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Abstract

This paper investigates the occurrence of common price shocks (co-exceedance) across different
commodities. IMF monthly price series of 11 commaodities are considered over the 1980-2021 period.
The analysis considers two alternative stochastic processes. The first looks for common volatility
clusters using individual GARCH models to detect whether and when respective clusters overlap.
Through an appropriate battery of tests, the second alternative looks for a common Bubble
Generating Process (BGP) by searching for individual explosive roots and then dating them to
identify the possible overlaps and first movers. Evidence emerging about these shock generating
processes is linked to the analogous behaviour of the US Consumer Price Index (CPI) to assess to
what extent inflation shocks can be associated to the observed commodity price spikes. Results show
that the detection of temporary bubbles and volatility clusters only partially agrees on the episodes
of exuberance, on the first-moving commodities and on the involvement of the CPI. This provides
helpful suggestions on the development of a real-time surveillance tool supporting policy intervention
in periods of commodity price turbulence.
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1. Introduction

The large and rapid surge of most commaodity prices that started in 2021 and lasted for the whole of
2022 points to two stylised facts that have been repeatedly investigated in previous episodes of price
spikes: commodity prices move together; the rise of commodity prices transmits, somehow, to the

Consumer Price Index (CPI). The consequent inflation rate rush largely impacts economies and
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societies and usually induces a quite vigorous policy response (Ider et al., 2023). Nonetheless, the
explanations of these price dynamics are still to be fully understood.

The literature on the common movement (or co-movement) of commodity prices is vast (Byrne et al.,
2020). One limit of this literature is that it implicitly assumes that the communality of price dynamics
has to be intended as the existence of a common Data Generation Process (DGP), usually represented
via some variant of Vector Auto-Regression (VAR) or Vector Error Correction (VEC) maodels or
through more sophisticated representation of the underlying common drivers (for instance, common
latent factors) (Esposti, 2021). But this may contrast with empirical evidence that suggests
substantially different fundamentals across very diverse commodities, thus questioning the presence
of common real determinants to justify commonality. In general terms, most representations of the
common DGP and of the consequent price transmission process (like the conventional Granger
causality, for instance) may be too simplistic to capture the real underlying interdependence across
commaodities, if any, thus providing misleading evidence on the actual causal linkages.

However, a specific strand of the recent empirical literature stresses that a common DGP is not strictly
needed for a common temporary behaviour to be observed (Zhao et al., 2021, p. 781; Mutascu et al.,
2022). In particular, commonality may only occur within the periods of exuberance, also referred to
as co-exceedance. When the price spike expires each series reverts to its own (possibly different)
normal-time DGP. This hypothesis can be also transferred to the second stylised fact, that of the CPI
response: for a transmission of shocks to the CPI to occur we do not need a common DGP with the
commaodity prices, but only some co-exceedance with them.

The presents paper aims to contribute to this body of studies by proposing an original methodological
approach which then leads to a novel policy tool. The main originality of the approach consists in
juxtaposing and combining two alternative stochastic processes generating co-exceedance. The first
resides in the occurrence of common (but not interdependent, that is, multivariate) volatility clusters
whose behaviour is here modelled through appropriate Generalised Auto-Regressive Conditional

Heteroskedasticity (GARCH) models. The second consists in the occurrence of common bubbles (a



common Bubble Generating Process, BGP), that is, temporary explosive roots within the individual
series but whose timing largely corresponds across commodities. Individual price series of very
diverse commaodities are thus separately investigated in order to assess whether and when volatility
clusters (first) and temporary explosive roots (second) are found. Although these methodological
approaches have already been adopted in previous empirical studies (Otero and Baum, 2021; Phillips
and Shi, 2020; Zhao et al., 2021), this paper proposes a combination of these techniques to assess the
co-exceedance of commodity prices without relying on some arbitrary and unreliable common DGP.
Monthly series of 11 commodity prices and the respective price indexes released by the International
Monetary Fund (IMF) over the 1980-2021 period are considered. Co-exceedance is assessed by
confronting the occurrence of these events across series. If some overlapping is observed, it supports
the existence of some contagion (or transmission) across prices. The sequence of the events across
prices can finally suggest the direction of this possible contagion. The same analysis is then repeated
on the US CPI.

The interest for this methodological approach eventually lies in its application to design a suitable
policy tool. Instead of concentrating on-complex and possibly misleading causation processes, the
proposed empirical strategy aims to-identify when periods of rapid price rises occur and assesses
whether they are common across commodities. Therefore, it allows to develop a real-time
surveillance tool guiding a prompt policy response in the right direction, in particular by
distinguishing interventions that can be confined to the sectoral context from interventions that
require an economy-wide spectrum of actions. In order to be easily interpretable also by non-technical
users, this tool is aimed to transfer results into a sort of periodically updatable dashboard visualizing
the critical information under investigation: if a bubble is occurring for a given commodity, when it
started, whether other commaodities are involved by the same bubble, who moved first and, finally, if
and to what extend this price surge is also reflected in the CPI. Contributing to the definition of such

a policy tool represents a further objective of the present study.



The rest of the paper is structured as follows. Section 3 overviews the recent empirical literature in
the field while Section 3 presents the adopted dataset and the main stylised facts. Section 4 details
the adopted methodological approach, the results of which are illustrated in section 5. In Section 6
these results are discussed and juxtaposed with the evidence emerging from more conventional
methodologies about the investigation of commodity price dynamics. Section 7 draws some policy

implications and concludes.

2. The common movement of commodity prices: literature and evidence

The paper by Wang and Tomek (2007) may represent the first study that explicitly and extensively
discussed the sequence of empirical issues to be tackled in investigating the actual DGP of commodity
prices. Though their main attention was on the stationarity properties of agricultural commodities,
their conclusions can be extended to other commodities and properties of the unknown DGP. The
main argument is that, due to their market fundamentals (on both the supply and the demand side),
commodity prices are expected to be mean reverting, with the long-term mean value possibly moving
along a deterministic trend. So, prices are expected to follow a stationary DGP around a drift or a
trend.

The fact that in the empirical literature the presence of a unit root is only occasionally rejected has to
be attributed to the characteristics of the respective tests and/or to their misspecification. In particular,
other characteristics of a stationary DGP can make it similar to a unit-root process. One is that these
prices often show,long memory (that is, fractional integration) making it possible for a close-to-(but-
lower-than)-one root to be confounded with a unit root. Another is the presence of a structural break
that may shift the long-term value upward or downward and can itself generate a potential confusion
as evidence of nonstationarity: the presence of a structural break within a stationary series may lead
to accepting the presence of a unit root, thus wrongly concluding that the series is non-stationary
(Baum, 2005; Glynn et al., 2007).

A consistent body of recent studies concentrates on several different stochastic processes to explain

the complex (i.e., non-linear) commodity price dynamics and the possible underlying co-movement.
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They are, in particular, fractional integration and structural breaks. A recent example, though
concerning stock market indices and not commaodity prices is Caporale et al. (2020). Based on an
approach originally proposed by Cuestas and Gil-Alana (2016), they argue that fractional integration
is very much related to non-linearities.> The possibility of structural breaks is also considered since
many studies argue that fractional integration might be artificially generated by the presence of breaks
in the data that have not been taken into account. In fact, the presence of structural breaks within
commodity price series was already considered by Wang and Tomek (2007).

However, it must be noticed that fractional integration and/or structural breaks can hardly explain the
behaviour of commodity prices and, in particular, the abovementioned ‘co-exceedance, that is, their
recurrent episodes of temporary exuberance as also emerging by simple visual inspection (see next
section). They remain interesting and possibly relevant processes in the investigation of individual
DGP since they may significantly interfere with the investigation of temporary bubbles and/or
GARCH effects. Therefore, although the approach here adopted considers other DGPs, the presence
of structural breaks can not be excluded at least for some of these commaodities (Esposti, 2021) and
will be considered here for comparative purposes (see Section 6).

Concentrating on the stationarity properties these studies overlook another major characteristic of
these price series that clearly emerges from a simple visual inspection: the presence of temporary
exuberance. Therefore, their DGP is expected to also generate self-extinguishing periods of
particularly high or low values. Most of the literature in the last 15 years has essentially focused on
this issue also as a consequence of the 2007-2008 price spike and of the following turbulent period.
A lot of theoretical and empirical research has tried to investigate the origins of these price
nonlinearities, jumps and spikes, as well as to put forward testing procedures to assess their presence.
We can summarize this research effort in three main directions and, then, in their possible

combination.

L Another interesting strand of empirical literature on commodity price dynamics, and strongly linked to non-linearities and fractional
integration, consists in the so-called fractal approach (Cromwell et al., 2000).
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The first strand of research explains the observed price spikes and jumps as the consequence of a
temporary increase in their variability (or volatility). It is the formation of volatility clusters that
eventually generates the observed highly irregular price dynamics. In most applications, this idea is
implemented by specifying and estimating GARCH regression models possibly admitting
asymmetric effects and non-stationary processes for the price level. See Li et al. (2017), Baur and
Dimpfl (2018) and Esposti (2021), just to mention a few, for the application of different variants of
GARCH modelling to commodity prices.

Within the second body of studies the origin of the episodes of price turbulence is the formation of
temporary bubbles. Several tests have been originally proposed to detect temporary price bubbles
within mean-reverting, thus stationary, processes (Gurkaynak, 2008).-More recently, the presence of
temporary bubbles has been admitted, and tested, within possibly non-stationary processes, that is, as
temporary explosive roots emerging within unit-root processes (Phillips et al., 2011, 2015; Phillips
and Shi, 2020). Gharib et al. (2021) and Zhao et al. (2021) have recently used this battery of tests to
assess the co-exceedance of some commodity prices and to date the respective bubbles.
Co-existence of both processes is also possible. This is considered helpful for two complementary
reasons. On the one hand, as already anticipated, it is always difficult to clearly distinguish between
the outcome of these two processes (Glrkaynak 2008, pp. 182-183; Chang, 2012). On the other hand,
none of the two alternative processes may totally capture all the features of the observed price
dynamics. To reconcile these two alternative processes, Chang (2012) adopts an Autoregressive
Jump-Intensity(ARJI)-GARCH model. Originally proposed by Chan and Maheu (2002), this model
is in principle able to generate both temporary bubbles and volatility clusters within stationary
processes.

