
Bio-based and Applied Economics 13(2): 171-201, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14060 

Bio-based and Applied Economics
BAE

Copyright: © 2024 Esposti, R. 
Open access, article published by Firenze University Press under CC-BY-4.0 License.
Firenze University Press | www.fupress.com/bae

Citation: Esposti, R. (2024). Dating com-
mon commodity price and inflation 
shocks with alternative approaches. 
Bio-based and Applied Economics 13(2): 
171-201. doi: 10.36253/bae-14060 

Received: December 9, 2022
Accepted: November 2, 2023
Published: July 25, 2024

Data Availability Statement: All rel-
evant data are within the paper and its 
Supporting Information files.

Competing Interests: The Author(s) 
declare(s) no conflict of interest.

Editor: Simone Cerroni

ORCID
RE: 0000-0002-1656-0331

Dating common commodity price and inflation 
shocks with alternative approaches

Roberto Esposti

Department of Economics and Social Sciences, Università Politecnica delle Marche, Anco-
na, Italy
E-mail r.esposti@staff.univpm.it

Abstract. This paper investigates the occurrence of common price shocks (co-exceed-
ance) across different commodities. IMF monthly price series of 11 commodities are 
considered over the 1980-2021 period. The analysis considers two alternative stochas-
tic processes. The first looks for common volatility clusters using individual GARCH 
models to detect whether and when respective clusters overlap. Through an appro-
priate battery of tests, the second alternative looks for a common Bubble Generating 
Process (BGP) by searching for individual explosive roots and then dating them to 
identify the possible overlaps and first movers. Evidence emerging about these shock 
generating processes is linked to the analogous behaviour of the US Consumer Price 
Index (CPI) to assess to what extent inflation shocks can be associated to the observed 
commodity price spikes. Results show that the detection of temporary bubbles and vol-
atility clusters only partially agrees on the episodes of exuberance, on the first-moving 
commodities and on the involvement of the CPI. This provides helpful suggestions on 
the development of a real-time surveillance tool supporting policy intervention in peri-
ods of commodity price turbulence. 
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1. INTRODUCTION

The large and rapid surge of most commodity prices that started in 2021 
and lasted for the whole of 2022 points to two stylised facts that have been 
repeatedly investigated in previous episodes of price spikes: commodity 
prices move together; the rise of commodity prices transmits, somehow, to 
the Consumer Price Index (CPI). The consequent inflation rate rush largely 
impacts economies and societies and usually induces a quite vigorous pol-
icy response (Ider et al., 2023). Nonetheless, the explanations of these price 
dynamics are still to be fully understood. 

The literature on the common movement (or co-movement) of commodity 
prices is vast (Byrne et al., 2020). One limit of this literature is that it implic-
itly assumes that the communality of price dynamics has to be intended as the 
existence of a common Data Generation Process (DGP), usually represented 
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via some variant of Vector Auto-Regression (VAR) or 
Vector Error Correction (VEC) models or through more 
sophisticated representation of the underlying common 
drivers (for instance, common latent factors) (Esposti, 
2021). But this may contrast with empirical evidence that 
suggests substantially different fundamentals across very 
diverse commodities, thus questioning the presence of 
common real determinants to justify commonality. In 
general terms, most representations of the common DGP 
and of the consequent price transmission process (like the 
conventional Granger causality, for instance) may be too 
simplistic to capture the real underlying interdependence 
across commodities, if any, thus providing misleading evi-
dence on the actual causal linkages. 

However, a specific strand of the recent empirical lit-
erature stresses that a common DGP is not strictly need-
ed for a common temporary behaviour to be observed 
(Zhao et al., 2021, p. 781; Mutascu et al., 2022). In par-
ticular, commonality may only occur within the periods 
of exuberance, also referred to as co-exceedance. When 
the price spike expires each series reverts to its own (pos-
sibly different) normal-time DGP. This hypothesis can 
be also transferred to the second stylised fact, that of the 
CPI response: for a transmission of shocks to the CPI to 
occur we do not need a common DGP with the com-
modity prices, but only some co-exceedance with them. 

The presents paper aims to contribute to this body 
of studies by proposing an original methodological 
approach which then leads to a novel policy tool. The 
main originality of the approach consists in juxtapos-
ing and combining two alternative stochastic processes 
generating co-exceedance. The first resides in the occur-
rence of common (but not interdependent, that is, multi-
variate) volatility clusters whose behaviour is here mod-
elled through appropriate Generalised Auto-Regressive 
Conditional Heteroskedasticity (GARCH) models. The 
second consists in the occurrence of common bubbles (a 
common Bubble Generating Process, BGP), that is, tem-
porary explosive roots within the individual series but 
whose timing largely corresponds across commodities. 
Individual price series of very diverse commodities are 
thus separately investigated in order to assess whether 
and when volatility clusters (first) and temporary explo-
sive roots (second) are found. Although these methodo-
logical approaches have already been adopted in previ-
ous empirical studies (Otero and Baum, 2021; Phillips 
and Shi, 2020; Zhao et al., 2021), this paper proposes a 
combination of these techniques to assess the co-exceed-
ance of commodity prices without relying on some arbi-
trary and unreliable common DGP. 

Monthly series of 11 commodity prices and the 
respective price indexes released by the International 

Monetary Fund (IMF) over the 1980-2021 period are 
considered. Co-exceedance is assessed by confront-
ing the occurrence of these events across series. If some 
overlapping is observed, it supports the existence of 
some contagion (or transmission) across prices. The 
sequence of the events across prices can finally suggest 
the direction of this possible contagion. The same analy-
sis is then repeated on the US CPI. 

The interest for this methodological approach even-
tually lies in its application to design a suitable policy 
tool. Instead of concentrating on complex and possibly 
misleading causation processes, the proposed empirical 
strategy aims to identify when periods of rapid price ris-
es occur and assesses whether they are common across 
commodities. Therefore, it allows to develop a real-time 
surveillance tool guiding a prompt policy response in 
the right direction, in particular by distinguishing inter-
ventions that can be confined to the sectoral context 
from interventions that require an economy-wide spec-
trum of actions. In order to be easily interpretable also 
by non-technical users, this tool is aimed to transfer 
results into a sort of periodically updatable dashboard 
visualizing the critical information under investigation: 
if a bubble is occurring for a given commodity, when it 
started, whether other commodities are involved by the 
same bubble, who moved first and, finally, if and to what 
extend this price surge is also reflected in the CPI. Con-
tributing to the definition of such a policy tool repre-
sents a further objective of the present study. 

The rest of the paper is structured as follows. Section 
3 overviews the recent empirical literature in the field 
while Section 3 presents the adopted dataset and the 
main stylised facts. Section 4 details the adopted meth-
odological approach, the results of which are illustrated 
in section 5. In Section 6 these results are discussed and 
juxtaposed with the evidence emerging from more con-
ventional methodologies about the investigation of com-
modity price dynamics. Section 7 draws some policy 
implications and concludes.

2. THE COMMON MOVEMENT OF COMMODITY 
PRICES: LITERATURE AND EVIDENCE

The paper by Wang and Tomek (2007) may represent 
the first study that explicitly and extensively discussed 
the sequence of empirical issues to be tackled in inves-
tigating the actual DGP of commodity prices. Though 
their main attention was on the stationarity proper-
ties of agricultural commodities, their conclusions can 
be extended to other commodities and properties of 
the unknown DGP. The main argument is that, due to 
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their market fundamentals (on both the supply and the 
demand side), commodity prices are expected to be mean 
reverting, with the long-term mean value possibly mov-
ing along a deterministic trend. So, prices are expected to 
follow a stationary DGP around a drift or a trend. 

The fact that in the empirical literature the pres-
ence of a unit root is only occasionally rejected has to 
be attributed to the characteristics of the respective tests 
and/or to their misspecification. In particular, other 
characteristics of a stationary DGP can make it simi-
lar to a unit-root process. One is that these prices often 
show long memory (that is, fractional integration) mak-
ing it possible for a close-to-(but-lower-than)-one root to 
be confounded with a unit root. Another is the presence 
of a structural break that may shift the long-term value 
upward or downward and can itself generate a potential 
confusion as evidence of nonstationarity: the presence of 
a structural break within a stationary series may lead to 
accepting the presence of a unit root, thus wrongly con-
cluding that the series is non-stationary (Baum, 2005; 
Glynn et al., 2007).

A consistent body of recent studies concentrates on 
several different stochastic processes to explain the com-
plex (i.e., non-linear) commodity price dynamics and the 
possible underlying co-movement. They are, in particu-
lar, fractional integration and structural breaks. A recent 
example, though concerning stock market indices and 
not commodity prices is Caporale et al. (2020). Based 
on an approach originally proposed by Cuestas and Gil-
Alana (2016), they argue that fractional integration is 
very much related to non-linearities.1 The possibility of 
structural breaks is also considered since many stud-
ies argue that fractional integration might be artificial-
ly generated by the presence of breaks in the data that 
have not been taken into account. In fact, the presence 
of structural breaks within commodity price series was 
already considered by Wang and Tomek (2007). 

However, it must be noticed that fractional integra-
tion and/or structural breaks can hardly explain the 
behaviour of commodity prices and, in particular, the 
abovementioned co-exceedance, that is, their recurrent 
episodes of temporary exuberance as also emerging by 
simple visual inspection (see next section). They remain 
interesting and possibly relevant processes in the inves-
tigation of individual DGP since they may significantly 
interfere with the investigation of temporary bubbles 
and/or GARCH effects. Therefore, although the approach 
here adopted considers other DGPs, the presence of 
structural breaks can not be excluded at least for some of 

1 Another interesting strand of empirical literature on commodity price 
dynamics, and strongly linked to non-linearities and fractional integra-
tion, consists in the so-called fractal approach (Cromwell et al., 2000). 

these commodities (Esposti, 2021) and will be considered 
here for comparative purposes (see Section 6).

Concentrating on the stationarity properties these 
studies overlook another major characteristic of these 
price series that clearly emerges from a simple visu-
al inspection: the presence of temporary exuberance. 
Therefore, their DGP is expected to also generate self-
extinguishing periods of particularly high or low values. 
Most of the literature in the last 15 years has essentially 
focused on this issue also as a consequence of the 2007-
2008 price spike and of the following turbulent period. 
A lot of theoretical and empirical research has tried to 
investigate the origins of these price nonlinearities, 
jumps and spikes, as well as to put forward testing pro-
cedures to assess their presence. We can summarize this 
research effort in three main directions and, then, in 
their possible combination. 

The first strand of research explains the observed 
price spikes and jumps as the consequence of a tempo-
rary increase in their variability (or volatility). It is the 
formation of volatility clusters that eventually generates 
the observed highly irregular price dynamics. In most 
applications, this idea is implemented by specifying and 
estimating GARCH regression models possibly admit-
ting asymmetric effects and non-stationary processes 
for the price level. See Li et al. (2017), Baur and Dimpfl 
(2018) and Esposti (2021), just to mention a few, for the 
application of different variants of GARCH modelling to 
commodity prices. 

