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Abstract 

Although the policy impacts on farms accumulate year by year, most farm decision 

models focus on short-term decisions, evaluating policies based on snapshots. 

Structural changes are gradually built; therefore, farm decision models should 

consider the sequences within the period under study. Multiyear data from the arable 

sector in Thessaly, Greece, have fed a newly developed farm-level recursive linear 

programming model mainly to simulate farm structural change dynamics. The 

proposed model incorporates new evidence on the strategic decision of arable crop 

farms regarding their remaining in the production system and farm expansion. Results 

reveal an evident gradual farmland concentration in relatively large farms, 

accompanied by a gradual expansion of the most profitable cropping activities, 

verifying the real-world survival strategy of farms. 

Keywords: farm structural change, land use change, recursive linear programming 

model, arable production system, Greece 
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1. INTRODUCTION 

The declining number of surviving farms over time and the increase in average 

farm size generally signal the evolutionary process of structural change in the 

agricultural sector of developed economies (Plogmann et al., 2022), implying changes 

in the farm size distributions (Zimmermann and Heckelei, 2012; Saint-Cyr et al., 2019).  

Agricultural economists have shown great interest in describing structural 

change dynamics and understanding its drivers (Plogmann et al., 2022). Structural 

change is driven by various economic factors (Neuenfeldt et al., 2019), environmental 

factors and social drivers (RIRDC, 2007). Nevertheless, some authors (Wiborg, 1998; 

Plogmann et al., 2022) consider farm economic performance the primary driver of 

structural change since it somehow encloses all the above factors. 

Structural change is a normal evolutionary process in an economy (Goddard et 

al., 1993). Over time, rising agricultural productivity enabled the transfer of productive 

factors required for the development of other sectors of the economy (Balmann and 

Valentinov, 2016). However, structural change in the agricultural sector is usually 

correlated with public concerns, which are mainly expressed through public debates 

in two terms, firstly as “dying peasants" and secondly as “factory farming” (Balmann 

and Valentinov, 2016).   

Highlighting the first public concern, this may be because, generally, structural 

change hardly leads to Pareto Superior states (Balmann and Valentinov, 2016). From 

this perspective, Cochrane (1958) concludes that increased agriculture productivity 

positively affects only a limited number of innovative farms, while most farmers are 

affected negatively due to the following drop in agricultural commodity prices. 

Suppose we analyze this reasoning from the point of view of public policy; in that case, 

structural change may reduce the problem concerning the profitability of remaining 

farms but, on the other side, reduce the number of small farms and thus counters the 

equity goals of public society (Finger and Benni, 2021). Within this context, some 

authors consider the significant role of public policy in mitigating the consequences of 

structural change by pointing out that “much of the public policy agenda has clearly 

been established on a premise of optimality of a family farm structure” (Goddard et 

al., 1993: 486). However, implementing appropriate policy interventions presupposes 

providing detailed information (by policy analysts) on structural change in agriculture 

through evidence-based policy-relevant research to support evidence-based 

agricultural policy decision-making. 
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The European Common Agricultural Policy (CAP) marks essential shifts in the 

context where farms operate, with significant reforms attempted every decade. Policy 

impacts on farms accumulate year after year, affecting the farm structures and, by 

extension, the well-being of rural communities, creating a ripple effect on the local 

economy. In this framework, modeling the dynamics of structural change adjustment 

(i.e., the change over time of farm numbers and farm size distribution) is highly 

desirable because it can provide policymakers and stakeholders with possible 

alternative scenarios of structural change adjustments, but it is still not widely used in 

policy analysis (Ciaian et al., 2013; Espinosa et al., 2016). Modeling exercises such as 

dynamic appraisals can support policy analysts in formulating public policies to obtain 

the “desired farm structure” considering the societal demands for equity (Finger and 

Benni, 2021).  

Two main methodological approaches incorporate structural change in 

agriculture: econometrics and simulation models (which aim to analyze farm 

structural change endogenously) (Espinosa et al., 2016; Zimmermann et al., 2009). 

Econometric models include Markov chains (Zimmermann and Heckelei, 2012) and 

various other regression approaches (Zimmermann et al., 2009). Simulation models 

include recursive programming models (e.g., Wiborg, 1998; Guinde et al., 2005; 

Henningsen et al., 2005; Offermann and Margarian, 2014; Djanibekov and Finger, 

2018; Mittenzwei and Britz, 2018) and agent-based models (e.g., Balmann, 1997; 

Berger, 2001; Happe et al., 2008; Freeman et al., 2009; Bert et al., 2011; Troost and 

Berger, 2016; Beckers et al., 2018; Sun et al., 2022; Donati et al., 2024). As simulation 

models can endogenously capture farm structural change, they are considered suited 

to analyzing policy changes' allocative and distributive effects on an agricultural 

production system (Guinde et al., 2005; Happe et al., 2008; Espinosa et al., 2016). 

Although agent-based models such as AgriPoliS (Balmann, 1997) are considered by 

various modelers the most comprehensive attempt at analyzing the impact of policies 

on structural change (e.g., Zimmermann et al., 2009), are characterized by greater 

complexity (e.g., Zimmermann et al., 2009), and they are very demanding in terms of 

parameterisation (e.g., Zimmermann et al., 2009; Rowan et al., 2011; Kremmydas et 

al., 2023) and calibration (e.g., Zimmermann et al., 2009). In addition, the preference 

for simpler process-based models1  should not be ignored (Troost and Berger, 2020). 

Therefore, while capturing structural change endogenously and providing meaningful 

insights into the allocative and distributional effects of various exogenous factors, the 

farm-level recursive programming models can also be manageable regarding the 

 
1 Process-based models include models such as simulation models and systems dynamics models. 
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degree of complexity and data requirements compared to other simulation models 

such as agent-based models.  

Based on the above discussion, the main objective of this research is to 

investigate the impacts of policy experiments on farm structural change dynamics in 

Greece through an endogenous modeling approach based on a newly developed farm-

level recursive linear programming model. While primarily aimed at simulating the 

impact of policy experiments on the evolutionary process of farm structural change, 

the proposed simulation model is also secondarily used to simulate the effect on land 

use change while analyzing its relationship with structural change adjustment. 

In the context of structural changes, the strategic decision of farms is 

summarized through the phrase “grow or go” (Plogmann et al., 2022), implying the 

aspects of (i) farm viability and (ii) farm growth/expansion. Through the proposed 

modeling approach, we integrate the farm's economic performance as the main driver 

of this decision (e.g., Wiborg, 1998; Paroissien et al., 2021; Plogmann et al., 2022). In 

more detail, in addition to traditional monetary value criteria to determine a 

surviving/viable farm, we introduce a novel viability criterion, assuming that farmers 

may compare their economic performance to societal consumption benchmark, in the 

sense that the agent (in our case, real-world individual farm) must achieve a minimum 

level of profitability, allowing entry into the “rat race” according to “Keeping up with 

the Joneses” (KUJ) preferences (e.g., Barnett et al., 2010; Lombardo, 2021; Paroissien 

et al., 2021). Regarding farm expansion, the proposed modeling approach introduces 

a further novel element through the concept of relative optimal farm growth in equity 

to reallocate/allocate resources between neighboring surviving farms.   

