expected to raise market prices, 
impacting farm income. Consequently, our model may 
understate income increases in the endogenous approach 
and overstates income decreases in the exogenous 
approach. Fourth, the exogenous approach in our study 
only considers factors affecting farm organic conversion 
that were observed in FADN. However, as literature sug-
gests, there are several other drivers not available in the 
FADN that may impact organic conversion decisions, 
such as farmers’ knowledge and skills about organic pro-
duction methods, access to organic markets, or organic 

al production mode and an estimated income under organic production 
mode’.
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certification costs. These factors would need to be incor-
porated into future analyses when data become avail-
able. Finally, our analysis focuses solely on the economic 
impacts of the organic targets. Future research needs to 
extend the analysis to include environmental impacts. 
This would allow for a more comprehensive investiga-
tion of the trade-offs between economic and environ-
mental effects in the transition of the EU farming sec-
tor towards greater adoption of organic production. 
Addressing these limitations and conducting further 
research will enhance the robustness of our results and 
provide a more complete understanding of the EU-wide 
impacts of organic targets set in the F2F strategy.

DISCLAIMER

The authors are solely responsible for the content of 
the paper. The views expressed are purely those of the 
authors and may not in any circumstances be regarded as 
stating an official position of the European Commission.
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APPENDIX

Table A5. Estimated median percentage difference in the expected crop prices between organic and conventional farming in the EU.

Central Europe North Central Europe South Northern Europe Southern Europe UK & Ireland

Wheat +60% +45% +20% +6% +72%
Maize +59% +39% +35% +8% +35%
Other cereals +48% +26% +11% +5% +57%
Oilseeds +31% +27% +13% +8% +20%
Sugar beet +2% +100% +51% +51% +51%
Vegetables +56% +114% +30% +19% +98%
Fruits +39% +34% +37% +11% +13%
Other permanent crops +30% +49% +8% +20% +16%
Fodder crops +24% +5% +5% +1% +5%

Source: own econometric estimations.
Note: - Of the 463 organic price coefficients estimated at FADN region level, 68% are statistically significant at 90% confidence level.
- Central Europe North: Belgium, Luxemburg, Netherlands, Germany, Poland.
- Central Europe South: Austria, Czech Republic, France, Hungary, Slovakia, Romania.
- Northern Europe: Sweden, Finland, Estonia, Lithuania, Latvia, Denmark.
- Southern Europe: Bulgaria, Croatia, Cyprus, Greece, Italy, Malta, Portugal, Spain, Slovenia.

Table A6. Estimated median percentage difference in the expected crop yields between organic and conventional farming in the EU.

Central Europe North Central Europe South Northern Europe Southern Europe UK & Ireland

Wheat -44% -34% -41% -12% -56%
Maize -32% -22% -20% -5% -20%
Other cereals -43% -34% -32% -16% -45%
Oilseeds -57% -32% -42% -11% -35%
Vegetables -42% -44% -41% -11% -76%
Sugar beet -2% -22% -12% -12% -12%
Fruits -51% -57% -36% -22% -64%
Other permanent crops -9% -21% -5% -12% -4%
Fodder crops -16% -5% -10% -4% -9%

Source: own econometric estimations.
Note: - Of the 550 organic yield coefficients estimated at FADN region level, 77% are statistically significant at 90% confidence level.
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Table A7. Ranges of percentage differences in estimations variable crop production costs between organic and conventional farms by farm 
specialization and region in the EU.

Seeds/ha Fertilizers/ha Crop protection/ha Other costs/ha

Max Min Max Min Max Min Max Min

Per Farm Specialization
Specialist COP (15) -4% +18% -91% -31% -88% -18% -24% +57%
Specialist other field crops (16) -15% +78% -71% -17% -99% -13% -26% +9%
Specialist horticulture (20) -25% -2% -15% -4% -29% +2% -7% +82%
Specialist wine (35) -30% +3% -19% +25% -21% -13% +1% +16%
Specialist orchards - fruits (36) -24% +31% -47% -14% -41% -19% -24% +8%
Specialist olives (37) -3% -3% -7% -7% -19% -19% +2% +2%
Permanent crops combined (38) -11% +5% -31% -8% -13% -12% -37% +12%
Specialist milk (45) -10% +13% -52% -11% -54% -12% -5% +35%
Specialist sheep and goats (48) -9% +22% -81% -16% -33% +2% -10% +21%
Specialist cattle (49) -14% +42% -60% -5% -50% -3% -10% -2%
Specialist granivores (50) -32% +5% -39% -20% -67% +18% -17% +98%
Mixed crops (60) -19% -1% -45% -17% -40% -18% -46% +4%
Mixed livestock (70) -8% +2% -46% -18% -52% -21% -56% +39%
Mixed crops and livestock (80) -10% +5% -80% -16% -70% -16% -13% +6%

Per Region
Central Europe North -32% +5% -49% +25% -52% -13% -17% +57%
Central Europe South -17% +31% -63% -4% -67% -12% -46% +82%
Northern Europe -25% +19% -52% -11% -54% +2% -56% 0%
Southern Europe -30% +9% -41% -3% -41% +18% -9% +98%
UK & Ireland -24% +78% -91% -15% -99% -22% -24% +35%

Source: own econometric estimations.
Note: - Estimations performed by region, type of farming, and cost item. Given the numerous cost combinations estimated and to facilitate 
result visualization, the table presents minimum and maximum median values for each cost group.
 - Of the 1,748 organic coefficients estimated, 55% are statistically significant at 90% confidence level.

Table A8. Estimated median percentage difference in the expected livestock price between organic and conventional farming in the EU. 

Central Europe 
North

Central Europe 
South Northern Europe Southern Europe UK & Ireland

Beef meat +5% +7% +15% +4% +4%
Dairy milk for sale +26% +12% +8% +4% +22%
Eggs/laying hens +44% +7% +16% +32% +25%
Pork meat +93% +29% +113% +78% +78%
Poultry meat +45% +45% +45% +45% +45%
Sheep/goats milk for sale +4% +8% +4% +1% +4%
Sheep/goats meat for fattening +29% +29% +29% +29% +29%

Source: own econometric estimations.
Note:  - For milk, 65% of the 60 estimated coefficients for prices are significant at 90% confidence level. For other livestock activities, 
approximately 52% of the estimated coefficients for prices were significant at 90% confidence level.
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Table A9. Estimated median percentage difference in the expected livestock yields between organic and conventional farming in the EU 

Central Europe 
North

Central Europe 
South Northern Europe Southern Europe UK & Ireland

Beef meat -26% -29% -15% -10% -18%
Dairy milk for feeding -9% -15% -6% -10% -10%
Dairy milk for sale -20% -18% -10% -8% -14%
Eggs/laying hens -0.1% -7% -10% -7% -6%
Pork meat -3% -18% -32% -18% -18%
Poultry meat -10% -10% -10% -10% -10%
Sheep/goats milk for feeding -14% -14% -14% -14% -14%
Sheep/goats milk for sale -14% -14% -14% -14% -14%
Sheep/goats meat for fattening -10% -10% -10% -10% -10%
Female calves -1% -1% -1% -1% -1%
Male calves -1% -1% -1% -1% -1%

Source: own econometric estimations, except poultry meat (Gaudaré et al., 2021).
Note: - For milk, 65% of the 60 estimated coefficients yields are significant at 90% confidence level. For other livestock activities, approxi-
mately 32% of the estimated coefficients for yields were significant at 90% confidence level.

Table A10. Thresholds of livestock units per hectare provided in the EU organic regulation 2018/848.

Animal activity Regulation Threshold 
(LSU per ha)

Land usage coefficient 
(Ha per LSU)

Dairy cows 2 0.5
Other cows 2.5 0.4
Breeding heifers 2.5 0.4
Cull dairy cows 2 0.5
Calves for fattening 5 0.2
Ewes 13.3 0.075188
Pigs for fattening 14 0.071429
Breeding sows 6.5 0.153846
Laying hens 230 0.004348
Table chickens 580 0.001724

Source: EU organic regulation 2018/848 and own calculations (last column).