Within the second body of studies the origin of the 
episodes of price turbulence is the formation of tempo-
rary bubbles. Several tests have been originally proposed 
to detect temporary price bubbles within mean-revert-
ing, thus stationary, processes (Gürkaynak, 2008). More 
recently, the presence of temporary bubbles has been 
admitted, and tested, within possibly non-stationary 
processes, that is, as temporary explosive roots emerg-
ing within unit-root processes (Phillips et al., 2011, 2015; 
Phillips and Shi, 2020). Gharib et al. (2021) and Zhao et 
al. (2021) have recently used this battery of tests to assess 
the co-exceedance of some commodity prices and to 
date the respective bubbles.

Co-existence of both processes is also possible. This 
is considered helpful for two complementary reasons. 
On the one hand, as already anticipated, it is always dif-
ficult to clearly distinguish between the outcome of these 
two processes (Gürkaynak 2008, pp. 182-183; Chang, 
2012). On the other hand, none of the two alterna-
tive processes may totally capture all the features of the 
observed price dynamics. To reconcile these two alter-
native processes, Chang (2012) adopts an Autoregressive 
Jump-Intensity(ARJI)-GARCH model. Originally pro-
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posed by Chan and Maheu (2002), this model is in prin-
ciple able to generate both temporary bubbles and vola-
tility clusters within stationary processes. 

The third strand of empirical research in the field 
differs from the conventional time-series approaches as 
it is grounded on the spectral analysis and in time–fre-
quency approaches. For the evolution of market prices, 
wavelet analysis has emerged as a useful and power-
ful tool in assessing price co-movement cycles. With-
out resorting on any theoretical causation (price trans-
mission) process, it allows to explore how the series of 
prices are related at different frequencies admitting non-
linearities like structural breaks.2 Mutascu et al. (2022) 
provide a valuable example of this kind of approach by 
investigating the co-movements of gasoline and die-
sel prices in different countries at different frequencies. 
Though this approach is relatively new, interesting and 
promising, it is still based on the assumption of a per-
manent interdependence between prices although flex-
ible and not-linear. In the present study, as anticipated, 
we do not want to admit any persistent co-movement 
but only co-exceedance, therefore prices moving togeth-
er only in specific periods of price spikes. Nonetheless, 
the combination of the co-exceedance analysis here pro-
posed with wavelet analysis can open interesting devel-
opments for future research in this area.

Here, the aim is to investigate the commodity price 
dynamics following the first two relative recent strands 
of research by pointing to commodity price co-exceed-
ance rather than co-movement. In particular, unlike 
Chang (2012) and Zhao et al. (2021) the objective is not 
to estimate the parameters of the actual DGP but to 
date the episodes of price turbulence by confronting, in 
this respect, two competing processes: GARCH within 
stationary processes (volatility clusters) and temporary 
explosive roots within non-stationary processes (bub-
bles). Moreover, unlike Zhao et al. (2021) here we do not 
adopt Granger causality testing to assess the direction 
of the possible transmission of the price shocks across 
commodities.3 By dating these periods individually, we 
provide evidence on this transmission by solely juxta-
posing the timing of the individual episodes.

This is done not only on commodity prices and price 
indexes but also on the CPI series. While the empirical 
literature on the commodity price properties and behav-
iour is vast and follows the abovementioned directions, 

2 We wish to thank an anonymous reviewer for helpful suggestions on 
this aspect. 
3 Granger causality tests imply a common linear DGP across series 
(VAR or VEC models) (Zhao et al., 2021, p. 783). But both commonal-
ity and linearity may not hold in the present case. Nonetheless, for the 
sake of comparison and robustness check of results, in Section 6 we will 
present Granger causality tests. 

the investigation of the CPI dynamics (and its growth 
rate, the inflation rate) mostly follows other directions. 
It mainly concentrates on the common movement and 
possible interdependence with other macroeconomic 
variables and is only occasionally connected to com-
modity prices (Garzón and Hierro, 2022; Ider et al., 
2023). GARCH effects possibly occurring in the CPI or 
inflation rate series has been extensively analysed (Engle, 
1982), but we are not aware of studies assessing the pres-
ence of temporary bubbles within these series. In fact, 
visual inspection seems to suggest quite different prop-
erties of CPI compared to commodity prices (see next 
section). Nonetheless, if a transmission from commodity 
prices to CPI is expected, especially in periods of price 
turbulence, this should imply some form of co-exceed-
ance between these series. 

But there is a final original aspect of the present 
contribution with respect to the recent literature in the 
field. It concerns the policy implications of the proposed 
empirical approach. In previous studies either these 
implications are overlooked or they concentrate on the 
possible effect of policy interventions on the nature and 
scope of commodity price co-movement or co-exceed-
ance like, for instance, the fuel tax system (Mutascu et 
al., 2022) or import tariffs (Esposti and Listorti, 2018). 
If the main objective of a policy in this context is to 
minimize the negative impact of a generalized rise of 
commodity prices, knowing the possible underlying 
causation and transmission process, that is the struc-
tural linkages generating co-movement, might not be so 
critical. What seems important is rather a quick under-
standing that a price “bubble” is forming and whether 
or not it is just sectoral (so it involves a limited number 
of commodities) or it is generalized across all markets, 
that is, it is a co-exceedence. Sectoral interventions to 
neutralize a momentary price surge are present in many 
contexts and are usually rapidly activated (in the case 
of agricultural commodities, for instance, the agricul-
tural market-crisis interventions represent an interesting 
example (FAO et al., 2011)). When occurring on first-
moving prices, these prompt sectoral responses may help 
to prevent a generalized “bubble”. Understanding if and 
when this latter is, in fact, occurring then becomes criti-
cal to promptly activate system-wide actions, particular-
ly intended to prevent or slow-down downstream impact 
on inflation rate surges (Ider et al., 2023). This real-time 
surveillance tool able to provide such an early warn-
ing, as well as the generality and the first movers of the 
“bubble”, seems to be particularly helpful for a prompt 
policy response. 
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3. PRICE SERIES UNDER SCRUTINY

The present analysis concerns the price of a selec-
tion of 11 commodities belonging to three different cat-
egories: 4 agriculture commodities (corn, wheat, soy-
bean, beef); 3 energy commodities (crude oil, natural 
gas, coal); 4 metals (aluminium, copper, zinc; nickel).4 
All price series are taken from the IMF commodity price 
dataset.5 All prices are monthly and cover the period 
January 1980 (1980M1)-December 2021(2021M12) (504 
observations) with the only exception of natural gas 
whose series starts in 1985M1 (444 observations). 

Together with individual commodity prices, the 
IMF dataset also contains aggregate price indexes for 
groups of commodities. Here, three monthly price 
indexes are considered: food price index (FoodInd) 
covering the period 1991M1-2021M12; metals price 
index (MetInd) covering the period 1980M1-2021M12; 
fuel (energy) index (EneInd) covering the period 
1992M1-2021M12. Annex 1 provides details about 
which product quality these prices refer to, where they 
have been collected and on which aggregates respective 
indexes have been defined. Table A1 also reports the 
respective descriptive statistics which include the con-
ventional distributional indices suggesting that com-
modity prices depart from the normal distribution 
mostly for a longer right tail depending on the excep-
tionally high prices observed during temporary bubbles.

The dynamics of commodity prices is investigated in 
combination with the evolution of the overall consum-
er price index (CPI). Unfortunately, no worldwide (or 
global) CPI is available. Moreover, many available CPI 
are usually collected and released at a quarterly or year-
ly basis. Here, the US monthly CPI series is used (see 
Annex 1 for more details).6 This series seems suitable in 
the present analysis not only for the concordant frequen-
cy, but also because the US still represents the largest 
economy worldwide, so any impact of the global com-
modity prices on inflation can be consistently assessed 
on this series. It must also be noticed that, as detailed in 
Annex 1, several price series concern US markets and, 
in any case, all prices are expressed in US $. Therefore, 
using the US CPI does not incur the risk of downscal-

4 Selected commodities are the most important worldwide (in terms of 
value) within the respective categories. In fact, nickel is the fifth in the 
list of metals after lead. But for this latter a sufficiently long series is not 
available. 
5 These price series are proprietary and can not be made available with-
in the paper’s material. However, they can be freely downloaded at htt-
ps://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9 or 
requested at https://www.imf.org/en/Research/commodity-prices. 
6 This data can be freely downloaded from https://fred.stlouisfed.org/
series/CPIAUCSL.

ing (if not neutralizing) the transmission of commodity 
price shocks to the CPI due to the exchange rate adjust-
ment (Garzón and Hierro, 2022). 

Unlike many previous studies (Esposti, 2021), com-
modity prices, as well the three price indexes, are not 
deflated. As here we want to investigate the possible 
impact of commodity price spikes on the CPI, it does 
not seem appropriate to purge inf lation from these 
series. The same strategy is followed for the possible 
presence of seasonality: no seasonal adjustment is per-
formed on price series and indexes. The logic behind 
this choice is twofold. On the one hand, we prefer to 
analyse the price series that economic agents really con-
front with. On the other hand, as stressed by Wang and 
Tomek (2007) and Corradi and Swanson (2006), any 
data transformation has to be taken with care as it could 
introduce artefacts within the series under investigation. 

However, we consider as appropriate a data trans-
formation that is supported by the theory (Corradi and 
Swanson, 2006, p. 222). This is the case of the logarith-
mic transformation of the price levels. This transforma-
tion is largely used in empirical literature (Listorti and 
Esposti, 2012; Esposti and Listorti, 2013) and has two 
main motivations. First of all, price logarithms are more 
likely to show a normal distribution than price levels, 
and normality is usually required by the estimation and 
inference approaches. In other words, the log-normal 
statistical distribution of price levels has to be consid-
ered as a main regular feature of these series (Listorti 
and Esposti, 2012; Esposti and Listorti, 2013). 

Secondly, the logarithmic transformation finds a 
robust theoretical justification in deriving the commod-
ity price dynamics as Geometric Brownian Motions 
(GBM) (Diba and Grossman, 1988; Gürkaynak, 2008; 
Su et al., 2017). This tradition also includes the idea of 
“rational bubbles”, that is, periods of price exuberance 
entirely justified by agent’s expectations about commod-
ity fundamentals (Diba and Grossman, 1988). Empiri-
cally, this hypothesis implies that price logarithms might 
take the form of mean reverting processes (due to mar-
ket fundamentals) plus a random walk, a mean-reverting 
non-constant volatility (GARCH) and, possibly, tempo-
rary explosive roots.7 According to Ibrahim et al. (2021), 
a GBM can generate a stochastic process that assumes 
normally distributed price level growth rates (therefore, 
difference in the logarithms) while admitting both unit-
root (with drift and/or deterministic trend) and GARCH 
effects (volatility clusters).8 However, these recent studies 

7 Actually, Diba and Grossman (1988) exclude that, within this logic, a 
rational bubble can actually start: if it is observed it must always have 
existed.
8 See also Agustini et al. (2018) for a similar derivation. 

https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9
https://data.imf.org/?sk=471DDDF8-D8A7-499A-81BA-5B332C01F8B9
https://www.imf.org/en/Research/commodity-prices
https://fred.stlouisfed.org/series/CPIAUCSL
https://fred.stlouisfed.org/series/CPIAUCSL
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do not admit temporary bubbles. Taking into account 
pros and cons of the logarithmic transformation (Cor-
radi and Swanson, 2006; Wang and Tomek, 2007), the 
present paper considers both the price levels and the log-
arithm of price levels and in parallel repeats the analysis 
for these two cases in order to assess which results are 
robust across the transformation. 