The third strand of empirical research in the field differs from the conventional time-series approaches
as it is grounded on the spectral analysis and in time—frequency approaches. For the evolution of
market prices, wavelet analysis has emerged as a useful and powerful tool in assessing price co-

movement cycles. Without resorting on any theoretical causation (price transmission) process, it



allows to explore how the series of prices are related at different frequencies admitting non-linearities
like structural breaks.? Mutascu et al. (2022) provide a valuable example of this kind of approach by
investigating the co-movements of gasoline and diesel prices in different countries at different
frequencies. Though this approach is relatively new, interesting and promising, it is still based on the
assumption of a permanent interdependence between prices although flexible and not-linear. In the
present study, as anticipated, we do not want to admit any persistent co-movement but only co-
exceedance, therefore prices moving together only in specific periods of price spikes. Nonetheless,
the combination of the co-exceedance analysis here proposed with wavelet analysis can open
interesting developments for future research in this area.

Here, the aim is to investigate the commodity price dynamics following the first two relative recent
strands of research by pointing to commaodity price co-exceedance rather than co-movement. In
particular, unlike Chang (2012) and Zhao et al. (2021) the objective is not to estimate the parameters
of the actual DGP but to date the episodes of price turbulence by confronting, in this respect, two
competing processes: GARCH within stationary processes (volatility clusters) and temporary
explosive roots within non-stationary processes (bubbles). Moreover, unlike Zhao et al. (2021) here
we do not adopt Granger causality testing to assess the direction of the possible transmission of the
price shocks across commodities.® By dating these periods individually, we provide evidence on this
transmission by solely juxtaposing the timing of the individual episodes.

This is done not only on commodity prices and price indexes but also on the CPI series. While the
empirical literature on the commodity price properties and behaviour is vast and follows the
abovementioned directions, the investigation of the CPI dynamics (and its growth rate, the inflation
rate) mostly follows other directions. It mainly concentrates on the common movement and possible
interdependence with other macroeconomic variables and is only occasionally connected to

commodity prices (Garzon and Hierro, 2022; Ider et al., 2023). GARCH effects possibly occurring

2 We wish to thank an anonymous reviewer for helpful suggestions on this aspect.

3 Granger causality tests imply a common linear DGP across series (VAR or VEC models) (Zhao et al., 2021, p. 783). But both
commonality and linearity may not hold in the present case. Nonetheless, for the sake of comparison and robustness check of results,
in Section 6 we will present Granger causality tests.



in the CPI or inflation rate series has been extensively analysed (Engle, 1982), but we are not aware
of studies assessing the presence of temporary bubbles within these series. In fact, visual inspection
seems to suggest quite different properties of CPI compared to commodity prices (See next section).
Nonetheless, if a transmission from commaodity prices to CPI is expected, especially in periods of
price turbulence, this should imply some form of co-exceedance between these series.

But there is a final original aspect of the present contribution with respect to the recent literature in
the field. It concerns the policy implications of the proposed empirical approach. In previous studies
either these implications are overlooked or they concentrate on the possible effect of policy
interventions on the nature and scope of commodity price co-movement or co-exceedance like, for
instance, the fuel tax system (Mutascu et al., 2022) or import tariffs (Esposti and Listorti, 2018). If
the main objective of a policy in this context is to minimize the negative impact of a generalized rise
of commaodity prices, knowing the possible underlying causation and transmission process, that is the
structural linkages generating co-movement, might not be so critical. What seems important is rather
a quick understanding that a price “bubble” is forming and whether or not it is just sectoral (so it
involves a limited number of commodities) or it is generalized across all markets, that is, it is a co-
exceedence. Sectoral interventions to neutralize a momentary price surge are present in many contexts
and are usually rapidly activated (in the case of agricultural commaodities, for instance, the agricultural
market-crisis interventions represent an interesting example (FAO et al., 2011)). When occurring on
first-moving prices, these prompt sectoral responses may help to prevent a generalized “bubble”.
Understanding if and when this latter is, in fact, occurring then becomes critical to promptly activate
system-wide actions, particularly intended to prevent or slow-down downstream impact on inflation
rate surges (Ider et al., 2023). This real-time surveillance tool able to provide such an early warning,
as well as the generality and the first movers of the “bubble”, seems to be particularly helpful for a

prompt policy response.
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The present analysis concerns the price of a selection of 11 commaodities belonging to three different
categories: 4 agriculture commodities (corn, wheat, soybean, beef); 3 energy commaodities (crude oil,
natural gas, coal); 4 metals (aluminium, copper, zinc; nickel).* All price series are taken from the IMF
commodity price dataset.> All prices are monthly and cover the period January 1980 (1980M1)-
December 2021(2021M12) (504 observations) with the only exception of natural gas whose series
starts in 1985M1 (444 observations).

Together with individual commodity prices, the IMF dataset also contains aggregate price indexes
for groups of commodities. Here, three monthly price indexes are considered: food price index
(FoodInd) covering the period 1991M1-2021M12; metals price index (Metind) covering the period
1980M1-2021M12; fuel (energy) index (Enelnd) covering the period 1992M1-2021M12. Annex 1
provides details about which product quality these prices refer to, where they have been collected and
on which aggregates respective indexes have been defined. Table Al also reports the respective
descriptive statistics which include the conventional distributional indices suggesting that commodity
prices depart from the normal distribution mostly for a longer right tail depending on the
exceptionally high prices observed during temporary bubbles.

The dynamics of commaodity prices is investigated in combination with the evolution of the overall
consumer price index (CPI). Unfortunately, no worldwide (or global) CPI is available. Moreover,
many available CPI are usually collected and released at a quarterly or yearly basis. Here, the US
monthly CPI series is used (see Annex 1 for more details).® This series seems suitable in the present
analysis not only for the concordant frequency, but also because the US still represents the largest
economy worldwide, so any impact of the global commodity prices on inflation can be consistently
assessed on this series. It must also be noticed that, as detailed in Annex 1, several price series concern

US markets and, in any case, all prices are expressed in US $. Therefore, using the US CPI does not

4 Selected commodities are the most important worldwide (in terms of value) within the respective categories. In fact, nickel is the fifth
in the list of metals after lead. But for this latter a sufficiently long series is not available.

5 These price series are proprietary and can not be made available within the paper’s material. However, they can be freely downloaded
at https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9 or requested at
https://www.imf.org/en/Research/commodity-prices.

6 This data can be freely downloaded from https://fred.stlouisfed.org/series/CPIAUCSL.
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incur the risk of downscaling (if not neutralizing) the transmission of commaodity price shocks to the
CPI due to the exchange rate adjustment (Garzén and Hierro, 2022).

Unlike many previous studies (Esposti, 2021), commodity prices, as well the three price indexes, are
not deflated. As here we want to investigate the possible impact of commodity price spikes on the
CPI, it does not seem appropriate to purge inflation from these series. The same strategy is followed
for the possible presence of seasonality: no seasonal adjustment is performed on price series and
indexes. The logic behind this choice is twofold. On the one hand, we prefer to-analyse the price
series that economic agents really confront with. On the other hand, as stressed by Wang and Tomek
(2007) and Corradi and Swanson (2006), any data transformation has to be taken with care as it could
introduce artefacts within the series under investigation.

However, we consider as appropriate a data transformation that is supported by the theory (Corradi
and Swanson, 2006, p. 222). This is the case of the logarithmic transformation of the price levels.
This transformation is largely used in empirical literature (Listorti and Esposti, 2012; Esposti and
Listorti, 2013) and has two main motivations. First of all, price logarithms are more likely to show a
normal distribution than price levels, and normality is usually required by the estimation and
inference approaches. In other words, the log-normal statistical distribution of price levels has to be
considered as a main regular feature of these series (Listorti and Esposti, 2012; Esposti and Listorti,
2013).

Secondly, the logarithmic transformation finds a robust theoretical justification in deriving the
commodity price dynamics as Geometric Brownian Motions (GBM) (Diba and Grossman, 1988;
Gurkaynak, 2008; Su et al., 2017). This tradition also includes the idea of “rational bubbles”, that is,
periods of price exuberance entirely justified by agent’s expectations about commodity fundamentals
(Diba and Grossman, 1988). Empirically, this hypothesis implies that price logarithms might take the

form of mean reverting processes (due to market fundamentals) plus a random walk, a mean-reverting
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non-constant volatility (GARCH) and, possibly, temporary explosive roots.” According to lorahim et
al. (2021), a GBM can generate a stochastic process that assumes normally distributed price level
growth rates (therefore, difference in the logarithms) while admitting both unit-root (with drift and/or
deterministic trend) and GARCH effects (volatility clusters).2 However, these recent studies do not
admit temporary bubbles. Taking into account pros and cons of the logarithmic transformation
(Corradi and Swanson, 2006; Wang and Tomek, 2007), the present paper considers both the price
levels and the logarithm of price levels and in parallel repeats the analysis for these two cases in order
to assess which results are robust across the transformation.

Annex 2 displays the time evolution of the three aggregate price indexes (Figure Al), the 11
individual commodity prices (Figures A2-A4) and the logarithms of these individual prices (Figures
A5-A7) over the 1980M1-2021M12 period.® Visual inspection points to some general characteristics
of the price dynamics. Within each group, commodity prices seem to show some common
movements: periods of exuberance as well as collapses substantially correspond across different
commodities. This is only partially confirmed across groups: metals and agricultural commodities
tend to share the same periods of rise and fall, while energy commaodity prices seem more stable and
less volatile at least until the very last years of the period under consideration. However, if aggregate
price indexes instead of individual series are considered, it emerges that the three series largely
overlap with a substantial correspondence of positive and negative spikes. What is common across
commodities is.also that price turbulence seems to sharply increase in the second half of the period
under consideration and, in particular, from 2005 onwards.

From this simple visual inspection, therefore, the hypothesis of common movement seems largely
supported. For all commodities, periods of temporary exuberance are recurrently observed. During

these periods, prices rapidly increase and then rapidly collapse to a level that does not differ much

7 Actually, Diba and Grossman (1988) exclude that, within this logic, a rational bubble can actually start: if it is observed it must always
have existed.