Table A7. Covariates used in the prediction of the likelihood to convert.

Name Type Description
Class frequency/Summary statistics

Mean Std. Dev.

REGION Class FADN region dummies 10,20,30,…,862

TF14 Class Dummies for the 14 FADN classes of type of farming
15(0.168), 16(0.105), 20(0.055), 35(0.051), 36(0.049), 
37(0.015), 38(0.013), 45(0.173), 48(0.050), 49(0.086), 

50(0.051), 60(0.033), 70(0.026), 80(0.118)

ACTIVITIES Numeric
Share of the total agricultural area by production 

activity. Additionally, the share of cereals is interacted 
with all other activities. In total 24 activities

0.27 0.44

LIVESTOCK Class Dummy for the presence/absence of livestock 
activities 0.58 0.49

MAX SHARE CROP 
DETAILED Numeric Maximum share of the major crop according to 

FADN activities 0.59 0.24
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Name Type Description
Class frequency/Summary statistics

Mean Std. Dev.

MAX SHARE CROP 
AGGREGATE Numeric Maximum share of the major crop according to IFM-

CAP activities 0.71 0.21

SHANNON Numeric Shannon index of crop biodiversity 0.98 0.57
SHARE UAA 
OWNED Numeric Share of owned Utilized Agricultural Area 0.53 0.38

REGIONAL LAND 
RENT Numeric Regional average rental price of agricultural land per 

hectare 202.99 192.05

UAA Numeric Total Utilized Agricultural Area 101.62 283.92

SIZ6 Class Classes of economic size 1(0.046), 2(0.173), 3(0.178), 4(0.193), 5(0.321), 
6(0.087)

TYPOWN Class Type of ownership of the farm 1(0.809), 2(0.114), 3(0.072), 4(0.003)
ALTITUDE Class Altitude class of the holding 1(0.654), 2(0.230), 3(0.091), 4(0.023)
ANC3 Class Classes of Areas with Natural Constraints 1(0.482), 2(0.367), 3(0.150)
TOTAL AWU HA Numeric Total Annual Working Units per hectare 2.95 8.35
SHARE UNPAID 
AWU Numeric Share of AWU of family workers 0.80 0.30

LU/HA Numeric Livestock Density 8.46 769.03
IRRSYS Class Type of irrigation system 0(0.792), 1(0.047), 2(0.060), 3(0.087), 4(0.011)
FIXED ASSETS/HA Numeric Fixed assets per hectare in EUR 28,930.85 1,634,160.85

MFP Numeric Multifactor productivity measured as total output 
value divided total input costs 1.26 0.82

DECOUPLED/ HA Numeric Decoupled payments per hectare 269.17 1,298.88
COUPLED/HA Numeric Coupled payments per hectare 103.65 1,712.24
ENVIRONMENT/HA Numeric Environmental payments per hectare 60.71 3,695.92
LFA/HA Numeric Payments for Least Favoured Areas per hectare 37.94 186.54
OTHER/HA Numeric Other RDP payments per hectare 32.69 4,927.54
INVESTMENTS/HA Numeric Payments for investments per hectare 86.77 9,779.52
ORGANIC WHEAT 
YIELD RATIO Numeric Ratio between the yield of wheat for organic and for 

conventional farms in the FADN region 0.62 0.35

ORGANIC MAIZE 
YIELD RATIO Numeric Ratio between the yield of maize for organic and for 

conventional farms in the FADN region 0.61 0.39

ORGANIC MILK 
YIELD RATIO Numeric Ratio between the yield of milk for organic and for 

conventional farms in the FADN region 0.72 0.36

REGIONAL SHARE 
ORGANIC Numeric Share of organic farms in the region 0.10 0.09

FERTILIZERS/HA Numeric Expenditure per hectare in fertilizers 352.58 5,285.69
PESTICIDES/HA Numeric Expenditure per hectare in pesticides 232.45 1,490.94

RELATIVE 
FERTILIZERS/HA Numeric

Expenditure per hectare in fertilizers relative to the 
expenditure of farms of the same organic status, 

TF14 and region
1.13 4.56

RELATIVE 
PESTICIDES/HA Numeric

Expenditure per hectare in pesticides relative to the 
expenditure of farms of the same organic status, 

TF14 and region
1.10 3.13

Note: - for more information about FADN classes, please refer to the FADN farm return. 
 - for more information about the choice of indicators, please refer to Supplementary material Part D. 
 - for class variables, except REGION, the code of the classes is presented together with its relative frequency in parenthesis.
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Table A8. Comparisons of the prediction accuracy metric of estimated models in the exogenous approach.

LP LP + SSA LOGIT LOGIT + 
SSA PROBIT PROBIT + 

SSA
RANDOM 
FOREST

Maximum 
prediction 
accuracy

Selected model

Belgium 0.8096 0.8053 0.9014 0.8017 0.8709 0.8066 0.9411 0.9411 RANDOM FOREST
Cyprus 0.8102 0.8148 0.8497 0.8443 0.8504 0.8435 0.8993 0.8993 RANDOM FOREST
Czechia 0.8563 0.8556 0.9424 0.9213 0.8191 0.9082 0.9653 0.9653 RANDOM FOREST
Germany 0.9273 0.9275 0.9301 0.9282 0.9293 0.9291 0.9725 0.9725 RANDOM FOREST
Greece 0.7228 0.7224 0.7543 0.7449 0.6187 0.5984 0.914 0.914 RANDOM FOREST
Spain 0.7597 0.7583 0.7683 0.7664 0.7691 0.7676 0.928 0.928 RANDOM FOREST
Estonia 0.8305 0.828 0.8029 0.9354 0.7705 0.7399 0.9653 0.9653 RANDOM FOREST
France 0.7067 0.7054 0.7253 0.5933 0.7241 0.7225 0.9251 0.9251 RANDOM FOREST
Croatia 0.8499 0.849 0.8526 0.8462 0.8482 0.8416 0.9139 0.9139 RANDOM FOREST
Hungary 0.7498 0.7434 0.7922 0.7607 0.6312 0.7714 0.8781 0.8781 RANDOM FOREST
Ireland 0.8366 0.839 0.8831 0.9843 0.8523 0.9841 0.9526 0.9843 LOGIT + SSA
Lithuania 0.9676 0.9679 0.9762 0.9743 0.9511 0.9697 0.9801 0.9801 RANDOM FOREST
Luxemburg 0.9389 0.9404 0.9905 0.9816 0.8846 0.9783 0.9802 0.9905 LOGIT
Latvia 0.8983 0.8967 0.8848 0.9361 0.9212 0.9322 0.9835 0.9835 RANDOM FOREST
Italy 0.8032 0.8017 0.7232 0.8036 0.7173 0.8019 0.8972 0.8972 RANDOM FOREST
Netherland 0.7476 0.755 0.7993 0.778 0.7951 0.7728 0.9507 0.9507 RANDOM FOREST
Austria 0.9007 0.9001 0.9006 0.9134 0.9003 0.907 0.9472 0.9472 RANDOM FOREST
Poland 0.8662 0.8655 0.9377 0.9353 0.6075 0.9293 0.9692 0.9692 RANDOM FOREST
Portugal 0.7636 0.7622 0.7776 0.7748 0.5243 0.7627 0.9411 0.9411 RANDOM FOREST
Romania 0.7314 0.7284 0.5263 0.7617 0.6627 0.7576 0.9022 0.9022 RANDOM FOREST
Finland 0.9186 0.9154 0.8801 0.9288 0.872 0.9248 0.9801 0.9801 RANDOM FOREST
Sweden 0.804 0.8021 0.7745 0.7417 0.8374 0.852 0.9561 0.9561 RANDOM FOREST
Slovakia 0.8053 0.796 0.845 0.836 0.835 0.5953 0.8997 0.8997 RANDOM FOREST
Slovenia 0.9162 0.9172 0.9456 0.9439 0.917 0.9375 0.9636 0.9636 RANDOM FOREST
Bulgaria 0.7483 0.7512 0.6083 0.6291 0.6631 0.5099 0.8783 0.8783 RANDOM FOREST
Denmark 0.9668 0.9668 0.9775 0.9759 0.9766 0.9747 0.984 0.984 RANDOM FOREST
EU 0.7288 - 0.573 - 0.5449 - 0.9367 0.9367 RANDOM FOREST
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Table A9. The distribution of selected farms for conversion in the exogenous and endogenous approaches in the EU and MS organic targets 
in the EU by farm specialization and economic farm size (% of farms by farm specialization and size).