Annex 2 displays the time evolution of the three 
aggregate price indexes (Figure A1), the 11 individual 
commodity prices (Figures A2-A4) and the logarithms 
of these individual prices (Figures A5-A7) over the 
1980M1-2021M12 period.9 Visual inspection points to 
some general characteristics of the price dynamics. With-
in each group, commodity prices seem to show some 
common movements: periods of exuberance as well as 
collapses substantially correspond across different com-
modities. This is only partially confirmed across groups: 
metals and agricultural commodities tend to share the 
same periods of rise and fall, while energy commodity 
prices seem more stable and less volatile at least until the 
very last years of the period under consideration. Howev-
er, if aggregate price indexes instead of individual series 
are considered, it emerges that the three series largely 
overlap with a substantial correspondence of positive and 
negative spikes. What is common across commodities is 
also that price turbulence seems to sharply increase in 
the second half of the period under consideration and, in 
particular, from 2005 onwards.

From this simple visual inspection, therefore, the 
hypothesis of common movement seems largely sup-
ported. For all commodities, periods of temporary exu-
berance are recurrently observed. During these periods, 
prices rapidly increase and then rapidly collapse to a 
level that does not differ much from the pre-exuberance 
level. Therefore, despite these “bubbles”, prices still seem 
to behave like mean-reverting processes. This does not 
exclude changes in the long-term mean level or a long-
term trend in this respect (Esposti, 2021). But these 
changes or trends seem mild and are overshadowed by 
the large short-term instability. As could be expected, 
the logarithmic transformation does not change the gen-
eral behaviour of the series. Qualitatively, price levels 
and their logarithms are similar even though the latter 
are obviously smoother and this seems particularly evi-
dent for the energy commodity prices. 

At the same time, major differences emerge between 
commodity price series and the CPI series. Figure A8 
(Annex 2) reports the CPI, its monthly growth rate (i.e., 

9 The logarithmic transformation is not considered here for the price 
indexes and CPI. It would rather require a different aggregation of the 
elementary prices into the index and this would simply generate anoth-
er kind of index possibly introducing a further artefact. 

the inflation rate) together with the oil price which argu-
ably is one of its major drivers, but it is also one of the 
most stable commodity prices. The difference is evident. 
Oil price seems to follow a mean reverting process possi-
bly with an increase of volatility in the second part of the 
period and an upward shift of the long-term mean value. 
CPI is much more stable, also in the second half of the 
period, and apparently moves along a deterministic trend. 
It follows that the inflation rate seems to behave like a 
mean-reverting process around an almost-zero long-term 
value with a limited, though appreciable, increase in the 
variability in the second half of the period. 

This purely visual inspection gives rise to the two key 
research questions underlying the present study. On the 
one hand, commodity prices seem to move together at 
least during periods of turbulence, but this would suggest 
a common stochastic process whose properties, however, 
are not self-evident. Most price series show some char-
acteristics of mean-reverting processes, and this would 
indicate they are stationary processes around drifts or 
trends. But the large and quick shocks, though tempo-
rary, do not seem consistent with this kind of processes. 
There should be some other underlying stochastic pro-
cess, that may differ across prices but still admits their 
common movement at least in the periods of turbulence. 

On the other hand, the research challenge about the 
linkage between commodity prices and the CPI is quite 
the opposite. They apparently behave as very different 
stochastic processes, so commonality should be exclud-
ed. Nonetheless, strong economic arguments, as well as 
an abundant empirical evidence (Garzón and Hierro, 
2022), suggest that a common movement of many criti-
cal commodity prices has to be transferred, somehow, to 
the CPI. 

4. THE METHODOLOGICAL APPROACH

The common theoretical framework of the investiga-
tion of commodity price dynamics consists in price for-
mation mechanisms (or equations), that is, reduced-form 
models expressing the respective underlying market 
equilibrium.10 Price formation equations represent the 
dynamic stochastic process as a mean-reverting or non-
stationary process eventually generating the price level 
and volatility. These reduced form models have the fur-
ther advantage of allowing a compact representation of 
cross-commodity price dynamics in the form of multiple 

10 Fackler and Goodwin (2001) provide a common template based on 
linear excess demand functions embracing all dynamic regression mod-
els from which an estimable reduced-form model can eventually be 
derived. 
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simultaneous equation models that may explain both co-
movement and co-exceedance. 

The theoretical justification of these cross-commod-
ity price transmission mechanisms, however, is not uni-
vocal. The prevalent explanation is that also very differ-
ent commodities (for instance oil and corn) may display 
interdependence in the respective fundamentals (i.e., 
demand and supply). For instance, on the supply side, 
one commodity (e.g., oil) may enter as an input (thus, a 
cost) in the production process or supply chain of anoth-
er commodity (e.g., corn and, consequently, beef). On 
the demand side, consumption of one commodity may 
be directly (through substitution effect) or indirectly 
(through income effect) affected by the price of another 
commodity (Dawson et al., 2006; Listorti and Esposti, 
2012; Esposti and Listorti, 2013). Sometimes, however, 
this interdependence through the fundamentals can 
be so indirect and remote that it seems more reason-
able to provide another theoretical justification of price 
co-movement and co-exceedance: though prices are not 
interdependent, they still all respond to the same under-
lying (often latent) common factors (Stigler, 2011; Byrne 
et al., 2020; Esposti, 2021). 

The research question underlying the present study, 
however, comes before these theoretical representations 
of price interdependence, that is nature and forms of 
price co-movement and co-exceedance. It rather looks 
for empirical support on the evidence of co-exceedance, 
its possible temporary nature and its dating. Therefore, 
we work on univariate models and not on multivariate 
models.

On these premises, consider N commodities whose 
price is observed over T time periods (months in the 
present case). On the basis of rational agent’s expectation 
or efficient markets theory (Zhao et al., 2021), assume 
that for any i-th commodity there exists an unobserved 
fundamental price depending on the real market driv-
ers (supply, demand, storage, expectations). The natural 
constraints applying to these drivers should make this 
market fundamental price nonexplosive. The actual (i.e. 
observed) price moves around this fundamental level but 
it usually deviates from it according to some underlying 
stochastic DGP expressed by the following univariate 
price formation equation:

pit = αi + δit + bipit-1 + uit, ∀i∈N, ∀t∈T   S<T (1)

where pit is the i-th commodity price (or the logarithm 
of price) at time t; αi expresses the drift while δi the 
deterministic trend coefficient. αi, δi, bi thus are com-
modity specific unknown parameters to be estimated. αi 
and δi indicate the long-term fundamental price level or 

the long-term deterministic trend, respectively, to which 
the actual price is expected to revert. 

The error term uit is usually assumed to be nor-
mally, independently and identically distributed, that is 
uit~NID(0,σ2). However, as autocorrelation in these dis-
turbance terms is very likely to occur, (1) can be aug-
mented to account for a transient dynamics:

∆pit = αi + δit + βipit-1 +  θis∆pit-s + εit, ∀i∈N, ∀t∈T  S<T (2)

where βi = (βi-1) and θis are further commodity specific 
unknown parameters to be estimated. The error term 
is now correctly assumed to be εit~NID(0,σ2). (2) is the 
typical Adjusted Dickey-Fuller (ADF) regression and 
may admit different DGPs depending on the value of 
βi. In particular, the price series is stationary, possibly 
around a drift (αi) or a trend (βit), whenever βi < 0. If βi 
= 0, the price series contains a unit root and it thus fol-
lows a non-stationary process (a random walk) possibly 
with a drift (αi) or a trend (βit). Finally, whenever βi > 0, 
the price series has an explosive root implying a perma-
nent and progressive departure from the fundamental 
price level unless it is temporary (a “bubble”). In prac-
tice, such process would contradict the actual existence 
of a fundamental price level. 

Based on (2), distinct DGPs can be considered to 
represent the observed deviation of prices from the 
alleged fundamental level. Firstly, a Generalized Autore-
gressive Conditional Heteroskedasticity effect on εit can 
be included to capture the presence and persistence of 
volatility clusters. This is obtained by reformulating (2) 
as follows (GARCH(p,q)) regression model):

∆pit = αi + δit + βipit-1 +  θis∆pit-s + εit

 = γi + ρip -pεit + ωiq -q, ∀i∈N,∀t∈T   S,P,Q<T

 (3)

where εit = σitzit with zit~NID(0,1).  is the it-h commod-
ity price error term variance at time t, and ρip and ωiq are 
further commodity specific unknown parameters to be 
estimated. Together, parameters ρip (also called ARCH 
terms) and ωiq (called GARCH terms) express the overall 
degree of persistence of volatility. It is usually assumed 
that ρip + ωiq < 1 (with p=q), indicating that volatility is 
mean reverting. Otherwise, we would be faced with a 
persistent volatility, i.e., volatility behaving as a random 
walk (or non-stationary) process (Engle, 1982; Agustini 
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et al., 2018).11 Once the GARCH model parameters have 
been estimated on the basis of the observed series, it is 
possible to assess whether and when volatility clusters 
occur. To do this, in-sample predictions of variance (i.e., 

) are generated. Then, on the basis of some pre-deter-
mined threshold (see below) clusters are found in those 
periods when this limit is exceeded.12 

But a GARCH process is just one of the possi-
ble DGPs consistent with the observed irregular com-
modity price dynamics. As stressed by Engle (1982), a 
GARCH regression like (3) can be just an approximation 
to a more complex regression with non-ARCH distur-
bances. So, the GARCH specification might be picking 
up the effect of some relevant omissions from the esti-
mated model. For this reason, we want here to make (3) 
compete with a second, and alternative, stochastic pro-
cess generating a similar price behaviour. It consists of 
a DGP admitting temporary (or periodically collapsing) 
bubbles in the price levels. This DGP can be represented 
as a variant of the ADF regression (2) as follows:

∆pit =  +δit + pit-1 + ∆pit-s + εit, ∀i∈N, 

∀t∈Tr1, r2∈T   S>T
 (4)

where r1 and r2 denote the starting and ending points, 
respectively, of the possible temporary bubble. r1 and r2 
are expressed as fractions of T so that r2 = r1 + rW, where 
rW is the window size of the regression, also expressed as 
a fraction of T. The number of observations to estimate 
(4) is TW = [TrW], where [·] is the floor function which 
gives the integer part of the argument (Otero and Baum, 
2021). For series showing temporary bubbles we should 
observe explosive roots for some sub-periods, that is, 
some [r1,r2] interval. This can be assessed through tests 
where the null hypothesis is H0:  = 0, implying that 
the series shows a unit root, against the alternative 
hypothesis H0:  > 0, implying that the series shows 
an explosive root in the [r1,r2] interval. 

