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Abstract 

This paper investigates the occurrence of common price shocks (co-exceedance) across different 

commodities. IMF monthly price series of 11 commodities are considered over the 1980-2021 period. 

The analysis considers two alternative stochastic processes. The first looks for common volatility 

clusters using individual GARCH models to detect whether and when respective clusters overlap. 

Through an appropriate battery of tests, the second alternative looks for a common Bubble 

Generating Process (BGP) by searching for individual explosive roots and then dating them to 

identify the possible overlaps and first movers. Evidence emerging about these shock generating 

processes is linked to the analogous behaviour of the US Consumer Price Index (CPI) to assess to 

what extent inflation shocks can be associated to the observed commodity price spikes. Results show 

that the detection of temporary bubbles and volatility clusters only partially agrees on the episodes 

of exuberance, on the first-moving commodities and on the involvement of the CPI. This provides 

helpful suggestions on the development of a real-time surveillance tool supporting policy intervention 

in periods of commodity price turbulence.   
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1. Introduction 

The large and rapid surge of most commodity prices that started in 2021 and lasted for the whole of 

2022 points to two stylised facts that have been repeatedly investigated in previous episodes of price 

spikes: commodity prices move together; the rise of commodity prices transmits, somehow, to the 

Consumer Price Index (CPI). The consequent inflation rate rush largely impacts economies and 
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societies and usually induces a quite vigorous policy response (Ider et al., 2023). Nonetheless, the 

explanations of these price dynamics are still to be fully understood.  

The literature on the common movement (or co-movement) of commodity prices is vast (Byrne et al., 

2020). One limit of this literature is that it implicitly assumes that the communality of price dynamics 

has to be intended as the existence of a common Data Generation Process (DGP), usually represented 

via some variant of Vector Auto-Regression (VAR) or Vector Error Correction (VEC) models or 

through more sophisticated representation of the underlying common drivers (for instance, common 

latent factors) (Esposti, 2021). But this may contrast with empirical evidence that suggests 

substantially different fundamentals across very diverse commodities, thus questioning the presence 

of common real determinants to justify commonality. In general terms, most representations of the 

common DGP and of the consequent price transmission process (like the conventional Granger 

causality, for instance) may be too simplistic to capture the real underlying interdependence across 

commodities, if any, thus providing misleading evidence on the actual causal linkages.   

However, a specific strand of the recent empirical literature stresses that a common DGP is not strictly 

needed for a common temporary behaviour to be observed (Zhao et al., 2021, p. 781; Mutascu et al., 

2022). In particular, commonality may only occur within the periods of exuberance, also referred to 

as co-exceedance. When the price spike expires each series reverts to its own (possibly different) 

normal-time DGP. This hypothesis can be also transferred to the second stylised fact, that of the CPI 

response: for a transmission of shocks to the CPI to occur we do not need a common DGP with the 

commodity prices, but only some co-exceedance with them.   

The presents paper aims to contribute to this body of studies by proposing an original methodological 

approach which then leads to a novel policy tool. The main originality of the approach consists in 

juxtaposing and combining two alternative stochastic processes generating co-exceedance. The first 

resides in the occurrence of common (but not interdependent, that is, multivariate) volatility clusters 

whose behaviour is here modelled through appropriate Generalised Auto-Regressive Conditional 

Heteroskedasticity (GARCH) models. The second consists in the occurrence of common bubbles (a 
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common Bubble Generating Process, BGP), that is, temporary explosive roots within the individual 

series but whose timing largely corresponds across commodities. Individual price series of very 

diverse commodities are thus separately investigated in order to assess whether and when volatility 

clusters (first) and temporary explosive roots (second) are found. Although these methodological 

approaches have already been adopted in previous empirical studies (Otero and Baum, 2021; Phillips 

and Shi, 2020; Zhao et al., 2021), this paper proposes a combination of these techniques to assess the 

co-exceedance of commodity prices without relying on some arbitrary and unreliable common DGP.  

Monthly series of 11 commodity prices and the respective price indexes released by the International 

Monetary Fund (IMF) over the 1980-2021 period are considered. Co-exceedance is assessed by 

confronting the occurrence of these events across series. If some overlapping is observed, it supports 

the existence of some contagion (or transmission) across prices. The sequence of the events across 

prices can finally suggest the direction of this possible contagion. The same analysis is then repeated 

on the US CPI.  

The interest for this methodological approach eventually lies in its application to design a suitable 

policy tool. Instead of concentrating on complex and possibly misleading causation processes, the 

proposed empirical strategy aims to identify when periods of rapid price rises occur and assesses 

whether they are common across commodities. Therefore, it allows to develop a real-time 

surveillance tool guiding a prompt policy response in the right direction, in particular by 

distinguishing interventions that can be confined to the sectoral context from interventions that 

require an economy-wide spectrum of actions. In order to be easily interpretable also by non-technical 

users, this tool is aimed to transfer results into a sort of periodically updatable dashboard visualizing 

the critical information under investigation: if a bubble is occurring for a given commodity, when it 

started, whether other commodities are involved by the same bubble, who moved first and, finally, if 

and to what extend this price surge is also reflected in the CPI. Contributing to the definition of such 

a policy tool represents a further objective of the present study.    
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The rest of the paper is structured as follows. Section 3 overviews the recent empirical literature in 

the field while Section 3 presents the adopted dataset and the main stylised facts. Section 4 details 

the adopted methodological approach, the results of which are illustrated in section 5. In Section 6 

these results are discussed and juxtaposed with the evidence emerging from more conventional 

methodologies about the investigation of commodity price dynamics. Section 7 draws some policy 

implications and concludes. 

2. The common movement of commodity prices: literature and evidence 

The paper by Wang and Tomek (2007) may represent the first study that explicitly and extensively 

discussed the sequence of empirical issues to be tackled in investigating the actual DGP of commodity 

prices. Though their main attention was on the stationarity properties of agricultural commodities, 

their conclusions can be extended to other commodities and properties of the unknown DGP. The 

main argument is that, due to their market fundamentals (on both the supply and the demand side), 

commodity prices are expected to be mean reverting, with the long-term mean value possibly moving 

along a deterministic trend. So, prices are expected to follow a stationary DGP around a drift or a 

trend.  

The fact that in the empirical literature the presence of a unit root is only occasionally rejected has to 

be attributed to the characteristics of the respective tests and/or to their misspecification. In particular, 

other characteristics of a stationary DGP can make it similar to a unit-root process. One is that these 

prices often show long memory (that is, fractional integration) making it possible for a close-to-(but-

lower-than)-one root to be confounded with a unit root. Another is the presence of a structural break 

that may shift the long-term value upward or downward and can itself generate a potential confusion 

as evidence of nonstationarity: the presence of a structural break within a stationary series may lead 

to accepting the presence of a unit root, thus wrongly concluding that the series is non-stationary 

(Baum, 2005; Glynn et al., 2007). 

A consistent body of recent studies concentrates on several different stochastic processes to explain 

the complex (i.e., non-linear) commodity price dynamics and the possible underlying co-movement. 
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They are, in particular, fractional integration and structural breaks. A recent example, though 

concerning stock market indices and not commodity prices is Caporale et al. (2020). Based on an 

approach originally proposed by Cuestas and Gil-Alana (2016), they argue that fractional integration 

is very much related to non-linearities.1 The possibility of structural breaks is also considered since 

many studies argue that fractional integration might be artificially generated by the presence of breaks 

in the data that have not been taken into account. In fact, the presence of structural breaks within 

commodity price series was already considered by Wang and Tomek (2007).  

However, it must be noticed that fractional integration and/or structural breaks can hardly explain the 

behaviour of commodity prices and, in particular, the abovementioned co-exceedance, that is, their 

recurrent episodes of temporary exuberance as also emerging by simple visual inspection (see next 

section). They remain interesting and possibly relevant processes in the investigation of individual 

DGP since they may significantly interfere with the investigation of temporary bubbles and/or 

GARCH effects. Therefore, although the approach here adopted considers other DGPs, the presence 

of structural breaks can not be excluded at least for some of these commodities (Esposti, 2021) and 

will be considered here for comparative purposes (see Section 6). 

Concentrating on the stationarity properties these studies overlook another major characteristic of 

these price series that clearly emerges from a simple visual inspection: the presence of temporary 

exuberance. Therefore, their DGP is expected to also generate self-extinguishing periods of 

particularly high or low values. Most of the literature in the last 15 years has essentially focused on 

this issue also as a consequence of the 2007-2008 price spike and of the following turbulent period. 

A lot of theoretical and empirical research has tried to investigate the origins of these price 

nonlinearities, jumps and spikes, as well as to put forward testing procedures to assess their presence. 

We can summarize this research effort in three main directions and, then, in their possible 

combination.  

 

1 Another interesting strand of empirical literature on commodity price dynamics, and strongly linked to non-linearities and fractional 

integration, consists in the so-called fractal approach (Cromwell et al., 2000).   
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The first strand of research explains the observed price spikes and jumps as the consequence of a 

temporary increase in their variability (or volatility). It is the formation of volatility clusters that 

eventually generates the observed highly irregular price dynamics. In most applications, this idea is 

implemented by specifying and estimating GARCH regression models possibly admitting 

asymmetric effects and non-stationary processes for the price level. See Li et al. (2017), Baur and 

Dimpfl (2018) and Esposti (2021), just to mention a few, for the application of different variants of 

GARCH modelling to commodity prices.  

Within the second body of studies the origin of the episodes of price turbulence is the formation of 

temporary bubbles. Several tests have been originally proposed to detect temporary price bubbles 

within mean-reverting, thus stationary, processes (Gürkaynak, 2008). More recently, the presence of 

temporary bubbles has been admitted, and tested, within possibly non-stationary processes, that is, as 

temporary explosive roots emerging within unit-root processes (Phillips et al., 2011, 2015; Phillips 

and Shi, 2020). Gharib et al. (2021) and Zhao et al. (2021) have recently used this battery of tests to 

assess the co-exceedance of some commodity prices and to date the respective bubbles. 

Co-existence of both processes is also possible. This is considered helpful for two complementary 

reasons. On the one hand, as already anticipated, it is always difficult to clearly distinguish between 

the outcome of these two processes (Gürkaynak 2008, pp. 182-183; Chang, 2012). On the other hand, 

none of the two alternative processes may totally capture all the features of the observed price 

dynamics. To reconcile these two alternative processes, Chang (2012) adopts an Autoregressive 

Jump-Intensity(ARJI)-GARCH model. Originally proposed by Chan and Maheu (2002), this model 

is in principle able to generate both temporary bubbles and volatility clusters within stationary 

processes.  

The third strand of empirical research in the field differs from the conventional time-series approaches 

as it is grounded on the spectral analysis and in time–frequency approaches. For the evolution of 

market prices, wavelet analysis has emerged as a useful and powerful tool in assessing price co-

movement cycles. Without resorting on any theoretical causation (price transmission) process, it 
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allows to explore how the series of prices are related at different frequencies admitting non-linearities 

like structural breaks.2 Mutascu et al. (2022) provide a valuable example of this kind of approach by 

investigating the co-movements of gasoline and diesel prices in different countries at different 

frequencies. Though this approach is relatively new, interesting and promising, it is still based on the 

assumption of a permanent interdependence between prices although flexible and not-linear. In the 

present study, as anticipated, we do not want to admit any persistent co-movement but only co-

exceedance, therefore prices moving together only in specific periods of price spikes. Nonetheless, 

the combination of the co-exceedance analysis here proposed  with wavelet analysis can open 

interesting developments for future research in this area. 