 
Targets set at EU level  Targets set at MS level

Endogenous Exogenous Endogenous Exogenous

Farm specialization
Specialist Cereals, Oilseed, Protein crops (15) 17% 11% 16% 10%
Specialist other field crops (16) 5% 3% 7% 4%
Specialist horticulture (20) 20% 10% 19% 6%
Specialist wine (35) 0% 10% 0% 8%
Specialist orchards - fruits (36) 10% 12% 11% 6%
Specialist olives (37) 2% 6% 3% 2%
Permanent crops combined (38) 1% 6% 3% 10%
Specialist milk (45) 4% 9% 3% 10%
Specialist sheep and goats (48) 0% 8% 1% 10%
Specialist cattle (49) 2% 1% 2% 1%
Specialist granivores (50) 7% 7% 6% 6%
Mixed crops (60) 2% 1% 2% 2%
Mixed livestock (70) 12% 9% 12% 13%
Mixed crops and livestock (80) 17% 9% 16% 11%
Total 100% 100% 100% 100%

Economic farm size
Small farms 63% 59% 62% 64%
Medium sized farms 22% 28% 24% 23%
Large farms 15% 13% 15% 13%
Total 100% 100% 100% 100%
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SUPPLEMENTARY MATERIAL

Part A: Literature Review on drivers and impacts of organ-
ic conversion

Regarding the literature relevant to the methodo-
logical challenges of modeling organic production in an 
individual farm model, we recognize two main strands 
of analysis. The first strand deals with the drivers of con-
version to organic farming. Its findings are relevant to 
designing the approach to model farm conversion from 
conventional to the organic production system. The sec-
ond strand compares the organic farm performance and 
organic farm management practices with the conven-
tional ones. The findings from this strand of literature 
are relevant for the parametrization of converted organic 
farms in terms of yields, price, input costs, and manage-
ment practices differences from conventional farms. 

6.1 Drivers of conversion to organic farming

The economic literature has primarily applied 
empirical analyses to identify the main drivers of organ-
ic farming conversion; theoretical literature is minimally 
used or not widely applied. The main reasons explain-
ing this choice are (i) the complexity of modeling theo-
retically the process of adoption and diffusion of organ-
ic farming due to significant differences in the types 
of farming technologies applied across different farm 
types and regions, and (ii) the difficulties in accounting 
for less quantifiable drivers critical in explaining farm-
ers’ conversion decision, such as believes and attitudes 
towards the environment (Serebrennikov et al., 2020; 
Willock et al., 1999). 

In order to study the likelihood of conversion to 
organic farming, the empirical literature has heav-
ily relied on the use of probability models (Basnet et 
al., 2018; Burton et al., 1999; Chatzimichael et al., 2014; 
Chmielinski et al., 2019; Djokoto et al., 2016; Genius 
et al., 2006; Hattam & Holloway, 2005; Läpple & Rens-
burg, 2011; Lohr & Salomonsson, 2000; Malá & Malý, 
2013; Parra López & Calatrava Requena, 2005; Serebren-
nikov et al., 2020). These models use a set of covariates 
to determine the conditional probability of adopting 
organic farming. They are typically used to investigate 
the causal effect of these covariates on the probability of 
conversion. 

There are a wide variety of available probabil-
ity models applied to estimate drivers of organic farm 
conversion, such as the linear probability model, non-
linear probability models, such as logit and probit, and 
machine-learning approaches (e.g., decision trees and 

their applications)34. For investigating the likelihood of 
converting to organic farming, non-linear probability 
models have been the most widely used empirical tools 
(Serebrennikov et al., 2020).

An essential aspect of many studies on the adoption 
of organic farming is that they have often relied on tai-
lored surveys with a relatively narrow geographical scope 
(Bravo-monroy et al., 2016; Burton et al., 1999; Darn-
hofer et al., 2005; Fairweather, 1999; Hattam & Holloway, 
2005; Kallas et al., 2009; Lohr & Salomonsson, 2000; Par-
ra López & Calatrava Requena, 2005; Yu et al., 2014). This 
limited scope is likely because the drivers of adoption are 
highly site-specific and specific to the agricultural farm-
ing system and agricultural technology considered, as 
well as linked to farmers’ perceptions and attitudes that 
may also have a local dimension (Sapbamrer, 2021; Ser-
ebrennikov et al., 2020; Willock et al., 1999). 

The findings from this literature suggest that 
although profit maximization (costs and benefits) 
impacts farmers’ decision to convert to organic farm-
ing, they are not necessarily the sole or primary drivers. 
Instead, some key factors determining the adoption of 
organic farming are farm characteristics − such as farm 
size, production specialization, age of farmer –, access to 
organic buyers/markets, and farmer beliefs and attitudes 
towards the environment. Overall, the main implication 
of the literature findings is that the conversion modeling 
cannot rely solely on profit maximization assumption, 
i.e., by considering only the costs and benefits of organic 
production and its difference from conventional farm-
ing. Instead, it also needs to consider other non-profit 
maximization factors affecting farmers’ behavior.

6.2 Performance and management practices of organic 
farming

There is abundant literature analyzing the differ-
ences between organic and conventional production 
systems. Many studies often use detailed micro datasets 
to analyze the performance difference empirically (e.g., 
yields, profitability) between organic and conventional 
farms (Brenes-Muñoz et al., 2016; Froehlich et al., 2018; 
Gillespie & Nehring, 2013; Kuminoff & Wossink, 2010; 
Kuosmanen et al., 2021; Tiedemann & Latacz-Lohmann, 
2013; Uematsu & Mishra, 2012; Würriehausen et al., 
2015; Yu et al., 2014). Another relatively large body of lit-
erature relies on case studies (i.e., using a small sample 
size) to identify differences between organic and con-
ventional systems. Some focus on management practices 

34 These include bagging, random forest, and boosting (James et al., 
2013).
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(Bilsborrow et al., 2013; Dobbs & Smolik, 1997; Greer 
et al., 2008; Krause & Machek, 2018; Shah et al., 2017; 
White et al., 2019), and others on environmental aspects 
(Chmelíková et al., 2021; Hoffman et al., 2018; Meier et 
al., 2015; Perego et al., 2019; Reimer et al., 2020). Given 
the abundance of the literature, some other studies use 
meta-analysis techniques to quantify the differences 
between organic and conventional agriculture. Several 
aspects have been examined, like yields (De Ponti et al., 
2012; Seufert et al., 2012), crop rotations (Barbieri et al., 
2017), livestock management (Gaudaré et al., 2021), pro-
ductivity (Alvarez, 2021), environmental impacts (Mon-
delaers et al., 2009; Tuomisto et al., 2012) and nutrient 
budgets (Reimer et al., 2020), are examined.