A key contribution to a consistent formulation 
and implementation of this kind of tests was originally 
made by Phillips et al. (2011), then improved by Phillips 
et al. (2015) and Phillips and Shi (2020). The basic ver-
sion of the test is the right-tailed ADF statistic based on 

11 This is also called Integrated GARCH (IGARCH) process/model 
(Campbell et al., 1996; Chan, 2010). 
12 Although their validity in generating reliable predictions is largely 
questioned, ARCH/GARCH models are usually quite successful in gen-
erating in-sample projections (Taleb, 2009).

the full range of observations, r1 = 0 and r2 = 1 (i.e., rW 
= 1), denoted . As it applies to the whole period of 
observations, this statistic may fail in detect short-time 
temporary bubbles. Therefore, a second statistic is based 
on the supremum t-statistic (SADF) that results from a 
forward recursive estimation of (4):

SADF(r0) =  (5)

Also this statistic may fail in the case of multiple 
temporary bubbles within the series. A third statistic can 
be thus computed. It is the generalised supremum ADF 
(GSADF) test: 

GSADF(r0) =  (6)

Based on these statistics, it is firstly possible to ass-
es if one or more temporary bubbles occur. Secondly, a 
backward testing procedure (backward SADF, or BSADF, 
statistics) allows dating these bubbles over the period T 
(Phillips et al., 2011; 2015). For any particular observation, 
i.e. the i-th commodity observed at time r2, it is possible 
to test whether it belongs to a phase of explosive behav-
iour by performing a SADF test on a sample sequence 
where the endpoint is fixed at time r2, and expands back-
wards to the starting point, r1, which varies between 0 and 
(r2 − r0). This backward SADF statistic is defined as:

BSADFr2(r0) =  (7)

A further refinement of these tests has been recent-
ly proposed by Phillips and Shi (2020) and takes into 
account both the presence of heteroskedasticity and the 
multiplicity issue in recursive testing. They thus recom-
mend a wild bootstrap approach to compute the critical 
values of the abovementioned tests.13 

The methodological approach followed here can 
thus be summarised as follows. Firstly, we look for the 
stochastic properties of the individual commodity price 
series and the CPI. In particular, the presence of a unit-
root (with or without a drift or a trend) and of ARCH 
effects is investigated. Secondly, on the basis of the first-
step evidence, GARCH effects are considered as the pos-
sible explanation of the observed periods of price turbu-
lence. GARCH regression models like (3) are estimated 
on individual series and in-sample volatility predictions 
are generated to assess and date the volatility clusters. 

13 One limit of these tests is that they do not allow breaks in levels or time 
trends. As discussed, neither a trend nor a structural break can explain 
by itself the observed irregular price behaviour. However, they can not be 
excluded at least from some commodities (see Table 1) and might affect 
both the statistics and the critical values of these explosive root tests. 
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Thirdly, as an alternative to GARCH processes, 
we consider the formation of temporary bubbles as 
expressed by (4), therefore as a momentary departure 
from the fundamental process either stationary or non-
stationary. , SADF and GSADF tests are performed 
on individual series and the temporary bubbles, if any, 
are consequently dated by performing the BSADF test. 
Finally, the beginning and the end of volatility clusters 
and of temporary bubbles are confronted both across the 
two alternative processes and among commodities (and 
CPI) in order to assess similarities and differences, as 
well as the presence of possible contagion effects. Thus 
the analysis of co-exceedance simply consists in seeing 
whether volatility clusters or bubbles are common (i.e., 
overlap) or not. In case of a positive answer, it is then 
legitimate to ask, and to assess, whether a contagion 
effect can be deduced, that is, which series (i.e. price) 
moves first possibly driving the movement of the others. 

Clearly, this investigation can not be confused with 
a formal causality assessment or testing. Usual time-
series causality assessment in a multivariate context 
is performed via Granger causality testing. This latter, 
however, assumes a linear relationship across commodi-
ties and does not seem consistent with the observed 
stochastic properties of these series and bubble forma-
tion. In this respect, some recent developments in the 
field seem promising for future research (Shahzad et 
al., 2021; Esposti, 2022). It is worth stressing, however, 
that assessing causality is not so essential for the main 
policy implication of interest here. Investigating which 
commodities show a bubble formation earlier than oth-
ers remains useful to build that real-time warning policy 
tool mentioned in previous sections. 

5. RESULTS14

5.1. Stochastic properties of the series

Table 1 reports the battery of unit root tests and of 
the ARCH tests on (2) for all series under investigation. 
In the case of price indexes, CPI included, it emerges 
that all series are stationary. The selected specification15 
includes a drift in the case of the three commodity price 

14 All testing and estimation procedures have been performed with soft-
ware STATA 17. In particular: GARCH models have been estimated 
using the command Arch with arch(1) garch(1) specification; explosive 
roots have been tested using the Radf command; the structural break 
tests have been performed using commands Zandrews and Clem; pair-
wise Granger causality tests have been performed by using, the Var and 
Vargranger commands. 
15 The best specification has been selected following Enders (1995, p. 
256-260). 

indexes and a trend in the case of CPI. At the same, all 
indexes here show an ARCH effect except FoodInd. Con-
sequently, all indexes behave as mean-reverting processes 
(with the mean moving along a deterministic trend in 
the case of CPI) possibly with volatility clustering.

Table 1. Unit root (ADF) and conditional heteroskedasticity 
(ARCH) tests on commodity price indexes and commodity prices 
(1980M1-2021M12)a.

Series
ADFb 
(w/o 

drift&trend)

ADF 
(with drift)

ADF 
(with trend) ARCHc

Price indexes
FoodIndd 0.475 -1.224† -2.439 0.126
MetInd -0.088 -1.404† -2.721 82.74*
EneInde 0.150 -0.915† -3.138 106.9*
CPI 6.988 0.539 -2.492† 72.91*

Price levels
Oil -0.502 -1.594† -2.906 92.63*
Coal -0.327 -1.599† -3.415 160.9*
Gasf 0.581 -0.409† -2.249 228.6*
Aluminium -0.416 -3.063* -4.010†* 65.84*
Copper 0.522 -0.621 -2.487† 112.8*
Zinc -0.229 -2.023†* -3.804* 106.9*
Nickel -1.041 -2.628†* -3.368 84.09*
Wheat -0.375 -2.816†* -3.349 108.9*
Corn -0.214 -1.872†* -2.891 29.86*
Soy -0.322 -2.089†* -3.288 67.44*
Beef 1.004 0.049 -1.739† 64.76*

Logarithm of price levels
Oil -1.199 -1.202† -2.631 78.04*
Coal 0.429 -1.501† -2.919 79.51*
Gasf -1.737 -1.445† -2.647 68.6*
Aluminium 0.178 -3.169†* -4.322* 65.86*
Copper 0.784 -0.858† -2.710 40.29*
Zinc 0.693 -1.827†* -3.478* 19.18
Nickel 0.354 -2.008†* -3.102 19.62
Wheat 0.252 -2.410† -3.045 28.32*
Corn 0.315 -1.755†* -2.855 7.38
Soy 0.212 -2.032†* -3.243 24.67*
Beef 0.887 -0.167† -1.839 42.35*

*Statistically significant at 5% confidence level.
† Selected specification according to Enders (1995, p. 256-260).
a The test specification in terms of lags included has been selected 
case by case on the basis of the AIC. 
b 5% Critical Value of the three ADF test specifications, respectively: 
-1.95; -1.65; -3.42.
c Lagrange Multiplier (LM) test performed on the residuals of the 
ADF unit-root test equations; 5% Critical Value: 21.03.
d 1991M1-2021M12.
e 1992M1-2021M12.
f 1985M1-2021M12.
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Regarding the individual commodity price series, 
however, a differentiated picture emerges across the 
commodity groups. If the levels are considered, energy 
commodities are all stationary around a drift. Metals, on 
the contrary, show non-stationarity around a drift in the 
case of zinc and nickel, non-stationarity around a trend 
in the case of aluminium and stationarity in the case of 
copper. Finally, all agricultural commodities, except for 
beef, are non-stationary around a drift while beef is sta-
tionary around a deterministic trend. Despite these dif-
ference, all commodity prices show an ARCH effect. 

Interestingly enough, the logarithmic transforma-
tion changes the evidence emerging from the tests only 
for four commodities and only in one case (wheat) does 
this change concern stationarity properties. aluminium 
remains non-stationarity but now around a drift. Also 
copper and beef downscale from a trend to a drift while 
maintaining stationarity. Wheat shows the most signifi-
cant change passing from non-stationarity around a drift 
to a stationarity around a drift. Thus, unlike the respec-

tive price level, the logarithm of the wheat price seems to 
behave like a mean-reverting process.

The key point, here, is that while visual inspection of 
both price indexes and price series would indicate some 
common movement, tests indicate that such common-
ality may occur for price indexes but not for individual 
prices where four different DGPs are observed, and this 
happens also within the same commodity group. This 
makes the hypothesis of common movement hardly ten-
able, at least over the whole time period. At the same 
time, however, visual inspection also reveals the pres-
ence of common periods of exuberance that are not 
necessarily compatible with the DGPs emerging from 
tests. The limited reliability of the DGPs emerging from 
the tests when compared to the actual price dynamics is 
confirmed by generating in-sample predictions from the 
estimated ADF regressions.

Figure 1 compares these predictions with the real 
series for two cases that should express different DGPs: 
a stationary series around a drift (mean reverting) (oil) 

Figure 1. Oil (left scale) and Aluminium (right scale) prices: observed series and in-sample predicted series from respective ADF model 
estimation (1980M1-2021M12) (see Annex 1 for units of measure).
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and a non-stationary series around a trend (aluminium). 
The two predicted series are quite similar, despite the dif-
ferent DGPs, and, above all, in both cases these predic-
tions largely diverge from the actual series especially in 
the last third of the observed period. Evidently, there is 
something more in the stochastic process generating these 
series and this has to do more with temporary effects than 
with constant properties of the series. As the ARCH test 
is concordant across all series (except for FoodInd), the 
presence of volatility clusters can be a serious candidate 
to explain these temporary processes. But also temporary 
explosive roots (bubbles) could be considered as they are 
compatible with both stationary and non-stationary series 
over the whole period (Diba and Grossman 1988, p. 529). 

5.2. Volatility clusters

Table 2 reports the estimates of parameters ρ and ω 
of the GARCH regression model (3) (with a GARCH(1,1) 
specification) for the different series in both price lev-
els and logarithms. Two main facts emerge. First of all, 
with the only exception of FoodInd, in all series both 
estimated ρ and ω are statistically significant (Corn is 
the only case where ρ is not statistically different from 
0). This confirms what was already obtained with ARCH 
tests presented in Table 2: volatility clusters occur in all 
series except for FoodInd. Secondly, many series vio-
late the assumption of temporary clusters: for the price 
indexes EneInd and CPI, and price levels of natural gas, 
aluminium, zinc, wheat, corn, beef, we can not reject the 
hypothesis of ρ+ω =1. Therefore, in these cases volatil-
ity follows a non-stationary process thus making clusters 
permanent rather than temporary as expected. Loga-
rithms of prices partially confirm this evidence but some 
differences are worth noticing: non-stationary volatility 
is observed also for oil and nickel while it is now exclud-
ed for aluminium, zinc and beef.