Here, the aim is to investigate the commodity price dynamics following the first two relative recent 

strands of research by pointing to commodity price co-exceedance rather than co-movement. In 

particular, unlike Chang (2012) and Zhao et al. (2021) the objective is not to estimate the parameters 

of the actual DGP but to date the episodes of price turbulence by confronting, in this respect, two 

competing processes: GARCH within stationary processes (volatility clusters) and temporary 

explosive roots within non-stationary processes (bubbles). Moreover, unlike Zhao et al. (2021) here 

we do not adopt Granger causality testing to assess the direction of the possible transmission of the 

price shocks across commodities.3 By dating these periods individually, we provide evidence on this 

transmission by solely juxtaposing the timing of the individual episodes. 

This is done not only on commodity prices and price indexes but also on the CPI series. While the 

empirical literature on the commodity price properties and behaviour is vast and follows the 

abovementioned directions, the investigation of the CPI dynamics (and its growth rate, the inflation 

rate) mostly follows other directions. It mainly concentrates on the common movement and possible 

interdependence with other macroeconomic variables and is only occasionally connected to 

commodity prices (Garzón and Hierro, 2022; Ider et al., 2023). GARCH effects possibly occurring 

 

2 We wish to thank an anonymous reviewer for helpful suggestions on this aspect.   
3 Granger causality tests imply a common linear DGP across series (VAR or VEC models) (Zhao et al., 2021, p. 783). But both 

commonality and linearity may not hold in the present case. Nonetheless, for the sake of comparison and robustness check of results, 

in Section 6 we will present Granger causality tests.   
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in the CPI or inflation rate series has been extensively analysed (Engle, 1982), but we are not aware 

of studies assessing the presence of temporary bubbles within these series. In fact, visual inspection 

seems to suggest quite different properties of CPI compared to commodity prices (see next section). 

Nonetheless, if a transmission from commodity prices to CPI is expected, especially in periods of 

price turbulence, this should imply some form of co-exceedance between these series.    

But there is a final original aspect of the present contribution with respect to the recent literature in 

the field. It concerns the policy implications of the proposed empirical approach. In previous studies 

either these implications are overlooked or they concentrate on the possible effect of policy 

interventions on the nature and scope of commodity price co-movement or co-exceedance like, for 

instance, the fuel tax system (Mutascu et al., 2022) or import tariffs (Esposti and Listorti, 2018). If 

the main objective of a policy in this context is to minimize the negative impact of a generalized rise 

of commodity prices, knowing the possible underlying causation and transmission process, that is the 

structural linkages generating co-movement, might not be so critical. What seems important is rather 

a quick understanding that a price “bubble” is forming and whether or not it is just sectoral (so it 

involves a limited number of commodities) or it is generalized across all markets, that is, it is a co-

exceedence. Sectoral interventions to neutralize a momentary price surge are present in many contexts 

and are usually rapidly activated (in the case of agricultural commodities, for instance, the agricultural 

market-crisis interventions represent an interesting example (FAO et al., 2011)). When occurring on 

first-moving prices, these prompt sectoral responses may help to prevent a generalized “bubble”. 

Understanding if and when this latter is, in fact, occurring then becomes critical to promptly activate 

system-wide actions, particularly intended to prevent or slow-down downstream impact on inflation 

rate surges (Ider et al., 2023). This real-time surveillance tool able to provide such an early warning, 

as well as the generality and the first movers of the “bubble”, seems to be particularly helpful for a 

prompt policy response.  

3. Price series under scrutiny 
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The present analysis concerns the price of a selection of 11 commodities belonging to three different 

categories: 4 agriculture commodities (corn, wheat, soybean, beef); 3 energy commodities (crude oil, 

natural gas, coal); 4 metals (aluminium, copper, zinc; nickel).4 All price series are taken from the IMF 

commodity price dataset.5 All prices are monthly and cover the period January 1980 (1980M1)-

December 2021(2021M12) (504 observations) with the only exception of natural gas whose series 

starts in 1985M1 (444 observations).  

Together with individual commodity prices, the IMF dataset also contains aggregate price indexes 

for groups of commodities. Here, three monthly price indexes are considered: food price index 

(FoodInd) covering the period 1991M1-2021M12; metals price index (MetInd) covering the period 

1980M1-2021M12; fuel (energy) index (EneInd) covering the period 1992M1-2021M12. Annex 1 

provides details about which product quality these prices refer to, where they have been collected and 

on which aggregates respective indexes have been defined. Table A1 also reports the respective 

descriptive statistics which include the conventional distributional indices suggesting that commodity 

prices depart from the normal distribution mostly for a longer right tail depending on the 

exceptionally high prices observed during temporary bubbles. 

The dynamics of commodity prices is investigated in combination with the evolution of the overall 

consumer price index (CPI). Unfortunately, no worldwide (or global) CPI is available. Moreover, 

many available CPI are usually collected and released at a quarterly or yearly basis. Here, the US 

monthly CPI series is used (see Annex 1 for more details).6 This series seems suitable in the present 

analysis not only for the concordant frequency, but also because the US still represents the largest 

economy worldwide, so any impact of the global commodity prices on inflation can be consistently 

assessed on this series. It must also be noticed that, as detailed in Annex 1, several price series concern 

US markets and, in any case, all prices are expressed in US $. Therefore, using the US CPI does not 

 

4 Selected commodities are the most important worldwide (in terms of value) within the respective categories. In fact, nickel is the fifth 

in the list of metals after lead. But for this latter a sufficiently long series is not available.   
5 These price series are proprietary and can not be made available within the paper’s material. However, they can be freely downloaded 

at https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9 or requested at 

https://www.imf.org/en/Research/commodity-prices.   
6 This data can be freely downloaded from https://fred.stlouisfed.org/series/CPIAUCSL. 

https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9
https://www.imf.org/en/Research/commodity-prices
https://fred.stlouisfed.org/series/CPIAUCSL
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incur the risk of downscaling (if not neutralizing) the transmission of commodity price shocks to the 

CPI due to the exchange rate adjustment (Garzón and Hierro, 2022).    

Unlike many previous studies (Esposti, 2021), commodity prices, as well the three price indexes, are 

not deflated. As here we want to investigate the possible impact of commodity price spikes on the 

CPI, it does not seem appropriate to purge inflation from these series. The same strategy is followed 

for the possible presence of seasonality: no seasonal adjustment is performed on price series and 

indexes. The logic behind this choice is twofold. On the one hand, we prefer to analyse the price 

series  that economic agents really confront with. On the other hand, as stressed by Wang and Tomek 

(2007) and Corradi and Swanson (2006), any data transformation has to be taken with care as it could 

introduce artefacts within the series under investigation.  

However, we consider as appropriate a data transformation that is supported by the theory (Corradi 

and Swanson, 2006, p. 222). This is the case of the logarithmic transformation of the price levels. 

This transformation is largely used in empirical literature (Listorti and Esposti, 2012; Esposti and 

Listorti, 2013) and has two main motivations. First of all, price logarithms are more likely to show a 

normal distribution than price levels, and normality is usually required by the estimation and 

inference approaches. In other words, the log-normal statistical distribution of price levels has to be 

considered as a main regular feature of these series (Listorti and Esposti, 2012; Esposti and Listorti, 

2013).    

Secondly, the logarithmic transformation finds a robust theoretical justification in deriving the 

commodity price dynamics as Geometric Brownian Motions (GBM) (Diba and Grossman, 1988; 

Gürkaynak, 2008; Su et al., 2017). This tradition also includes the idea of “rational bubbles”, that is, 

periods of price exuberance entirely justified by agent’s expectations about commodity fundamentals 

(Diba and Grossman, 1988). Empirically, this hypothesis implies that price logarithms might take the 

form of mean reverting processes (due to market fundamentals) plus a random walk, a mean-reverting 



 

11 

non-constant volatility (GARCH) and, possibly, temporary explosive roots.7 According to Ibrahim et 

al. (2021), a GBM can generate a stochastic process that assumes normally distributed price level 

growth rates (therefore, difference in the logarithms) while admitting both unit-root (with drift and/or 

deterministic trend) and GARCH effects (volatility clusters).8 However, these recent studies do not 

admit temporary bubbles. Taking into account pros and cons of the logarithmic transformation 

(Corradi and Swanson, 2006; Wang and Tomek, 2007), the present paper considers both the price 

levels and the logarithm of price levels and in parallel repeats the analysis for these two cases in order 

to assess which results are robust across the transformation.  

Annex 2 displays the time evolution of the three aggregate price indexes (Figure A1), the 11 

individual commodity prices (Figures A2-A4) and the logarithms of these individual prices (Figures 

A5-A7) over the 1980M1-2021M12 period.9 Visual inspection points to some general characteristics 

of the price dynamics. Within each group, commodity prices seem to show some common 

movements: periods of exuberance as well as collapses substantially correspond across different 

commodities. This is only partially confirmed across groups: metals and agricultural commodities 

tend to share the same periods of rise and fall, while energy commodity prices seem more stable and 

less volatile at least until the very last years of the period under consideration. However, if aggregate 

price indexes instead of individual series are considered, it emerges that the three series largely 

overlap with a substantial correspondence of positive and negative spikes. What is common across 

commodities is also that price turbulence seems to sharply increase in the second half of the period 

under consideration and, in particular, from 2005 onwards. 

From this simple visual inspection, therefore, the hypothesis of common movement seems largely 

supported. For all commodities, periods of temporary exuberance are recurrently observed. During 

these periods, prices rapidly increase and then rapidly collapse to a level that does not differ much 

 

7 Actually, Diba and Grossman (1988) exclude that, within this logic, a rational bubble can actually start: if it is observed it must always 

have existed. 
8 See also Agustini et al. (2018) for a similar derivation.  
9 The logarithmic transformation is not considered here for the price indexes and CPI. It would rather require a different aggregation 

of the elementary prices into the index and this would simply generate another kind of index possibly introducing a further artefact.   
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from the pre-exuberance level. Therefore, despite these “bubbles”, prices still seem to behave like 

mean-reverting processes. This does not exclude changes in the long-term mean level or a long-term 

trend in this respect (Esposti, 2021). But these changes or trends seem mild and are overshadowed by 

the large short-term instability. As could be expected, the logarithmic transformation does not change 

the general behaviour of the series. Qualitatively, price levels and their logarithms are similar even 

though the latter are obviously smoother and this seems particularly evident for the energy commodity 

prices.  

At the same time, major differences emerge between commodity price series and the CPI series. 

Figure A8 (Annex 2) reports the CPI, its monthly growth rate (i.e., the inflation rate) together with 

the oil price which arguably is one of its major drivers, but it is also one of the most stable commodity 

prices. The difference is evident. Oil price seems to follow a mean reverting process possibly with an 

increase of volatility in the second part of the period and an upward shift of the long-term mean value. 

CPI is much more stable, also in the second half of the period, and apparently moves along a 

deterministic trend. It follows that the inflation rate seems to behave like a mean-reverting process 

around an almost-zero long-term value with a limited, though appreciable, increase in the variability 

in the second half of the period.  

This purely visual inspection gives rise to the two key research questions underlying the present study. 

On the one hand, commodity prices seem to move together at least during periods of turbulence, but 

this would suggest a common stochastic process whose properties, however, are not self-evident. 