The proposed model can also be characterized as a One-Way Communication 

Model where the information flows from the econometric model to the recursive 

programming farm model (Huang et al., 1980). In particular, the Autoregressive 

Integrated Moving Average (ARIMA) models are used to forecast the values of the 

exogenously determined parameters of interest to conduct out-of-sample 

simulations. Additionally, ARIMA stochastic process estimates express the agents’ 

quasi-rational expectations regarding agricultural commodity prices and crop yields 

(Nerlove and Bessler, 2001; Siegle et al., 2024). 

For the empirical application of the proposed simulation model, a 

representative sample of arable crop farms (in terms of farm structure) of the region 

of Karditsa (NUTS-3 level), Thessaly, is chosen. The priority of empirical application 

given to the arable production system is justified by the fact that Greek arable farming 
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is characterized by a comparatively higher rate of structural change concerning the 

other main types of farming (other permanent crops, other grazing livestock) (FADN 

Public Database).  

From a general perspective, with this analysis, we attempt to contribute to the 

debate on dynamic assessments of the multidimensional effects in the context of 

policy reforms. Additionally, more specific contributions to literature are expressed 

through at least four ways:  

First, we add knowledge by integrating evolutionary and social psychology 

elements to define a farm as viable based on KUJ preferences. Second, we simulate 

resource reallocation based on the criterion of relative optimal farm growth in equity 

as an alternative farm expansion/growth criterion to traditional criteria such as the 

shadow values of resources (e.g., Guinde et al., 2005; Hennessy, 2007; Espinosa et al., 

2016). Third, the utilization of the ARIMA stochastic process for time series forecasting 

of the values of the exogenously determined parameters (such as agricultural 

commodities prices, input prices, and crop yields) is an addition to the existing 

literature since in similar simulation models; these values are mainly determined 

either from secondary data sources (e.g., Wiborg, 1998; Hennessy, 2007; Offermann 

and Margarian, 2014) or through assumptions/scenarios (e.g., Guinde et al., 2005; 

Henningsen et al., 2005; Troost and Berger, 2016; Mittenzwei and Britz, 2018) or 

simplified trend models (e.g., Happe et al., 2008; Bert et al., 2011; Beckers et al., 

2018). Fourth, despite the great importance of the arable production system for the 

Greek agricultural sector and the comparatively higher rate of structural change than 

the other main production systems, to our knowledge, farm-level recursive 

programming models have not been used to provide a “bottom-up” simulation of 

structural change of Greek arable production system.  

The rest of the paper is organized as follows. Section 2 describes the applied 

methodology, the data used to apply the methodology, and the policy experiments. 

The empirical results are presented in Section 3, Section 4 discusses them, and 

concludes. 

 

2.  METHODOLOGY AND DATA 

 

2.1.  Recursive programming models for impact assessment in agriculture 

 

Recursive programming models have already been introduced in the 1960s to 

represent dynamic adjustments of production capabilities at the farm level, and then 
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with the study of Day and Cingo (1978) regional interdependence and structural 

elements were incorporated (Espinosa et al., 2016). Indicatively, recursive 

programming farm models have been utilized for the development of farm firm 

growth models (e.g., Chien and Bradford, 1976; Cittadini et al., 2008; Dowson et al., 

2019) to investigate the economic consequences due to farmers’ adaptability to 

different water availability scenarios (e.g., Iglesias et al., 2003; Rowan et al., 2011; 

Robert et al., 2018; Dowson et al., 2019), to assess the impacts of various policy reform 

and price scenarios on farm income and investment behavior (e.g., Viaggi et al., 2010; 

Viaggi et al., 2011; Davis et al., 2013; Britz et al., 2016) and to analyze the impact of 

policies on farm structural change (e.g., Wiborg, 1998; Guinde et al., 2005; Henningsen 

et al., 2005; Offermann and Margarian, 2014; Djanibekov and Finger, 2018; 

Mittenzwei and Britz, 2018).  

The main structural elements of a recursive programming model correspond to 

a constrained optimization model and a data generator, where the data generator, 

given the optimal value or solution in period t, reinitializes the parameters of period 

t+1, including a set of constraints that relates the feasible values of current variables 

to past values of variables and exogenous events (McCarl and Spreen, 1997). Following 

Chien and Bradford (1976) and McCarl and Spreen (1997), the general formulation of 

the recursive programming farm model is as follows: 

         Max    𝐸{𝛱𝑡 } =  ∑𝐸{𝐶𝑗,𝑡 }
𝑇 

𝑗

𝑋𝑗,𝑡      (1) 

Subject to: 

                 ∑   𝐴𝑖,𝑗,𝑡  

𝑗

𝑋𝑗,𝑡 ≤ 𝑏𝑖,𝑡            ∀  𝑖    (2) 

   

           𝑋𝑗,𝑡 ≥ 0                              ∀ j      (3) 

 

 

where   𝐸{   } denotes the expectation operator;  𝐸{𝛱𝑡 } is farm’s expected gross 

profit in EUR which is maximized in year t ; 𝐸{𝐶𝑗,𝑡 } is the vector of expected gross 

profit in EUR/hectare (ha) of the j cropping activity in period t ; 𝑋𝑗,𝑡 is the vector of the 

decisions variables that denotes the level of the j cropping activity (hectares for crops) 

in period t;   𝐴𝑖,𝑗,𝑡   are the resource I usages by the j cropping activity per ha in period 

t  ; 𝑏𝑖,𝑡 is the vector of available resources i in period t, functionally dependent upon 

lagged phenomena (Kay, 1971; McCarl and Spreen, 1997). 
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The reinitialization of the vector of available resources ( 𝑏𝑖𝑡 ) is conducted 

through farm firm growth rules such as the Endogenous Feedback Mechanism (EFM) 

(e.g., Kay, 1971; Chien and Bradford, 1976; McCarl and Spreen, 1997; Cittadini et al., 

2008; Davis et al., 2013; Robert et al., 2016).  Although EFM has been applied with 

some variations, the general mathematical formulation is as follows: 

 

𝑏𝑖,𝑡=𝑓 (𝑏𝑖,𝑡−1  , 𝑋𝑗,𝑡−1
∗  , 𝑉𝑖,𝑡)     (4) 

 

where the vector of available resources ( 𝑏𝑖𝑡) in period t is determined by the 

vector of available resources in the previous period (𝑏𝑖,𝑡−1  ) , the optimal decisions in 

the previous period (𝑋𝑗,𝑡−1
∗  ) and by the vector 𝑉𝑖,𝑡 that allows for external changes 

in the resource restrictions due to exogenous events that will occur in the period t 

which are rather determined by external economic and environmental factors (Kay, 

1971; McCarl and Spreen, 1997; Davis et al., 2013; Robert et al., 2016). 