Contradictory evidence emerges about the reliability 
of these GARCH processes as generators of the observed 
price dynamics. On the one hand, the existence of vola-
tility clusters is consistent with the observed large vari-
ability, or instability, of the commodity prices in specific 
periods of time. On the other hand, however, in sev-
eral cases these processes support permanent volatility 
shocks thus becoming less compatible with the observed 
temporary episodes of turbulence. As discussed, once 
estimated, standard error in-sample predictions for these 
GARCH models can be generated. Figure 2 shows these 
predictions for the three price indexes and Figures 3a-3b 
for the individual price levels and logarithms, respective-
ly. Figure A9 (panel a)) reports the same predictions for 
the CPI and its growth rate (i.e., inflation rate). 

As expected, volatility clusters do not emerge for 
FoodInd, while a significant increase of volatility can be 
appreciated in the second part of the period of (starting 
around 2005) for both MetInd and EneInd. For these 
indexes, this volatility dynamics seems consistent with 
the increased price turbulence observed in the same 
period as shown in Figure A1. In the case of individu-

Table 2. GARCH(1,1) model estimation and persistency test on com-
modity price indexes and commodity prices (1980M1-2021M12) 

(estimated standard errors in parenthesis)a.

Series ρ Ω
Test ρ+ω 

=1
(χ2(1))

Price indexes
FoodIndb 0.036 (0.049) -0.171 (0.717) 3.96*
MetInd 0.247 (0.049)* 0.675 (0.032)* 4.24*
EneIndc 0.373 (0.081)* 0.641 (0.058)* 0.16
CPI 0.116 (0.022)* 0.879 (0.021)* 0.22

Price levels
Oil 0.343 (0.041)* 0.726 (0.031)* 10.4*
Coal 0.494 (0.062)* 0.664 (0.026)* 13.4*
Gasd 0.304 (0.051)* 0.625 (0.044)* 3.52
Alumi-
nium 0.276 (0.046)* 0.706 (0.038)* 0.39

Copper 0.241 (0.032)* 0.812 (0.019)* 8.74*
Zinc 0.210 (0.031)* 0.815 (0.020)* 2.03
Nickel 0.427 (0.049)* 0.700 (0.027)* 19.6*
Wheat 0.150 (0.022)* 0.865 (0.014)* 1.93
Corn 0.090 (0.013)* 0.901 (0.012)* 2.15
Soy 0.241 (0.030)* 0.718 (0.032)* 3.83*
Beef 0.315 (0.043)* 0.699 (0.031)* 0.82

Logarithm of price levels
Oil 0.441 (0.050)* 0.617 (0.038)* 3.26
Coal 0.214 (0.039)* 0.755 (0.036)* 3.95*
Gasd 0.520 (0.063)* 0.491 (0.043)* 3.66
Alumi-
nium 0.179 (0.041)* 0.748 (0.052)* 4.28*

Copper 0.065 (0.023)* 0.878 (0.035)* 10.51*
Zinc 0.064 (0.021)* 0.896 (0.028)* 6.35*
Nickel 0.196 (0.029)* 0.799 (0.031)* 0.76
Wheat 0.062 (0.015)* 0.933 (0.013)* 0.58
Corn 0.016 (0.010) 0.942 (0.039)* 1.75
Soy 0.113 (0.031)* 0.676 (0.086)* 9.35*
Beef 0.155 (0.049)* 0.613 (0.039)* 9.39*

*Statistically significant at 5% confidence level. 
a Only estimates of parameters ρ and ω are reported. Other model 
parameter estimates are available on request. 
b 1991M1-2021M12.
c 1992M1-2021M12.
d 1985M1-2021M12.
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al series, predictions show huge volatility variations for 
oil and for all mineral and agricultural commodities. 
Clusters seem to be relatively rare and quite temporary 
in the first part of the period, while they become more 
frequent and longer, thus possibly permanent, from 
2005 onwards. This seems even more true for CPI and 
therefore, but less intensively, for the inflation rate. CPI 
volatility sharply rises in 2005 and remains higher than 
in the previous period with only a drastic drop during 
years 2013-2014. 

The question is whether the magnitude of this vola-
tility clustering is consistent with the actual price turbu-
lence or whether, in fact, we should look for alternative 
explanations. 

5.3. Temporary bubbles

Table 3 reports the sequence of tests for the pres-
ence of temporary bubbles as expressed by equations 
(5) and (6). As discussed, moving from  to GSADF 
the tests improve in terms of recursiveness and flex-
ibility, therefore in precision, in detecting the temporary 

explosive roots.16 The presence of a temporary bubble 
is excluded in all cases (price indexes, individual price 
levels and logarithms of individual price levels) when 
the search of the bubble extends to the whole period  
( ). Something emerges with SADF with a tempo-
rary explosive root observed for MetInd and EneInd, 
and for the price level of all energy commodities, all 
minerals, and wheat. In the case of the logarithm of 
prices a bubble is detected only for oil. The generalised 
occurrence of temporary bubbles is eventually indicat-
ed by the GSADF test. With the only exclusion of beef 
(both the price level and its logarithm), at least one tem-
porary explosive root is found in all the series.17 

16 It is worth noticing that the  test in Table 3 (second column) 
corresponds to the ADF test with drift in Table 1 (third column) as the 
explosive bubble tests associated to equation (4) may include a drift but 
not a deterministic trend. However, strictu sensu, they are not the same 
test since the former is a right-tailed statistics so the critical values are 
different. The statistics itself slightly differs in some cases because the 
adopted specifications (i.e., lag structure) are not always the same. 
17 Notice that the difference between the SADF and GSADF tests are 
larger here than what was presented in previous studies (see Gharib 
et al., 2021, p. 5, in particular) arguably because, despite the number 

Figure 2. GARCH(1,1) model standard error in-sample prediction for commodity price indexes (2000M1=1) (1992M1-2021M12).
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Figure 3a. GARCH(1,1) model standard error in-sample prediction for energy commodities (a), metals (b) and agricultural commodities 
(c) price levels (2000M1=1) (1980M1-2021M12).
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Figure 3b. GARCH(1,1) model standard error in-sample prediction for energy commodities (a), metals (b) and agricultural commodities 
(c) logarithm of prices (2000M1=1) (1980M1-2021M12).
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In order to better appreciate how many bubbles 
occur and when, the BSADF tests (equation (7)) are 
computed. Results (with the critical values) are reported 
in Figure 4 for the three price indexes and in Figures 
5a,b for the commodity price levels and logarithms, 
respectively. It appears that, for indexes, bubbles very 
sporadically emerge before and after the 2005-2008 

of observations, the period covered here is quite long (more than 40 
years). 

period. On the contrary, over these four years the tests 
exceed the critical values several times for all the index-
es. MetInd is the index for which this exceedance is 
more often observed. 

In the case of individual price levels significant dif-
ferences are found across the three groups. For energy 
prices, only in period 2005-2008 we observe one or more 
bubbles shared by the three prices. In the case of metals, 
beside that period, a common bubble is also observed 
in the mid-eighties. Agricultural commodities present a 
more composite situation: bubbles are more frequent and 
occur in the mid-eighties, mid-nineties, 2007-2008 and 
in the last decade. But they are often individual bub-
bles and, again, only in 2007-2008 we observe a bubble 
shared by most (except for beef) agricultural commodi-
ties. Qualitatively, results obtained with the price loga-
rithms are similar even though, as could be expected, 
the bubbles are less frequent and, consequently, also the 
commonality of bubbles is more sporadic. 

5.4. First movers and contagion

As discussed in previous sections, the focus of the 
present study is not on commodity price interdepend-
ence but on investigating the formation of temporary 
bubbles within individual price series in order to allow a 
real-time monitoring tool to inform on the formation of 
temporary bubbles, on the possible involvement of sever-
al commodities and on the first moving prices. The com-
bination of the two alternative approaches here proposed 
allows to present their results in a form that permits an 
intuitive visualization of all this information about if 
and how co-exceedance is occurring. 

Figures 6a,b aim to provide this easily interpret-
able visualization by displaying the periods of exceed-
ance (volatility clusters or bubbles) for price levels 
and logarithms, respectively. Bubbles are dated on the 
basis of the BSADF tests. In the case of volatility, fol-
lowing Engle (1982, p 1003), exceedance is found any 
time the predicted volatility exceeds the double (in the 
case of price indexes) or the triple (in the case of indi-
vidual commodity prices) of the average predicted 
volatility (i.e., standard error) over the two subperiods 
1980M1-2000M12 and 2001M1-2021M12. Together with 
Table 4, these figures are also intended to provide an 
example of how the proposed approach can contribute to 
a real-time surveillance tool through an easily interpret-
able and periodically updatable dashboard visualization. 

To summarize this evidence and better interpret it 
in terms of co-exceedance, Table 4 reports the beginning 
(the “exuberance date” to use the term of Gharib et al., 
2021, p. 6) and the end (the “collapsing date”) months of 

Table 3. Temporary explosive root tests on commodity price index-
es and commodity prices (1980M1-2021M12)a.

Series SADF GSADF

Price indexes
FoodIndb -1.289 0.0487 3.644*
MetInd -1.285 3.303* 7.170*
EneIndc -1.167 4.907* 5.092*
CPI 0.288 0.854 3.189*

Price levels
Oil -2.352 3.843* 4.417*
Coal -1.166 8.177* 8.762*
Gasd -0.456 4.164* 6.619*
Aluminium -2.524 2.405* 5.132*
Copper -0.883 2.972* 4.750*
Zinc -2.937 3.871* 5.908*
Nickel -2.656 3.426* 5.491*
Wheat -2.517 3.360* 3.795*
Corn -2.151 0.357 3.462*
Soy -2.478 -0.553 2.981*
Beef -0.134 0.937 1.211

Logarithm of price levels
Oil -1.199 1.871* 2.275*
Coal -1.500 0.414 2.511*
Gasd -1.745 -0.135 2.891*
Aluminium -3.168 -0.270 -2.816*
Copper -0.858 -0.128 3.124*
Zinc -1.827 0.057 3.583*
Nickel -2.008 1.361 2.989*
Wheat -2.410 1.120 3.098*
Corn -1.756 0.513 2.306*
Soy -2.032 -1.200 2.271*
Beef -0.167 0.665 1.794

*Statistically significant at 5% confidence level with bootstrap criti-
cal values computed with 200 repetitions.
a All test specifications include 6 lags. 
b 1991M1-2021M12.
c 1992M1-2021M12.
d 1985M1-2021M12.
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periods with at least three different commodities show-
ing at least two consecutive months of exceedance, thus 
a co-exceedance in terms of volatility or common bubble 
for at least two consecutive months (Phillips et al., 2011). 
The table also reports: commodities showing this co-
exceedance (second column); the commodity that can be 
identified as the first mover (third column), that is, the 
price whose exceedance started first before the period of 
co-exceedance; whether or not also CPI shows exceed-
ance in the same period, and whether or not CPI can be 
considered the first mover (forth column). 