Most price series show some characteristics of mean-reverting processes, and this would indicate they 

are stationary processes around drifts or trends. But the large and quick shocks, though temporary, 

do not seem consistent with this kind of processes. There should be some other underlying stochastic 

process, that may differ across prices but still admits their common movement at least in the periods 

of turbulence.  

On the other hand, the research challenge about the linkage between commodity prices and the CPI 

is quite the opposite. They apparently behave as very different stochastic processes, so commonality 
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should be excluded. Nonetheless, strong economic arguments, as well as an abundant empirical 

evidence (Garzón and Hierro, 2022), suggest that a common movement of many critical commodity 

prices has to be transferred, somehow, to the CPI.   

4. The methodological approach 

The common theoretical framework of the investigation of commodity price dynamics consists in  

price formation mechanisms (or equations), that  is, reduced-form models expressing the respective 

underlying market equilibrium.10 Price formation equations represent the dynamic stochastic process 

as a mean-reverting or non-stationary process eventually generating the price level and volatility. 

These reduced form models have the further advantage of allowing a compact representation of cross-

commodity price dynamics in the form of multiple simultaneous equation models that may explain 

both co-movement and co-exceedance.  

The theoretical justification of these cross-commodity price transmission mechanisms, however, is 

not univocal. The prevalent explanation is that also very different commodities (for instance oil and 

corn) may display interdependence in the respective fundamentals (i.e., demand and supply). For 

instance, on the supply side, one commodity (e.g., oil) may enter as an input (thus, a cost) in the 

production process or supply chain of another commodity (e.g., corn and, consequently, beef). On 

the demand side, consumption of one commodity may be directly (through substitution effect) or 

indirectly (through income effect) affected by the price of another commodity (Dawson et al., 2006; 

Listorti and Esposti, 2012; Esposti and Listorti, 2013). Sometimes, however, this interdependence 

through the fundamentals can be so indirect and remote that it seems more reasonable to provide 

another theoretical justification of price co-movement and co-exceedance: though prices are not 

interdependent, they still all respond to the same underlying (often latent) common factors (Stigler, 

2011; Byrne et al., 2020; Esposti, 2021).  

 

10 Fackler and Goodwin (2001) provide a common template based on linear excess demand functions embracing all dynamic regression 

models from which an estimable reduced-form model can eventually be derived.   
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The research question underlying the present study, however, comes before these theoretical 

representations of price interdependence, that is nature and forms of price co-movement and co-

exceedance. It rather looks for empirical support on the evidence of co-exceedance, its possible 

temporary nature and its dating. Therefore, we work on univariate models and not on multivariate 

models.           

On these premises, consider N commodities whose price is observed over T time periods (months in 

the present case). On the basis of rational agent’s expectation or efficient markets theory (Zhao et al., 

2021), assume that for any i-th commodity there exists an unobserved fundamental price depending 

on the real market drivers (supply, demand, storage, expectations). The natural constraints applying 

to these drivers should make this market fundamental price nonexplosive. The actual (i.e. observed) 

price moves around this fundamental level but it usually deviates from it according to some 

underlying stochastic DGP expressed by the following univariate price formation equation: 

ሺ1ሻ 𝑝𝑖𝑡 = 𝛼𝑖 + 𝛿𝑖𝑡 + 𝑏𝑖𝑝𝑖𝑡−1 + 𝑢𝑖𝑡, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇𝑆 < 𝑇 

where 𝑝𝑖𝑡is the i-th commodity price (or the logarithm of price)  at time t; 𝛼𝑖 expresses the drift while 

𝛿𝑖 the deterministic trend coefficient. 𝛼𝑖, 𝛿𝑖, 𝑏𝑖 thus are commodity specific unknown parameters to 

be estimated. 𝛼𝑖 and 𝛿𝑖 indicate the long-term fundamental price level or the long-term deterministic 

trend, respectively, to which the actual price is expected to revert.   

The error term 𝑢𝑖𝑡 is usually assumed to be normally, independently and identically distributed, that 

is 𝑢𝑖𝑡~NID(0,σ2). However, as autocorrelation in these disturbance terms is very likely to occur, (1) 

can be augmented to account for a transient dynamics: 

ሺ2ሻ ∆𝑝𝑖𝑡 = 𝛼𝑖 + 𝛿𝑖𝑡 + 𝛽𝑖𝑝𝑖𝑡−1 + ෍ 𝜃𝑖𝑠

𝑆

𝑠=1

∆𝑝𝑖𝑡−𝑠 + 𝜀𝑖𝑡, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇𝑆 < 𝑇 

where 𝛽𝑖 = ሺ𝑏𝑖 − 1ሻ and 𝜃𝑖𝑠 are further commodity specific unknown parameters to be estimated. 

The error term is now correctly assumed to be 𝜀𝑖𝑡~NID(0,σ2). (2) is the typical Adjusted Dickey-

Fuller (ADF) regression and may admit different DGPs depending on the value of 𝛽𝑖. In particular, 

the price series is stationary, possibly around a drift (𝛼𝑖) or a trend (𝛿𝑖𝑡), whenever 𝛽𝑖 < 0. If  𝛽𝑖 = 0, 
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the price series contains a unit root and it thus follows a non-stationary process (a random walk) 

possibly with a drift (𝛼𝑖) or a trend (𝛿𝑖𝑡). Finally, whenever 𝛽𝑖 > 0, the price series has an explosive 

root implying a permanent and progressive departure from the fundamental price level unless it is 

temporary (a “bubble”). In practice, such process would contradict the actual existence of a 

fundamental price level.  

Based on (2), distinct DGPs can be considered to represent the observed deviation of prices from the 

alleged fundamental level. Firstly, a Generalized Autoregressive Conditional Heteroskedasticity 

effect on 𝜀𝑖𝑡 can be included to capture the presence and persistence of volatility clusters. This is 

obtained by reformulating (2) as follows (GARCH(p,q)) regression model): 

ሺ3ሻ ∆𝑝𝑖𝑡 = 𝛼𝑖 + 𝛿𝑖𝑡 + 𝛽𝑖𝑝𝑖𝑡−1 + ෍ 𝜃𝑖𝑠

𝑆

𝑠=1

∆𝑝𝑖𝑡−𝑠 + 𝜀𝑖𝑡 

𝜎𝑖𝑡
2 = 𝛾𝑖 + ෍ 𝜌𝑖𝑝

𝑃

𝑝=1

𝜀𝑖𝑡−𝑝
2 𝜀𝑖𝑡 + ෍ 𝜔𝑖𝑞

𝑄

𝑞=1

𝜎𝑖𝑡−𝑞
2 , ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇𝑆, 𝑃, 𝑄 < 𝑇 

where 𝜀𝑖𝑡 = 𝜎𝑖𝑡 𝑧𝑖𝑡  with 𝑧𝑖𝑡 ~NID(0,1). 𝜎𝑖𝑡
2 is the it-h commodity price error term variance at time t, 

and 𝜌𝑖𝑝 and  𝜔𝑖𝑞 are further commodity specific unknown parameters to be estimated. Together, 

parameters 𝜌𝑖𝑝 (also called ARCH terms) and 𝜔𝑖𝑞 (called GARCH terms) express the overall degree 

of persistence of volatility. It is usually assumed that 𝜌𝑖𝑝+ 𝜔𝑖𝑞 < 1(with p=q), indicating that 

volatility is mean reverting. Otherwise, we would be faced with a persistent volatility, i.e., volatility 

behaving as a random walk (or non-stationary) process (Engle, 1982; Agustini et al., 2018).11 Once 

the GARCH model parameters have been estimated on the basis of the observed series, it is possible 

to assess whether and when volatility clusters occur. To do this, in-sample predictions of variance 

(i.e., 𝜎̂1𝑡
2 ) are generated. Then, on the basis of some pre-determined threshold (see below) clusters are 

found in those periods when this limit is exceeded.12  

 

11 This is also called Integrated GARCH (IGARCH) process/model (Campbell et al., 1996; Chan, 2010).   
12 Although their validity in generating reliable predictions is largely questioned, ARCH/GARCH models are usually quite successful 

in generating in-sample projections (Taleb, 2009). 
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But a GARCH process is just one of the possible DGPs consistent with the observed irregular 

commodity price dynamics. As stressed by Engle (1982), a GARCH regression like (3) can be just 

an approximation to a more complex regression with non-ARCH disturbances. So, the GARCH 

specification might be picking up the effect of some relevant omissions from the estimated model. 

For this reason, we want here to make (3) compete with a second, and alternative, stochastic process 

generating a similar price behaviour. It consists of a DGP admitting temporary (or periodically 

collapsing) bubbles in the price levels. This DGP can be represented as a variant of the ADF 

regression (2) as follows: 

ሺ4ሻ ∆𝑝𝑖𝑡 = 𝛼𝑖
𝑟1,𝑟2 + 𝛿𝑖𝑡 + 𝛽𝑖

𝑟1,𝑟2𝑝𝑖𝑡−1 + ෍ 𝜃𝑖𝑠
𝑟1,𝑟2

𝑆

𝑠=1

∆𝑝𝑖𝑡−𝑠 + 𝜀𝑖𝑡, ∀𝑖 ∈ 𝑁, ∀𝑡 ∈ 𝑇𝑟1, 𝑟2 ∈ 𝑇𝑆 > 𝑇 

where 𝑟1 and 𝑟2 denote the starting and ending points, respectively, of the possible temporary bubble. 

𝑟1 and 𝑟2 are expressed as fractions of T so that 𝑟2 = 𝑟1 + 𝑟𝑊, where 𝑟𝑊 is the window size of the 

regression, also expressed as a fraction of T. The number of observations to estimate (4) is 𝑇𝑊 =

 ,is the floor function which gives the integer part of the argument (Otero and Baum ۂ·ہ where ,ۂ𝑇𝑟𝑊ہ

2021). For series showing temporary bubbles we should observe explosive roots for  some sub-

periods, that is, some [𝑟1, 𝑟2]interval. This can be assessed through tests where the null hypothesis is 

𝐻0: 𝛽𝑖
𝑟1,𝑟2 = 0, implying that the series shows a unit root, against the alternative hypothesis 

𝐻0: 𝛽𝑖
𝑟1,𝑟2 > 0, implying that the series shows an explosive root in the [𝑟1, 𝑟2]interval.  

A key contribution to a consistent formulation and implementation of this kind of tests was originally  

made by Phillips et al. (2011), then improved by Phillips et al. (2015) and Phillips and Shi (2020). 

The basic version of the test is the right-tailed ADF statistic based on the full range of observations, 

r1 = 0 and r2 = 1 (i.e., rW = 1), denoted 𝐴𝐷𝐹0
1. As it applies to the whole period of observations, this 

statistic may fail in detect short-time temporary bubbles. Therefore, a second statistic is based on the 

supremum t-statistic (SADF) that results from a forward recursive estimation of (4): 

ሺ5ሻ 𝑆𝐴𝐷𝐹ሺ𝑟0ሻ = 𝑠𝑢𝑝𝑟2∈[𝑟0,1]𝐴𝐷𝐹0
𝑟2 
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Also this statistic may fail in the case of multiple temporary bubbles within the series. A third statistic 

can be thus computed. It is the generalised supremum ADF (GSADF) test:  

ሺ6ሻ 𝐺𝑆𝐴𝐷𝐹ሺ𝑟0ሻ = 𝑠𝑢𝑝𝑟2∈[𝑟0,1],𝑟1∈[0,𝑟2−𝑟0]𝐴𝐷𝐹𝑟1

𝑟2 

Based on these statistics, it is firstly possible to asses if one or more temporary bubbles occur. 