Since the proposed model is used for structural change analysis, three more 

basic structural elements are included to determine (i) farm viability, (ii) farm 

growth/expansion, and (iii) capital stock evolution at the farm level. A detailed 

description of these structural elements of the model is carried out in subsequent 

sections. 

 

2.2. ARIMA modeling for economic forecasting in agriculture  

 

The usefulness of such a simulation model, which is optimized sequentially 

within a dynamic framework, lies in the ability to provide results outside the reference 

period (out-of-sample forecasts). Therefore, to conduct out-of-sample simulations, 

the forecasted values of the exogenously determined parameters of the farm are 

required. 

Various modelers have used ARIMA models to forecast exogenously determined 

parameters such as agricultural commodity prices (e.g., Mao et al., 2022), crop yields 

(e.g., Petsakos et al., 2016), cost of production factors (e.g., Hloušková et al., 2018) 

and supply of various resources (e.g., the total amount of agricultural land, total 

amount of pesticides) (Costache et al., 2021). 

ARIMA models are fitted utilizing the information in the series itself to predict 

future points in the series (Christodoulos et al., 2010; Garnier, n.d.), and therefore the 

independent variables are lagged values of the series. More specifically, the future 

values of the dependent variable can only be described through their probability 
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distribution rendering the series a stochastic process 2  (Pardoe, n.d.). In this vein, 

several modelers consider that the use of ARIMA models is appropriate for economic 

forecasting in agriculture, especially in cases of lack of well-developed theory or 

limited information3 (Petsakos et al., 2016); as a result, the forecasting of exogenous 

variables often present problems for econometric model users (Oliveira et al., 1979).  

Within this context, the ARIMA stochastic process is utilized for estimating the 

values of exogenously determined parameters of interest (in our case, agricultural 

commodity prices, crop yields, costs, interest rate, total arable land, and total 

circulating capital) to perform out-of-sample forecasts in the medium term. In 

addition, ARIMA models are utilized to estimate the values for random/stochastic 

parameters, such as agricultural commodity prices and crop yields, to express agents’ 

quasi-rational expectations mechanism (Nerlove and Bessler, 2001; Siegle et al., 2024). 

 

2.3.  Simulation model specification and assumptions 

 

2.3.1.  Model’s basic structure  

 

The initial endowments with production factors are specified before the 

sequential simulation starts (in our case, arable land, irrigated land, circulating capital, 

capital stock, and borrowed capital) (Happe et al., 2008) (see Figure 1). To simulate 

farms’ productive decisions through the proposed farm-level recursive linear 

programming model, we assume that farms optimize the expected gross profit (e.g., 

Rowan et al., 2011) for each year t given the farm’s resource, policy, and flexibility 

constraints. To elaborate more, resource constraints contain: (i) Arable land 

constraint; (ii) Irrigated land constraint; and (iii) Circulating capital constraint.  

Policy constraints contain: (i) 2013 CAP reform constraints (greening 

obligations); (ii) CAP Post-2020 reform scenario constraints; (iii) Nitrate pollution 

reduction program constraints; and (iv) Organic farming program constraint. Flexibility 

constraint corresponds to the constraint of multiannual contract farming4. 

 
2 Details on ARIMA modeling framework are provided in Part A: Conceptual framework of ARIMA 
modeling in the supplementary material. 
 
 
4 A detailed description of the objective function and constraints is provided in Part B: Structure of the 
model’s objective function and constraints in the supplementary material. 
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Each sub-model (based on representative individual real-world farm) optimized 

recursively5  for a sequence of 15 years (from 2012 to 2026). Time progresses in 

discrete time intervals, symbolizing the commencement of a growing season at time t  

(see Figure 1). To perform out-of-sample simulations (i.e., outside the reference 

period, specifically after 2019), mainly ARIMA models are used to forecast the values 

of the exogenously determined parameters of interest (see Figure 1).  

2.3.2. Farm agents’ expectations specification and model validation 

Various authors (e.g., Femenia et al., 2017) consider naïve and quasi-rational 

expectations (ARIMA modeling), both based on past observations, to be the most 

frequent expectation mechanisms 6  in some types of farming. Influenced by this 

finding, we emphasize these two mechanisms of expectations regarding agricultural 

commodity prices and crop yields in the present study, considering that they will be 

representative of sample farms and the information available to them (mainly based 

on past observations).  

More specifically, we have formulated two alternative models; one referred to 

as the Quasi-Rational expectations (QR) model and the other as the Naïve and Quasi-

Rational expectations (NV&QR) model. In more detail, in the QR model case, the 

agent’' expectations are expressed through quasi-rational expectations (ARIMA 

modeling) for agricultural commodity prices and crop yields (e.g., Narayana and Parikh, 

1981; Nerlove and Bessler, 2001; Siegle et al., 2024). In the NV&QR model case, the 

agent’' expectations are expressed through naïve price expectations for agricultural 

commodity prices (e.g., Nerlove and Bessler, 2001; Robert et al., 2018; Siegle et al., 

2024) and through quasi-rational expectations for crop yields.  

 
5 The model is written in GAMS language. 
6 A detailed description of farm agents’ expectations mechanisms is provided in Nerlove and Bessler 
(2001), Haile et al. (2016), Femenia et al. (2017), and Siegle et al. (2024). 



 

10 
 

Then the two proposed models are validated for their capability to reproduce 

activities allocation (Gómez-Limón et al., 2016), the number of surviving farms 

(Beckers et al., 2018), and the farm size distribution (Freeman et al., 2009; Beckers et 

al., 2018).  

Figure 1. Conceptual diagram of the proposed modeling framework   

Notes: A post-solution module of means-based environmental indicators enables the model to estimate 

the environmental performance of farms. However, to limit the size of this paper, the environmental 

impact assessment will not be presented here. 

Source: Authors 

 

 

 

2.3.3.  Determining farm viability 

 

Usual approaches to defining farm viability are based on the opportunity cost of 

farming (e.g., Loughrey et al., 2022) and the poverty line (e.g., Miller et al., 1981; 

Loughrey et al., 2022). Other approaches to defining farm viability focus on monetary 
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returns, where the farm income should ensure long-term farm growth in equity, or at 

least the equity should remain stable into the future (e.g., Bright et al., 2007; Barnes 

et al., 2015).  

Another interesting approach to defining farm viability from a socio-economic 

perspective is based on the “Keeping up with the Joneses” (KUJ) preferences (Miller 

et al., 1981; Paroissien et al., 2021). Farmers may compare their profits to the overall 

standard of living (average living expenditures/average consumption level) of socially 

close reference group (neighboring farms), which is considered the societal 

consumption benchmark or social reference point of consumption level (Paroissien et 

al., 2021).  

From this perspective, agents that stand below their societal reference point (in 

the sense of not being able to finance this level of consumption) are forced to stay out 

of the “rat race of keeping up with the Joneses” (Barnett et al., 2010), may experience 

lower life satisfaction and professional well-being, a situation which may create 

incentives to exit the system (Paroissien et al., 2021; Nguyen and Herron, 2021). 