Overall, the literature findings indicate that organic 
farms show lower performance in obtained crop yields, 
although results are highly heterogeneous across studies. 
Similar findings hold for livestock productivity, although 
the gap seems to be lower than in the case of crop yields. 
Organic products are usually found to receive price 
premia compared to conventional products. The findings 
regarding profitability are less conclusive, and organic 
farms are often found to show similar profitability lev-
els as conventional farms implying that price premia 
of organic products may offset higher costs and lower 
yields of organic production (Alvarez, 2021; De Ponti 
et al., 2012; Offermann & Nieberg, 2000; Seufert et al., 
2012). A significant difference between organic and con-
ventional farming is in the applied management prac-
tices. Studies find that organic farms usually apply more 
crop rotations with longer duration, higher crop diver-
sity, and evener crop species distribution (Barbieri et 
al., 2017). Also, livestock management is based on more 
farm-produced feed, a lower proportion of concentrate, 
and lower feed-use efficiency (Gaudaré et al., 2021).
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Part B: Econometric estimations

Summary statistics

Summary statistics of costs, prices, and yields by 
cost category product and by organic status are provided 
in Table B.1. The statistics presented in Table B.1 refer to 

the FADN farms for the period 2007-2016. The distribu-
tion of farms across MS and by organic status is present-
ed in Table B.2.

Table B.1. Summary statistics of costs, prices and yields.

Variable
Conventional Fully organic Partly organic In conversion

Mean Std Mean Std Mean Std Mean Std

Cost (EUR/ha)              
Fertilizers 443 4,770 221 1,754 621 2,170 378 3,044
Other 1,553 17,676 414 6,955 1,043 8,812 704 10,211
Protection products 279 1,900 228 1,278 482 1,534 284 1,131
Seeds and seedlings 1,727 24,629 382 9,156 982 6,775 305 2,074

Price (EUR/ton)  
Cereals 169 72 214 131 185 115 166 95
Fruits 783 5,739 967 1,934 1,045 1,699 988 1,573
Grass 77 656 73 254 67 79 58 57
Maize 170 240 262 336 186 125 165 171
Milk 369 3,147 365 474 317 213 371 2,204
Nonfruit perm. crops 934 6,212 877 3,620 1,130 2,110 93 67
Oilseeds 404 1,448 1,141 3,585 428 590 482 493
Sugarbeet 37 30 63 29 40 34 37 12
Vegetables 1,143 24,632 8,780 144,521 5,406 219,841 828 975
Wheat 170 52 254 309 185 72 181 127

Yield                
Cereals (ton/ha) 5.4 21.5 3.2 2.2 3.9 2.3 4.2 2.3
Fruits (ton/ha) 14.8 57.6 7.8 11.2 7.3 9.7 10.9 12.6
Grass (ton/ha) 13.0 26.7 8.3 16.5 7.5 7.9 4.7 3.8
Maize (q/ha) 82.2 123.6 68.8 33.7 64.3 33.3 70.1 32.7
Milk (kg/cow) 5,958.7 69,761.0 5,501.9 6,837.8 4,762.3 2,160.2 5,704.7 2,139.5
Non-fruit perm. crops (ton/ha) 71.3 5,700.9 218.5 15,060.8 23.4 389.1 8.5 9.1
Oilseeds (ton/ha) 2.9 3.7 1.7 1.5 2.2 1.0 2.5 1.8
Sugarbeet (ton/ha) 66.8 23.8 62.3 20.5 58.7 22.2 76.2 20.8
Vegetables (ton/ha) 109.7 972.8 60.3 442.7 64.9 171.3 35.4 119.0
Wheat (q/ha) 55.6 56.3 34.2 15.7 38.9 18.5 42.4 19.6
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Table B.2. Distribution of farms across MS and by organic status 
(Number of represented farms).

Country Conventional Fully organic Partly 
organic In conversion

Belgium 11,504 467 96 11
Bulgaria 20,669 270 336 143
Cyprus 4,224 67 146 1
Czechia 11,737 1,613 422 3
Denmark 17,049 1,053 45 16
Germany 81,812 4,344 325 233
Greece 37,207 1,367 1,986 14
Spain 80,163 2,823 1,987 71
Estonia 4,792 760 449 98
France 70,304 2,261 1,432 253
Croatia 4,577 181 113 64
Hungary 19,372 173 110 41
Ireland 10,013 130 17 2
Italy 101,440 5,509 628 99
Lithuania 9,740 810 508 19
Luxemburg 4,311 116 18 10
Latvia 7,912 1,776 205 69
Malta 4,557 17 7 1
Netherlands 14,048 746 201 15
Austria 15,895 4,644 124 81
Poland 115,356 2,946 1,057 44
Portugal 20,508 672 721 7
Romania 41,001 460 2,341 32
Finland 7,692 990 52 13
Sweden 8,161 1,788 435 8
Slovakia 4,701 357 286 6
Slovenia 7,689 1,327 107 16
United 
Kingdom 25,934 1,436 508 4

Prices and yields

A log-linear econometric specification has been used 
to estimate the percentage difference in the expected 
value of yields and prices of a selected number of crop 
and livestock activities. This modeling approach is very 
convenient when comparing performance based on indi-
cators that take non-zero and positive values. The model 
is represented as follows:

lnyit = β1 + β2ORGit + β’3Xit + εit (1)

where yit is the natural logarithm of the performance 
indicator considered (yield or price) for farm i at time t, 
ORGit is an indicator variable that takes the value 1 if the 
farm is fully organic at time t and zero otherwise, Xit is a 
matrix that contains a set of explanatory variable, and εit 

is the error term of the equation; β1, β2 and β3 are param-
eters to be estimated. In the yield gap analysis the list of 
variables contained Xit include organic status of the farm, 
year dummies, farm specialization, farm size, altitude of 
the farm, presence of natural constraints, the share of 
irrigated land. For livestock activities, we include 

The percentage differences in expected value of the 
performance indicator between organic and convention-
al farms can be obtained from the estimate of parameter 
To see how, equation (1) can be written as follows:

 (2)

where , , and  are the estimated parameters and 
 is the expected value of the logarithm of the perfor-

mance indicator. The difference between the logarithm 
of performance indicator between organic (ORGit = 0) 
and conventional farms (ORGit = 1) can be written as:

  (3)

The logarithmic difference of equation (3) is only an 
approximation to the percentage difference in expected 
values between the organic and conventional farms. For 
an exact calculation of this percentage difference, the 
following transformation can be used (Hill et al., 2011):

 (4)

Equation (4) is a non-linear function of the coeffi-
cient estimate  and it has been used as percentage dif-
ference in yields and prices between organic and conven-
tional farms.

Unit costs of crop production

In contrast with prices and yield estimations, for 
unit costs we use a linear estimation model. This is 
a more appropriate approach than the log-linear one 
because several organic farms are associated with zero 
expenditure on some of the cost categories considered.

The estimation has been conducted for the four 
types of variable cost categories k (k=1,…,4) used in the 
model. These categories are seeds, fertilizers, crop pro-
tection, and other crop specific costs, all expressed on a 
per-hectare basis. The model is represented as follows:

ck,it = β1 + β2ORGit + β’3Xit + εit (5)

https://doi.org/10.36253/bae-13925


293Modeling conversion to organic agriculture with an EU-wide farm model

Bio-based and Applied Economics 12(4): 261-304, 2023 | e-ISSN 2280-6172 | DOI: 10.36253/bae-13925

where ck,it is the cost per hectare for input category k for 
farm i at time t, ORGit is an indicator variable that takes 
value 1 if the farm is a fully organic at time t and zero 
otherwise, Xit is a matrix that contains a set of explana-
tory variables, and εit is the error term of the equation; 
β1, β2 and β3 are parameters to be estimated. The list of 
variables contained in Xit includes the organic status of 
the farm, year dummies, altitude class, areas with natu-
ral constraints, output value per hectare, share of unpaid 
labor in total labor, assets value per hectare, share of irri-
gated land, size in terms of hectares and livestock units. 

The percentage differences in expected value of the 
unit costs per hectare between organic and conventional 
farms can be obtained in a different way with respect to 
the methodology described in equation (4) The starting 
point is given by the following equation:

 (6)

where , , and  are the estimated parameters and 
 is the expected value of the unit cost per hectare 

for input category k. The percentage difference between 
organic (ORGit = 1) and conventional farms (ORGit = 0) 
for this unit cost can be then obtained as follows: 

 (7)

Where  is a vector made of the averages of the 
variables contained in Xit.