8 See also Agustini et al. (2018) for a similar derivation.

9 The logarithmic transformation is not considered here for the price indexes and CPI. It would rather require a different aggregation
of the elementary prices into the index and this would simply generate another kind of index possibly introducing a further artefact.
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from the pre-exuberance level. Therefore, despite these “bubbles”, prices still seem to behave like
mean-reverting processes. This does not exclude changes in the long-term mean level or a long-term
trend in this respect (Esposti, 2021). But these changes or trends seem mild and are overshadowed by
the large short-term instability. As could be expected, the logarithmic transformation does not change
the general behaviour of the series. Qualitatively, price levels and their logarithms are similar even
though the latter are obviously smoother and this seems particularly evident for the energy commodity
prices.

At the same time, major differences emerge between commodity price series and the CPI series.
Figure A8 (Annex 2) reports the CPI, its monthly growth rate (i.e., the inflation rate) together with
the oil price which arguably is one of its major drivers, but it is also one of the most stable commodity
prices. The difference is evident. Oil price seems to follow a mean reverting process possibly with an
increase of volatility in the second part of the period and an upward shift of the long-term mean value.
CPI is much more stable, also in the second half of the period, and apparently moves along a
deterministic trend. It follows that the inflation rate seems to behave like a mean-reverting process
around an almost-zero long-term value with a limited, though appreciable, increase in the variability
in the second half of the period.

This purely visual inspection gives rise to the two key research questions underlying the present study.
On the one hand, commadity prices seem to move together at least during periods of turbulence, but
this would suggest a common stochastic process whose properties, however, are not self-evident.
Most price series show some characteristics of mean-reverting processes, and this would indicate they
are stationary processes around drifts or trends. But the large and quick shocks, though temporary,
do not seem consistent with this kind of processes. There should be some other underlying stochastic
process, that may differ across prices but still admits their common movement at least in the periods
of turbulence.

On the other hand, the research challenge about the linkage between commodity prices and the CPI

is quite the opposite. They apparently behave as very different stochastic processes, so commonality
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should be excluded. Nonetheless, strong economic arguments, as well as an abundant empirical
evidence (Garzon and Hierro, 2022), suggest that a common movement of many critical commodity

prices has to be transferred, somehow, to the CPI.

4. The methodological approach

The common theoretical framework of the investigation of commodity price dynamics consists in
price formation mechanisms (or equations), that is, reduced-form models expressing the respective
underlying market equilibrium.° Price formation equations represent the dynamic stochastic process
as a mean-reverting or non-stationary process eventually generating the price level and volatility.
These reduced form models have the further advantage of allowinga compact representation of cross-
commodity price dynamics in the form of multiple simultaneous equation models that may explain
both co-movement and co-exceedance.

The theoretical justification of these cross-commaodity price transmission mechanisms, however, is
not univocal. The prevalent explanation is that also very different commodities (for instance oil and
corn) may display interdependence_in the respective fundamentals (i.e., demand and supply). For
instance, on the supply side, one commodity (e.g., oil) may enter as an input (thus, a cost) in the
production process or supply chain of another commodity (e.g., corn and, consequently, beef). On
the demand side, consumption of one commodity may be directly (through substitution effect) or
indirectly (through income effect) affected by the price of another commodity (Dawson et al., 2006;
Listorti-and Esposti, 2012; Esposti and Listorti, 2013). Sometimes, however, this interdependence
through the fundamentals can be so indirect and remote that it seems more reasonable to provide
another theoretical justification of price co-movement and co-exceedance: though prices are not
interdependent, they still all respond to the same underlying (often latent) common factors (Stigler,

2011; Byrne et al., 2020; Esposti, 2021).

10 Fackler and Goodwin (2001) provide a common template based on linear excess demand functions embracing all dynamic regression
models from which an estimable reduced-form model can eventually be derived.
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The research question underlying the present study, however, comes before these theoretical
representations of price interdependence, that is nature and forms of price co-movement and co-
exceedance. It rather looks for empirical support on the evidence of co-exceedance, its possible
temporary nature and its dating. Therefore, we work on univariate models and not on multivariate
models.

On these premises, consider N commodities whose price is observed over T time periods (months in
the present case). On the basis of rational agent’s expectation or efficient markets theory (Zhao et al.,
2021), assume that for any i-th commodity there exists an unobserved fundamental price depending
on the real market drivers (supply, demand, storage, expectations). The natural constraints applying
to these drivers should make this market fundamental price nonexplosive. The actual (i.e. observed)
price moves around this fundamental level but it usually deviates from it according to some
underlying stochastic DGP expressed by the following univariate price formation equation:

(D pig=a; +6;t +bipjr_1 +uir, ViEN,VEtETS LT

where p;.is the i-th commodity price (or the logarithm of price) at time t; a; expresses the drift while
6; the deterministic trend coefficient. a;, 8;, b; thus are commaodity specific unknown parameters to
be estimated. a; and &; indicate the long-term fundamental price level or the long-term deterministic
trend, respectively, to which the actual price is expected to revert.

The error term u;; is usually assumed to be normally, independently and identically distributed, that
is u;;~NID(0,6%). However, as autocorrelation in these disturbance terms is very likely to occur, (1)
can be augmented to account for a transient dynamics:

S
(2) Apit = a; + 6it + Bipit—l + Z Hl's Apit—s + Sit,Vi € N,Vt ETS<T

s=1
where B; = (b; — 1) and 6, are further commodity specific unknown parameters to be estimated.
The error term is now correctly assumed to be &;,,~NID(0,6%). (2) is the typical Adjusted Dickey-
Fuller (ADF) regression and may admit different DGPs depending on the value of g;. In particular,

the price series is stationary, possibly around a drift («;) or a trend (6;t), whenever §; < 0. If 5; = 0,
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the price series contains a unit root and it thus follows a non-stationary process (a random walk)
possibly with a drift («;) or a trend (6;t). Finally, whenever ; > 0, the price series has an explosive
root implying a permanent and progressive departure from the fundamental price level unless it is
temporary (a “bubble”). In practice, such process would contradict the actual existence of a
fundamental price level.

Based on (2), distinct DGPs can be considered to represent the observed deviation.of prices from the
alleged fundamental level. Firstly, a Generalized Autoregressive Conditional Heteroskedasticity
effect on &;; can be included to capture the presence and persistence of volatility clusters. This is
obtained by reformulating (2) as follows (GARCH(p,q)) regression model):

s
(3) Apir = a; + 8t + Lipir—1 + Z 0is Apit—s + &t

s=1

Q

P
ok =vy; + Z Pip Err—p€it + Z Wiq Ofr—q, Vi €NVt €TS,P,Q <T
p=1 g=1

where ¢;; = o, z;; With z;, ~NID(0,1). ois the it-h commodity price error term variance at time t,
and p;, and w;q, are further commodity specific unknown parameters to be estimated. Together,
parameters p;,, (also called ARCH terms) and w;, (called GARCH terms) express the overall degree
of persistence of volatility. It is usually assumed that p;,+ w;q < 1(with p=q), indicating that
volatility is mean reverting. Otherwise, we would be faced with a persistent volatility, i.e., volatility
behaving as a random walk (or non-stationary) process (Engle, 1982; Agustini et al., 2018).1! Once
the GARCH model parameters have been estimated on the basis of the observed series, it is possible
to assess whether and when volatility clusters occur. To do this, in-sample predictions of variance
(i.e., 6%) are generated. Then, on the basis of some pre-determined threshold (see below) clusters are

found in those periods when this limit is exceeded.?

11 This is also called Integrated GARCH (IGARCH) process/model (Campbell et al., 1996; Chan, 2010).
12 Although their validity in generating reliable predictions is largely questioned, ARCH/GARCH models are usually quite successful
in generating in-sample projections (Taleb, 2009).
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But a GARCH process is just one of the possible DGPs consistent with the observed irregular
commodity price dynamics. As stressed by Engle (1982), a GARCH regression like (3) can be just
an approximation to a more complex regression with non-ARCH disturbances. So, the GARCH
specification might be picking up the effect of some relevant omissions from the estimated model.
For this reason, we want here to make (3) compete with a second, and alternative, stochastic process
generating a similar price behaviour. It consists of a DGP admitting temporary (or periodically
collapsing) bubbles in the price levels. This DGP can be represented as a variant of the ADF

regression (2) as follows:

S
(4) Apye = a; "™ + 8;t + B, *pir—q + Z 0,V Apy_s + &, ViE NVt ETT,1, ETS > T

s=1
where r; and r, denote the starting and ending points, respectively, of the possible temporary bubble.
r, and r, are expressed as fractions of T so that r, = r; + 1y, where ry, is the window size of the
regression, also expressed as a fraction of T. The number of observations to estimate (4) is Ty, =
|Try |, where |-] is the floor function which gives the integer part of the argument (Otero and Baum,
2021). For series showing temporary bubbles we should observe explosive roots for some sub-
periods, that is, some [ry, ,]interval. This can be assessed through tests where the null hypothesis is
Hy: ,8[1”"2 = 0, implying that the series shows a unit root, against the alternative hypothesis
Hy: ﬁirl’rz > 0, implying that the series shows an explosive root in the [r;, r,]interval.
A key contribution to a consistent formulation and implementation of this kind of tests was originally
made by Phillips et al. (2011), then improved by Phillips et al. (2015) and Phillips and Shi (2020).
The basic version of the test is the right-tailed ADF statistic based on the full range of observations,
rr=0andr; =1 (i.e., rw = 1), denoted ADF;. As it applies to the whole period of observations, this
statistic may fail in detect short-time temporary bubbles. Therefore, a second statistic is based on the
supremum t-statistic (SADF) that results from a forward recursive estimation of (4):

(5) SADF (1) = supy,e(r, 1]ADF,*
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Also this statistic may fail in the case of multiple temporary bubbles within the series. A third statistic
can be thus computed. It is the generalised supremum ADF (GSADF) test:

(6) GSADF (15) = SUPy,eir1],r,€l0;r,-ro ADEY

Based on these statistics, it is firstly possible to asses if one or more temporary bubbles occur.
Secondly, a backward testing procedure (backward SADF, or BSADF, statistics) allows dating these
bubbles over the period T (Phillips et al., 2011; 2015). For any particular observation, i.e. the i-th
commodity observed at time ro, it is possible to test whether it belongs to a phase of explosive
behaviour by performing a SADF test on a sample sequence where the endpoint is fixed at time rz,
and expands backwards to the starting point, r1, which varies between 0 and (r> — ro). This backward
SADEF statistic is defined as:

(7) BSADE,, (o) = Supy,e(o,r,r,] ADE,;

A further refinement of these tests has been recently proposed by Phillips and Shi (2020) and takes
into account both the presence of heteroskedasticity and the multiplicity issue in recursive testing.
They thus recommend a wild bootstrap approach to compute the critical values of the abovementioned
tests.3

The methodological approach followed here can thus be summarised as follows. Firstly, we look for
the stochastic properties of the individual commodity price series and the CPI. In particular, the
presence of a unit-root (with or without a drift or a trend) and of ARCH effects is investigated.
Secondly, on the basis of the first-step evidence, GARCH effects are considered as the possible
explanation of the observed periods of price turbulence. GARCH regression models like (3) are
estimated on individual series and in-sample volatility predictions are generated to assess and date
the volatility clusters.