Therefore, a farm must achieve a minimum level of profitability, allowing entry into 

the “rat race” (Lombardo, 2021) according to KUJ preferences (i.e., keeping up with a 

benchmark proportional to the average level of consumption of the socially close 

reference group (Barnett et al., 2010) such as neighboring farms). 

The influences for this hypothesis come from evolutionary and social psychology, 

where various researchers assume that the quest for status – frequently referred to 

in this context as “Keeping-up-with-the Joneses”– depends on the social norms 

related to a benchmark consumption level such as the average consumption level of 

the socially close reference group (Fisher and Heijdra, 2009; Lombardo, 2021; Mageli 

et al., 2022). Based on the above reasoning, various researchers assume that the quest 

for social status can be linked to the striving to survive (Mageli et al., 2022). Notably, 

since social groups can distribute resources among their members, an agent’s chances 

to survive and reproduce are greatly enhanced if she/he belongs to a group and if 

she/he holds a relatively high social rank within the group, in the sense that an agent’s 

relative position may give her/him a survival advantage through access to material 

and reproductive resources (Mageli et al., 2022).  

Alternatively, farm viability can be defined according to a combination of 

monetary value and socio-economic criteria (Bert et al., 2011; Mittenzwei and Britz, 

2018; Seidel and Britz, 2019).  
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In the present modeling approach, a sample farm is considered viable/surviving 

by satisfying two viability criteria: (i) the criterion of societal consumption benchmark 

of neighboring farms (NBF)7 according to the KUJ preferences and, (ii) the criterion of 

non-negative optimal farm growth in equity. At this point, we would like to mention 

that, following similar simulation models (Bert et al., 2011; Offermann and Margarian, 

2014; Mittenzwei and Britz, 2018; Seidel and Britz, 2019) we simulate only farm exit 

according to the farm exit module considering economic and socioeconomic criteria. 

Consequently, we do not model the life cycle of agents who enter farming, get old, 

and retire (Bert et al., 2011).  

Therefore, following each discrete optimization time-step (annual), every 

neighboring farm nbf decides whether to remain in the system or exit (see also Figure 

1). Specifically, a neighboring farm is considered viable and remains in the production 

system when at the end of the year t meets both viability criteria, i.e., (i) the optimal 

Farm Net Profit after Tax  (𝐹𝑁𝑃𝐴𝑇∗
𝑛𝑏𝑓,𝑡 

) should be at least equal to the simulated 

average living expenditures of neighboring farms in year t (  𝐿𝐸 𝑁𝐵𝐹,𝑡 
𝑠𝑖𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), and (ii) 

optimal farm growth in equity (𝐹𝐺𝐸∗
𝑛𝑏𝑓,𝑡 

) should be at least equal to zero.  

As regards the mathematical formulations of the specific profitability measures 

are as follows considering the relevant literature (GRDC, 2015): 

 

𝐹𝑁𝑃𝐴𝑇∗𝑓,𝑡 = 𝛱
∗
𝑓,𝑡 − (𝐷𝐸𝑃𝑓,𝑡 +  𝐿𝑅𝐶𝑓,𝑡 + 𝑆𝐹𝑁𝐶𝑓,𝑡 +  𝐿𝐹𝑁𝐶𝑓,𝑡  + 𝑆𝐼𝐶𝑓,𝑡 + 𝐹𝑃𝑇𝑋𝑓,𝑡  

)   

(5) 

 

 
7  The literature on whom agents compete with for social status, i.e., who the Joneses are, is relatively limited 
(Mageli et al., 2022). Nevertheless, it is conceivable that agents compare more intensely with agents who are 
socially proximate to them (Mageli et al., 2022). For example, society serves as a socially distant reference group, 
whereas colleagues are socially close reference groups (Mageli et al., 2022). 
In this framework, we could consider a socially close reference group to each agent (individual real-world farm), 
farms with the same productive specialization located in the same region, i.e., neighboring farms (NBF) correspond 
to arable crop farms of the regional unit of Karditsa (NUTS-3 level). In particular, farmers of this reference group 
could be considered colleagues due to their similar professional goals and intense professional interactions, which 
are expressed through their professional collective bodies, such as trade union bodies, groups of producers, and 
cooperatives, which are mainly made up of farmers of common productive specialization.  
From this perspective, the intense professional and, consequently, social interactions may provide each agent of 
the reference group (neighboring farm) with a comparatively better level of information about the economic 
performance of its neighbors and the livelihood level (consumption level, particularly for visual commodities that 
are connected to income or wealth, e.g., cars and houses) (Mageli et al., 2022) than for socially distant reference 
groups (i.e., farms with different productive specializations compared to the agent).  
Consequently, this comprehensive information signals the process of forming social norms based on which a social 
group's social status or position is determined. In our case, the quest for social status is reflected in KUJ preferences 
(Fisher and Heijdra, 2009; Lombardo, 2021; Mageli et al., 2022).  
Finally, we also relied on a strict definition of neighboring farms for this selection based on the relevant literature 
(Paroissien et al., 2021), where only farms with the same specialization located in the same region are included in 
the socially close reference group (neighboring farms).  
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𝐹𝐺𝐸∗𝑓,𝑡 =𝐹𝑁𝑃𝐴𝑇
∗
𝑓,𝑡 −  𝐿𝐸𝑓,𝑡   (6)   

 

 

where  𝐹𝑁𝑃𝐴𝑇∗𝑓,𝑡  is the optimal Farm Net Profit after Tax  f in year t; 𝛱∗𝑓,𝑡  is 

the optimal gross profit of farm f  in year t; 𝐷𝐸𝑃𝑓,𝑡  is the depreciation of machinery of 

farm f  in year t;  𝐿𝑅𝐶𝑓,𝑡  are the land rental costs8 of farm f  in year t; 𝑆𝐹𝑁𝐶𝑓,𝑡  are the  

short-term finance costs which correspond to the interest paid for short-term loans of 

farm f in year t; 𝐿𝐹𝑁𝐶𝑓,𝑡  are the  long-term finance costs which correspond to the 

interest paid for long-term loans of farm f in year t;   𝑆𝐼𝐶𝑓,𝑡  are the social insurance 

contributions paid by farm f in year t;  𝐹𝑃𝑇𝑋𝑓,𝑡  is the farm profit tax paid by farm f in 

year t; 𝐹𝐺𝐸∗𝑓,𝑡  is the optimal Farm Growth in Equity of farm f in year t;  𝐿𝐸𝑓,𝑡 are the 

living expenditures9 of farm f  in year t.  

 

2.3.4.  Re-initialization of resources and farm firm growth rules  

 

The annual re-initialization of resources required for the farms’ operation and 

growth/expansion process is conducted through the Εndogenous Feedback 

Mechanism (EFM) (whose general structure has been presented in the 2.1 section). 