In the case of price levels, it emerges that bubbles 
concentrate in the 2005-2008 period though in differ-
ent moments involving different commodities. Basically, 
we can identify two main episodes. The first goes from 
2005M8 to 2006M9. It only involves energy commodi-
ties and metals with oil and copper as first movers. CPI 
is itself involved in the bubble, as could be expected, but 
surprisingly it behaves as the first mover. The second 
episode is shorter and goes from 2008M2 to 2008M8. 
It involves all energy commodities wheat and corn but 
no minerals. Again, oil behaves as the first mover. This 
latter commodity actually seems to experience a single 
bubble from mid-2005 to the end of 2008. CPI is also 
involved but not as the first mover. 

Volatility clusters emerging from the GARCH 
regressions show a significant difference compared to the 
bubbles. A first episode is found from mid-1988 to mid-
1989, it concerns some minerals and agricultural com-
modities but no energy commodities. Wheat seems to be 
the first mover. Other four episodes, in fact behaving as 
a single one, can be detected from 2006M8 to 2009M8. 
In the first part of this period, the cluster exclusively 
involves metals and wheat. Then, other prices enter the 
group included energy commodities and, finally, also 
oil. In the very last part of this episode, the volatility 
clusters involve most (9 out of 11) commodities. If we 
consider this whole period as a single episode, the first 
mover seems to be nickel which sounds a little surpris-
ing. In the second part of the period, wheat and natural 
gas emerge as other possible candidates. 

Two other volatility clusters can be found in the 
last decade of the period under investigation. One con-
cerns a very short period (two months in mid-2012) 
and only involves agricultural commodities. The other 
concerns the very last months of the period of obser-
vation (2021M9-2021M12); it is short simply because it 
continues beyond the period of observation. This period 
of exceedance is not identified with the bubble testing 
arguably because the bubble has still to collapse. Future 

Figure 4. BSADF tests for indexes for commodity price indexes (1992M1-2021M12). 
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Figure 5a – BSADF tests for indexes for energy commodities (a), metals (b), agricultural commodities (c) price levels (1980M1-2021M12).
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Figure 5b. BSADF tests for indexes for energy commodities (a), metals (b), agricultural commodities (c) logarithm of price levels 
(1980M1-2021M12).
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Figure 6a. Dating of explosive roots (a) and volatility clusters (b) for all commodity price levels (1980M1-2021M12) (see Table 4 for 
details). 
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Figure 6b. Dating of explosive roots (a) and volatility clusters (b) for all commodity logarithms of price levels (1980M1-2021M12) (see 
Table 4 for details). 
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investigations will confirm the nature and scope of the 
current period of exuberance. The cluster identified here 
suggests that it concerns both energy prices and metals 
but it is likely driven by the former and, in particular, 
by natural gas. 

Two major facts seem to emerge from this analy-
sis of co-exceedance. First of all, the correspondence 
between bubbles and volatility cluster detection is lim-

ited. Periods correspond in the case of the major episode 
that occurred between 2005 and 2008. But for the rest of 
the sample, the detection of the episodes of co-exceed-
ance does not correspond. Also the involved commodi-
ties significantly differ and, consequently, the first mov-
ers. Bubble detection seems to stress more the dynam-
ics of energy commodities, and oil in particular, while 
volatility clusters point more to metals and agricultural 

Table 4. Dating of temporary explosive roots and volatility clusters for commodity price levels and logarithm of levels (1980M1-2021M12).

Period Commodities First moverc (date) CPI: Y/N; first mover 
(Y/N & date)d

Price levels
Bubblesa

2005M8-2005M10, 2006M1, 2006M3, 2006M6 Oil, Copper, Zinc

Oil, Copper (2005M6) Y; Y (2005M3)
2006M2, 2006M4-2006M5 Oil, Aluminium, Copper, Zinc
2006M7, 2006M9 Oil, Copper, Zinc Nickel
2006M10-2006M12 Oil, Copper, Zinc
2008M2-2008M7 Oil, Coal, Gas, Wheat, Corn

Oil (2007M3) Y; N
2008M5, 2008M8 Oil, Coal, Gas, Corn

Volatility Clustersb

1988M7-1988M10 Copper, Wheat, Beef
Wheat (1988M4) N

1988M11-1989M7 Copper, Zinc, Nickel, Wheat
2006M8-2006M11 Copper, Zinc, Nickel, Wheat 

Nickel (2006M5) N
2007M4-2007M12 Copper, Zinc, Nickel, Wheat 
2008M3-2008M8 Gas, Copper, Wheat, Corn Wheat (2006M8) N

2008M9-2009M8 Oil, Gas, Coal, Aluminium, Copper, 
Zinc, Corn, Soy, Beef Gas (2008M3) Y; N

2012M7-2012M8 Corn, Soy, Beef Soy (2012M8) N
2021M9-2021M12 Gas, Aluminium, Copper Gas (2021M7) Y; N/Y(2021M7)

Logarithm of price levels
Bubblesa

Period Commodities First mover (date) CPI: Y/N; first mover 
(Y/N & date)

2005M12-2006M10 Aluminium, Copper, Zinc Zinc (2005M9) Y; Y (2005M3)
2008M6-2008M7 Oil, Coal, Wheat, Corn Wheat (2008M2) Y; N
2015M12-2016M6 Oil, Gas, Copper Copper (2015M8) N
Volatility Clustersb

Period Commodities First mover (date) CPI: Y/N; first mover 
(Y/N & date)

1988M4-1989M1 Aluminium, Nickel, Soy Aluminium (1987M12) Y; N
2008M11-2009M3 Oil, Coal, Aluminium, Copper, Nickel Coal (2008M3) Y; N

a The dating of the bubble corresponds to periods when at least 3 commodities show explosive roots, that is BSADF test significant at 5% 
confidence level with bootstrap critical values computed with 200 repetitions. Only periods with at least two consecutive months of exceed-
ance are reported.
b The dating of the volatility clusters corresponds to periods when predicted volatility (i.e., standard error) is larger than three times the 
subperiod (1980M1-2000M12; 2001M1-2021M12) average volatility. Only periods with at least two consecutive months of exceedance are 
reported.
c The first mover is the price of the group whose exceedance started first before the period of co-exceedance.
d The first Y/N indicates whether or not also CPI shows exceedance in the same period; the second Y/N indicates whether or not CPI can 
be considered the forst mover (in parenthesis the date).



192 Roberto Esposti

Bio-based and Applied Economics 13(2): 171-201, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14060 

commodities. A final difference concerns the involve-
ment of CPI that seems very limited in the case of clus-
ters while it is more relevant for bubbles. 

The second notable fact is the difference between 
price levels and price logarithms. As the logarithmic 
transformation re-scales the data and, therefore, scales 
down their variability, respective results are expected to 
make the more robust evidence emerge: the number of 
individual episodes may slightly decline and the number 
of common episodes is expected to substantially reduce. 
It turns out that the number of episodes of co-exceed-
ance detected on price logarithms is lower, as expected, 
for both bubbles and volatility clusters. But the nature 
of these episodes does not necessarily correspond with 
what is observed on price levels and this lack of robust-
ness passing from levels to logarithms seems more evi-
dent for bubbles than for volatility clusters. The involved 
commodities are not necessarily the same, as well as the 
first movers, and also the involvement of the CPI shows 
some difference. In general terms, when the logarithms 
are considered, it seems more difficult to find some gen-
eral pattern in the results, especially in terms of a key 
role of some commodities like the energy ones. 

Looking for regularities, two special cases are worth 
noticing here. The first concerns the oil price. Proper-
ties and behaviour of this commodity price emerging in 
the present work confirm the bubble detection and dat-
ing reported in previous studies, particularly in Su et al. 
(2017) and Zhao et al. (2021).18 It could also be argued 
that oil price has to behave as a sort of upstream price 
since it enters as a production cost in most downstream 
production processes, included farming and mining 
activities. But this role of oil as first mover is not gener-
ally observed and seems to emerge only in bubble testing 
with price levels.

The second interesting role is that played by agri-
cultural commodities. On the one hand, they can be 
considered as downstream prices compared to energy 
commodities and metals. But, for this reason, they can 
severely impact on CPI dynamics. From our results, it 
emerges that agricultural commodity prices seem to be a 
little more “stable” in the sense that episodes of exuber-
ance (bubbles or volatility clusters) are less frequent and 
shorter. At the same time, while energy commodities 
and metals are apparently more interdependent, agricul-
tural prices seem to follow more autonomous patterns 
and are less likely to act as first movers and, thus, to be 
suitable candidates to drive the other commodity prices 
and of the CPI. 

18 Su et al. (2017, p. 6) conclude that “there are explosive multiple bub-
bles in the WTI oil market in 1990, 2005, 2006, 2008 and 2015. Gener-
ally, oil bubbles mostly occur during the period of price volatility”. 

What can we finally conclude about the evidence 
on the linkage between commodity prices and CPI? 
While results tend to confirm some stochastic proper-
ties of the CPI that may explain periods of exuberance, 
the evidence that these periods are the consequence of 
analogous episodes in commodity prices is poor. The 
major episode of price exuberance between 2005-2008 
confirms, as could seem obvious, a connection between 
commodity prices and CPI, maybe because this episode 
involves a large number of commodities, though in dif-
ferent times. In fact, this connection seems quite weak 
beyond this period. And also within this 2005-2008 
period it is not clear whether commodity price exuber-
ance induced a CPI response or if it is actually the other 
way round. This lack of evidence should not be surpris-
ing and evidently asks for further investigation. Other 
very recent empirical investigations (Lian and Freitag, 
2022), for instance, suggest that oil price shocks do not 
always imply a shock on CPI and sometime this latter 
may move independently and also precede the former. 

6. COMPARISON WITH OTHER STOCHASTIC 
PROCESSES AND APPROACHES 

For the sake of comparison and in order to vali-
date the results here obtained, it is worth investigating 
the commonality of the commodity price dynamics also 
with more conventional approaches. Rather than focus-
ing on co-exceedance, as in the present study, these 
approaches look for the commonality of the stochastic 
generation processes (i.e., co-movement and the conse-
quent price interdependence) under the typical hypoth-
esis of either stationary or non-stationary linear DGP, 
possibly with a drift and/or a trend (Esposti, 2021). As 
already discussed in Section 2, in order to capture the 
complexity and non-linearity of these series a further 
occurrence that can be considered consists in admit-
ting that series undergo, in one or more points in time, 
a structural break in either the drift or the trend (or in 
both) (Baum, 2005). In principle, under multiple breaks, 
these stochastic processes could explain the presence of 
periods of extremely high (or low) prices (the “bubbles”) 
as a sequence of two structural breaks with the latter 
eventually compensating the former and thus making its 
effect only temporary.

Table A2 (Annex 3) reports a battery of tests specifi-
cally designed to assess whether these more conventional 
stochastic processes represent suitable alternatives to the 
two co-exceedance processes here considered. Four tests 
are reported. They all confront a unit-root process (the 
null hypotheses of the tests) with a stationary process 
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presenting one or two structural breaks in some terms 
of the process itself.19 All tests admit endogenous breaks, 
thus not only do they test their presence but they are 
also able to date these breaks. 