Mapping of econometric estimation categories to IFM-CAP categories

Table B.3. Mapping of FADN crop groups with crops and feed in IFM-CAP used in estimations 

Product FADN IFM-CAP crop IFM-CAP feed

Cereals All cereals excluding rice (KCER)
Rye (RYEM), Barley (BARL), Oats 
(OATS), Other cereals for the production 
of grain (OCER), Rice (PARI)

Distillers Dried Grains with Solubles 
(DDGS)

Fruits Fruits and berry orchards and citrus 
orchards (KFRU)

Apples and pears (APPL), Citrus 
fruits (CITR), Peaches and nectarines 
(PEAC), Berries (BERR), Nuts 
(NUTS), Other fruits (OFRU)

Maize Grain maize (CMZ) MAIZ
Non-fruit 
permanent 
crops

Olive groves + Vines+ permanent 
crop under glass + nurseries + Other 
permanent crops + Growth of young 
plantation (KOPC)

Table wine (TWIN), Table grapes 
(TAGR), Table olives (TABO), Olive 
oil (OLIV)

Oilseeds Rapes (CRAPE )+ Sunflower (CSNFL ) 
+ Soya (CSOYA ) + Linseed (CLINSED) 
+ Other oilseeds (CCRPOILOTH)

Other oil (OOIL), rapeseed (RAPE), 
Sunflower (SUNF), Soya (SOYA), 
Pulses (PULS), Other industrial crops 
(OIND)

Soya cake (SOYC), Rapeseed cake 
(RAPC), Sunflower cake (SUNC), 
Rapeseed oil (RAPO), Soya oil 
(SOYO), Sunflower oil (SUNO)

Vegetables Fresh vegetables melons and strawberry 
open field (CVEGOF) + Fresh 
vegetables melons and strawberry 
market gardening (CVEGMG) + Fresh 
vegetables melons and strawberry under 
glass (CVEGUG)

Vegetables marketing garden (VGMG), 
Vegetables open field (VGOF), 
Vegetables under glass (VGUG), 
Potatoes (POTA)

Wheat Common wheat (CWHTC) Soft wheat (SWHE), Durum wheat 
(DWHE)

Grass Grasses (KGRA) Other crops (OCRO), Maize for fodder 
(MAIF), Fodder root crops (ROOF), 
Other fodder crops (OFAR)

Sugar beet Sugar beet (CSUGBT) Sugar beet (SUGB)
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Table B.4. Mapping of region groups used in estimations and 
NUTS0.

PESETA Group 
(Econometric Estimation) NUTS0 code

Central Europe North BE,LU, NL, DE, PL
Central Europe South AT, CZ, FR, HU, SK, RO
Northern Europe SE, FI, EE, LT, LV, DK
Southern Europe BG, HR, CY, EL, IT, MT, PT, SI, ES
UK & Ireland IR
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Part C: Behavioral constraints

Crop rotations

From an agronomic point of view, in order to substi-
tute for no reliance on chemical fertilizers and plant pro-
tection, organic farming requires crop rotations (Reganold 
& Wachter, 2016; Baker et al., 2020). Indeed, Barbieri et al. 
(2017), based on meta-analysis, found that on average at 
the global scale, organic rotations last for 4.5 ± 1.7 years, 
which is 15% more than their conventional counterparts, 
and include 48% more crop categories. Below, we describe 
how we use this finding to elicit values for the flexibility 
constraints of the crop rotations in the IFM-CAP model.

First, we argue that the observed share of crop acre-
age35 is related to the duration of the crop rotation and 
the frequency that a crop appears, as follows:
1. For a given crop duration, the share of crop acre-

age is proportional to the frequency that the crop 
appears in the rotation (the less times the crop 
appears, the lower the acreage share). 

2. For a given frequency that a crop appears in the 
rotation, the crop acreage is inversely proportional 
to the duration of the rotation (the more years the 
rotation cycle, the less the acreage share).

35 We need to define the following related concepts, as used by Dury et 
al. (2012): Crop acreage, refers to the area on a farming land normally 
devoted to one or a group of crops every year (e.g. x hectares of wheat, 
y hectares of winter barley). IFM-CAP models crop acreage. Crop allo-
cation, is the assignment of a particular crop to each plot in a given 
piece of land. IFM-CAP does not model in plot level, so crop alloca-
tion is not relevant. Crop rotation is defined as the practice of growing a 
sequence of plant species on the same land. It is characterized by a cycle 
period. Again, IFM-CAP does not contain explicit plot level informa-
tion and thus crop rotation, as defined here, cannot be represented.

In order to establish the above arguments, we start 
from a farm that has a single 1-ha plot and follows a 
2-year rotation where a crop appears once every two 
years. The probability of finding this crop in a random 
year will be 1/2, as in Figure C.2.

When we consider a farm that has more than one 
plot, we can deduce the relation between crop rota-
tion and expected share of crop acreage by means of a 
binomial distribution36. For a specific year, the bino-
mial’s independent experiment is checking a plot for 
a crop and the ‘success’ event is finding this crop. As 
shown above, the probability of success for a single 
plot is p=1/2. Thus, for n independent experiments (i.e. 
n plots), as shown in Figure C.3, the expected number 
of successes equals to [p]*[n], where p=1/2. The expect-
ed share of the central crop to the total utilized agri-
cultural area, assuming 1-ha plots, equals to [p]*[n]/
[n]=[p]=1/2.

36 The binomial distribution with parameters n and p is the discrete 
probability distribution of the number of successes in a sequence of n 
independent experiments, each asking a yes–no question, and each with 
its own Boolean-valued outcome: success (with probability p) or failure 
(with probability q = 1 − p). 

Figure C.2. The probability to find a crop in a 2-year fixed rotation 
that alternates with another crop.

Figure C.3. Schematic of a farm with many plots and the relation of 
the crop acreage and the rotation frequency and length.
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We can generalize this finding for the case of fixed 
rotation lengths. The expected share of crop acreage will 
equal to 

Where, pc the expected share of crop acreage of crop 
c, fc the number of appearances of the crop (frequency) 
and D the length (duration) of the rotation. In Table C.1 
we show the share of acreages for different combinations 
of crop duration and crop frequency.

As mentioned above, organic farms have longer 
and more diversified rotations (Barbieri et al., 2017). We 
interpret “longer and more diversified” rotation as rota-
tions that have longer duration and with crops that are 
less frequently in the rotation. According to the argu-
mentation already presented, both mean reduced acreage 
shares of crops, when the farm converts. However, there 
is a lower limit on the reduction of the acreage, related 
to the crop appearing at least one in the rotation

The FADN data also supports the connection of 
“longer and more diversified” rotation to the crop acre-
age. In Table C.3, we show the differences between the 
mean acreage shares between the organic and conven-
tional FADN farms (and the corresponding 95% confi-
dence interval). The cash crops in organic farms have a 
lower acreage share than in the conventional ones.

We model the extensification of the rotation as a 
reduction on the current share of a crop. More spe-
cifically, we will introduce the following flexibility con-

straint to the farms that convert.

where  is the share of crop c in farm f when con-
verted to organic,  is the observed share of crop c 
in farm f when it is conventional and rf,c is a crop and 
farm-specific coefficient of share reduction related to 
the “longer and more diversified” rotation of a convert-
ed farm.

For estimating, rf,c we consider that the crops with 
an area share at 20% or smaller of the total UAA, are 
already cultivated extensively (20% correspond to a rota-
tion of once every five year,37 see Table C.2). Thus, a 
farm that converts to organic does not need to change 
the relative acreage allocation of those crops. Only farms 
that have for some crops a share greater than 20% will 
need to reduce the area of these crops.