An essential part of the literature indicates that growth in equity determines the 

prospects for growth/expansion of the farm (e.g., Painter, 2005; Cittadini et al., 2008; 

Bert et al., 2011; GRDC, 2015), that is, that the acquisition of resources will be 

determined through this profitability measure. Hence, we consider that optimal farm 

growth in equity could be used as an alternative criterion of farm expansion/growth 

to traditional criteria such as the shadow values of resources (e.g., land, circulating 

capital) (Guinde et al., 2005; Hennessy, 2007; Espinosa et al., 2016). 

However, given resource constraints, especially land, farm expansion is possible when 

neighboring farms decide to downsize or abandon agricultural production (Plogmann 

 
8 In case that farm rents out part of owned farmland, then receives land rental income (𝐿𝑅𝐼𝑁𝐶 𝑓,𝑡). Consequently 

the equation (5) is adapted as follows: 
 𝐹𝑁𝑃𝐴𝑇∗𝑓,𝑡 = (𝛱

∗
𝑓,𝑡 +  𝐿𝑅𝐼𝑁𝐶𝑓,𝑡 ) − (𝐷𝐸𝑃𝑓,𝑡 + 𝑆𝐹𝑁𝐶𝑓,𝑡 +  𝐿𝐹𝑁𝐶𝑓,𝑡  + 𝑆𝐼𝐶𝑓,𝑡 + 𝐹𝑃𝑇𝑋𝑓,𝑡  ) , indicating that a 

farm cannot simultaneously rent in and rent out farmland, a condition we also find in similar simulation models 
(e.g., Donati et al., 2024). 
9  The estimation of living expenditures following the base year (2012) is carried out by utilizing the living 
expenditures index (LEI) of households in rural areas (ELSTAT, 2021). That is, heterogeneity between farms in the 
living expenditures in the base year (2012) is captured, but its evolution over time is based on the exogenously 
determined living expenditures index (LEI). Since the available time series of the living expenditures index (LEI) does 
not meet the minimum required time horizon of 16 data points of the ARIMA model (Christodoulos et al., 2010), 
we use a linear trend model instead of the ARIMA model to make post-sample forecasts.  
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et al., 2022). Essentially, the process of structural change drives the reallocation of the 

resources required for expansion, where the resources of non-viable neighboring 

farms (e.g., land) are reallocated to viable ones (see also Figure 1). Various modelers 

(e.g., Bert et al., 2011; Sheng et al., 2015; Herrera et al., 2022; Sun et al., 2022) 

highlight the role of relative profitability as a criterion/mechanism for the 

reallocation/allocation of resources between surviving farms. Within this context, our 

concern was how optimal farm growth in equity could be expressed as a 

criterion/mechanism for resource reallocation among viable farms and integrated into 

the EFM. To model this mechanism, we adapted the concept of efficient allocation 

(Ayerst et al., 2020; Chen et al., 2022). According to the proposed adaptation, we 

replace relative farming productivity with relative farm growth in equity. We consider 

this adjustment to be reasonable since Foster et al. (2008) found that “firms’ self-

selection behavior (in choosing an operating scale, or to enter or exit) is made based 

on firm profitability rather than firm productivity and consequently resource 

reallocation may not always align with firm productivity growth, particularly in the 

short run” (Sheng et al., 2015: 75).  

By incorporating the proposed resource reallocation/allocation mechanism into 

the EFM, each farm's annual level of resource is determined by the available level of 

the resource at the beginning of the previous growing season, the relative optimal 

growth in equity at the end of the previous growing season (indicating the optimal 

decisions), and by exogenous events10 that will occur in the current growing season.  

Since we have ensured (from the viability determination assumptions) that a 

viable farm will not reveal negative optimal growth in equity, the mathematical 

formulation of the share of any resource r ∈ {𝐴𝐿, 𝐶𝑅𝐶}  allocated or reallocated is as 

follows: 

 

 

𝛺𝑠𝑖𝑚𝑟𝑣𝑓,𝑛𝑏𝑓,𝑡 =
 𝐹𝐺𝐸∗𝑣𝑓,𝑛𝑏𝑓,𝑡

∑ ∑ 𝐹𝐺𝐸∗𝑣𝑓,𝑛𝑏𝑓,𝑡 
𝑁𝐵𝐹
𝑛𝑏𝑓=1

𝑉𝐹
𝑣𝑓=1

  ,    for t=1…. T, 0 ≤ 𝛺𝑠𝑖𝑚𝑟𝑣𝑓,𝑛𝑏𝑓,𝑡 ≤ 1  (7) 

 

where 𝛺𝑠𝑖𝑚𝑟𝑣𝑓,𝑛𝑏𝑓,𝑡  is the simulated share of resource r allocated/reallocated to 

viable neighboring farm in year t;  𝐹𝐺𝐸∗𝑣𝑓,𝑛𝑏𝑓,𝑡 is the optimal Farm Growth in Equity 

of viable neighboring farm in year t; ∑ ∑ 𝐹𝐺𝐸∗𝑣𝑓,𝑛𝑏𝑓,𝑡 
𝑁𝐵𝐹
𝑛𝑏𝑓=1

𝑉𝐹
𝑣𝑓=1   is the aggregate 

optimal Farm Growth in Equity of viable neighboring farms in year t. 

 
10  We assume that exogenous events are expressed through successive differences in the aggregate 
level of resources where the relative optimal growth in equity of the previous growing season allocates 
these positive or negative differences across farms. 
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Essentially the simulated share of resource r allocated to viable neighboring 

farm in period t (𝛺𝑠𝑖𝑚𝑟𝑣𝑓,𝑛𝑏𝑓,𝑡  )  expresses the part of EFM which corresponds to 

optimal decisions (𝑋𝑗𝑡
∗) while considering the interdependence of optimal decisions 

of viable neighboring farms, indicating competitiveness for resources. It is also worth 

noting that the simulated share (𝛺𝑠𝑖𝑚𝑟𝑣𝑓,𝑛𝑏𝑓,𝑡 )  remains the same for each resource 

allocated/reallocated. 

 

(i) Arable land 

 

Therefore, considering the above, the EFM mechanism for the resource of 

arable land will be formulated as follows:  

 

𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡 = 𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1 + 𝛺
𝑠𝑖𝑚

𝐴𝐿𝑣𝑓,𝑡−1   [∑ ∑ 𝐴𝐿𝑛𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑁𝑉𝐹
𝑛𝑣𝑓=1 +

(𝑇𝐴𝐿𝑁𝐵𝐹,𝑡 − 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡−1 )]  , for t=2…T 

 (8) 

 

where  𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡  is the available arable land of viable neighboring farm in year 

t; 𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1  is the available arable land of viable neighboring farm at the beginning 

of year t-1;  𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1  is the simulated share of arable land reallocated to viable 

neighboring farm at the end of the year t-1, that is, following the annual optimization;  

 ∑ ∑ 𝐴𝐿𝑛𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑁𝑉𝐹
𝑛𝑣𝑓=1  is the simulated aggregate arable land of non-viable 

neighboring farms at the end of the year t-1, that is, following the annual optimization; 

𝑇𝐴𝐿𝑁𝐵𝐹,𝑡  is the actual total arable land of neighboring farms in year t; 𝛵𝐴𝐿𝑁𝐵𝐹,𝑡−1  is 

the actual total arable land of neighboring farms in year t-1. 