The first two tests consist in two specifications of the 
Zivot-Andrews (ZA) unit root test (Zivot and Andrews, 
2002) admitting only one structural break in either the 
intercept or both intercept and trend. Test results largely 
accept unit-root processes without a break against the 
presence of a structural break within stationary series. 
The only exceptions are coal and soy in the price lev-
els and only soy in the logarithms of prices. The break 
date is similar, late 2006-early 2007, and corresponds 
to one of the major periods of co-exceedance identified 
in previous sections. Not only is the break accepted for 
only two commodities but, more importantly, it can not 
explain why and how, once started, the period of turbu-
lence then comes to an end since the structural break 
introduces a permanent change in the process.

The other two tests, consisting in two variants of the 
Clemente-Montañés-Reyes unit root test (CMR) (Clem-
ente et al., 1998), can be helpful in this respect. In this 
case, the statistical significance of the breaks themselves 
can be assessed as they enter in the test specification 
as time dummies with the respective coefficients. More 
importantly, this test admits two structural breaks with-
in the stationary process thus allowing the combination 
of the two breaks to capture a temporary change in the 
process, like in the case of periods of price surge. The 
test can be performed under two different natures of the 
breaks: a sudden change in the series (the additive outli-
ers, or AO, model) or a gradual shift in the mean of the 
series (the innovational outliers, or IO, model). Evident-
ly, the former, much more than the latter, is expected to 
capture the short periods of price turbulence. 

Although CMR tests confirm how difficult it can be, 
over such a long period of time, to univocally identify 
clear stable stochastic processes for any given commodity 
and, even more, commonality across commodities in this 
respect, they still provide some interesting indications. 
One the one hand, the CMR test under the AO model 
seems to confirm the main evidence emerging from the 
ZA test results without any relevant difference between 
price levels and logarithms: for most commodity prices 
(oil being the only exception) a non-stationary process 
is accepted against a stationary process with structural 
breaks. When the IO model is considered, however, the 
CMR test indicates that for many commodities (all ener-
gy prices, aluminium, zinc, corn and FoodInd itself) 
a mean-reverting process under two structural breaks 

19 For more details on the ZA and CMR tests, also see Baum (2005). 

is accepted. Even more interestingly, this test indicates 
that, for both AO and IO cases, the structural breaks are 
always statistical significant (with only one exception). 
In some cases, the interval between the two breaks is too 
wide (more than three years) to really capture a period of 
price exuberance (see the CPI case, for instance). In other 
cases, however, the time window between the two breaks 
seems quite consistent with the periods of exceedance 
here identified, as shown in Figures 6a,b. This is the case, 
in particular, of coal and all metals. 

As already discussed, with respect to the purpose of 
the present study, the introduction of structural breaks 
may seem an unnatural way to capture co-exceedance: it 
still maintains the linear specification of the DGP pos-
sibly with a permanent change while here the intention 
is to identify a DGP with temporary non-linearities. It 
follows that admitting structural breaks within the sto-
chastic process representation may still confound short-
term and long-term dynamics within the price series. 
Nonetheless, present results suggest that multiple breaks 
within an appropriate specification eventually constitute 
a sort of spline process capable to proxy temporary non-
linearities. Even though not considered further here, 
this kind of approach, together with the introduction of 
multiple structural breaks within non-linear processes 
(Bai and Perron, 2003; Caporale et al., 2020), can repre-
sent a promising alternative empirical strategy in future 
research in the field.20 

There is a final aspect to be considered about the 
introduction of structural breaks as a valid alternative 
to capture co-exceedance. It concerns the identification 
of the first-moving commodities and the possible conse-
quent contagion process. As shown, within the proposed 
approach, this identification is made only qualitatively 
by identifying and then visualizing when, commodity by 
commodity, the periods of exuberance start and end (see 
Figures 6a,b). Very often, however, within the empirical 
literature this identification is formally pursued using 
Granger causality testing (Esposti and Listorti, 2013). 
This approach must satisfy the prerequisite that series 
under investigation show the same stochastic properties 
(they are all either I(0) and I(1)), and then it requires the 
estimation of multiple-equation linear models (in the 
form of VAR or VEC models, respectively) represent-
ing the common movement from which direction and 
nature of price interdependence (or transmission) can be 
assessed. Within this representation one or more struc-

20 The use of international or global commodity prices, as well as the 
widely heterogenous dating of these structural breaks across commodi-
ties, makes it hard to speculate on the possible linkage between them and 
external shocks like, for example, policy regime changes. However, this 
investigation may represent a further direction of research for the future. 
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tural breaks can be included (as time dummies) to pos-
sibly capture some changes in the linear relationships, 
thus admitting temporary non-linearities. 

Results here presented demonstrate how the pre-
requisite of this empirical strategy to detect first mov-
ers and contagion can be challenging. A common DGP 
is impossible to find when all price series are consid-
ered. But even concentrating on individual commod-
ity groups, Tables 1 and 5(??) suggest there is always at 
least one commodity showing a different underlying sto-
chastic process compared to the others. Apparently, an 
interesting case is that of energy commodities under the 
IO specification of the CMR test: when two structural 
breaks are admitted they all behave as stationary pro-
cesses with a drift and a deterministic trend. Therefore, 
an attempt to perform Ganger causality testing can be 
made here by estimating a VAR model with four endog-
enous variables: the three energy prices (oil, coal and gas 
prices) and the CPI, since it quite robustly emerges as a 
I(0) process. The VAR specification also includes a drift, 
a deterministic trend and two time dummies represent-
ing the two breaks at 2003M11 and 2013M5. Table A3 
(Annex 3) reports the results of the respective Granger 
causality tests and the estimated coefficients of the two 
structural breaks.21 

As often occurs with Granger causality testing, 
results are not easily interpretable. However, they con-
firm some of the evidence obtained with our proposed 
approach. It seems hard to identify an indisputable driv-
ing price and, in particular, this does not seem the case 
of the oil price. When price levels are considered, oil and 
coal show a reciprocal Granger causation, while natu-
ral gas is only Granger caused by the coal price. Oil and 
coal price both Granger-cause the CPI response, while 
CPI itself does not Granger-cause any of the energy pric-
es as could be expected. Coal rather than oil seems to be 
the driving price, if any, and this seems to be reinforced 
when the logarithm of prices are considered instead of 
the levels. The presence of structural breaks, though sug-
gested by tests reported in Table A2, is not confirmed by 
VAR estimation coefficients associated to respective time 
dummies are mostly not statistically different from zero. 

Compared to the approach here proposed, which 
is based on the search of co-exceedance periods (thus 
admitting non-linearities in the DGP) rather than on 
linear price interdependence, these more conventional 
stochastic processes do not seems to provide any helpful 
additional information. On the contrary, they seem to 
fail in the search of common periods of exuberance over 
a large group of commodities, thus they do not seem 

21 For the sake of space limitation, the VAR model estimates are not 
reported here but are available upon request. 

appropriate for designing a real-time surveillance dash-
board informing a prompt policy response. Nonethe-
less, even in these approaches recent contributions have 
opened new interesting perspectives that may deserve 
careful consideration in future research. For instance, 
the implementation of non-linear Granger causality test-
ing seems particularly promising (Shahzad et al., 2021). 

7. CONCLUSIVE REMARKS 

Periods of commodity price exuberance raise politi-
cal concerns particularly for their possible impact on 
the inflation rate. Timely interventions by the appoint-
ed institutions are often invoked but do not necessar-
ily prove to be effective in preventing or neutralizing 
these episodes. After all, common price spikes (thus, co-
exceedance) might not imply a common policy response 
since for some commodities exuberance tends to be 
motivated by real drivers while in other cases financial 
phenomena are prevalent. Understanding the mecha-
nisms underlying generation, transmission and, then, 
collapse of co-exceedance remains relevant to design 
the proper, possibly differentiated, policy response. But 
in the shorter term an appropriate policy response may 
just need a timely detection of the price surge and of the 
degree of diffusion across commodities. 

The present paper aims to develop a single meth-
odological approach, albeit based on alternative stochas-
tic processes, that does not assume common movement 
and price interdependence but only co-exceedance, thus 
commonality occurring only within the periods of exu-
berance. This approach is able to detect whether such 
a period occurs, when it starts and when it ends, the 
degree of diffusion across commodities, the possible 
presence of driving prices and, eventually, the transfer to 
the inflation rate. On this basis, the proposed methodol-
ogy is intended to offer an easily interpretable visualiza-
tion of the critical information it generates. 

Results presented indicate that the different 
approaches considered (bubbles and volatility cluster 
detection in both price levels and logarithms) are able 
to provide clear indications on when the exceedance 
occurs, on its overlapping across commodities and on 
possible first movers. However, this evidence is not con-
cordant or, at least, robust across the different approach-
es making the final outcome of the analysis, and the pol-
icy implication itself, severely dependant on the analyst’s 
choices in this respect. Results do not even agree on the 
involvement of the CPI in these episodes of exuberance, 
therefore on the transmission of commodity price spike 
to inflation rate. 
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On the basis of this discrepancy, it seems wise to 
develop the abovementioned policy tool in a way that 
prudently admits both processes and elaborates informa-
tion from a combination of them. At the same time, this 
discrepancy points to room for further methodological 
improvements. After all, both competing representations 
of the origin of exceedance, volatility clusters and tempo-
rary bubbles, show pros and cons and this makes it dif-
ficult to draw a general preference for one or the other. 
GARCH modelling seems to represent more permanent 
changes in volatility rather than short periods of exuber-
ance. Furthermore, it hardly combines volatility clusters 
with a non-stationary process in the price levels. At the 
same time, bubble detection applies well to positive bub-
bles, therefore periods of exuberance then followed by 
a collapse, but it does not necessarily succeed in case of 
negative bubbles, that is episodes that start with a price 
crash (Gharib et al., 2021, pp. 3-4).22 In fact, bubble 
detection can only by applied ex post, therefore when the 
bubbles have already collapsed. This substantially limits 
the actual applicability of the approach by analysts and 
policy makers. Moreover, currently available tests only 
apply to univariate bubble detection. Multivariate bub-
ble testing has not yet been proposed and this prevents a 
direct investigation of contagion across commodities. 

Regarding all these aspects, results obtained in the 
present study also suggest the extension of the adopted 
tool to other stochastic processes, particularly those 
expressing non-linear dynamics of commodity prices in 
both level and variance. Multiple breaks, fractional inte-
gration, fractal and wavelet analysis are some examples 
in this direction. Finally, it would be particularly helpful 
to replicate these results on higher frequency price data. 
Weekly or daily prices, if available, might definitely be 
useful to better refine this real-time surveillance policy 
tool making it more timely and accurate. However, these 
data might also bring about more statistical noise, thus 
making the identification of co-exceedance more dif-
ficult and uncertain, and increasing the risk of false 
alarms. Therefore, replication of the present analysis on 
these data could allow to assess the advantages and dis-
advantages in the use of higher frequencies. 
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ANNEX 1 - DESCRIPTION OF THE 
DATA USED IN THE ANALYSIS

Individual commodity prices (source: IMF)

Oil: Crude Oil (petroleum), Price index, 2005 = 100, 
simple average of three spot prices; Dated Brent, West 
Texas Intermediate, and the Dubai Fateh
Gas: Natural Gas, Russian Natural Gas border price in 
Germany, US$ per Million Metric British Thermal Unit
Coal: Australian thermal coal, 12,000- btu/pound, less 
than 1% sulfur, 14% ash, FOB Newcastle/Port Kembla, 
US$ per metric ton
Aluminium: 99.5% minimum purity, LME spot price, 
CIF UK ports, US$ per metric ton

Copper: grade A cathode, LME spot price, CIF Europe-
an ports, US$ per metric ton
Zinc: high grade 98% pure, US$ per metric ton
Nickel: melting grade, LME spot price, CIF European 
ports, US$ per metric ton
Wheat: No.1 Hard Red Winter, ordinary protein, Kansas 
City, US$ per metric ton
Corn: U.S. No.2 Yellow, FOB Gulf of Mexico, U.S. price, 
US$ per metric ton
Soy: U.S. soybeans, Chicago Soybean futures contract 
(first contract forward) No. 2 yellow and par, US$ per 
metric ton
Beef: Australian and New Zealand 85% lean fores, CIF 
U.S. import price, US cents per pound

Table A1. Descriptive statistics on commodity price indexes and commodity prices (1980M1-2021M12).