Thus, for a farm that belong to farm type TF (we use 
the notation of TF(f); i.e. the TF of f) , rf,c equals to:

where, diffc,TF is the difference between the mean acre-
age shares between the organic and conventional FADN 
farms of the Farm Type (TF) that the farm belongs (as in 
Table C.3; for non-significant differences, we set diffc,TF 
to zero); sharec,TF is the average share of crop c in the 
conventional farms of the TF farm type (as in Table C.4). 

In Table C.5, we give the for each farm type. For 
farm types where we did not see statistically significant 
differences, we set r = 0. Since rf,c is farm specific, in 
Table C.6 we give the percentage of farms that rf,c > 0, so 
that the reader knows the impact of this constraint. 

37 This is in line with findings of Barbieri et al. (2017). 

Table C.1. Characteristics of different crop rotations.

Duration of 
rotation (D)

Frequency of a 
crop (fc)

Frequency 
to Duration

Share of acreage 
(pc)

3
1 1/3 0.33
2 2/3 0.66

4
2 2/4 0.50
3 3/4 0.75

5
2 2/5 0.40
3 3/5 0.60
4 4/5 0.80

6

2 2/6 0.33
3 3/6 0.50
4 4/6 0.66
5 5/6 0.83

7

2 2/7 0.28
3 3/7 0.42
4 4/7 0.57
5 5/7 0.71

Table C.2. Expected share of acreage for a crop that appears once in 
the rotation.

Duration of rotation 
(D)

Frequency of a crop 
(fc)

Share of acreage  
(pc)

3 1 0.33
4 1 0.25
5 1 0.20
6 1 0.16
7 1 0.14
8 1 0.12
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Nitrogen management

Nitrogen management is different between organic 
and conventional farms. In the conventional methods, 
inorganic/mineral fertilizers compensate for the soil 
nutrients removed through production. In organic farm 
management inorganic fertilizers are prohibited, and 
thus, soil fertility is maintained partially with adding 
organic fertilizers (mainly manure) and with crop rota-

tion schemes, mainly green manure and nitrogen fixa-
tion from leguminous crops (Chmelíková et al., 2021; 
Lin et al., 2016; Reganold & Wachter, 2016). Chongth-
am et al. (2017) using a structured interview survey, 
found that the majority arable farmers used peren-
nial clover and grass crops as green manure (referred 
as ‘ley’) in their rotation. The ley crops were under-
sown in annual cereal crops and remained for at least 
one more year during which they were cut regularly to 

Table C.3. Difference between means of acreage shares; organic and conventional farms.

Soft Wheat Durum 
Wheat Barley Grain 

Maize
Fodder 
Maize Rape seed Sugar Beet Sun

flower Potatoes

Specialist COP (15) -11.3%*** +9.8%** +2.2%ns -10.1%*** -1.1%ns -4.9%ns -5.5%ns -4.7%ns -0.4%ns

Specialist other field crops (16) -10.0%*** -2.5%ns -3.3%* -9.7%*** -6.2%ns -0.9%ns -7.1%*** -8.7%*** -7.4%***

Specialist horticulture (20) -11.0%* na -2.9%ns -24.5%* na na na -16.0%** -5.4%**

Specialist wine (35) -4.0%ns -4.8%ns -4.0%* -10.7%* -9.4%ns +15.8%ns na na -0.5%ns

Specialist orchards - fruits (36) -7.2%* -14.6%*** -5.1%ns -5.3%ns -7.5%ns na na -6.0%ns -0.1%ns

Specialist olives (37) -1.0%ns +9.8%ns +6.6%ns na na na na na +0.7%ns

Permanent crops combined (38) +2.6%ns -10.6%* -1.6%ns -3.1%ns na na na +13.5%ns -1.8%*

Specialist milk (45) -5.0%*** +2.9%ns -3.8%*** -10.5%*** -13.9%*** -4.3%*** -3.5%ns -9.3%** -1.2%***

Specialist sheep and goats (48) -5.3%*** -5.6%** -7.0%*** -10.1%** -10.2%*** na na na -2.0%***

Specialist cattle (49) -5.7%*** -4.5%ns -4.3%*** -10.5%*** -16.8%*** -2.7%*** na -8.2%*** -1.5%***

Specialist granivores (50) -7.6%** -0.4%ns -2.7%ns -14.7%** -10.1%ns -6.8%* na +8.8%ns -4.0%ns

Mixed crops (60) -8.9%*** +0.9%ns -3.4%ns -14.7%*** na na na -7.4%ns -6.2%***

Mixed livestock (70) -6.0%*** +5.3%ns -7.1%*** -19.3%*** -11.4%ns na na -8.3%ns -2.2%***

Mixed crops and livestock (80) -7.7%*** +2.0%ns -3.9%*** -11.4%*** -3.4%ns -8.5%*** -4.9%* -14.1%*** -2.9%***

Notes: - The significance of the mean difference is based on a two-sided Welch’s t-test.
- Regarding the significance levels in the superscript: (ns) means a non-significant value; (*),(**) and (***) are 95%, 99% and 99.9% signifi-
cance levels.
- na means that there was not enough number of observations to get a mean difference.

Table C.4. Average shares of certain crops in conventional farms.

Soft Wheat Durum 
Wheat Barley Grain 

Maize
Fodder 
Maize Rape seed Sugar Beet Sun

flower Potatoes

Specialist COP (15) 35.7% 36.1% 20.9% 29.4% 10.0% 22.0% 10.0% 26.0% 1.8%
Specialist other field crops (16) 29.3% 28.9% 18.3% 22.7% 21.8% 16.8% 18.4% 19.0% 21.9%
Specialist horticulture (20) 29.8% 0.0% 29.2% 32.7% 0.0% 0.0% 0.0% 21.8% 16.6%
Specialist wine (35) 20.5% 26.1% 17.8% 21.3% 20.9% 14.6% 0.0% 0.0% 3.8%
Specialist orchards - fruits (36) 19.4% 28.3% 19.2% 19.9% 18.0% 0.0% 0.0% 14.0% 4.3%
Specialist olives (37) 15.3% 27.4% 23.9% 0.0% 0.0% 0.0% 0.0% 0.0% 1.2%
Permanent crops combined (38) 22.5% 29.4% 19.4% 18.2% 0.0% 0.0% 0.0% 15.7% 3.2%
Specialist milk (45) 13.8% 15.0% 11.9% 17.6% 23.6% 9.8% 8.9% 12.6% 2.4%
Specialist sheep and goats (48) 13.7% 17.4% 18.7% 19.7% 15.8% 0.0% 0.0% 0.0% 2.6%
Specialist cattle (49) 12.8% 17.0% 11.6% 14.4% 24.0% 9.0% 0.0% 11.6% 2.2%
Specialist granivores (50) 30.0% 32.5% 27.1% 35.3% 31.8% 17.4% 0.0% 24.5% 10.4%
Mixed crops (60) 26.0% 31.6% 23.0% 26.9% 0.0% 0.0% 0.0% 23.3% 14.3%
Mixed livestock (70) 18.2% 17.7% 16.2% 24.5% 20.0% 0.0% 0.0% 13.7% 4.1%
Mixed crops and livestock (80) 23.6% 22.4% 16.8% 23.6% 12.6% 16.2% 11.8% 18.9% 6.4%
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control weeds, and in some cases to sell hay or silage 
to neighboring farms. For dairy farmers, they report 
that ley was two or three years of ley followed by two 
years of cereals. This was a common scheme for beef 
and sheep farmers too. The same finding is present in 
Watson C.A. et al. (2002). He says that in mixed sys-
tems, the rotations are most commonly based on ley/
arable rotations, where fertility is built during the ley 
phase, in which grazing and fodder production provide 
an economic return. Finally, Barbieri et al. (2017) finds 
through meta-analysis that at the global scale, organic 
rotations have fewer cereals and more temporary fod-
ders. In addition, they find that organic rotations have 
2.8 times more temporary fodder crops (such as alfalfa, 
clover, clover-grass, Italian ryegrass, etc.) than con-
ventional systems, which generally occupy land for an 
entire year. Finally, for livestock systems, the use of 
permanent grassland (pastures and meadow) is also 
common (Watson C.A. et al., 2002). 