Essentially, the product 𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1   (𝑇𝐴𝐿𝑁𝐵𝐹,𝑡 − 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡−1 ) corresponds 

to the vector 𝑉𝑖𝑡  of EFM that allows for external changes in the resource restrictions 

due to exogenous events, and probably reflects the competition for resources with 

other types of farms or non-agricultural sectors which operate within the same region.  

However, competitive pressures are likely to lead to an unfavorable situation, 

i.e., 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡 − 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡−1 < 0 and consequently to a decrease of available arable 

land for the viable neighboring farms, which will be reallocated among them utilizing 

the inverse form of the simulated share of arable land ( 𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
−1

 ), that is, 

less profitable albeit viable farms will abandon proportionately more of their arable 

land.  
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As can be easily understood by the reader, the above procedure is also applied 

to the available irrigated land (𝐼𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡 ), which is expressed as a share of the total 

arable land and is assumed to be constant at the base year level and equal to 80%. 

Based on relevant literature (e.g., Bert et al., 2011; Djanibekov and Finger, 2018; 

Donati et al., 2024), the farmland is reallocated only on a rental basis through 

farmland rental arrangements between tenants and landowners, and the land rental 

price is exogenously determined 11. 

 

(ii) Circulating capital  

 

Similarly, we apply the EFM in the case of determining the available circulating 

capital on an annual basis. The noticeable difference lies in the fact that the circulating 

capital of non-viable neighboring farms is not reallocated to viable neighboring farms 

as in the case of arable land. 

 

𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡 = 𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 + 𝛺
𝑠𝑖𝑚

𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 (𝑇𝐶𝑅𝐶𝑁𝐵𝐹,𝑡 −

∑ ∑ 𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑉𝐹
𝑣𝑓=1 ) ,  

for t=2…T 

 (9) 

 

 

𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡  is the available circulating capital of viable neighboring farm in year 

t; 𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 is the available circulating capital of viable neighboring farm at the 

beginning of year t-1;  𝛺𝑠𝑖𝑚𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1   is the simulated share of circulating capital 

allocated to viable neighboring farm at the end of the year t-1, that is, following the 

annual optimization; ∑ ∑ 𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑉𝐹
𝑣𝑓=1  is the simulated total circulating 

capital of viable neighboring farms  at the end of the year t-1, that is, following the 

annual optimization; 𝑇𝐶𝑅𝐶𝑁𝐵𝐹,𝑡  is the actual total circulating capital of neighboring 

farms in year t. 

As before (in the case of available arable land), the product 𝛺𝑠𝑖𝑚𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1  

(𝑇𝐶𝑅𝐶𝑁𝐵𝐹,𝑡 − ∑ ∑ 𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑉𝐹
𝑣𝑓=1 )  reflects the effect of the external 

economic factors that can form the availability of financial resources at farm level, 

such as the financial system, the tax system, macroeconomic conditions (e.g., level of 

 
11 Detailed information concerning land rental costs/land rental income estimation is provided in Part 
C: Land rental costs/land rental income estimation in the supplementary material. 
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inflation), etc. These factors may create a healthy financial situation or financial stress. 

Financial stress could therefore lead to an unfavorable situation, i.e., 𝑇𝐶𝑅𝐶𝑁𝐵𝐹,𝑡 −

∑ ∑ 𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑉𝐹
𝑣𝑓=1 < 0 and consequently to a decrease of the available 

circulating capital for the viable neighboring farms which will be allocated to them 

utilizing the inverse form of the simulated share of circulating capital 

( 𝛺𝑠𝑖𝑚𝐶𝑅𝐶𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
−1

 ), that is, less profitable, albeit viable farms, will lose 

proportionately more of their circulating capital12.  

 

2.3.5.  Capital stock evolution at the farm level (Investment module) 

 

The intertemporal evolution of capital stock at the farm level is assessed utilizing 

the Perpetual Inventory Method (PIM) where the capital stock (machinery and 

equipment) of the farm f in year t is equal to the non-depreciable capital stock of the 

year t-1 plus gross investment in fixed assets that will be made through the year t 

(Weyerstrass, 2016). The mathematical formulation of PIM is as follows: 

 

𝐾 𝑓,𝑡 = (𝐾 𝑓,𝑡−1-𝐷𝐸𝑃 𝑓,𝑡−1) + 𝐼 𝑓,𝑡  (10) 

 

where 𝐾 𝑓,𝑡 is the capital stock of farm f in year t; 𝐾 𝑓,𝑡−1 is the capital stock of 

farm f in year t-1; 𝐷𝐸𝑃 𝑓,𝑡−1 is the depreciation of farm f in year t-1, which is obtained 

from the equation 𝐷𝐸𝑃 𝑓,𝑡−1= δ 𝐾 𝑓,𝑡−1, where δ is the fixed depreciation rate equal 

to 5% (Weyerstrass, 2016; Femenia et al., 2017), and 𝐼 𝑓,𝑡  is the gross investment on 

fixed asset of farm f in year t . Gross investment in fixed assets includes annual cash 

expenditures for the maintenance of capital stock due to economic depreciation and 

the acquisition of required investment capital for farm expansion (net investment on 

fixed assets) (Smale et al., 1986). 

Following similar modeling approaches (Kay, 1971; Freeman et al., 2009), we 

assume a Leontief production relationship between capital stock and land. It is 

therefore assumed that the capital stock remains constant per hectare of arable land 

at the base year level (
𝐾 𝑓,𝑡=1

𝐴𝐿𝑓,𝑡=1 
) , so that the amount charged for depreciation in year t-

1 (𝐷𝐸𝑃 𝑓,𝑡−1 ) is constantly reinvested in new capital stock (or gross investment on 

fixed assets) in year t (𝐼 𝑓,𝑡)  (Freeman et al., 2009). Essentially, the constant 

 
12 Detailed information concerning required borrowing circulating capital & short-term finance costs 
estimations is provided in Part D: Borrowed capital & finance costs estimations /D1. Borrowed 
circulating capital & short-term finance costs estimations in the supplementary material. 
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intertemporal relationship between capital stock and arable land renders the 

investment process a continuous process of investment or disinvestment (Britz et al., 

2016) determined by the arable land acquired or abandoned13.  

 

2.4.  Farm data description and specification  

 

For the empirical application of the proposed simulation model, a 

representative sample of arable crop farms in Karditsa (NUTS-3 level) is chosen. The 

regional unit of Karditsa is one of the five regional units of the region of Thessaly 

(NUTS-2 level) located southwest of it.  