Series Obs Minimum Maximum Mean Standard 
Deviation Skewness Kurtosis

Price indexes
FoodInda 372 76.04 194.1 121.9 60.20 -0.384 1.965
MetInd 504 44.16 256.2 101.3 53.69 -0.084 2.556
EneIndb 360 22.07 257.3 99.75 67.76 -0.656 2.244
CPI 504 40.79 146.2 92.17 28.09 -0.005 1.799

Price levels
Oil 504 18.44 249.6 84.09 56.86 0.877 2.534
Coal 504 24.09 240.7 57.66 34.01 1.584 5.816
Gasc 444 1.444 32.91 5.398 4.199 1.979 10.42
Aluminium 504 918.8 3578 1712 468.1 0.778 3.325
Copper 504 1272 10308 3882 2520 0.742 2.116
Zinc 504 597.4 4381 1541 786.4 1.019 3.277
Nickel 504 3433 51783 11394 7270 1.867 8.130
Wheat 504 88.55 403.8 168.5 54.33 1.235 4.396
Corn 504 65.35 332.9 142.7 57.14 1.420 4.542
Soy 504 158.31 622.9 292.1 105.4 1.036 3.204
Beef 504 74.26 272.2 130.5 44.44 1.026 3.111

Price logarithms
Oil 504 2.914 5.520 4.207 0.671 0.202 1.755
Coal 504 3.178 5.483 3.913 0.510 0.610 2.358
Gasc 444 0.367 3.493 1.461 4.250 1.255 6.286
Aluminium 504 6.823 8.182 7.409 0.265 0 .158 2.542
Copper 504 7.148 9.240 8.056 0.642 0.289 1.566
Zinc 504 6.392 8.385 7.222 0.477 0.370 1.948
Nickel 504 8.141 10.85 9.173 0.566 0.330 2.406
Wheat 504 4.483 6.000 5.081 0.296 0.489 2.882
Corn 504 4.179 5.807 4.894 0.353 0.663 2.868
Soy 504 5.064 6.434 5.619 0 .332 0.520 2.277
Beef 504 4.307 5.606 4.820 0.313 0.568 2.316

a 1991M1-2021M12.
b 1992M1-2021M12.
c 1985M1-2021M12.
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Aggregate commodity price indexes (source: IMF)

FoodInd: Food Price Index, 2016 = 100, includes Cereal, 
Vegetable Oils, Meat, Seafood, Sugar, and Other Food 
(Apple (non-citrus fruit), Bananas, Chana (legumes), Fish-
meal, Groundnuts, Milk (dairy), Tomato (veg)) Price Indices
MetInd: Metals Price Index, 2005 = 100, includes Cop-
per, Aluminium, Iron Ore, Tin, Nickel, Zinc, Lead, and 
Uranium Price Indices
EneInd: Fuel (Energy) Index, 2005 = 100, includes Crude 
oil (petroleum), Natural Gas, and Coal Price Indices

Overall Consumer Price Index (source: US Federal Reserve)

CPI: Federal Reserve Economic Data, Economic Research 
Division, Federal Reserve Bank of St. Louis. CPIAUCNS 
Consumer Price Index for All Urban Consumers: All 
Items in U.S. City Average, Index 1982-1984=100, Month-
ly, Not Seasonally Adjusted. The Inflation rate is comput-
ed as the monthly growth rate of this CPI.

ANNEX 2 – COMMODITY PRICE DYNAMICS
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Figure A1. Commodity price indexes (2005M1=100) 
(1980M1-2021M12).
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Figure A2. Energy commodities prices (2005M1=100) 
(1980M1-2021M12).
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Figure A3. Metals prices (2005M1=100) (1980M1-2021M12).
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Figure A4. Agricultural commodities prices (2005M1=100) 
(1980M1-2021M12).
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Figure A5. Logarithms of the energy commodities prices 
(2005M1=100) (1980M1-2021M12).

Figure A6. Logarithms of the metals prices (2005M1=100) 
(1980M1-2021M12).

Figure A7. Logarithms of the agricultural commodities prices 
(2005M1=100) (1980M1-2021M12).
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Figure A8. Oil price (2005=100), CPI (2005=100) and inflation rate 
(1980M1-2021M12).

Figure A9. GARCH(1,1) model standard error in-sam-
ple prediction (a) and BSADF test for CPI and Inflation rate 
(1980M1-2021M12).



200 Roberto Esposti

Bio-based and Applied Economics 13(2): 171-201, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14060 

ANNEX 3 – UNIT-ROOT AND GRANGER-CAUSALITY TESTS WITH STRUCTURAL BREAKS

Table A2. Testing with structural breaks within an ADF specification (unit-root testing) for commodity price indexes, price levels and loga-
rithm of levels (1980M1-2021M12).

Series
ZA (break month)e CMR (b.reak months)f

Intercept Intercept&Trend AO IO

Price indexes
FoodInda -4.780 -4.932 -3.844 (1990M2*; 2006M3*) -7.408* (1990M2*; 2006M3*)
MetInd -3.826 -4.048 -5.176 (2005M6*; 2014M3*) -5.406 (2004M9*; 2013M7*)
EneIndb -4.199 -4.305 -4.736 (1991M2*; 2004M9*) -4.831 (1990M11*; 2003M11*)
CPI -3.461 -3.730 -3.079 (1992M5*; 2007M10*) -2.570 (1985M11*; 2002M11*)

Price levels
Oil -4.731 -4.755 -6.299* (2005M9*; 2015M2*) -6110* (2003M11*; 2013M5*)
Coal -5.245* (2006M11) -5.253* (2006M11) -2.869 (2007M3*; 2008M1*) -5.791* (2006M9*; 2007M6*)
Gasc -2.337 -2.454 -2.462 (2004M11*; 2014M5*) -1.718* (2003M8*; 2013M11*)
Aluminium -4.532 -4.399 -3.447 (1987M4*; 2004M4*) -5.603* (2004M8*; 2007M6*)
Copper -4.471 -4.464 -3.589 (2005M6*; 2014M3*) -4.131 (2004M4*; 2013M6)
Zinc -4.236 -4.236 -4.209 (2005M6*; 2006M10*) -5.614* (2004M10*; 2007M4*)
Nickel -4.027 -4.626 -4.155 (2005M9*; 2007M1*) -6.867 (2005M2*; 2006M4*)
Wheat -3.663 -3.673 -3.747 (2007M4*; 2013M10*) -5.190 (2009M11*; 2013M1*)
Corn -4.572 -4.577 -5.119 (2009M11*; 2013M1*) -5.688* (2009M5*; 2012M6*)
Soy -5.091* (2006M10) -5.102* (2007M5) -4.749 (2007M3*; 2013M11*) -6.061 (2006M3*; 2013M3*)
Beef -4.009 -4.574 -4.244 (2009M5*; 2018M8*) -4.532 (2008M9*; 2018M9*)

Logarithm of price levels
Oil -4.188 -4.363 -5.055 (1985M4*; 2003M9*) -4..888 (1998M1*; 2003M11*)
Coal -4.273 -4.597 -3.476 (2007M3*; 2008M1*) -4..753 (2002M9*; 2005M9*)
Gasc -2.598 -4.706 -4.327 (1993M10*; 2003M8*) -6..451* (1993M11*; 2003M9*)
Aluminium -4.349 -4.639 -4.366 (1987M4*; 2003M4*) -5.307* (2004M5*; 2007M6*)
Copper -4.584 -4.699 -4.392 (1987M1*; 2005M6*) -4.820* (1985M2*; 2002M8*)
Zinc -4.701 -4.708 -4.580 (2005M6*; 2007M1*) -5.333 (1986M8*; 2004M6*)
Nickel -3.958 -4.204 -4.401 (1987M1*; 2006M3*) -4.586 (1986M2*; 2002M3*)
Wheat -3.972 -3.969 -3.456 (2006M10*; 2013M10*) -4.270 (2004M10*; 2013M4*)
Corn -4.750 -4.772 -5.037 (2006M3*; 2013M10*) -4.969 (2005M7*; 2012M4*)
Soy -5.343* (2006M10) -5.390* (2006M10) -4.472 (2007M3*; 2013M11*) -5.638* (2005M8*; 2013M3*)
Beef -4.039 -4.886 -4.432 (1993M1*; 2009M5*) -4.169 (2002M4*; 2008M9*)

*Statistically significant at 5% confidence level. 
a 1991M1-2021M12.
b 1992M1-2021M12.
c 1985M1-2021M12.
e Zivot Andrews (ZA) unit-root test with one endogenous structural break in the intercept or in both the intercept and the deterministic 
trend; lags selected with AIC between 6 and 12 months; only statistically significant breaks are reported. 
f Clemente, Montanes and Reyes (CMR) unit-root test with two endogenous breaks (mean shifts) and deterministic trend; lags selected with 
AIC between 6 and 12 months; AO=Additive Outlier and IO=Innovational Outlier specifications; only statistically significant breaks are 
reported.
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Table A3. Granger causality test (χ2) of VAR model estimates 
with Oil, Coal, Natural Gas and CPI as endogenous variables 
(1985M1-2021M12)a,b 

Price levels Logarithms of price levels

Crude oil
Coal 13.51* 8.529*
Gas 3.558 9.221*
CPI 5.138 8.354*
Structural break dummies: 2003M11; 20013M5 4.955*; 1.273 -0.069*; -0.021

Coal
Crude oil 16.09* 8.6054*
Gas 7.41 0.01853
CPI 3.251 0.77946
Structural break dummies: 2003M11; 20013M5 2.131; -0.375 0.039*; 0.004

Gas
Crude oil 0.739 1.253
Coal 56.59* 3.353
CPI 5.204 6.060
Structural break dummies: 2003M11; 20013M5 -0.257; -0.052 -0.034; -0.035

CPI
Crude oil 67.25* 47.25*
Coal 17.18* 15.91*
Gas 5.573 0.876
Structural break dummies: 2003M11; 20013M5 0.067; 0.043 0.001; 0.000

*Statistically significant at 5% confidence level.
a The period considered depends on natural gas data availability.
b The VAR model specification includes a drift, a deterministic 
trend and lags decided on the basis of AIC.
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