Secondly, a backward testing procedure (backward SADF, or BSADF, statistics) allows dating these 

bubbles over the period T (Phillips et al., 2011; 2015). For any particular observation, i.e. the i-th 

commodity observed at time r2, it is possible to test whether it belongs to a phase of explosive 

behaviour by performing a SADF test on a sample sequence where the endpoint is fixed at time r2, 

and expands backwards to the starting point, r1, which varies between 0 and (r2 − r0). This backward 

SADF statistic is defined as: 

ሺ7ሻ 𝐵𝑆𝐴𝐷𝐹𝑟2
ሺ𝑟0ሻ = 𝑠𝑢𝑝𝑟1∈[0,𝑟2−𝑟0]𝐴𝐷𝐹𝑟1

𝑟2 

A further refinement of these tests has been recently proposed by Phillips and Shi (2020) and takes 

into account both the presence of heteroskedasticity and the multiplicity issue in recursive testing. 

They thus recommend a wild bootstrap approach to compute the critical values of the abovementioned 

tests.13  

The methodological approach followed here can thus be summarised as follows. Firstly, we look for 

the stochastic properties of the individual commodity price series and the CPI. In particular, the 

presence of a unit-root (with or without a drift or a trend) and of ARCH effects is investigated. 

Secondly, on the basis of the first-step evidence, GARCH effects are considered as the possible 

explanation of the observed periods of price turbulence. GARCH regression models like (3) are 

estimated on individual series and in-sample volatility predictions are generated to assess and date 

the volatility clusters.  

Thirdly, as an alternative to GARCH processes, we consider the formation of temporary bubbles as 

expressed by (4), therefore as a momentary departure from the fundamental process either stationary 

 

13 One limit of these tests is that they do not allow breaks in levels or time trends. As discussed, neither a trend nor a structural break 

can explain by itself the observed irregular price behaviour. However, they can not be excluded at least from some commodities (see 

Table 1) and might affect both the statistics and the critical values of these explosive root tests.   
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or non-stationary. 𝐴𝐷𝐹0
1, SADF and GSADF tests are performed on individual series and the 

temporary bubbles, if any, are consequently dated by performing the BSADF test. Finally, the 

beginning and the end of volatility clusters and of temporary bubbles are confronted both across the 

two alternative processes and among commodities (and CPI) in order to assess similarities and 

differences, as well as the presence of possible contagion effects. Thus the analysis of co-exceedance 

simply consists in seeing whether volatility clusters or bubbles are common (i.e., overlap) or not. In 

case of a positive answer, it is then legitimate to ask, and to assess, whether a contagion effect can be 

deduced, that is, which series (i.e. price) moves first possibly driving the movement of the others.  

Clearly, this investigation can not be confused with a formal causality assessment or testing. Usual 

time-series causality assessment in a multivariate context is performed via Granger causality testing. 

This latter, however, assumes a linear relationship across commodities and does not seem consistent 

with the observed stochastic properties of these series and bubble formation. In this respect, some 

recent developments in the field seem promising for future research (Shahzad et al., 2021; Esposti, 

2022). It is worth stressing, however, that assessing causality is not so essential for the main policy 

implication of interest here. Investigating which commodities show a bubble formation earlier than 

others remains useful to build that real-time warning policy tool mentioned in previous sections.       

5. Results14 

5.1. Stochastic properties of the series 

Table 1 reports the battery of unit root tests and of the ARCH tests on (2) for all series under 

investigation. In the case of price indexes, CPI included, it emerges that all series are stationary. The 

selected specification15 includes a drift in the case of the three commodity price indexes and a trend 

in the case of CPI. At the same, all indexes here show an ARCH effect except FoodInd. Consequently, 

 

14 All testing and estimation procedures have been performed with software STATA 17. In particular: GARCH models have been 

estimated using the command Arch with arch(1) garch(1) specification; explosive roots have been tested using the Radf command; the 

structural break tests have been performed using commands Zandrews and Clem; pairwise Granger causality tests  have been performed 

by using, the Var and Vargranger commands.  
15 The best specification has been selected following Enders (1995, p. 256-260).    
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all indexes behave as mean-reverting processes (with the mean moving along a deterministic trend in 

the case of CPI) possibly with volatility clustering. 

Regarding the individual commodity price series, however, a differentiated picture emerges across 

the commodity groups. If the levels are considered, energy commodities are all stationary around a 

drift. Metals, on the contrary, show non-stationarity around a drift in the case of zinc and nickel, non-

stationarity around a trend in the case of aluminium and stationarity in the case of copper. Finally, all 

agricultural commodities, except for beef, are non-stationary around a drift while beef is stationary 

around a deterministic trend. Despite these difference, all commodity prices show an ARCH effect.  

Interestingly enough, the logarithmic transformation changes the evidence emerging from the tests 

only for four commodities and only in one case (wheat) does this change concern stationarity 

properties. aluminium remains non-stationarity but now around a drift. Also copper and beef 

downscale from a trend to a drift while maintaining stationarity. Wheat shows the most significant 

change passing from non-stationarity around a drift to a stationarity around a drift. Thus, unlike the 

respective price level, the logarithm of the wheat price seems to behave like a mean-reverting process.        

The key point, here, is that while visual inspection of both price indexes and price series would 

indicate some common movement, tests indicate that such commonality may occur for price indexes 

but not for individual prices where four different DGPs are observed, and this happens also within 

the same commodity group. This makes the hypothesis of common movement hardly tenable, at least 

over the whole time period. At the same time, however, visual inspection also reveals the presence 

of common periods of exuberance that are not necessarily compatible with the DGPs emerging from 

tests. The limited reliability of the DGPs emerging from the tests when compared to the actual price 

dynamics is confirmed by generating in-sample predictions from the estimated ADF regressions. 

Figure 1 compares these predictions with the real series for two cases that should express different 

DGPs: a stationary series around a drift (mean reverting) (oil) and a non-stationary series around a 

trend (aluminium). The two predicted series are quite similar, despite the different DGPs, and, above 

all, in both cases these predictions largely diverge from the actual series especially in the last third of 
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the observed period. Evidently, there is something more in the stochastic process generating these 

series and this has to do more with temporary effects than with constant properties of the series. As 

the ARCH test is concordant across all series (except for FoodInd), the presence of volatility clusters 

can be a serious candidate to explain these temporary processes. But also temporary explosive roots 

(bubbles) could be considered as they are compatible with both stationary and non-stationary series 

over the whole period (Diba and Grossman 1988, p. 529).   

5.2. Volatility clusters 

Table 2 reports the estimates of parameters ρ and ω of the GARCH regression model (3) (with a 

GARCH(1,1) specification) for the different series in both price levels and logarithms. Two main 

facts emerge. First of all, with the only exception of FoodInd, in all series both estimated ρ and ω are 

statistically significant (Corn is the only case where ρ is not statistically different from 0). This 

confirms what was already obtained with ARCH tests presented in Table 2: volatility clusters occur 

in all series except for FoodInd. Secondly, many series violate the assumption of temporary clusters: 

for the price indexes EneInd and CPI, and price levels of natural gas, aluminium, zinc, wheat, corn, 

beef, we can not reject the hypothesis of ρ+ω =1. Therefore, in these cases volatility follows a non-

stationary process thus making clusters permanent rather than temporary as expected. Logarithms of 

prices partially confirm this evidence but some differences are worth noticing: non-stationary 

volatility is observed also for oil and nickel while it is now excluded for aluminium, zinc and beef.        

Contradictory evidence emerges about the reliability of these GARCH processes as generators of the 

observed price dynamics. On the one hand, the existence of volatility clusters is consistent with the 

observed large variability, or instability, of the commodity prices in specific periods of time. On the 

other hand, however, in several cases these processes support permanent volatility shocks thus 

becoming less compatible with the observed temporary episodes of turbulence. As discussed, once 

estimated, standard error in-sample predictions for these GARCH models can be generated. Figure 2 

shows these predictions for the three price indexes and Figures 3a-3b for the individual price levels 
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and logarithms, respectively. Figure A9 (panel a)) reports the same predictions for the CPI and its 

growth rate (i.e., inflation rate).  

As expected, volatility clusters do not emerge for FoodInd, while a significant increase of volatility 

can be appreciated in the second part of the period of (starting around 2005) for both MetInd and 

EneInd. For these indexes, this volatility dynamics seems consistent with the increased price 

turbulence observed in the same period as shown in Figure A1. In the case of individual series, 

predictions show huge volatility variations for oil and for all mineral and agricultural commodities. 

Clusters seem to be relatively rare and quite temporary in the first part of the period, while they 

become more frequent and longer, thus possibly permanent, from 2005 onwards. This seems even 

more true for CPI and therefore, but less intensively, for the inflation rate. CPI volatility sharply rises 

in 2005 and remains higher than in the previous period with only a drastic drop during years 2013-

2014.  

The question is whether the magnitude of this volatility clustering is consistent with the actual price 

turbulence or whether, in fact, we should look for alternative explanations.     

5.3. Temporary bubbles 

Table 3 reports the sequence of tests for the presence of temporary bubbles as expressed by equations 

(5) and (6). As discussed, moving from 𝐴𝐷𝐹0
1 to GSADF the tests improve in terms of recursiveness 

and flexibility, therefore in precision, in detecting the temporary explosive roots.16 The presence  of  

a temporary bubble is excluded in all cases (price indexes, individual price levels and logarithms of 

individual price levels) when the search of the bubble extends to the whole period (𝐴𝐷𝐹0
1). Something 

emerges with SADF with a temporary explosive root observed for MetInd and EneInd, and for the 

price level of all energy commodities, all minerals, and wheat. In the case of the logarithm of prices 

a bubble is detected only for oil. The generalised occurrence of temporary bubbles is eventually 

 

16 It is worth noticing that the 𝐴𝐷𝐹0
1

 test in Table 3 (second column) corresponds to the ADF test with drift in Table 1 (third column) 

as the explosive bubble tests associated to equation (4) may include a drift but not a deterministic trend. However, strictu sensu, they 

are not the same test since the former is a right-tailed statistics so the critical values are different. The statistics itself slightly differs in 

some cases because the adopted specifications (i.e., lag structure) are not always the same.   
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indicated by the GSADF test. With the only exclusion of beef (both the price level and its logarithm), 

at least one temporary explosive root is found in all the series.17  

In order to better appreciate how many bubbles occur and when, the BSADF tests (equation (7)) are 

computed. Results (with the critical values) are reported in Figure 4 for the three price indexes and in 

Figures 5a,b for the commodity price levels and logarithms, respectively. It appears that, for indexes, 

bubbles very sporadically emerge before and after the 2005-2008 period. On the contrary, over these 

four years the tests exceed the critical values several times for all the indexes. MetInd is the index for 

which this exceedance is more often observed.  

In the case of individual price levels significant differences are found across the three groups. For 

energy prices, only in period 2005-2008 we observe one or more bubbles shared by the three prices. 

In the case of metals, beside that period, a common bubble is also observed in the mid-eighties. 

Agricultural commodities present a more composite situation: bubbles are more frequent and occur 

in the mid-eighties, mid-nineties, 2007-2008 and in the last decade. But they are often individual 

bubbles and, again, only in 2007-2008 we observe a bubble shared by most (except for beef) 

agricultural commodities. Qualitatively, results obtained with the price logarithms are similar even 

though, as could be expected, the bubbles are less frequent and, consequently, also the commonality 

of bubbles is more sporadic.     