This study utilizes farm-level data provided by a research project that thoroughly 

investigated the perspective of a sample of farms of the regional unit of Karditsa that 

specialized in “Other fieldcrops/General field cropping” (according to the TF14 

classification of FADN) to cultivate alternative crops such as energy crops. Initially, 70 

farms were selected by stratified random sampling, and detailed data on production, 

revenues, fixed assets, and subsidies for 2005 and 2006 were collected through 

personal interviews. Two field surveys followed (after 2006) to update mainly data on 

production, revenues, fixed assets, and subsidies through personal interviews. 

Through these two follow-up surveys, we collected additional socio-economic 

information such as living expenditures and how agricultural subsidies were spent 

(e.g., living expenses, investments, production costs, loans). 

 The first follow-up field survey was conducted in 2012, where data from 48 

remaining farms were updated (from the initial 70), and the second was in 2019, 

where data from 31 remaining farms (out of 48 in 2012) were updated. For the 

empirical application of the simulation model, the data of the most recent period 

(2012-19) are utilized to manage the complexity of the model at a computable level.  

The sample represents at a satisfactory level the farm structure of 6,272 farms 

specializing in “Other fieldcrops/General field cropping” in the regional unit of Karditsa 

for 2012. Specifically, based on a comparison of our sample with the Farm 

Accountancy Data Network (FADN) data for the base year (2012), we found a 

significant degree of similarity in terms of farm size distribution, where the Finger–

Kreinin (FK) similarity index (Finger and Kreinin, 1979) stands at 90.2% (see also Table 

1). Consequently, although the farm sample size can be considered relatively small 

 
13 Detailed information concerning required borrowing investment capital and long-term finance costs 
estimations is provided in Part D: Borrowed capital & finance costs estimations/D2. Borrowed 
investment capital & long-term finance costs estimations in the supplementary material. 
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compared to the population, it sufficiently reflects the heterogeneity in farm 

structure14.  

Table 1. Farm size distributions comparison of farms specialized in “Other 

fieldcrops/General field cropping” (according to the TF14 classification of FADN) in the 

region of Karditsa, 2012 

 

Notes: The determination and characterization of farm size classes is based on Happe et al. (2008), and 

Huettel & Margarian (2009).  

Source: Authors, based on sample data and FADN. 

 

Cotton and durum wheat are the main activities regarding total farmland area 

shares. All observed activities (i.e., cotton, processing vegetables, tobacco, maize, 

alfalfa) except durum wheat and set-aside require irrigation. The production of 

processing vegetables and tobacco is conducted through annual contracts with the 

industry, while for the activity of alfalfa (seed production), the farmers conclude a ten-

year contract.  

Since field survey through personal interviews is a very costly and slow process 

(Khanal and Omobitan, 2020), collecting data on an annual basis during the interim 

years of the period 2012-19 was not possible. This fact created the need to fill in the 

gaps in the time series of the model parameters. Model parameters were estimated 

for the period considered utilizing the available national times series setting 2012 as 

the base year. In addition, the available national times series provided the necessary 

input data for the ARIMA and linear trend models. The national time series are 

provided by various exogenous data sources15. However, it should be noted that for 

the activities cultivated under contract farming, we assume that prices remain 

 
14 Using a relatively small sample of farms is not unusual for relevant in-depth analyses in the context 
of farm-level mathematical programming models (e.g., Iglesias et al., 2003; Viaggi et al., 2010; Viaggi et 
al., 2011; Djanibekov and Finger, 2018; Lairez et al., 2023). 
15 For more details see the Part E: Historical dataset and forecasting method of exogenously 
determined parameters in the supplementary material. 

  
Sample farms  

 

FADN  

 

Farm size class (ha) Characterization Farms (%) Farms (%) 

<10 Very Small 37.46 36.28 

10-<30 Small 43.75 53.68 

30-<50 Medium 12.5 7.94 

50-<100 Large 6.25 2.23 

≥100 Very Large - - 
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constant at the base year levels for all simulation periods since sample farmers stated 

that they remained almost invariable for the period 2012-19.  

 

2.5.  Policy experiments 

 

Simulation experiments for two alternative policy scenarios were performed. 

Additionally, we ran simulations for a combined (policy and geopolitical) scenario.   

 

Business as usual (BAU) scenario: We assume that the baseline policy implemented 

from 2015 to 2022 (2013 CAP reform), will continue to be implemented until 2026. 

Expressly, we assume that decoupled and coupled payments will remain stable at the 

levels of 2022, as well as the greening obligations related to crop diversification and 

the ecological focus area (EFA) to receive decoupled payments (Greek Ministry of 

Rural Development and Food, 2014).  

CAP Post-2020 scenario: According to the Greek Strategic Plan proposal for the CAP 

2023-27 (Greek Ministry of Rural Development and Food, 2022), the provisions of the 

CAP Post-2020 reform scenario apply from the year 2023. In the period 2023-26, 

internal full convergence will be implemented, i.e., the convergence of the value of 

payment entitlements at a single unit value (flat rate) at the agronomic region 

level 16 (Greek Ministry of Rural Development and Food, 2022). The value of the 

payment entitlements in the agronomic region of interest, i.e., arable land, will equal 

231.4 EUR/ha in 2026. Farms with available arable land of more than 10 hectares are 

obligated to apply ecological focus area to 4% of it to receive decoupled payments. It 

should be mentioned that is maintained the measure of diversification of crops for 

farms with available arable land larger than 10 hectares to receive decoupled 

payments, valid from 2015 in the context of the 2013 CAP reform. The proposed 

strategic plan also includes implementing the redistributive payment mechanism 

during the period 2023-27. Specifically, relatively small farms with available arable 

land between 2 and 11 hectares, will be considered beneficiaries of the redistributive 

support, equal to 117 ΕUR/ha. 

 In addition, the proposed national strategic plan aims to improve the 

environmental performance of arable crop farms by adopting voluntary 

environmental measures referred to as eco-schemes. One of the main measures is 

considered to be the extension of the application of the ecological focus areas, where 

 
16 Since the 2013 CAP reform, the process of payments convergence has started in the form of partial 
convergence. 
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farms with available arable land less than 10 hectares can apply ecological focus area 

to 5% of it, receiving an average eco-scheme payment equal to 200 EUR/ha. 

Additionally, farms with available arable land more than 10 hectares can apply 

ecological focus area to 10% of it receiving an average eco-scheme payment equal to 

240 EUR/ha (Greek Ministry of Rural Development and Food, 2022).  

 

CAP Post-2020 & Long War of Attrition (LWA) scenario: This combined scenario is a 

variant of the previous one, integrating the serious possibility that Russia's invasion of 

Ukraine will become a long war of attrition (Modern War Institute, 2022) with severe 

and prolonged consequences for the global economy.  

Given the emerging upward trends in grain prices (maize, wheat) due to Russia's 

invasion of Ukraine and uncertainty over the future of the Black Sea Grain Initiative 

(European Council, 2022), we assume a high grain price scenario for the period 2022-

26 combined with the provisions of CAP Post-2020 reform scenario described above. 