Thirdly, as an alternative to GARCH processes, we consider the formation of temporary bubbles as

expressed by (4), therefore as a momentary departure from the fundamental process either stationary

13 One limit of these tests is that they do not allow breaks in levels or time trends. As discussed, neither a trend nor a structural break
can explain by itself the observed irregular price behaviour. However, they can not be excluded at least from some commaodities (see
Table 1) and might affect both the statistics and the critical values of these explosive root tests.
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or non-stationary. ADFy, SADF and GSADF tests are performed on individual series and the
temporary bubbles, if any, are consequently dated by performing the BSADF test. Finally, the
beginning and the end of volatility clusters and of temporary bubbles are confronted both across the
two alternative processes and among commodities (and CPI) in order to assess similarities and
differences, as well as the presence of possible contagion effects. Thus the analysis of co-exceedance
simply consists in seeing whether volatility clusters or bubbles are common (i.e., overlap) or not. In
case of a positive answer, it is then legitimate to ask, and to assess, whether a contagion effect can be
deduced, that is, which series (i.e. price) moves first possibly driving the-movement of the others.

Clearly, this investigation can not be confused with a formal causality assessment or testing. Usual
time-series causality assessment in a multivariate context is performed via Granger causality testing.
This latter, however, assumes a linear relationship across commodities and does not seem consistent
with the observed stochastic properties of these series and bubble formation. In this respect, some
recent developments in the field seem promising for future research (Shahzad et al., 2021; Esposti,
2022). It is worth stressing, however, that assessing causality is not so essential for the main policy
implication of interest here. Investigating which commodities show a bubble formation earlier than

others remains useful to build that real-time warning policy tool mentioned in previous sections.

5. Results®

5.1. Stochastic properties of the series

Table 1 reports the battery of unit root tests and of the ARCH tests on (2) for all series under
investigation. In the case of price indexes, CPI included, it emerges that all series are stationary. The
selected specification®® includes a drift in the case of the three commaodity price indexes and a trend

in the case of CPI. At the same, all indexes here show an ARCH effect except FoodInd. Consequently,

14 All testing and estimation procedures have been performed with software STATA 17. In particular: GARCH models have been
estimated using the command Arch with arch(1) garch(1) specification; explosive roots have been tested using the Radf command; the
structural break tests have been performed using commands Zandrews and Clem; pairwise Granger causality tests have been performed
by using, the Var and Vargranger commands.

15 The best specification has been selected following Enders (1995, p. 256-260).
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all indexes behave as mean-reverting processes (with the mean moving along a deterministic trend in
the case of CPI) possibly with volatility clustering.

Regarding the individual commodity price series, however, a differentiated picture emerges across
the commaodity groups. If the levels are considered, energy commodities are all stationary around a
drift. Metals, on the contrary, show non-stationarity around a drift in the case of zinc and nickel, non-
stationarity around a trend in the case of aluminium and stationarity in the case of copper. Finally, all
agricultural commaodities, except for beef, are non-stationary around a drift while beef is stationary
around a deterministic trend. Despite these difference, all commodity prices show an ARCH effect.
Interestingly enough, the logarithmic transformation changes the evidence emerging from the tests
only for four commodities and only in one case (wheat) does this change concern stationarity
properties. aluminium remains non-stationarity but now around a drift. Also copper and beef
downscale from a trend to a drift while maintaining stationarity. Wheat shows the most significant
change passing from non-stationarity around a drift to a stationarity around a drift. Thus, unlike the
respective price level, the logarithm of the wheat price seems to behave like a mean-reverting process.
The key point, here, is that while visual inspection of both price indexes and price series would
indicate some common movement, tests indicate that such commonality may occur for price indexes
but not for individual prices where four different DGPs are observed, and this happens also within
the same commaodity group. This makes the hypothesis of common movement hardly tenable, at least
over the whole time period. At the same time, however, visual inspection also reveals the presence
of common periods of exuberance that are not necessarily compatible with the DGPs emerging from
tests. The limited reliability of the DGPs emerging from the tests when compared to the actual price
dynamics is confirmed by generating in-sample predictions from the estimated ADF regressions.
Figure 1 compares these predictions with the real series for two cases that should express different
DGPs: a stationary series around a drift (mean reverting) (oil) and a non-stationary series around a
trend (aluminium). The two predicted series are quite similar, despite the different DGPs, and, above

all, in both cases these predictions largely diverge from the actual series especially in the last third of
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the observed period. Evidently, there is something more in the stochastic process generating these
series and this has to do more with temporary effects than with constant properties of the series. As
the ARCH test is concordant across all series (except for FoodInd), the presence of volatility clusters
can be a serious candidate to explain these temporary processes. But also temporary explosive roots
(bubbles) could be considered as they are compatible with both stationary and non-stationary series

over the whole period (Diba and Grossman 1988, p. 529).

5.2. Volatility clusters

Table 2 reports the estimates of parameters p and » of the GARCH regression: model (3) (with a
GARCH(1,1) specification) for the different series in both price levels and logarithms. Two main
facts emerge. First of all, with the only exception of FoodInd, in all series both estimated p and w are
statistically significant (Corn is the only case where p is not statistically different from 0). This
confirms what was already obtained with ARCH tests presented in Table 2: volatility clusters occur
in all series except for FoodInd. Secondly, many series violate the assumption of temporary clusters:
for the price indexes Enelnd and CPI, and price levels of natural gas, aluminium, zinc, wheat, corn,
beef, we can not reject the hypothesis of p+w =1. Therefore, in these cases volatility follows a non-
stationary process thus making clusters permanent rather than temporary as expected. Logarithms of
prices partially confirm this evidence but some differences are worth noticing: non-stationary
volatility is observed also for oil and nickel while it is now excluded for aluminium, zinc and beef.

Contradictory evidence emerges about the reliability of these GARCH processes as generators of the
observed price dynamics. On the one hand, the existence of volatility clusters is consistent with the
observed large variability, or instability, of the commodity prices in specific periods of time. On the
other hand, however, in several cases these processes support permanent volatility shocks thus
becoming less compatible with the observed temporary episodes of turbulence. As discussed, once
estimated, standard error in-sample predictions for these GARCH models can be generated. Figure 2

shows these predictions for the three price indexes and Figures 3a-3b for the individual price levels
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and logarithms, respectively. Figure A9 (panel a)) reports the same predictions for the CPI and its
growth rate (i.e., inflation rate).

As expected, volatility clusters do not emerge for FoodInd, while a significant increase of volatility
can be appreciated in the second part of the period of (starting around 2005) for both MetInd and
Enelnd. For these indexes, this volatility dynamics seems consistent with the increased price
turbulence observed in the same period as shown in Figure Al. In the case of individual series,
predictions show huge volatility variations for oil and for all mineral and agricultural commaodities.
Clusters seem to be relatively rare and quite temporary in the first part of the period, while they
become more frequent and longer, thus possibly permanent, from 2005 onwards. This seems even
more true for CPI and therefore, but less intensively, for the inflation rate. CPI volatility sharply rises
in 2005 and remains higher than in the previous period with only a drastic drop during years 2013-
2014.

The question is whether the magnitude of this volatility clustering is consistent with the actual price

turbulence or whether, in fact, we should look for alternative explanations.

5.3. Temporary bubbles

Table 3 reports the sequence of tests for the presence of temporary bubbles as expressed by equations
(5) and (6). As discussed, moving from ADF; to GSADF the tests improve in terms of recursiveness
and flexibility, therefore in precision, in detecting the temporary explosive roots.'® The presence of
a temporary bubble is excluded in all cases (price indexes, individual price levels and logarithms of
individual price levels) when the search of the bubble extends to the whole period (ADFJ). Something
emerges with SADF with a temporary explosive root observed for Metind and Enelnd, and for the
price level of all energy commodities, all minerals, and wheat. In the case of the logarithm of prices

a bubble is detected only for oil. The generalised occurrence of temporary bubbles is eventually

16 1t is worth noticing that the ADF§ test in Table 3 (second column) corresponds to the ADF test with drift in Table 1 (third column)
as the explosive bubble tests associated to equation (4) may include a drift but not a deterministic trend. However, strictu sensu, they
are not the same test since the former is a right-tailed statistics so the critical values are different. The statistics itself slightly differs in
some cases because the adopted specifications (i.e., lag structure) are not always the same.
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indicated by the GSADF test. With the only exclusion of beef (both the price level and its logarithm),
at least one temporary explosive root is found in all the series.*’

In order to better appreciate how many bubbles occur and when, the BSADF tests (equation (7)) are
computed. Results (with the critical values) are reported in Figure 4 for the three price indexes and in
Figures 5a,b for the commodity price levels and logarithms, respectively. It appears that, for indexes,
bubbles very sporadically emerge before and after the 2005-2008 period. On the contrary, over these
four years the tests exceed the critical values several times for all the indexes. MetInd is the index for
which this exceedance is more often observed.

In the case of individual price levels significant differences are found across the three groups. For
energy prices, only in period 2005-2008 we observe one or more bubbles shared by the three prices.
In the case of metals, beside that period, a common bubble is also observed in the mid-eighties.
Agricultural commodities present a more composite situation: bubbles are more frequent and occur
in the mid-eighties, mid-nineties, 2007-2008 and in the last decade. But they are often individual
bubbles and, again, only in 2007-2008 we observe a bubble shared by most (except for beef)
agricultural commaodities. Qualitatively, results obtained with the price logarithms are similar even
though, as could be expected, the bubbles are less frequent and, consequently, also the commonality

of bubbles is more sporadic.