5.4. First movers and contagion 

As discussed in previous sections, the focus of the present study is not on commodity price 

interdependence but on investigating the formation of temporary bubbles within individual price 

series in order to allow a real-time monitoring tool to inform on the formation of temporary bubbles, 

on the possible involvement of several commodities and on the first moving prices. The combination 

 

17 Notice that the difference between the SADF and GSADF tests are larger here than what was presented in previous studies (see 

Gharib et al., 2021, p. 5, in particular) arguably because, despite the number of observations, the period covered here is quite long 

(more than 40 years).   
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of the two alternative approaches here proposed allows to present their results in a form that permits 

an intuitive visualization of all this information about if and how co-exceedance is occurring.  

Figures 6a,b aim to provide this easily interpretable visualization by displaying the periods of 

exceedance (volatility clusters or bubbles) for price levels and logarithms, respectively. Bubbles are 

dated on the basis of the BSADF tests. In the case of volatility, following Engle (1982, p 1003), 

exceedance is found any time the predicted volatility exceeds the double (in the case of price indexes) 

or the triple (in the case of individual commodity prices) of the average predicted volatility (i.e., 

standard error) over the two subperiods 1980M1-2000M12 and 2001M1-2021M12. Together with 

Table 4, these figures are also intended to provide an example of how the proposed approach can 

contribute to a real-time surveillance tool through an easily interpretable and periodically updatable 

dashboard visualization.  

To summarize this evidence and better interpret it in terms of co-exceedance, Table 4 reports the 

beginning (the “exuberance date” to use the term of Gharib et al., 2021, p. 6) and the end (the 

“collapsing date”) months of periods with at least three different commodities showing at least two 

consecutive months of exceedance, thus a co-exceedance in terms of volatility or common bubble for 

at least two consecutive months (Phillips et al., 2011). The table also reports: commodities showing 

this co-exceedance (second column); the commodity that can be identified as the first mover (third 

column), that is, the price whose exceedance started first before the period of co-exceedance; whether 

or not also CPI shows exceedance in the same period, and whether or not CPI can be considered the 

first mover (forth column).    

In the case of price levels, it emerges that bubbles concentrate in the 2005-2008 period though in 

different moments involving different commodities. Basically, we can identify two main episodes. 

The first goes from 2005M8 to 2006M9. It only involves energy commodities and metals with oil 

and copper as first movers. CPI is itself involved in the bubble, as could be expected, but surprisingly 

it behaves as the first mover. The second episode is shorter and goes from 2008M2 to 2008M8. It 

involves all energy commodities wheat and corn but no minerals. Again, oil behaves as the first 
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mover. This latter commodity actually seems to experience a single bubble from mid-2005 to the end 

of 2008. CPI is also involved but not as the first mover.      

Volatility clusters emerging from the GARCH regressions show a significant difference compared to 

the bubbles. A first episode is found from mid-1988 to mid-1989, it concerns some minerals and 

agricultural commodities but no energy commodities. Wheat seems to be the first mover. Other four 

episodes, in fact behaving as a single one, can be detected from 2006M8 to 2009M8. In the first part 

of this period, the cluster exclusively involves metals and wheat. Then, other prices enter the group 

included energy commodities and, finally, also oil. In the very last part of this episode, the volatility 

clusters involve most (9 out of 11) commodities. If we consider this whole period as a single episode, 

the first mover seems to be nickel which sounds a little surprising. In the second part of the period, 

wheat and natural gas emerge as other possible candidates.  

Two other volatility clusters can be found in the last decade of the period under investigation. One 

concerns a very short period (two months in mid-2012) and only involves agricultural commodities. 

The other concerns the very last months of the period of observation (2021M9-2021M12); it is short 

simply because it continues beyond the period of observation. This period of exceedance is not 

identified with the bubble testing arguably because the bubble has still to collapse. Future 

investigations will confirm the nature and scope of the current period of exuberance. The cluster 

identified here suggests that it concerns both energy prices and metals but it is likely driven by the 

former and, in particular, by natural gas.    

Two major facts seem to emerge from this analysis of co-exceedance. First of all, the correspondence 

between bubbles and volatility cluster detection is limited. Periods correspond in the case of the major 

episode that occurred between 2005 and 2008. But for the rest of the sample, the detection of the 

episodes of co-exceedance does not correspond. Also the involved commodities significantly differ 

and, consequently, the first movers. Bubble detection seems to stress more the dynamics of energy 

commodities, and oil in particular, while volatility clusters point more to metals and agricultural 
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commodities. A final difference concerns the involvement of CPI that seems very limited in the case 

of clusters while it is more relevant for bubbles.  

The second notable fact is the difference between price levels and price logarithms. As the logarithmic 

transformation re-scales the data and, therefore, scales down their variability, respective results are 

expected to make the more robust evidence emerge: the number of individual episodes may slightly 

decline and the number of common episodes is expected to substantially reduce. It turns out that the 

number of episodes of co-exceedance detected on price logarithms is lower, as expected, for both 

bubbles and volatility clusters. But the nature of these episodes does not necessarily correspond with 

what is observed on price levels and this lack of robustness passing from levels to logarithms seems 

more evident for bubbles than for volatility clusters. The involved commodities are not necessarily 

the same, as well as the first movers, and also the involvement of the CPI shows some difference. In 

general terms, when the logarithms are considered, it seems more difficult to find some general 

pattern in the results, especially in terms of a key role of some commodities like the energy ones.   

Looking for regularities, two special cases are worth noticing here. The first concerns the oil price. 

Properties and behaviour of this commodity price emerging in the present work confirm the bubble 

detection and dating reported in previous studies, particularly in Su et al. (2017) and Zhao et al. 

(2021).18 It could also be argued that oil price has to behave as a sort of upstream price since it enters 

as a production cost in most downstream production processes, included farming and mining 

activities. But this role of oil as first mover is not generally observed and seems to emerge only in 

bubble testing with price levels. 

The second interesting role is that played by agricultural commodities. On the one hand, they can be 

considered as downstream prices compared to energy commodities and metals. But, for this reason, 

they can severely impact on CPI dynamics. From our results, it emerges that agricultural commodity 

prices seem to be a little more “stable” in the sense that episodes of exuberance (bubbles or volatility 

 

18 Su et al. (2017, p. 6) conclude that “there are explosive multiple bubbles in the WTI oil market in 1990, 2005, 2006, 2008 and 2015. 

Generally, oil bubbles mostly occur during the period of price volatility”.  
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clusters) are less frequent and shorter. At the same time, while energy commodities and metals are 

apparently more interdependent, agricultural prices seem to follow more autonomous patterns and 

are less likely to act as first movers and, thus, to be suitable candidates to drive the other commodity 

prices and of the CPI.   

What can we finally conclude about the evidence on the linkage between commodity prices and CPI? 

While results tend to confirm some stochastic properties of the CPI that may explain periods of 

exuberance, the evidence that these periods are the consequence of analogous episodes in commodity 

prices is poor. The major episode of price exuberance between 2005-2008 confirms, as could seem 

obvious, a connection between commodity prices and CPI, maybe because this episode involves a 

large number of commodities, though in different times. In fact, this connection seems quite weak 

beyond this period. And also within this 2005-2008 period it is not clear whether commodity price 

exuberance induced a CPI response or if it is actually the other way round. This lack of evidence 

should not be surprising and evidently asks for further investigation. Other very recent empirical 

investigations (Lian and Freitag, 2022), for instance, suggest that oil price shocks do not always imply 

a shock on CPI and sometime this latter may move independently and also precede the former.  

6. Comparison with other stochastic processes and approaches  

For the sake of comparison and in order to validate the results here obtained, it is worth investigating 

the commonality of the commodity price dynamics also with more conventional approaches. Rather 

than focusing on co-exceedance, as in the present study, these approaches look for the commonality 

of the stochastic generation processes (i.e., co-movement and the consequent price interdependence) 

under the typical hypothesis of either stationary or non-stationary linear DGP, possibly with a drift 

and/or a trend (Esposti, 2021). As already discussed in Section 2, in order to capture the complexity 

and non-linearity of these series a further occurrence that can be considered consists in admitting that 

series undergo, in one or more points in time, a structural break in either the drift or the trend (or in 

both) (Baum, 2005). In principle, under multiple breaks, these stochastic processes could explain the 
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presence of periods of extremely high (or low) prices (the “bubbles”) as a sequence of two structural 

breaks with the latter eventually compensating the former and thus making its effect only temporary. 

Table A2 (Annex 3) reports a battery of tests specifically designed to assess whether these more 

conventional stochastic processes represent suitable alternatives to the two co-exceedance processes 

here considered. Four tests are reported. They all confront a unit-root process (the null hypotheses of 

the tests) with a stationary process presenting one or two structural breaks in some terms of the 

process itself.19 All tests admit endogenous breaks, thus not only do they test their presence but they 

are also able to date these breaks.     

The first two tests consist in two specifications of the Zivot-Andrews (ZA) unit root test (Zivot and 

Andrews, 2002) admitting only one structural break in either the intercept or both intercept and trend. 

Test results largely accept unit-root processes without a break against the presence of a structural 

break within stationary series. The only exceptions are coal and soy in the price levels and only soy 

in the logarithms of prices. The break date is similar, late 2006-early 2007, and corresponds to one of 

the major periods of co-exceedance identified in previous sections. Not only is the break accepted for 

only two commodities but, more importantly, it can not explain why and how, once started, the period 

of turbulence then comes to an end since the structural break introduces a permanent change in the 

process. 

The other two tests, consisting in two variants of the Clemente-Montañés-Reyes unit root test (CMR) 

(Clemente et al., 1998), can be helpful in this respect. In this case, the statistical significance of the 

breaks themselves can be assessed as they enter in the test specification as time dummies with the 

respective coefficients. More importantly, this test admits two structural breaks within the stationary 

process thus allowing the combination of the two breaks to capture a temporary change in the process, 

like in the case of periods of price surge. The test can be performed under two different natures of the 

breaks: a sudden change in the series (the additive outliers, or AO, model) or a gradual shift in the 

 

19 For more details on the ZA and CMR tests, also see Baum (2005).   
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mean of the series (the innovational outliers, or IO, model). Evidently, the former, much more than 

the latter, is expected to capture the short periods of price turbulence.  

Although CMR tests confirm how difficult it can be, over such a long period of time, to univocally 

identify clear stable stochastic processes for any given commodity and, even more, commonality 

across commodities in this respect, they still provide some interesting indications. One the one hand, 

the CMR test under the AO model seems to confirm the main evidence emerging from the ZA test 

results without any relevant difference between price levels and logarithms: for most commodity 

prices (oil being the only exception) a non-stationary process is accepted against a stationary process 

with structural breaks. When the IO model is considered, however, the CMR test indicates that for 

many commodities (all energy prices, aluminium, zinc, corn and FoodInd itself) a mean-reverting 

process under two structural breaks is accepted. Even more interestingly, this test indicates that, for 

both AO and IO cases, the structural breaks are always statistical significant (with only one 

exception). In some cases, the interval between the two breaks is too wide (more than three years) to 

really capture a period of price exuberance (see the CPI case, for instance). In other cases, however, 

the time window between the two breaks seems quite consistent with the periods of exceedance here 

identified, as shown in Figures 6a,b. This is the case, in particular, of coal and all metals.   