Modeling the farm’s nitrogen management is quite 
complex and requires information that is not available in 
FADN (Küstermann et al., 2010; Thomas, 2003). For this, 

we will not explicitly model the underlying mechanism 
of plot-level nutrient management. Instead, we will focus 
on the increase of the share of nitrogen fixing crops 
through a data driven approach.

The first step is to focus on the crops that relate to 
the nitrogen management decision of the farm. For IFM-
CAP, these activities are:
1. Soya (code: SOYA)
2. PULS that is the aggregation of the following 

three FADN activities: ‘Peas, field beans and sweet 
lupines’, ‘Lentils, chickpeas and vetches’ and ‘Other 
protein crops’.

3. OFAR that is the aggregation of the following FADN 
activities: ‘Temporary grass’, ‘Green maize’ and 
‘Leguminous plants’.

4. FALL that is the fallow land.
5. PGRA that is the permanent grassland activity, cor-

responding to pasture and meadows that exist in the 
same plot for at least 5 years.
When we compare the share of land devoted to 

these five activities between organic and conventional 
farms, we see statistically significant differences.

Table C.5. . Reduction of share of crops when a conventional farm converts to organic (rTF,c).

Soft Wheat Durum 
Wheat Barley Grain 

Maize
Fodder 
Maize Rape seed Sugar Beet Sun

flower Potatoes

Specialist COP (15) -31.8% 27.2% -34.5%

Specialist other field crops (16) -34.1% -17.9% -42.8% -38.6% -46.0% -33.6%

Specialist horticulture (20) -36.9% -75.0% -73.2% -32.5%

Specialist wine (35) -22.2% -50.2%

Specialist orchards - fruits (36) -37.3% -51.4%

Specialist olives (37)

Permanent crops combined (38) -36.0% -57.6%

Specialist milk (45) -36.0% -31.8% -59.5% -59.1% -43.8% -74.1% -48.9%

Specialist sheep and goats (48) -38.8% -32.0% -37.5% -51.4% -64.4% -75.6%

Specialist cattle (49) -44.1% -36.9% -72.7% -70.2% -29.9% -71.2% -66.2%

Specialist granivores (50) -25.2% -41.6% -38.9%

Mixed crops (60) -34.4% -54.7% -43.0%

Mixed livestock (70) -32.9% -43.8% -79.0% -53.9%
Mixed crops and livestock (80) -32.8% -23.2% -48.1% -52.3% -41.8% -74.3% -45.3%

Notes: - For empty cells, no reduction is applied, since the differences between organic and conventional farms were not significant.

Table C.6. Percentage of farms with rTF,c > 0.

Soft Wheat Durum Wheat Barley Grain Maize Fodder Maize Rape seed Sugar Beet Sun
flower Potatoes

59.0% 25.9% 15.6% 49.2% 28.5% 8.0% 17.1% 8.8% 15.6%
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Thus, we model the change in nitrogen management 
by means of flexibility constraint that is active in the 
case that the farm converts:

where, N is the set of nitrogen fixing crops of the model 
(PULS, OFAR, SOYA,PGRA and FALL),  and  
are the shares of crop c in farm f when in the organic 
and conventional status respectively, and nf is a farm 
specific coefficient related to the type of farming that the 
farm belongs. We calculate it as follow.

where diffTF(f) is the last column of Table C.5 and 
shareTF(f) is the second column.
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Part D: Estimating conversion probabilities in the exog-
enous approach

The proposed exogenous approach is based on esti-
mation of the likelihood to convert to organic farming 
of individual farms. Our main assumption is that the 
likelihood of conversion depends on the similarity of 
conventional farms with respect to organic ones: con-
ventional farms that are more similar to organic ones 
are more likely to convert to organic farming. This 
assumption is consistent with the idea that farms that 
are already similar to exiting organic farms would need 
to make smaller adjustments to transition to organic 
production methods and at the same time capitalize on 
output price premiums and CAP organic support.

Unlike exercises typical of the literature on adoption 
of organic farming (Bravo-Monroy et al., 2016; Yu et 
al., 2014; Kallas et al., 2009; Parra López and Calatrava 
Requena, 2005; Darnhofer et al., 2005; Hattam and Hol-
loway, 2005; Lohr and Salomonsson, 2000; Fairweather, 
1999; Burton et al., 1999), this is a prediction exer-
cise38. Our aim is to assign a probability of conversion 
to FADN farms and our focus is on all farms included 
in the base year of IFM-CAP (i.e., for farms in FADN 
in 2017). Therefore, the scope of our exercise is much 
broader than typical case-studies that analyze the driv-
ers of conversion to organic farming. Here, we aim to 
cover different EU regions and types of farms in terms 
of size and specialization.

The economic literature has primarily applied 
empirical approaches to analyze drivers of organic con-
version; theoretical models are usually not applied due 
to the complexity of drivers affecting organic farm-
ing decisions (Serebrennikov et al., 2020; Willock et 
al., 1999). Furthermore, applying theoretical models is 
complicated by the heterogeneity of farming systems 
across the whole EU. Therefore, an empirical predictive 
approach based on econometric estimations of the like-
lihood of adopting organic farming seems to be more 
appropriate in our context. 

Regarding the estimation framework, we rely on the 
use of probability models. We compare the performance 

38 See Shmueli (2010) for a comparison between predictive and explana-
tory models.

of multiple probability models and select the best per-
forming one. We apply seven different prediction mod-
els to estimate the probability of conversion to organic 
farming: (i) the linear probability model (LP), (ii) the 
linear probability model with a stepwise selection algo-
rithm (LP + SSA),39 (iii) the logit model (LOGIT), (iv) 
the logit model using the covariates of model LP + SSA 
(LOGIT + SSA), (v) the probit model (PROBIT), (vi) the 
probit model using the covariates of model LP + SSA 
(PROBIT + SSA), and (vii) the random forest algorithm 
(RANDOM FOREST). The latter one is a tree-based 
classification/regression tool able to handle large num-
bers of regressors, robust to overfitting, and that does 
not require distribution assumptions (Biau and D’Elia, 
2011; James et al., 2013). For further details on tree-
based methods and on the random forest algorithm, 
please refer to James et al. (2013).

The model selection criterion is solely based on the 
ability of the models to predict the status of the current 
FADN farms correctly. In other words, the in-sample 
prediction accuracy40 is the performance metric used to 
compare models and select the most performant one out 
of the seven considered. The performance metric of each 
model is calculated as the (non-weighted) average of the 
share of correct in-sample predictions of the conven-
tional farms (0s) and the organic ones (1s). For example, 
a model that correctly predicts 90% of the conventional 
farms and 80% of the organic ones has a performance 
metric of 85%. Using a non-weighted average implies 
assigning equal importance to the predictive ability of 
the farms’ conventional and organic status. 

The dependent variable used in all models is binary 
taking value of 1 if the farm is organic and 0 if the farm 
is conventional (non-organic). Each model is fed with 
covariates chosen based on literature review and that 
relate to different monetary and non-monetary related 
factors such as the structural characteristics of the farm, 
the geographical location, the types of farm activities, 
the amount of subsidies received, the presence of organ-
ic farming in the region of activity, the performance 
of organic farms in the region relative to conventional 
ones, regional land prices, costs, and revenue informa-
tion. The list of covariates used in the estimations is pre-
sented in Table D.1. 