5.4. First movers and contagion

As discussed in previous sections, the focus of the present study is not on commodity price
interdependence but on investigating the formation of temporary bubbles within individual price
series in order to allow a real-time monitoring tool to inform on the formation of temporary bubbles,

on the possible involvement of several commodities and on the first moving prices. The combination

17 Notice that the difference between the SADF and GSADF tests are larger here than what was presented in previous studies (see
Gharib et al., 2021, p. 5, in particular) arguably because, despite the number of observations, the period covered here is quite long
(more than 40 years).
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of the two alternative approaches here proposed allows to present their results in a form that permits
an intuitive visualization of all this information about if and how co-exceedance is occurring.
Figures 6a,b aim to provide this easily interpretable visualization by displaying the periods of
exceedance (volatility clusters or bubbles) for price levels and logarithms, respectively. Bubbles are
dated on the basis of the BSADF tests. In the case of volatility, following Engle (1982, p 1003),
exceedance is found any time the predicted volatility exceeds the double (in the case of price indexes)
or the triple (in the case of individual commodity prices) of the average predicted volatility (i.e.,
standard error) over the two subperiods 1980M1-2000M12 and 2001M1-2021M12. Together with
Table 4, these figures are also intended to provide an example of how the proposed approach can
contribute to a real-time surveillance tool through an easily interpretable and periodically updatable
dashboard visualization.

To summarize this evidence and better interpret it in terms of co-exceedance, Table 4 reports the
beginning (the “exuberance date” to use the term of Gharib et al., 2021, p. 6) and the end (the
“collapsing date’) months of periods with at least three different commodities showing at least two
consecutive months of exceedance, thus a co-exceedance in terms of volatility or common bubble for
at least two consecutive months (Phillips et al., 2011). The table also reports: commodities showing
this co-exceedance (second column); the commodity that can be identified as the first mover (third
column), that is, the price whose exceedance started first before the period of co-exceedance; whether
or not also CPI shows exceedance in the same period, and whether or not CPI can be considered the
first mover (forth column).

In the case of price levels, it emerges that bubbles concentrate in the 2005-2008 period though in
different moments involving different commodities. Basically, we can identify two main episodes.
The first goes from 2005M8 to 2006M9. It only involves energy commodities and metals with oil
and copper as first movers. CPl is itself involved in the bubble, as could be expected, but surprisingly
it behaves as the first mover. The second episode is shorter and goes from 2008M2 to 2008M8. It

involves all energy commodities wheat and corn but no minerals. Again, oil behaves as the first
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mover. This latter commodity actually seems to experience a single bubble from mid-2005 to the end
of 2008. CPI is also involved but not as the first mover.

Volatility clusters emerging from the GARCH regressions show a significant difference compared to
the bubbles. A first episode is found from mid-1988 to mid-1989, it concerns some minerals and
agricultural commodities but no energy commodities. Wheat seems to be the first mover. Other four
episodes, in fact behaving as a single one, can be detected from 2006M8 to 2009MB8. In the first part
of this period, the cluster exclusively involves metals and wheat. Then, other prices enter the group
included energy commodities and, finally, also oil. In the very last part of this episode, the volatility
clusters involve most (9 out of 11) commodities. If we consider this whole period as a single episode,
the first mover seems to be nickel which sounds a little surprising. In the second part of the period,
wheat and natural gas emerge as other possible candidates.

Two other volatility clusters can be found in the last decade of the period under investigation. One
concerns a very short period (two months in mid-2012) and only involves agricultural commodities.
The other concerns the very last months of the period of observation (2021M9-2021M12); it is short
simply because it continues beyond the period of observation. This period of exceedance is not
identified with the bubble testing arguably because the bubble has still to collapse. Future
investigations will confirm the nature and scope of the current period of exuberance. The cluster
identified here suggests that it concerns both energy prices and metals but it is likely driven by the
former and, in particular, by natural gas.

Two major facts seem to emerge from this analysis of co-exceedance. First of all, the correspondence
between bubbles and volatility cluster detection is limited. Periods correspond in the case of the major
episode that occurred between 2005 and 2008. But for the rest of the sample, the detection of the
episodes of co-exceedance does not correspond. Also the involved commaodities significantly differ
and, consequently, the first movers. Bubble detection seems to stress more the dynamics of energy

commodities, and oil in particular, while volatility clusters point more to metals and agricultural
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commaodities. A final difference concerns the involvement of CPI that seems very limited in the case
of clusters while it is more relevant for bubbles.

The second notable fact is the difference between price levels and price logarithms. As the logarithmic
transformation re-scales the data and, therefore, scales down their variability, respective results are
expected to make the more robust evidence emerge: the number of individual episodes may slightly
decline and the number of common episodes is expected to substantially reduce. It turns out that the
number of episodes of co-exceedance detected on price logarithms is lower, as expected, for both
bubbles and volatility clusters. But the nature of these episodes does not necessarily correspond with
what is observed on price levels and this lack of robustness passing from levels to logarithms seems
more evident for bubbles than for volatility clusters. The involved commaodities are not necessarily
the same, as well as the first movers, and also the involvement of the CPI shows some difference. In
general terms, when the logarithms are considered, it seems more difficult to find some general
pattern in the results, especially in terms of a key role of some commaodities like the energy ones.
Looking for regularities, two special cases are worth noticing here. The first concerns the oil price.
Properties and behaviour of this commodity price emerging in the present work confirm the bubble
detection and dating reported ‘in previous studies, particularly in Su et al. (2017) and Zhao et al.
(2021).*8 It could also be argued that oil price has to behave as a sort of upstream price since it enters
as a production cost in-most downstream production processes, included farming and mining
activities. But this role of oil as first mover is not generally observed and seems to emerge only in
bubble testing with price levels.

The second interesting role is that played by agricultural commodities. On the one hand, they can be
considered as downstream prices compared to energy commaodities and metals. But, for this reason,
they can severely impact on CPI dynamics. From our results, it emerges that agricultural commodity

prices seem to be a little more “stable” in the sense that episodes of exuberance (bubbles or volatility

18 Su et al. (2017, p. 6) conclude that “there are explosive multiple bubbles in the WTI oil market in 1990, 2005, 2006, 2008 and 2015.
Generally, oil bubbles mostly occur during the period of price volatility”.
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clusters) are less frequent and shorter. At the same time, while energy commodities and metals are
apparently more interdependent, agricultural prices seem to follow more autonomous patterns and
are less likely to act as first movers and, thus, to be suitable candidates to drive the other commodity
prices and of the CPI.

What can we finally conclude about the evidence on the linkage between commodity prices and CPI?
While results tend to confirm some stochastic properties of the CPI that may explain periods of
exuberance, the evidence that these periods are the consequence of analogous episodes in commodity
prices is poor. The major episode of price exuberance between 2005-2008 confirms, as could seem
obvious, a connection between commodity prices and CPI, maybe because this episode involves a
large number of commodities, though in different times. In fact, this connection seems quite weak
beyond this period. And also within this 2005-2008 period it is-not clear whether commodity price
exuberance induced a CPI response or if it is actually the other way round. This lack of evidence
should not be surprising and evidently asks for further investigation. Other very recent empirical
investigations (Lian and Freitag, 2022), for instance, suggest that oil price shocks do not always imply

a shock on CPI and sometime this latter may move independently and also precede the former.

6. Comparison with other stochastic processes and approaches

For the sake of comparison and. in order to validate the results here obtained, it is worth investigating
the commonality of the commodity price dynamics also with more conventional approaches. Rather
than focusing on co-exceedance, as in the present study, these approaches look for the commonality
of the stochastic generation processes (i.e., co-movement and the consequent price interdependence)
under the typical hypothesis of either stationary or non-stationary linear DGP, possibly with a drift
and/or a trend (Esposti, 2021). As already discussed in Section 2, in order to capture the complexity
and non-linearity of these series a further occurrence that can be considered consists in admitting that
series undergo, in one or more points in time, a structural break in either the drift or the trend (or in

both) (Baum, 2005). In principle, under multiple breaks, these stochastic processes could explain the
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presence of periods of extremely high (or low) prices (the “bubbles™) as a sequence of two structural
breaks with the latter eventually compensating the former and thus making its effect only temporary.
Table A2 (Annex 3) reports a battery of tests specifically designed to assess whether these more
conventional stochastic processes represent suitable alternatives to the two co-exceedance processes
here considered. Four tests are reported. They all confront a unit-root process (the null hypotheses of
the tests) with a stationary process presenting one or two structural breaks in some terms of the
process itself.1® All tests admit endogenous breaks, thus not only do they test their presence but they
are also able to date these breaks.

The first two tests consist in two specifications of the Zivot-Andrews (ZA) unit root test (Zivot and
Andrews, 2002) admitting only one structural break in either the intercept or both intercept and trend.
Test results largely accept unit-root processes without a break against the presence of a structural
break within stationary series. The only exceptions are coal and soy in the price levels and only soy
in the logarithms of prices. The break date is similar, late 2006-early 2007, and corresponds to one of
the major periods of co-exceedance identified in previous sections. Not only is the break accepted for
only two commodities but, more importantly, it can not explain why and how, once started, the period
of turbulence then comes to an end since the structural break introduces a permanent change in the
process.

The other two tests, consisting in two variants of the Clemente-Montafiés-Reyes unit root test (CMR)
(Clemente et-al., 1998), can be helpful in this respect. In this case, the statistical significance of the
breaks themselves can be assessed as they enter in the test specification as time dummies with the
respective coefficients. More importantly, this test admits two structural breaks within the stationary
process thus allowing the combination of the two breaks to capture a temporary change in the process,
like in the case of periods of price surge. The test can be performed under two different natures of the

breaks: a sudden change in the series (the additive outliers, or AO, model) or a gradual shift in the

19 For more details on the ZA and CMR tests, also see Baum (2005).

27



mean of the series (the innovational outliers, or 10, model). Evidently, the former, much more than
the latter, is expected to capture the short periods of price turbulence.