As already discussed, with respect to the purpose of the present study, the introduction of structural 

breaks may seem an unnatural way to capture co-exceedance: it still maintains the linear specification 

of the DGP possibly with a permanent change while here the intention is to identify a DGP with 

temporary non-linearities. It follows that admitting structural breaks within the stochastic process 

representation may still confound short-term and long-term dynamics within the price series. 

Nonetheless, present results suggest that multiple breaks within an appropriate specification 

eventually constitute a sort of spline process capable to proxy temporary non-linearities. Even though 

not considered further here, this kind of approach, together with the introduction of multiple structural 
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breaks within non-linear processes (Bai and Perron, 2003; Caporale et al., 2020), can represent a 

promising alternative empirical strategy in future research in the field.20    

There is a final aspect to be considered about the introduction of structural breaks as a valid alternative 

to capture co-exceedance. It concerns the identification of the first-moving commodities and the 

possible consequent contagion process. As shown, within the proposed approach, this identification 

is made only qualitatively by identifying and then visualizing when, commodity by commodity, the 

periods of exuberance start and end (see Figures 6a,b). Very often, however, within the empirical 

literature this identification is formally pursued using Granger causality testing (Esposti and Listorti, 

2013). This approach must satisfy the prerequisite that series under investigation show the same 

stochastic properties (they are all either I(0) and I(1)), and then it requires the estimation of multiple-

equation linear models (in the form of VAR or VEC models, respectively) representing the common 

movement from which direction and nature of price interdependence (or transmission) can be 

assessed. Within this representation one or more structural breaks can be included (as time dummies) 

to possibly capture some changes in the linear relationships, thus admitting temporary non-linearities.  

Results here presented demonstrate how the prerequisite of this empirical strategy to detect first 

movers and contagion can be challenging. A common DGP is impossible to find when all price series 

are considered. But even concentrating on individual commodity groups, Tables 1 and 5 suggest there 

is always at least one commodity showing a different underlying stochastic process compared to the 

others. Apparently, an interesting case is that of energy commodities under the IO specification of 

the CMR test: when two structural breaks are admitted they all behave as stationary processes with a 

drift and a deterministic trend. Therefore, an attempt to perform Ganger causality testing can be made 

here by estimating a VAR model with four endogenous variables: the three energy prices (oil, coal 

and gas prices) and the CPI, since it quite robustly emerges as a I(0) process. The VAR specification 

also includes a drift, a deterministic trend and two time dummies representing the two breaks at 

 

20 The use of international or global commodity prices, as well as the widely heterogenous dating of these structural breaks across 

commodities, makes it hard to speculate on the possible linkage between them and external shocks like, for example, policy regime 

changes. However, this investigation may represent a further direction of research for the future.  
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2003M11 and 2013M5. Table A3 (Annex 3) reports the results of the respective Granger causality 

tests and the estimated coefficients of the two structural breaks.21  

As often occurs with Granger causality testing, results are not easily interpretable. However, they 

confirm some of the evidence obtained with our proposed approach. It seems hard to identify an 

indisputable driving price and, in particular, this does not seem the case of the oil price. When price 

levels are considered, oil and coal show a reciprocal Granger causation, while natural gas is only 

Granger caused by the coal price. Oil and coal price both Granger-cause the CPI response, while CPI 

itself does not Granger-cause any of the energy prices as could be expected. Coal rather than oil seems 

to be the driving price, if any, and this seems to be reinforced when the logarithm of prices are 

considered instead of the levels. The presence of structural breaks, though suggested by tests reported 

in Table A2, is not confirmed by VAR estimation coefficients associated to respective time dummies 

are mostly not statistically different from zero.      

Compared to the approach here proposed, which is based on the search of co-exceedance periods 

(thus admitting non-linearities in the DGP) rather than on linear price interdependence, these more 

conventional stochastic processes do not seems to provide any helpful additional information. On the 

contrary, they seem to fail in the search of common periods of exuberance over a large group of 

commodities, thus they do not seem appropriate for designing a real-time surveillance dashboard 

informing a prompt policy response. Nonetheless, even in these approaches recent contributions have 

opened new interesting perspectives that may deserve careful consideration in future research. For 

instance, the implementation of non-linear Granger causality testing seems particularly promising 

(Shahzad et al., 2021).      

7. Conclusive remarks  

Periods of commodity price exuberance raise political concerns particularly for their possible impact 

on the inflation rate. Timely interventions by the appointed institutions are often invoked but do not 

 

21 For the sake of space limitation, the VAR model estimates are not reported here but are available upon request.  
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necessarily prove to be effective in preventing or neutralizing these episodes. After all, common price 

spikes (thus, co-exceedance) might not imply a common policy response since for some commodities 

exuberance tends to be motivated by real drivers while in other cases financial phenomena are 

prevalent. Understanding the mechanisms underlying generation, transmission and, then, collapse of 

co-exceedance remains relevant to design the proper, possibly differentiated, policy response. But in 

the shorter term an appropriate policy response may just need a timely detection of the price surge 

and of the degree of diffusion across commodities.  

The present paper aims to develop a single methodological approach, albeit based on alternative 

stochastic processes, that does not assume common movement and price interdependence but only 

co-exceedance, thus commonality occurring only within the periods of exuberance. This approach is 

able to detect whether such a period occurs, when it starts and when it ends, the degree of diffusion 

across commodities, the possible presence of driving prices and, eventually, the transfer to the 

inflation rate. On this basis, the proposed methodology is intended to offer an easily interpretable 

visualization of the critical information it generates.  

Results presented indicate that the different approaches considered (bubbles and volatility cluster 

detection in both price levels and logarithms) are able to provide clear indications on when the 

exceedance occurs, on its overlapping across commodities and on possible first movers. However, 

this evidence is not concordant or, at least, robust across the different approaches making the final 

outcome of the analysis, and the policy implication itself, severely dependant on the analyst’s choices 

in this respect. Results do not even agree on the involvement of the CPI in these episodes of 

exuberance, therefore on the transmission of commodity price spike to inflation rate.  

On the basis of this discrepancy, it seems wise to develop the abovementioned policy tool in a way 

that prudently admits both processes and elaborates information from a combination of them. At the 

same time, this discrepancy points to room for further methodological improvements. After all, both 

competing representations of the origin of exceedance, volatility clusters and temporary bubbles, 

show pros and cons and this makes it difficult to draw a general preference for one or the other. 
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GARCH modelling seems to represent more permanent changes in volatility rather than short periods 

of exuberance. Furthermore, it hardly combines volatility clusters with a non-stationary process in 

the price levels. At the same time, bubble detection applies well to positive bubbles, therefore periods 

of exuberance then followed by a collapse, but it does not necessarily succeed in case of negative 

bubbles, that is episodes that start with a price crash (Gharib et al., 2021, pp. 3-4).22 In fact, bubble 

detection can only by applied ex post, therefore when the bubbles have already collapsed. This 

substantially limits the actual applicability of the approach by analysts and policy makers. Moreover, 

currently available tests only apply to univariate bubble detection. Multivariate bubble testing has not 

yet been proposed and this prevents a direct investigation of contagion across commodities.     

Regarding all these aspects, results obtained in the present study also suggest the extension of the 

adopted tool to other stochastic processes, particularly those expressing non-linear dynamics of 

commodity prices in both level and variance. Multiple breaks, fractional integration, fractal and 

wavelet analysis are some examples in this direction. Finally, it would be particularly helpful to 

replicate these results on higher frequency price data. Weekly or daily prices, if available, might 

definitely be useful to better refine this real-time surveillance policy tool making it more timely and 

accurate. However, these data might also bring about more statistical noise, thus making the 

identification of co-exceedance more difficult and uncertain, and increasing the risk of false alarms. 

Therefore, replication of the present analysis on these data could allow to assess the advantages and 

disadvantages in the use of higher frequencies.  

  

 

22 As an example of a negative bubble in the oil price, Gharib et al. (2021, p.1) presents the case of the negative daily price of Brent 

observed on 21 April 2020.  
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Table 1 – Unit root (ADF) and conditional heteroskedasticity (ARCH) tests on commodity price 

indexes and commodity prices (1980M1-2021M12)a  

Series 
ADFb  

(w/o drift&trend) 
ADF  

(with drift) 
ADF  

(with trend) 
ARCHc 

Price indexes    

FoodIndd 0.475 -1.224† -2.439 0.126 

MetInd -0.088 -1.404† -2.721 82.74* 

EneInde  0.150 -0.915† -3.138 106.9* 

CPI 6.988 0.539 -2.492† 72.91* 

Price levels     

Oil -0.502 -1.594† -2.906 92.63* 

Coal -0.327 -1.599† -3.415 160.9* 

Gasf 0.581 -0.409† -2.249 228.6* 

Aluminium -0.416 -3.063* -4.010†* 65.84* 

Copper 0.522 -0.621 -2.487† 112.8* 

Zinc -0.229 -2.023†* -3.804* 106.9* 

Nickel -1.041 -2.628†* -3.368  84.09* 

Wheat -0.375 -2.816†* -3.349 108.9* 

Corn -0.214 -1.872†* -2.891 29.86* 

Soy -0.322 -2.089†* -3.288 67.44* 

Beef 1.004 0.049 -1.739† 64.76* 

Logarithm of price levels    

Oil -1.199 -1.202† -2.631 78.04* 

Coal 0.429 -1.501† -2.919 79.51* 

Gasf -1.737 -1.445† -2.647 68.6* 

Aluminium 0.178 -3.169†* -4.322* 65.86* 

Copper 0.784 -0.858† -2.710 40.29* 

Zinc 0.693 -1.827†* -3.478* 19.18 

Nickel 0.354 -2.008†* -3.102  19.62 

Wheat 0.252 -2.410† -3.045 28.32* 

Corn 0.315 -1.755†* -2.855 7.38 

Soy 0.212 -2.032†* -3.243 24.67* 

Beef 0.887 -0.167† -1.839 42.35* 
*Statistically significant at 5% confidence level 

† Selected specification according to Enders (1995, p. 256-260) 

a The test specification in terms of lags included has been selected case by case on the basis of the AIC  
b 5% Critical Value of the three ADF test specifications, respectively: -1.95; -1.65; -3.42 
c Lagrange Multiplier (LM) test performed on the residuals of the ADF unit-root test equations; 5% Critical Value: 21.03 
d 1991M1-2021M12 
e 1992M1-2021M12 
f 1985M1-2021M12 
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Table 2 – GARCH(1,1) model estimation and persistency test on commodity price indexes and 

commodity prices (1980M1-2021M12) (estimated standard errors in parenthesis) a  

Series  ρ  Ω 
Test ρ+ω =1 

(χ2(1)) 