39 A stepwise selection algorithm based on the AIC criterion (imple-
mented in R with the function step (R Foundation for Statistical Com-
puting, 2022) is applied to the full specification of the LP model. This 
selection algorithm reduces the number of covariates used in the esti-
mation phase and, possibly, increases the accuracy (goodness of fit) of 
the predictions. This reduced equation is then used to re-estimate the 
linear, logit, and probit models.
40 Out-sample accuracy is also evaluated with FADN data between 2014 
and 2016 used as a test set and FADN data for the year 2017. 
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The covariates in Table D.1 have been constructed 
using available FADN data to capture the structural 
characteristics of the farm, production specialization, 
the characteristics of the geographical location in which 
it operates, the type of farm activities, crop biodiver-
sity index, yield gaps, labor use, the amount of subsi-
dies received, the presence of organic farming in the 
region of activity, the performance of organic farms in 
the region relative to conventional ones, regional land 
prices and input expenditure. The choice of these vari-
ables was guided by findings from previous empirical 
literature suggesting that structural features of the farm 
such as size, specialization, livestock density, ownership, 
family contribution to farm activities, and geographical 
location (Genius et al., 2006; Canavari et al., 2008; Peter 
Silas, 2008; Koesling et al., 2008; Khaledi et al. 2010; Läp-
ple, 2010; Kaufmann, 2011; Malá and Malý, 2013; Haris 
et al., 2018; Serebrennikov et al., 2020; Sapbamrer, 2021), 
production choices (Anderson et al., 2005; Kisaka-Lwayo, 
2007; Malá and Malý, 2013; Knowler and Bradshaw, 2007; 
Métouolé Méda et al., 2018), subsidies (Genius et al., 
2003; Läpple, 2010; Malá and Malý, 2013; Chmielinski 
et al., 2019; Yanakittkul and Aungvaravong, 2020), pres-
ence of organic farming in the region (Läpple, 2010; Läp-
ple and Rensburg, 2011; Saoke, 2011; Sriwichailamphan 
and Sucharidtham, 2014; Haris et al., 2018), land owner-
ship and assets (Kaufmann et al., 2011; Chmielinski et 
al., 2018), farm performance indicators (Parra López and 
Calatrava Requena, 2005; Malá and Malý, 2013; Lu and 
Cheng, 2019; Liu et al., 2019) as well as other non-mon-
etary drivers (e.g., believes and attitudes towards health 
and the environment) (Egri, 1999; Canavari et al., 2008; 
Koesling et al., 2008; Läpple, 2010; Läpple and Rensburg, 
2011; Mzoughi, 2011; Wollni and Andersson, 2014; Haris 
et al., 2018; Nguyen et al., 2020) may impact farmers’ 
decision to convert to organic farming. 

Estimations and comparisons of the performance 
of the seven considered models are carried out for each 
MS and the EU.41 The in-sample predicted organic con-
version probabilities obtained with the best performing 
model are then used in IFM-CAP. That is, IFM-CAP 
farms (in each MS or at the EU level, depending on 
the type of simulated policy target)42 ranked according 
to their likelihood of being organic, and those with the 

41 The models are estimated using 2014-2017 data. A data cleaning pro-
cedure is applied before estimation. Data for Italy, Denmark, and Bul-
garia prior 2016 have been removed due to the very low number of 
organic farms compared to 2017. 
42 The estimated MS conversion probabilities are more appropriate when 
modeling the policy target on the share of organic land that needs to 
be converted at the MS level. In contrast, the EU level conversion prob-
abilities are more appropriate when modeling the policy target set at the 
EU level. 

highest probability are selected to convert. This implies 
that the selection of farms that convert to organic pro-
duction in the exogenous approach are not necessarily 
those that gain the most in terms of profit-maximizing 
behaviour but those estimated to be most likely convert-
ing, determined by various monetary and non-monetary 
related factors. This is in contrast to the endogenous 
approach, where the sole driver is profit maximization 
behavior, i.e., the utility gain from the conversion.

Performance results and model selection

Table D.2 presents the performance metric of the 
seven models and the best performing model for MS 
and EU level estimations. The prediction accuracy varies 
between 0.51 and 0.99, with most models across MS and 
EU having an accuracy greater than 0.8. For the major-
ity of MS, as well as for the EU as a whole43, the random 
forest algorithm outperformed the other six models in 
terms of prediction accuracy. Exceptions are Luxemburg 
and Ireland, for which the Logit model and the Logit 
model with stepwise selection algorithm have shown 
a higher prediction accuracy, respectively. The predic-
tion accuracy for the selected model is greater than 0.88 
across MS and EU. 

Table D.3 presents a more detailed performance 
metric for the best performing model by indicating the 
in-sample confusion matrices which includes the per-
centages of correct and incorrect predictions gener-
ated by the selected models, together with the number 
of observations for the conventional and organic status. 
The in-sample confusion matrix shows the share of cor-
rect predictions both for the conventional status (the 0-s) 
and for the organic status (the 1-s), as well as the share 
of the incorrect predictions (i.e., 0- for organic and 1- 
for conventional). As shown in Table D.3, the prediction 
performance of the selected model is relatively high. For 
the MS-based models, the share of correct predictions 
varies between 85% and 99% for the non-organic farms 
and between 84% and 99% for the organic ones. For the 
EU, the random forest algorithm also performs pretty 
well, with a prediction accuracy of approximately 94% 
for both organic and non-organic farms.
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Table D.1. Covariates used in the prediction of the likelihood to convert in the exogenous approach.

Name Type Category Description

REGION Class NM FADN region dummies
TF14 Class NM Dummies for the 14 FADN classes of type of farming

ACTIVITIES Numeric NM Share of the total agricultural area by production activity. Additionally, the share 
of cereals is interacted with all other activities. In total 24 activities

LIVESTOCK Class NM Dummy for the presence/absence of livestock activities
MAX SHARE CROP DETAILED Numeric NM Maximum share of the major crop according to FADN activities
MAX SHARE CROP AGGREGATE Numeric NM Maximum share of the major crop according to IFM-CAP activities
SHANNON Numeric NM Shannon index of crop biodiversity
SHARE UAA OWNED Numeric NM Share of owned Utilized Agricultural Area
REGIONAL LAND RENT Numeric M Regional average rental price of agricultural land per hectare
UAA Numeric NM Total Utilized Agricultural Area
SIZ6 Class NM Classes of economic size
TYPOWN Class NM Type of ownership of the farm
ALTITUDE Class NM Altitude class of the holding
ANC3 Class NM Classes of Areas with Natural Constraints
TOTAL AWU HA Numeric NM Total Annual Working Units per hectare
SHARE UNPAID AWU Numeric NM Share of AWU of family workers
LU/HA Numeric NM Livestock Density
IRRSYS Class NM Type of irrigation system
FIXED ASSETS/HA Numeric M Fixed assets per hectare in EUR
MFP Numeric M Multifactor productivity measured as total output value divided total input costs
DECOUPLED/ HA Numeric M Decoupled payments per hectare
COUPLED/HA Numeric M Coupled payments per hectare
ENVIRONMENT/HA Numeric M Environmental payments per hectare
LFA/HA Numeric M Payments for Least Favored Areas per hectare
OTHER/HA Numeric M Other RDP payments per hectare
INVESTMENTS/HA Numeric M Payments for investments per hectare

ORGANIC WHEAT YIELD RATIO Numeric NM Ratio between the yield of wheat for organic and for conventional farms in the 
FADN region

ORGANIC MAIZE YIELD RATIO Numeric NM Ratio between the yield of maize for organic and for conventional farms in the 
FADN region

ORGANIC MILK YIELD RATIO Numeric NM Ratio between the yield of milk for organic and for conventional farms in the 
FADN region

REGIONAL SHARE ORGANIC Numeric NM Share of organic farms in the region
FERTILIZERS/HA Numeric M Expenditure per hectare in fertilizers
PESTICIDES/HA Numeric M Expenditure per hectare in pesticides

RELATIVE FERTILIZERS/HA Numeric M Expenditure per hectare in fertilizers relative to the expenditure of farms of the 
same organic status, TF14 and region

RELATIVE PESTICIDES/HA Numeric M Expenditure per hectare in pesticides relative to the expenditure of farms of the 
same organic status, TF14 and region

Notes: M: monetary variable; NM: non-monetary variable
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