Although CMR tests confirm how difficult it can be, over such a long period of time, to univocally
identify clear stable stochastic processes for any given commodity and, even more, commonality
across commodities in this respect, they still provide some interesting indications. One the one hand,
the CMR test under the AO model seems to confirm the main evidence emerging from the ZA test
results without any relevant difference between price levels and logarithms: for-most commodity
prices (oil being the only exception) a non-stationary process is accepted against a stationary process
with structural breaks. When the 10 model is considered, however, the CMR test indicates that for
many commodities (all energy prices, aluminium, zinc, corn and FoodInd itself) a mean-reverting
process under two structural breaks is accepted. Even more interestingly, this test indicates that, for
both AO and 10 cases, the structural breaks are always statistical significant (with only one
exception). In some cases, the interval between the two breaks is too wide (more than three years) to
really capture a period of price exuberance (see the CPI case, for instance). In other cases, however,
the time window between the two breaks seems quite consistent with the periods of exceedance here
identified, as shown in Figures 6a,b. This is the case, in particular, of coal and all metals.

As already discussed, with respect to the purpose of the present study, the introduction of structural
breaks may seem an unnatural way to capture co-exceedance: it still maintains the linear specification
of the DGP possibly with a permanent change while here the intention is to identify a DGP with
temporary non-linearities. It follows that admitting structural breaks within the stochastic process
representation may still confound short-term and long-term dynamics within the price series.
Nonetheless, present results suggest that multiple breaks within an appropriate specification
eventually constitute a sort of spline process capable to proxy temporary non-linearities. Even though

not considered further here, this kind of approach, together with the introduction of multiple structural
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breaks within non-linear processes (Bai and Perron, 2003; Caporale et al., 2020), can represent a
promising alternative empirical strategy in future research in the field.?°

There is a final aspect to be considered about the introduction of structural breaks as a valid alternative
to capture co-exceedance. It concerns the identification of the first-moving commodities and the
possible consequent contagion process. As shown, within the proposed approach, this identification
is made only qualitatively by identifying and then visualizing when, commodity by commodity, the
periods of exuberance start and end (see Figures 6a,b). Very often, however, within the empirical
literature this identification is formally pursued using Granger causality testing (Esposti and Listorti,
2013). This approach must satisfy the prerequisite that series under investigation show the same
stochastic properties (they are all either 1(0) and 1(1)), and then it requires the estimation of multiple-
equation linear models (in the form of VAR or VEC models, respectively) representing the common
movement from which direction and nature of price interdependence (or transmission) can be
assessed. Within this representation one or more structural breaks can be included (as time dummies)
to possibly capture some changes in the linear relationships, thus admitting temporary non-linearities.
Results here presented demonstrate how the prerequisite of this empirical strategy to detect first
movers and contagion can be challenging. A common DGP is impossible to find when all price series
are considered. But even concentrating on individual commodity groups, Tables 1 and 5 suggest there
is always at least one commodity showing a different underlying stochastic process compared to the
others. Apparently, an interesting case is that of energy commodities under the 10 specification of
the CMR test: when two structural breaks are admitted they all behave as stationary processes with a
drift and a deterministic trend. Therefore, an attempt to perform Ganger causality testing can be made
here by estimating a VAR model with four endogenous variables: the three energy prices (oil, coal
and gas prices) and the CPI, since it quite robustly emerges as a 1(0) process. The VAR specification

also includes a drift, a deterministic trend and two time dummies representing the two breaks at

20 The use of international or global commodity prices, as well as the widely heterogenous dating of these structural breaks across
commodities, makes it hard to speculate on the possible linkage between them and external shocks like, for example, policy regime
changes. However, this investigation may represent a further direction of research for the future.
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2003M11 and 2013M5. Table A3 (Annex 3) reports the results of the respective Granger causality
tests and the estimated coefficients of the two structural breaks.?

As often occurs with Granger causality testing, results are not easily interpretable. However, they
confirm some of the evidence obtained with our proposed approach. It seems hard to identify an
indisputable driving price and, in particular, this does not seem the case of the oil price. When price
levels are considered, oil and coal show a reciprocal Granger causation, while natural gas is only
Granger caused by the coal price. Oil and coal price both Granger-cause the CPI response, while CPI
itself does not Granger-cause any of the energy prices as could be expected. Coal rather than oil seems
to be the driving price, if any, and this seems to be reinforced when the logarithm of prices are
considered instead of the levels. The presence of structural breaks, though suggested by tests reported
in Table A2, is not confirmed by VAR estimation coefficients associated to respective time dummies
are mostly not statistically different from zero.

Compared to the approach here proposed, which- is based on the search of co-exceedance periods
(thus admitting non-linearities in the DGP) rather than on linear price interdependence, these more
conventional stochastic processes do not seems to provide any helpful additional information. On the
contrary, they seem to fail in the search of common periods of exuberance over a large group of
commodities, thus they do not seem appropriate for designing a real-time surveillance dashboard
informing a prompt policy response. Nonetheless, even in these approaches recent contributions have
opened new interesting perspectives that may deserve careful consideration in future research. For
instance, the implementation of non-linear Granger causality testing seems particularly promising

(Shahzad et al., 2021).

7. Conclusive remarks

Periods of commodity price exuberance raise political concerns particularly for their possible impact

on the inflation rate. Timely interventions by the appointed institutions are often invoked but do not

21 For the sake of space limitation, the VAR model estimates are not reported here but are available upon request.
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necessarily prove to be effective in preventing or neutralizing these episodes. After all, common price
spikes (thus, co-exceedance) might not imply a common policy response since for some commaodities
exuberance tends to be motivated by real drivers while in other cases financial phenomena are
prevalent. Understanding the mechanisms underlying generation, transmission and, then, collapse of
co-exceedance remains relevant to design the proper, possibly differentiated, policy response. But in
the shorter term an appropriate policy response may just need a timely detection of the price surge
and of the degree of diffusion across commodities.

The present paper aims to develop a single methodological approach, albeit based on alternative
stochastic processes, that does not assume common movement and price interdependence but only
co-exceedance, thus commonality occurring only within the periods of exuberance. This approach is
able to detect whether such a period occurs, when it starts and when it ends, the degree of diffusion
across commodities, the possible presence of driving prices and, eventually, the transfer to the
inflation rate. On this basis, the proposed methodology is intended to offer an easily interpretable
visualization of the critical information it generates.

Results presented indicate that the different approaches considered (bubbles and volatility cluster
detection in both price levels and logarithms) are able to provide clear indications on when the
exceedance occurs, on its overlapping across commodities and on possible first movers. However,
this evidence is not concordant or, at least, robust across the different approaches making the final
outcome of the analysis, and the policy implication itself, severely dependant on the analyst’s choices
in this respect. Results do not even agree on the involvement of the CPI in these episodes of
exuberance, therefore on the transmission of commaodity price spike to inflation rate.

On the basis of this discrepancy, it seems wise to develop the abovementioned policy tool in a way
that prudently admits both processes and elaborates information from a combination of them. At the
same time, this discrepancy points to room for further methodological improvements. After all, both
competing representations of the origin of exceedance, volatility clusters and temporary bubbles,

show pros and cons and this makes it difficult to draw a general preference for one or the other.
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GARCH modelling seems to represent more permanent changes in volatility rather than short periods
of exuberance. Furthermore, it hardly combines volatility clusters with a non-stationary process in
the price levels. At the same time, bubble detection applies well to positive bubbles, therefore periods
of exuberance then followed by a collapse, but it does not necessarily succeed in case of negative
bubbles, that is episodes that start with a price crash (Gharib et al., 2021, pp. 3-4).? In fact, bubble
detection can only by applied ex post, therefore when the bubbles have already collapsed. This
substantially limits the actual applicability of the approach by analysts and policy makers. Moreover,
currently available tests only apply to univariate bubble detection. Multivariate bubble testing has not
yet been proposed and this prevents a direct investigation of contagion across commodities.

Regarding all these aspects, results obtained in the present study also suggest the extension of the
adopted tool to other stochastic processes, particularly those expressing non-linear dynamics of
commodity prices in both level and variance. Multiple breaks, fractional integration, fractal and
wavelet analysis are some examples in this direction. Finally, it would be particularly helpful to
replicate these results on higher frequency price data. Weekly or daily prices, if available, might
definitely be useful to better refine this real-time surveillance policy tool making it more timely and
accurate. However, these data might also bring about more statistical noise, thus making the
identification of co-exceedance more difficult and uncertain, and increasing the risk of false alarms.
Therefore, replication of the present analysis on these data could allow to assess the advantages and

disadvantages in the use of higher frequencies.

22 As an example of a negative bubble in the oil price, Gharib et al. (2021, p.1) presents the case of the negative daily price of Brent
observed on 21 April 2020.
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Table 1 — Unit root (ADF) and conditional heteroskedasticity (ARCH) tests on commodity price
indexes and commaodity prices (1980M1-2021M12)?

b

Series (Wi cﬁi?tgtrend) (wiﬁl[z;ift) (wi?tt)and) ARCH®

Price indexes
Foodind® 0.475 1,224+ 2439 0.126
Metind 10.088 1,404+ 2721 82.74*
Enelnd® 0.150 0,915+ 3138 106.9*
cPl 6.988 0.539 2,492+ 72.91%

Price levels
oil -0.502 11,504+ 2,906 92,63
Coal 0.327 11,599+ 3415 160.9*
Gas' 0.581 0,400+ 2,249 228.6*
Aluminium 0.416 -3.063* 4,010+ 65.84*
Copper 0.522 0.621 24874 112.8*
Zinc 10.229 2.023+* 3.804* 106.9*
Nickel -1.041 2,628+ 3,368 84.09%
Wheat 0375 28167+ 3.349 108.9*
Corn 0.214 1,872 2891 29.86*
Soy 0.322 2089+ 3.288 67.44%
Beef 1.004 0.049 11,739+ 64.76*

Loaarithm of price levels

oil -1.199 -1.202+ -2.631 78.04*
Coal 0.429 -1.501+ -2.919 79.51*
Gas' -1.737 -1.445% -2.647 68.6%
Aluminium 0.178 -3.169+* -4.322% 65.86*
Copper 0.784 -0.858+ -2.710 40.29%
Zinc 0.693 -1.827+* -3.478* 19.18
Nickel 0.354 -2.008* -3.102 19.62
Wheat 0.252 -2.410% -3.045 28.32*
Corn 0.315 -1.755* -2.855 7.38