Price indexes     

FoodIndb 0.036 (0.049) -0.171    (0.717) 3.96* 

MetInd 0.247 (0.049)* 0.675 (0.032)* 4.24* 

EneIndc  0.373    (0.081)* 0.641 (0.058)* 0.16 

CPI 0.116 (0.022)* 0.879 (0.021)* 0.22 

Price levels     

Oil 0.343    (0.041)* 0.726 (0.031)* 10.4* 

Coal 0.494 (0.062)* 0.664 (0.026)* 13.4* 

Gasd 0.304 (0.051)* 0.625 (0.044)* 3.52 

Aluminium 0.276 (0.046)* 0.706 (0.038)* 0.39 

Copper 0.241 (0.032)* 0.812 (0.019)* 8.74* 

Zinc 0.210 (0.031)* 0.815 (0.020)* 2.03 

Nickel 0.427 (0.049)* 0.700 (0.027)* 19.6* 

Wheat 0.150 (0.022)* 0.865 (0.014)* 1.93 

Corn 0.090 (0.013)* 0.901 (0.012)* 2.15 

Soy 0.241 (0.030)* 0.718 (0.032)* 3.83* 

Beef 0.315 (0.043)* 0.699 (0.031)* 0.82 

Logarithm of price levels     

Oil 0.441    (0.050)* 0.617 (0.038)* 3.26 

Coal 0.214 (0.039)* 0.755 (0.036)* 3.95* 

Gasd 0.520 (0.063)* 0.491 (0.043)* 3.66 

Aluminium 0.179 (0.041)* 0.748 (0.052)* 4.28* 

Copper 0.065 (0.023)* 0.878 (0.035)* 10.51* 

Zinc 0.064 (0.021)* 0.896 (0.028)* 6.35* 

Nickel 0.196 (0.029)* 0.799 (0.031)* 0.76 

Wheat 0.062 (0.015)* 0.933 (0.013)* 0.58 

Corn 0.016 (0.010) 0.942 (0.039)* 1.75 

Soy 0.113 (0.031)* 0.676 (0.086)* 9.35* 

Beef 0.155 (0.049)* 0.613 (0.039)* 9.39* 

*Statistically significant at 5% confidence level  

a Only estimates of parameters ρ and ω are reported. Other model parameter estimates are available on request  
b 1991M1-2021M12 
c 1992M1-2021M12 
d 1985M1-2021M12 
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Table 3 – Temporary explosive root tests on commodity price indexes and commodity prices 

(1980M1-2021M12)a  

Series ADF0
1 SADF GSADF 

Price indexes    

FoodIndb -1.289 0.0487 3.644* 

MetInd -1.285 3.303* 7.170* 

EneIndc  -1.167 4.907* 5.092* 

CPI 0.288 0.854 3.189* 

Price levels    

Oil -2.352 3.843* 4.417* 

Coal -1.166 8.177* 8.762* 

Gasd -0.456 4.164* 6.619* 

Aluminium -2.524 2.405* 5.132* 

Copper -0.883 2.972* 4.750* 

Zinc -2.937 3.871* 5.908* 

Nickel -2.656 3.426* 5.491* 

Wheat -2.517 3.360* 3.795* 

Corn -2.151 0.357 3.462* 

Soy -2.478 -0.553 2.981* 

Beef -0.134 0.937 1.211 

Logarithm of price levels   

Oil -1.199 1.871* 2.275* 

Coal -1.500 0.414 2.511* 

Gasd -1.745 -0.135 2.891* 

Aluminium -3.168 -0.270 -2.816* 

Copper -0.858 -0.128 3.124* 

Zinc -1.827 0.057 3.583* 

Nickel -2.008 1.361 2.989* 

Wheat -2.410 1.120 3.098* 

Corn -1.756 0.513 2.306* 

Soy -2.032 -1.200 2.271* 

Beef -0.167 0.665 1.794 
*Statistically significant at 5% confidence level with bootstrap critical values computed with 200 repetitions 

a All test specifications include 6 lags  
b 1991M1-2021M12 
c 1992M1-2021M12 
d 1985M1-2021M12 
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Table 4 – Dating of temporary explosive roots and volatility clusters for commodity price levels and 

logarithm of levels (1980M1-2021M12). 

Price levels 

Bubblesa 

Period Commodities 
First moverc 

(date) 
CPI: Y/N; first mover 

(Y/N & date)d 

2005M8-2005M10, 

2006M1, 2006M3, 2006M6 
Oil, Copper, Zinc 

Oil, Copper 

(2005M6) 
Y; Y (2005M3) 2006M2, 2006M4-2006M5  Oil, Aluminium, Copper, Zinc 

2006M7, 2006M9 Oil, Copper, Zinc Nickel 

2006M10-2006M12  Oil, Copper, Zinc 

2008M2-2008M7 Oil, Coal, Gas, Wheat, Corn 
Oil (2007M3) Y; N 

2008M5, 2008M8 Oil, Coal, Gas, Corn 

Volatility Clustersb 

Period Commodities 
First mover 

(date) 
CPI: Y/N; first mover 

(Y/N & date) 

1988M7-1988M10 Copper, Wheat, Beef Wheat    

(1988M4) 
N 

1988M11-1989M7 Copper, Zinc, Nickel, Wheat 

2006M8-2006M11  Copper, Zinc, Nickel, Wheat  Nickel 

(2006M5) 
N 

2007M4-2007M12  Copper, Zinc, Nickel, Wheat  

2008M3-2008M8 Gas, Copper, Wheat, Corn  
Wheat 

(2006M8) 
N 

2008M9-2009M8 
Oil, Gas, Coal, Aluminium, 

Copper, Zinc, Corn, Soy, Beef  
Gas     

(2008M3) 
Y; N 

2012M7-2012M8  Corn, Soy, Beef 
Soy      

(2012M8) 
N 

2021M9-2021M12 Gas, Aluminium, Copper 
Gas     

(2021M7) 
Y; N/Y(2021M7) 
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(table 4 continues) 

Logarithm of price levels 

Bubblesa 

Period Commodities 
First mover 

(date) 
CPI: Y/N; first mover 

(Y/N & date) 

2005M12-2006M10 Aluminium, Copper, Zinc Zinc (2005M9) Y; Y (2005M3) 

2008M6-2008M7  Oil, Coal, Wheat, Corn 
Wheat 

(2008M2) 
Y; N 

2015M12-2016M6 Oil, Gas, Copper 
Copper 

(2015M8) 
N 

Volatility Clustersb 

Period Commodities 
First mover 

(date) 
CPI: Y/N; first mover 

(Y/N & date) 

1988M4-1989M1 Aluminium, Nickel, Soy 
Aluminium 

(1987M12) 
Y; N 

2008M11-2009M3 
Oil, Coal, Aluminium, Copper, 

Nickel 
Coal    

(2008M3) 
Y; N 

a The dating of the bubble corresponds to periods when at least 3 commodities show explosive roots, that is BSADF test significant at 

5% confidence level with bootstrap critical values computed with 200 repetitions. Only periods with at least two consecutive months 

of exceedance are reported. 
b The dating of the volatility clusters corresponds to periods when predicted volatility (i.e., standard error) is larger than three times the 

subperiod (1980M1-2000M12; 2001M1-2021M12) average volatility. Only periods with at least two consecutive months of 

exceedance are reported. 
c The first mover is the price of the group whose exceedance started first before the period of co-exceedance. 
d The first Y/N indicates whether or not also CPI shows exceedance in the same period; the second Y/N indicates whether or not CPI 

can be considered the forst mover (in parenthesis the date).    
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Figure 1 – Oil (left scale) and Aluminium (right scale) prices: observed series and in-sample 

predicted series from respective ADF model estimation (1980M1-2021M12) 

 

Figure 2 – GARCH(1,1) model standard error in-sample prediction for commodity price indexes 

(2000M1=1) (1992M1-2021M12). 
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Figure 3a – GARCH(1,1) model standard error in-sample prediction for energy commodities (a), 

metals (b) and agricultural commodities (c) price levels (2000M1=1) (1980M1-2021M12). 
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Figure 3b – GARCH(1,1) model standard error in-sample prediction for energy commodities (a), 

metals (b) and agricultural commodities (c) logarithm of prices (2000M1=1) (1980M1-2021M12). 
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Figure 4 – BSADF tests for indexes for commodity price indexes (1992M1-2021M12). 
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Figure 5a – BSADF tests for indexes for energy commodities (a), metals (b), agricultural commodities 

(c) price levels (1980M1-2021M12). 
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Figure 5b – BSADF tests for indexes for energy commodities (a), metals (b), agricultural commodities 

(c) logarithm of price levels (1980M1-2021M12). 
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Figure 6a – Dating of explosive roots (a) and volatility clusters (b) for all commodity price levels 

(1980M1-2021M12) (see Table 4 for details).   

 

 

 

a) 

b) 
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Figure 6b – Dating of explosive roots (a) and volatility clusters (b) for all commodity logarithms of 

price levels (1980M1-2021M12) (see Table 4 for details).   
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ANNEX 1 - Description of the data used in the analysis 

Individual commodity prices (source: IMF):  

Oil: Crude Oil (petroleum), Price index, 2005 = 100, simple average of three spot prices; Dated Brent, 

West Texas Intermediate, and the Dubai Fateh 

Gas: Natural Gas, Russian Natural Gas border price in Germany, US$ per Million Metric British 

Thermal Unit 

Coal: Australian thermal coal, 12,000- btu/pound, less than 1% sulfur, 14% ash, FOB Newcastle/Port 

Kembla, US$ per metric ton 

Aluminium: 99.5% minimum purity, LME spot price, CIF UK ports, US$ per metric ton 

Copper: grade A cathode, LME spot price, CIF European ports, US$ per metric ton 

Zinc: high grade 98% pure, US$ per metric ton 

Nickel: melting grade, LME spot price, CIF European ports, US$ per metric ton  

Wheat: No.1 Hard Red Winter, ordinary protein, Kansas City, US$ per metric ton  

Corn: U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, US$ per metric ton  

Soy: U.S. soybeans, Chicago Soybean futures contract (first contract forward) No. 2 yellow and par, 

US$ per metric ton  

Beef: Australian and New Zealand 85% lean fores, CIF U.S. import price, US cents per pound 

Aggregate commodity price indexes (source: IMF):  

FoodInd: Food Price Index, 2016 = 100, includes Cereal, Vegetable Oils, Meat, Seafood, Sugar, and 

Other Food (Apple (non-citrus fruit), Bananas, Chana (legumes), Fishmeal, Groundnuts, Milk (dairy), 

Tomato (veg)) Price Indices 

MetInd: Metals Price Index, 2005 = 100, includes Copper, Aluminium, Iron Ore, Tin, Nickel, Zinc, 

Lead, and Uranium Price Indices 

EneInd: Fuel (Energy) Index, 2005 = 100, includes Crude oil (petroleum), Natural Gas, and Coal 

Price Indices 

Overall Consumer Price Index (source: US Federal Reserve):  

CPI: Federal Reserve Economic Data, Economic Research Division, Federal Reserve Bank of St. 

Louis. CPIAUCNS Consumer Price Index for All Urban Consumers: All Items in U.S. City 

Average, Index 1982-1984=100, Monthly, Not Seasonally Adjusted. The Inflation rate is computed 

as the monthly growth rate of this CPI.  
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Table A1 – Descriptive statistics on commodity price indexes and commodity prices (1980M1-

2021M12)  

Series Obs Minimum Maximum Mean 
Standard 
Deviation 

Skewness Kurtosis 

Price indexes        

FoodInda 372 76.04 194.1 121.9 60.20 -0.384 1.965 

MetInd 504 44.16 256.2 101.3 53.69 -0.084 2.556 

EneIndb  360 22.07 257.3 99.75 67.76 -0.656 2.244 

CPI 504 40.79 146.2 92.17 28.09 -0.005 1.799 

Price levels        

Oil 504 18.44 249.6 84.09 56.86 0.877 2.534 

Coal 504 24.09 240.7 57.66 34.01 1.584 5.816 

Gasc 444 1.444 32.91 5.398 4.199 1.979 10.42 

Aluminium 504 918.8 3578 1712 468.1 0.778 3.325 

Copper 504 1272 10308 3882 2520 0.742 2.116 

Zinc 504 597.4 4381 1541 786.4 1.019 3.277 

Nickel 504 3433 51783 11394 7270 1.867 8.130 

Wheat 504 88.55 403.8 168.5 54.33 1.235 4.396 

Corn 504 65.35 332.9 142.7 57.14 1.420 4.542 

Soy 504 158.31 622.9 292.1 105.4 1.036 3.204 

Beef 504 74.26 272.2 130.5 44.44 1.026 3.111 

Price logarithms       

Oil 504 2.914 5.520 4.207 0.671 0.202 1.755 

Coal 504 3.178 5.483 3.913 0.510 0.610 2.358 

Gasc 444 0.367 3.493 1.461 4.250 1.255 6.286 

Aluminium 504 6.823 8.182 7.409 0.265 0 .158 2.542 

Copper 504 7.148 9.240 8.056 0.642 0.289 1.566 

Zinc 504 6.392 8.385 7.222 0.477 0.370 1.948 

Nickel 504 8.141 10.85 9.173 0.566 0.330 2.406 

Wheat 504 4.483 6.000 5.081 0.296 0.489 2.882 

Corn 504 4.179 5.807 4.894 0.353 0.663 2.868 

Soy 504 5.064 6.434 5.619 0 .332 0.520 2.277 

Beef 504 4.307 5.606 4.820 0.313 0.568 2.316 
a 1991M1-2021M12 
b 1992M1-2021M12 
c 1985M1-2021M12 
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ANNEX 2 – Commodity price dynamics 

Figure A1 – Commodity price indexes (2005M1=100) (1980M1-2021M12) 

 

Figure A2 – Energy commodities prices (2005M1=100) (1980M1-2021M12) 

 

 

0

50

100

150

200

250

300

1
9

8
0

M
1

1
9

8
0

M
1

2

1
9

8
1

M
1

1

1
9

8
2

M
1

0

1
9

8
3

M
9

1
9

8
4

M
8

1
9

8
5

M
7

1
9

8
6

M
6

1
9

8
7

M
5

1
9

8
8

M
4

1
9

8
9

M
3

1
9

9
0

M
2

1
9

9
1

M
1

1
9

9
1

M
1

2

1
9

9
2

M
1

1

1
9

9
3

M
1

0

1
9

9
4

M
9

1
9

9
5

M
8

1
9

9
6

M
7

1
9

9
7

M
6

1
9

9
8

M
5

1
9

9
9

M
4

2
0

0
0

M
3

2
0

0
1

M
2

2
0

0
2

M
1

2
0

0
2

M
1

2

2
0

0
3

M
1

1

2
0

0
4

M
1

0

2
0

0
5

M
9

2
0

0
6

M
8

2
0

0
7

M
7

2
0

0
8

M
6

2
0

0
9

M
5

2
0

1
0

M
4

2
0

1
1

M
3

2
0

1
2

M
2

2
0

1
3

M
1

2
0

1
3

M
1

2

2
0

1
4

M
1

1

2
0

1
5

M
1

0

2
0

1
6

M
9

2
0

1
7

M
8

2
0

1
8

M
7

2
0

1
9

M
6

2
0

2
0

M
5

2
0

2
1

M
4

FoodInd MetInd EnelInd

0

100

200

300

400

500

600

700

1
9

8
0

M
1

1
9

8
0

M
1

2

1
9

8
1

M
1

1

1
9

8
2

M
1

0

1
9

8
3

M
9

1
9

8
4

M
8

1
9

8
5

M
7

1
9

8
6

M
6

1
9

8
7

M
5

1
9

8
8

M
4

1
9

8
9

M
3

1
9

9
0

M
2

1
9

9
1

M
1

1
9

9
1

M
1

2

1
9

9
2

M
1

1

1
9

9
3

M
1

0

1
9

9
4

M
9

1
9

9
5

M
8

1
9

9
6

M
7

1
9

9
7

M
6

1
9

9
8

M
5

1
9

9
9

M
4

2
0

0
0

M
3

2
0

0
1

M
2

2
0

0
2

M
1

2
0

0
2

M
1

2

2
0

0
3

M
1

1

2
0

0
4

M
1

0

2
0

0
5

M
9

2
0

0
6

M
8

2
0

0
7

M
7

2
0

0
8

M
6

2
0

0
9

M
5

2
0

1
0

M
4

2
0

1
1

M
3

2
0

1
2

M
2

2
0

1
3

M
1

2
0

1
3

M
1

2

2
0

1
4

M
1

1

2
0

1
5

M
1

0

2
0

1
6

M
9

2
0

1
7

M
8

2
0

1
8

M
7

2
0

1
9

M
6

2
0

2
0

M
5

2
0

2
1

M
4

Oil Coal Gas



 

53 

Figure A3 – Metals prices (2005M1=100) (1980M1-2021M12) 

 

Figure A4 – Agricultural commodities prices (2005M1=100) (1980M1-2021M12) 
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Figure A5 – Logarithms of the energy commodities prices (2005M1=100) (1980M1-2021M12) 

 

Figure A6 – Logarithms of the metals prices (2005M1=100) (1980M1-2021M12) 
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Figure A7 – Logarithms of the agricultural commodities prices (2005M1=100) (1980M1-2021M12) 

 

Figure A8 – Oil price (2005=100), CPI (2005=100) and inflation rate (1980M1-2021M12). 
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Figure A9 – GARCH(1,1) model standard error in-sample prediction (a) and BSADF test for CPI 

and Inflation rate (1980M1-2021M12) 
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ANNEX 3 – Unit-root and Granger-causality tests with structural breaks 

Table A2 – Testing with structural breaks within an ADF specification (unit-root testing) for 

commodity price indexes, price levels and logarithm of levels (1980M1-2021M12). 

Series 
ZA (break month)e CMR (break months)f 

Intercept Intercept&Trend AO IO 

Price indexes     

FoodInda -4.780 -4.932  -3.844 (1990M2*; 2006M3*) -7.408* (1990M2*; 2006M3*) 

MetInd -3.826 -4.048 -5.176 (2005M6*; 2014M3*) -5.406 (2004M9*; 2013M7*) 

EneIndb  -4.199  -4.305 -4.736 (1991M2*; 2004M9*) -4.831 (1990M11*; 2003M11*) 

CPI -3.461  -3.730 -3.079 (1992M5*; 2007M10*) -2.570 (1985M11*; 2002M11*) 

Price levels     

Oil -4.731 -4.755 -6.299* (2005M9*; 2015M2*) -6110* (2003M11*; 2013M5*) 

Coal -5.245* (2006M11) -5.253* (2006M11) -2.869 (2007M3*; 2008M1*) -5.791* (2006M9*; 2007M6*) 

Gasc -2.337 -2.454 -2.462 (2004M11*; 2014M5*) -1.718* (2003M8*; 2013M11*) 

Aluminium -4.532 -4.399 -3.447 (1987M4*; 2004M4*) -5.603* (2004M8*; 2007M6*) 

Copper -4.471 -4.464 -3.589 (2005M6*; 2014M3*) -4.131 (2004M4*; 2013M6) 

Zinc -4.236 -4.236 -4.209 (2005M6*; 2006M10*) -5.614* (2004M10*; 2007M4*) 

Nickel -4.027 -4.626 -4.155 (2005M9*; 2007M1*) -6.867 (2005M2*; 2006M4*) 

Wheat -3.663 -3.673 -3.747 (2007M4*; 2013M10*) -5.190 (2009M11*; 2013M1*) 

Corn -4.572 -4.577 -5.119 (2009M11*; 2013M1*) -5.688* (2009M5*; 2012M6*) 

Soy -5.091* (2006M10) -5.102* (2007M5) -4.749 (2007M3*; 2013M11*) -6.061 (2006M3*; 2013M3*) 

Beef -4.009  -4.574 -4.244 (2009M5*; 2018M8*) -4.532 (2008M9*; 2018M9*) 

Logarithm of price levels    

Oil -4.188 -4.363 -5.055 (1985M4*; 2003M9*) -4..888 (1998M1*; 2003M11*) 

Coal -4.273 -4.597 -3.476 (2007M3*; 2008M1*) -4..753 (2002M9*; 2005M9*) 

Gasc -2.598 -4.706 -4.327 (1993M10*; 2003M8*) -6..451* (1993M11*; 2003M9*) 

Aluminium -4.349 -4.639 -4.366 (1987M4*; 2003M4*) -5.307* (2004M5*; 2007M6*) 

Copper -4.584 -4.699 -4.392 (1987M1*; 2005M6*) -4.820* (1985M2*; 2002M8*) 

Zinc -4.701 -4.708 -4.580 (2005M6*; 2007M1*) -5.333 (1986M8*; 2004M6*) 

Nickel -3.958 -4.204 -4.401 (1987M1*; 2006M3*) -4.586 (1986M2*; 2002M3*) 

Wheat -3.972 -3.969 -3.456 (2006M10*; 2013M10*) -4.270 (2004M10*; 2013M4*) 

Corn -4.750 -4.772 -5.037 (2006M3*; 2013M10*) -4.969 (2005M7*; 2012M4*) 

Soy -5.343* (2006M10) -5.390* (2006M10) -4.472 (2007M3*; 2013M11*) -5.638* (2005M8*; 2013M3*) 

Beef -4.039 -4.886 -4.432 (1993M1*; 2009M5*) -4.169 (2002M4*; 2008M9*) 

*Statistically significant at 5% confidence level  

a 1991M1-2021M12 
b 1992M1-2021M12 
c 1985M1-2021M12 
e Zivot Andrews (ZA) unit-root test with one endogenous structural break in the intercept or in both the intercept and the deterministic 

trend; lags selected with AIC between 6 and 12 months; only statistically significant breaks are reported.  
f Clemente, Montanes and Reyes (CMR) unit-root test with two endogenous breaks (mean shifts) and deterministic trend; lags selected 

with AIC between 6 and 12 months; AO=Additive Outlier and IO=Innovational Outlier specifications; only statistically significant 

breaks are reported. 
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Table A3 – Granger causality test (χ2) of VAR model estimates with Oil, Coal, Natural Gas and CPI 

as endogenous variables (1985M1-2021M12)a,b  

 Price levels Logarithms of price levels 

Crude oil   

Coal 13.51* 8.529* 

Gas 3.558 9.221* 

CPI 5.138 8.354* 

Structural break dummies: 2003M11; 20013M5 4.955*; 1.273 -0.069*; -0.021 

Coal   

Crude oil 16.09* 8.6054* 

Gas 7.41 0.01853 

CPI 3.251 0.77946 

Structural break dummies: 2003M11; 20013M5 2.131; -0.375 0.039*; 0.004 

Gas   

Crude oil 0.739 1.253 

Coal 56.59* 3.353 

CPI 5.204 6.060 

Structural break dummies: 2003M11; 20013M5 -0.257; -0.052 -0.034; -0.035 

CPI   

Crude oil 67.25* 47.25* 

Coal 17.18* 15.91* 

Gas 5.573 0.876 

Structural break dummies: 2003M11; 20013M5 0.067; 0.043 0.001; 0.000 

*Statistically significant at 5% confidence level  

a The period considered depends on natural gas data availability. 
b The VAR model specification includes a drift, a deterministic trend and lags decided on the basis of AIC.  

 

 

 

 

 

 

 

 

  

 

 