Soy 0.212 -2.032+* -3.243 24.67*
Beef 0.887 -0.167+ -1.839 42.35%

*Statistically significant at 5% confidence level

+ Selected specification according to Enders (1995, p. 256-260)

2The test specification in terms of lags included has been selected case by case on the basis of the AIC

5% Critical Value of the three ADF test specifications, respectively: -1.95; -1.65; -3.42

¢ Lagrange Multiplier (LM) test performed on the residuals of the ADF unit-root test equations; 5% Critical Value: 21.03
41991M1-2021M12

€1992M1-2021M12

f1985M1-2021M12
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Table 2 — GARCH(1,1) model estimation and persistency test on commodity price indexes and

commodity prices (1980M1-2021M12) (estimated standard errors in parenthesis) 2

. Test p+tw =1
Series p Q (X/;(l))
Price indexes
FoodInd® 0.036 (0.049) -0.171 (0.717) 3.96*
Metlnd 0.247 (0.049)* 0.675 (0.032)* 4.24*
Enelnd® 0.373 (0.081)* 0.641 (0.058)* 0.16
CPI 0.116 (0.022)* 0.879 (0.021)* 0.22
Price levels
Oil 0.343 (0.041)* 0.726 (0.031)* 10.4*
Coal 0.494 (0.062)* 0.664 (0.026)* 13.4*
Gas® 0.304 (0.051)* 0.625 (0.044)* 3.52
Aluminium 0.276 (0.046)* 0.706 (0.038)* 0.39
Copper 0.241 (0.032)* 0.812 (0.019)* 8.74*
Zinc 0.210 (0.031)* 0.815 (0.020)* 2.03
Nickel 0.427 (0.049)* 0.700 (0.027)* 19.6*
Wheat 0.150 (0.022)* 0.865 (0.014)* 1.93
Corn 0.090 (0.013)* 0.901 (0.012)* 2.15
Soy 0.241 (0.030)* 0.718 (0.032)* 3.83*
Beef 0.315 (0.043)* 0.699 (0.031)* 0.82
Logarithm of price levels
Oil 0.441 (0.050)* 0.617 (0.038)* 3.26
Coal 0.214 (0.039)* 0.755 (0.036)* 3.95*%
Gas® 0.520 (0.063)* 0.491 (0.043)* 3.66
Aluminium 0.179 (0.041)* 0.748 (0.052)* 4.28*
Copper 0.065 (0.023)* 0.878 (0.035)* 10.51*
Zinc 0.064 (0.021)* 0.896 (0.028)* 6.35*
Nickel 0.196 (0.029)* 0.799 (0.031)* 0.76
Wheat 0.062 (0.015)* 0.933 (0.013)* 0.58
Corn 0.016 (0.010) 0.942 (0.039)* 1.75
Sov 0.113 (0.031)* 0.676 (0.086)* 9.35*
Beef 0.155 (0.049)* 0.613 (0.039)* 9.39*

*Statistically significant at 5% confidence level

20nly estimates of parameters p and o are reported. Other model parameter estimates are available on request

©1991M1-2021M12
€1992M1-2021M12
41985M1-2021M12
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Table 3 — Temporary explosive root tests on commodity price indexes and commodity prices
(1980M1-2021M12)?

Series ADF} SADF GSADF

Price indexes

FoodInd® -1.289 0.0487 3.644*
MetlInd -1.285 3.303* 7.170*
Enelnd°® -1.167 4.907* 5.092*
CPI 0.288 0.854 3.189*
Price levels
Oil -2.352 3.843* 4.417*
Coal -1.166 8.177* 8.762*
Gas® -0.456 4.164* 6.619*
Aluminium -2.524 2.405* 5.132*
Copper -0.883 2.972* 4.750*
Zinc -2.937 3.871* 5.908*
Nickel -2.656 3.426* 5.491*
Wheat -2.517 3.360* 3.795*
Corn -2.151 0.357 3.462*
Soy -2.478 -0.553 2.981*
Beef -0.134 0.937 1211

Logarithm of price levels

Oil -1.199 1.871* 2.275*
Coal -1.500 0.414 2.511*
Gas® -1.745 -0.135 2.891*
Aluminium -3.168 -0.270 -2.816*
Copper -0.858 -0.128 3.124*
Zinc -1.827 0.057 3.583*
Nickel -2.008 1.361 2.989*
Wheat -2.410 1.120 3.098*
Corn -1.756 0.513 2.306*
Sovy -2.032 -1.200 2.271*
Beef -0.167 0.665 1.794

*Statistically significant at 5% confidence level with bootstrap critical values computed with 200 repetitions
2 All test specifications include 6 lags

©1991M1-2021M12

€1992M1-2021M12

41985M1-2021M12
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Table 4 — Dating of temporary explosive roots and volatility clusters for commodity price levels and
logarithm of levels (1980M1-2021M12).

Price levels

Bubbles?

. - First mover®  CPI: Y/N; first mover
Period Commodities (date) (Y/N & date):
2005M8-2005M10, Oil. Copper. Zinc
2006M1, 2006M3, 2006M6 » COPPEr,
2006M2, 2006M4-2006M5 Oil, Aluminium, Copper, Zinc CzIZI(’)(?SOI\F/)I%(;r Y: Y (2005M3)
2006M7, 2006M9 Oil, Copper, Zinc Nickel
2006M10-2006M12 Oil, Copper, Zinc
2008M2-2008M7 Oil, Coal, Gas, Wheat, Corn

Oil (2007M3) Y:N
2008M5, 2008M8 Qil, Coal, Gas, Corn

Volatility Clusters®

. .. First mover CPI: Y/IN; first mover
Period Commodities (date) (Y/N & date)
1988M7-1988M10 Copper, Wheat, Beef Wheat \
1988M11-1989M7 Copper, Zinc, Nickel, Wheat (1988M4)
2006M8-2006M11 Copper, Zinc, Nickel, Wheat :

Nickel N
2007M4-2007M12 Copper, Zinc, Nickel, Wheat (2006M5)

Wheat
2008M3-2008M8 Gas, Copper, Wheat, Corn (2006M8) N

Oil, Gas, Coal, Aluminium, Gas .
2008M9-2009M8 Copper, Zinc, Corn, Soy, Beef (2008M3) YiN
Soy
2012M7-2012M8 Corn, Soy, Beef (2012M8) N
- Gas .

2021M9-2021M12 Gas, Aluminium, Copper (2021M7) Y; N/Y(2021M7)
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(table 4 continues)

Bubbles?

Period

Logarithm of price levels

Commodities

First mover CPI: Y/IN; first mover
(date) (Y/N & date)

2005M12-2006M10

Aluminium, Copper, Zinc

Zinc (2005M9)

Y: Y (2005M3)

Wheat

2008M6-2008M7 Qil, Coal, Wheat, Corn (2008M2) Y; N
) . Copper
2015M12-2016M6 Oil, Gas, Copper (2015M8) N
Volatility Clusters®
Period Commodities First mover CPI: Y/IN; first mover
(date) (Y/N & date)
. . Aluminium .
1988M4-1989M1 Aluminium, Nickel, Soy (1987M12) Y:N
Oil, Coal, Aluminium, Copper, Coal .
2008M11-2009M3 Nickel (2008M3) Y:N

2The dating of the bubble corresponds to periods when at least 3 commodities show explosive roots, that is BSADF test significant at
5% confidence level with bootstrap critical values computed with 200 repetitions. Only periods with at least two consecutive months

of exceedance are reported.

bThe dating of the volatility clusters corresponds to periods when predicted volatility (i.e., standard error) is larger than three times the
subperiod (1980M1-2000M12; 2001M1-2021M12) average volatility. Only periods with at least two consecutive months of

exceedance are reported.

¢ The first mover is the price of the group whose exceedance started first before the period of co-exceedance.
d The first Y/N indicates whether or not also CPI.shows exceedance in the same period; the second Y/N indicates whether or not CPI
can be considered the forst mover (in parenthesis the date).
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Figure 1 — Oil (left scale) and Aluminium (right scale) prices: observed series and in-sample
100

predicted series from respective ADF model estimation (1980M1-2021M12)
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Figure 2 — GARCH(1,1) model standard error in-sample prediction for commodity price indexes
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Figure 3a — GARCHY(1,1) model standard error in-sample prediction for energy commaodities (a),

1) (1980M1-2021M12).
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Figure 3b — GARCHY(1,1) model standard error in-sample prediction for energy commaodities (a),
metals (b) and agricultural commodities (c) logarithm of prices (2000M1=1) (1980M1-2021M12).
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Figure 4 — BSADF tests for indexes for commodity price indexes (1992M1-2021M12).
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Figure 5a— BSADF tests for indexes for energy commaodities (a), metals (b)

(c) price levels (1980M1-2021M12).
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Figure 5b — BSADF tests for indexes for energy commaodities (a), metals (b)
a)

(c) logarithm of price levels (1980M1-2021M12).
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Figure 6a — Dating of explosive roots (a) and volatility clusters (b) for all commodity price levels

(1980M1-2021M12) (see Table 4 for details).
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Figure 6b — Dating of explosive roots (a) and volatility clusters (b) for all commodity logarithms of
a)

price levels (1980M1-2021M12) (see Table 4 for details).
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ANNEX 1 - Description of the data used in the analysis

Individual commodity prices (source: IMF):

Oil: Crude Oil (petroleum), Price index, 2005 = 100, simple average of three spot prices; Dated Brent,
West Texas Intermediate, and the Dubai Fateh

Gas: Natural Gas, Russian Natural Gas border price in Germany, US$ per Million Metric British
Thermal Unit

Coal: Australian thermal coal, 12,000- btu/pound, less than 1% sulfur, 14% ash, FOB Newcastle/Port
Kembla, US$ per metric ton

Aluminium: 99.5% minimum purity, LME spot price, CIF UK ports, US$ per metric ton
Copper: grade A cathode, LME spot price, CIF European ports, US$ per metric ton
Zinc: high grade 98% pure, US$ per metric ton

Nickel: melting grade, LME spot price, CIF European ports, US$ per metric ton

Wheat: No.1 Hard Red Winter, ordinary protein, Kansas City, US$ per metric ton

Corn: U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, US$ per metric ton

Soy: U.S. soybeans, Chicago Soybean futures contract (first contract forward) No. 2 yellow and par,
US$ per metric ton

Beef: Australian and New Zealand 85% lean fores, CIF U.S. import price, US cents per pound

Aggregate commodity price indexes (source: IMF):

FoodInd: Food Price Index, 2016 = 100, includes Cereal, VVegetable Oils, Meat, Seafood, Sugar, and
Other Food (Apple (non-citrus fruit), Bananas, Chana (legumes), Fishmeal, Groundnuts, Milk (dairy),
Tomato (veg)) Price Indices

MetInd: Metals Price Index, 2005 = 100, includes Copper, Aluminium, Iron Ore, Tin, Nickel, Zinc,
Lead, and Uranium Price Indices

Enelnd: Fuel (Energy) Index, 2005 = 100, includes Crude oil (petroleum), Natural Gas, and Coal
Price Indices

Overall Consumer Price Index (source: US Federal Reserve):

CPI: Federal Reserve Economic Data, Economic Research Division, Federal Reserve Bank of St.
Louis. CPIAUCNS Consumer Price Index for All Urban Consumers: All Items in U.S. City
Average, Index 1982-1984=100, Monthly, Not Seasonally Adjusted. The Inflation rate is computed
as the monthly growth rate of this CPI.

50



Table Al — Descriptive statistics on commodity price indexes and commodity prices (1980M1-
2021M12)

Series Obs Minimum  Maximum Mean Séf,?gﬁgdn Skewness  Kurtosis
Price indexes
FoodInd? 372 76.04 194.1 121.9 60.20 -0.384 1.965
MetlInd 504 44.16 256.2 101.3 53.69 -0.084 2.556
Enelnd® 360 22.07 257.3 99.75 67.76 -0.656 2.244
CPI 504 40.79 146.2 92.17 28.09 -0.005 1.799
Price levels
Oil 504 18.44 249.6 84.09 56.86 0.877 2.534
Coal 504 24.09 240.7 57.66 34.01 1.584 5.816
Gas® 444 1.444 32.91 5.398 4.199 1.979 10.42
Aluminium 504 918.8 3578 1712 468.1 0.778 3.325
Copper 504 1272 10308 3882 2520 0.742 2.116
Zinc 504 597.4 4381 1541 786.4 1.019 3.277
Nickel 504 3433 51783 11394 7270 1.867 8.130
Wheat 504 88.55 403.8 168.5 54.33 1.235 4.396
Corn 504 65.35 332.9 142.7 57.14 1.420 4,542
Soy 504 158.31 622.9 292.1 105.4 1.036 3.204
Beef 504 74.26 272.2 130.5 44.44 1.026 3.111
Price logarithms
oil 504 2.914 5.520 4.207 0.671 0.202 1.755
Coal 504 3.178 5.483 3.913 0.510 0.610 2.358
Gas® 444 0.367 3.493 1.461 4.250 1.255 6.286
Aluminium 504 6.823 8.182 7.409 0.265 0.158 2.542
Copper 504 7.148 9.240 8.056 0.642 0.289 1.566
Zinc 504 6.392 8.385 7.222 0.477 0.370 1.948
Nickel 504 8.141 10.85 9.173 0.566 0.330 2.406
Wheat 504 4.483 6.000 5.081 0.296 0.489 2.882
Corn 504 4.179 5.807 4.894 0.353 0.663 2.868
Soy 504 5.064 6.434 5.619 0.332 0.520 2.277
Beef 504 4.307 5.606 4.820 0.313 0.568 2.316

21991M1-2021M12
©1992M1-2021M12
€1985M1-2021M12
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ANNEX 2 — Commodity price dynamics
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Figure A1 — Commodity price indexes (2005M1
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Figure A2 — Energy commodities prices (2005M1
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Figure A3 — Metals prices (2005M1=100) (1980M1-2021M12)
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Figure A4 — Agricultural commaodities prices (2005M1=100) (1980M1-2021M12)
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Figure A5 — Logarithms of the energy commodities prices (2005M1
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Figure A6 — Logarithms of the metals prices (2005M1
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Figure A7 — Logarithms of the agricultural commodities prices (2005M1=100) (1980M1-2021M12)
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Figure A9 — GARCHY(1,1) model standard error in-sample prediction (a) and BSADF test for CPI

and Inflation rate (1980M1-2021M12)
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ANNEX 3 — Unit-root and Granger-causality tests with structural breaks

Table A2 — Testing with structural breaks within an ADF specification (unit-root testing) for

commodity price indexes, price levels and logarithm of levels (1980M1-2021M12).

CMR (break months)f

AO

10

-3.844 (1990M2*; 2006M3*)
-5.176 (2005M6*; 2014M3*)
-4.736 (1991M2*; 2004M9*)
-3.079 (1992M5*; 2007M10*)

-7.408* (1990M2*; 2006M3*)
-5.406 (2004M9*; 2013M7*)
-4.831 (1990M11*; 2003M11*)
-2.570 (1985M11*; 2002M11*)

-6.299* (2005M9*; 2015M2*)
-2.869 (2007M3*; 2008M1*)
-2.462 (2004M11*; 2014M5%)

-6110* (2003M11*; 2013M5%*)
-5.791* (2006M9*; 2007M6*)
-1.718* (2003M8*; 2013M11*)

-3.447 (1987M4*; 2004M4*)
-3.589 (2005M6*; 2014M3*)
-4.209 (2005M6*; 2006 M10*)
-4.155 (2005M9*; 2007M1*)

-5.603* (2004M8*; 2007M6*)
-4.131 (2004M4*; 2013M6)
-5.614* (2004M10*; 2007M4*)
-6.867 (2005M2*; 2006M4*)

-3.747 (2007M4*; 2013M10*)
-5.119 (2009M11*; 2013M1*)
-4.749 (2007M3*; 2013M11%)
-4.244 (2009M5*; 2018M8*)

-5.190 (2009M11*; 2013M1*)
-5.688* (2009M5*; 2012M6*)
-6.061 (2006 M3*; 2013M3*)
-4.532 (2008M9*; 2018M9*)

-5.055 (1985M4*; 2003M9*)
-3.476 (2007M3*; 2008M1*)
-4.327 (1993M10%*; 2003M8*)

-4..888 (1998M1*; 2003M11*)
-4..753 (2002M9*; 2005M9*)
-6..451* (1993M11*; 2003M9*)

-4.366 (1987M4*; 2003M4*)
-4.392 (1987M1*; 2005M6*)
-4.580 (2005M6*; 2007M1*)
-4.401 (1987M1*; 2006 M3*)

-5.307* (2004M5%*; 2007M6*)
-4.820* (1985M2%*; 2002M8*)
-5.333 (1986M8*; 2004M6*)
-4.586 (1986M2*; 2002M3*)

. ZA (break month)®
Series
Intercept Intercept&Trend
Price indexes
FoodInd? -4.780 -4.932
Metind -3.826 -4.048
Enelnd® -4.199 -4.305
CPI -3.461 -3.730
Price levels
Qil -4.731 -4.755
Coal -5.245* (2006M11) -5.253* (2006M11)
Gas® -2.337 -2.454
Aluminium -4.532 -4.399
Copper -4.471 -4.464
Zinc -4.236 -4.236
Nickel -4.027 -4.626
Wheat -3.663 -3.673
Corn -4.572 -4.577
Soy -5.091* (2006M10) -5.102* (2007M5)
Beef -4.009 -4.574
Logarithm of price levels
oil -4.188 -4.363
Coal -4.273 -4.597
Gas* -2.598 -4.706
Aluminium -4.349 -4.639
Copper -4.584 -4.699
Zinc -4.701 -4.708
Nickel -3.958 -4.204
Wheat -3.972 -3.969
Corn -4.750 -4.772
Soy -5.343* (2006M10) -5.390* (2006M10)
Beef -4.039 -4.886

-3.456 (2006 M10*; 2013M10*)
-5.037 (2006 M3*; 2013M10*)
-4.472 (2007M3*; 2013M11*)
-4.432 (1993M1*; 2009M5%)

-4.270 (2004M10*; 2013M4*)
-4.969 (2005M7*; 2012M4*)
-5.638* (2005M8*; 2013M3%*)
-4.169 (2002M4*; 2008M9*)

*Statistically significant at 5% confidence level

21991M1-2021M12
b1992M1-2021M12
€1985M1-2021M12

& Zivot Andrews (ZA) unit-root test with one endogenous structural break in the intercept or in both the intercept and the deterministic

trend; lags selected with AIC between 6 and 12 months; only statistically significant breaks are reported.

fClemente, Montanes and Reyes (CMR) unit-root test with two endogenous breaks (mean shifts) and deterministic trend; lags selected
with AIC between 6 and 12 months; AO=Additive Outlier and 10=Innovational Outlier specifications; only statistically significant

breaks are reported.
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Table A3 — Granger causality test (%) of VAR model estimates with Qil, Coal, Natural Gas and CPI
as endogenous variables (1985M1-2021M12)2P

Price levels Logarithms of price levels

Crude oil

Coal 13.51* 8.529*

Gas 3.558 9.221*

CPI 5.138 8.354*
Structural break dummies: 2003M11; 20013M5 4.955*; 1.273 -0.069*; -0.021
Coal

Crude oil 16.09* 8.6054*

Gas 7.41 0.01853

CPI 3.251 0.77946
Structural break dummies: 2003M11; 20013M5 2.131:-0.375 0.039*; 0.004
Gas

Crude oil 0.739 1.253

Coal 56.59* 3.353

CPI 5.204 6.060
Structural break dummies: 2003M11; 20013M5 -0.257; -0.052 -0.034; -0.035
CPI

Crude oil 67.25* 47.25*

Coal 17.18* 15.91*

Gas 5.573 0.876
Structural break dummies: 2003M11; 20013M5 0.067;0.043 0.001; 0.000

*Statistically significant at 5% confidence level
2The period considered depends on natural gas data availability.
b The VAR model specification includes a drift, a deterministic trend and lags decided on the basis of AIC.
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