In particular, we consider the upper bound of the prediction intervals for durum wheat 

and maize prices provided by ARIMA model forecasts. 

3.  RESULTS 

3.1. Validation of the simulation model  

 

The validation results presented in Table 2 confirm the ability of both models to 

reproduce the evolution of activities allocation to at least a satisfactory level 

(Percentage Absolute Deviation (PAD index): 8.05-29.6%; Finger–Kreinin (FK) similarity 

index (FK index): 85.2-96%) according to the relevant literature17 (e.g., Gómez-Limón 

et al., 2016), providing a good representation of reality. However, the NV&QR model 

is significantly superior in the base year.  

Validations of the models on their ability to reproduce the actual farm size 

distribution and the actual number of farms are carried out for the year 2019 as it is 

the only year of observations available after the base year. In this context, both 

models simulate to at least a satisfactory level the evolution of farm size distributions 

(PAD index = 17.58%; FK index = 91.2%) and the number of viable farms (Absolute 

Percentage Error (APE) = 6.4%) 18  without revealing any difference in terms of 

 
17  Although there is no commonly accepted threshold in the international literature for these two 
indicators, Gómez-Limón et al. (2016) consider the values of PAD index = 33.2% and FK index = 83.4% 
satisfactory.  
18  Although there is no commonly accepted threshold for MAPE (Mean Absolute Percentage Error) in 
the international literature; however, some authors consider that a model is characterized by good 
forecasting accuracy (or goodness-of-fit) when MAPE (APE, in our case, due to a single year of 
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forecasting accuracy (see also Table 3). As can be seen, both models slightly 

overestimate the rate of structural change, that is, the percentage change in the 

number of surviving farms, in the reference period (Simulated: 39.6% (from 48 to 29 

farms) vs. Actual: 35.42% (from 48 to 31 farms)). Although both models are 

characterized by satisfactory forecasting accuracy, we will choose the best fitting 

model, the NV&QR Model, to assess the impact of policy and combined scenarios on 

structural change and land use change. 

Table 2. Actual and simulated land allocation 

Note: NQR model: Naïve and Quasi-Rational expectations Model; QR model: Quasi-Rational expectations Model 

Source: Authors, based on sample data. 

 

 

 

 

 

Table 3. Actual and simulated farm size distribution and number of farms 

 
observations available after the base year) does not exceed 20%, whereas when it does not exceed 10%, 
the forecasting accuracy is characterized as high or perfect (e.g., Quartey-Papafio 2021). 
 

 
Actual 

2012 

NV&QR 

Model 2012 

QR Model 

2012 

Actual  

2019 

NV&QR 

Model 2019 

QR 

 Model 2019 

Activity Area (ha) Area (ha) Area (ha) Area (ha) Area (ha) Area (ha) 

Cotton  467.9 454.36 365.48 305.1 296.52 266.15 

Tobacco (Virginia) 58.6 83.74 94.02 82 109.15 105.56 

Maize  27 11.82 11.82 27.15 14.83 48.95 

Processing Tomato  31 23.11 23.11 52 55.57 55.53 

Processing Pepper  30 25.66 37.06 68.8 70.95 71.33 

Alfalfa (hay) 66.5 63.75 68.43 96.6 101.7 10 

Alfalfa(seed production) - - - 58.5 45.47 45.47 

Durum Wheat 139 163.13 217.85 236.75 236.95 236.88 

Set-aside 27.2 21.62 29.41 17.9 13.81 14.89 

Total area (ha) 847.2 847.2 847.2 944.8 944.8 944.8 

 

PAD index (%) 

 

- 

 

11.6 

 

29.6 

 

- 

 

8.05                    

 

11.7 

FK index (%) - 94.2 85.2 -      96        94.15 

 
Actual 

 2019 

Actual  

2019 

 

NV&QR 

Model  

2019 

 

NV&QR 

Model  

2019 

QR Model 

2019 

QR Model 

2019 

Farm size class (ha) Farms (%) Farms (n) Farms (%) Farms (n) Farms (%) Farms (n) 

<10 22.57 7 13.79 4 13.79 4 

10-<30 45.15 14 48.27 14 48.27 14 

30-<50 12.9 4 13.79 4 13.79 4 

50-<100 16.12 5 17.24 5 17.24 5 
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Note: NV&QR model: Naïve and Quasi-Rational expectations Model; QR model: Quasi-Rational expectations 

Model. The determination of farm size classes is based on Happe et al. (2008), and Huettel & Margarian (2009). 

Source: Authors, based on sample data. 

 

3.2.  Forecasting models accuracy  

After estimating the best-fitting ARIMA models for the exogenously determined 

parameters of interest (i.e., costs, prices, crop yields, total arable land, total circulating 

capital, and interest rate), we measured their forecasting accuracy by in-sample 

forecasts according to the MAPE measure. Most ARIMA models are characterized by 

high forecasting accuracy; the MAPE does not exceed 10%, while the other models are 

characterized by good forecasting accuracy19 (e.g., Quartey-Papafio et al., 2021). A 

high forecasting accuracy also characterizes the utilized linear trend model for the 

rural households' living expenditure index (LEI).  

3.3.  Simulated structural change 

Figure 2 depicts the evolution of the number of viable/surviving farms and the 

average farm size over time20. The simulated number of farms decreases by 39.6% for 

the reference period 2012-19, while the average farm size increases from 17.65 

hectares to 32.58 hectares. As we can see, the process of structural change continues 

after 2019, when the simulation model forecasts a further reduction in the number of 

viable farms. According to the BAU scenario, for the period 2019-2026, a decrease in 

the number of farms by 41.4% and an increase in the average farm size from 32.58 

hectares to 62.76 hectares are foreseen. For the CAP Post-2020 reform and CAP Post-

2020 & LWA scenarios, the simulation model forecasts a comparatively higher rate of 

structural change. Specifically, for 2019-26 the number of farms decreases by 48.3%, 

and the average farm size increases from 32.58 hectares to 70.35 hectares. This 

simulation result almost coincides with the estimates of some farmers in the sample, 

who consider that by 2026 the studied farms will be reduced by 50% compared to 

 
19 For more details, see the Part F: ARIMA and linear trend models estimations in the supplementary 
material. 
20 The initial number of farms is normalized to 100. 

≥100 3.22 1 6.89 2 6.89 2 

       

Total number of sample 

farms (N) 
- 31 - 29 - 29 

APE (%)  - - 

 

- 

 

6.4 

 

- 

 

6.4 

PAD index (%) - - 17.58 - 17.58 - 

FK index (%) - - 91.2 - 91.2 - 
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2019 (when the most recent survey was conducted). Therefore, regardless of the 

scenario, the model predicts an increase in the rate of structural change compared to 

that simulated in the period 2012-19.  

 

Figure 2. Simulated number of farms and average farm size by scenario by 

Note: The provisions of the CAP Post-2020 scenario apply from the year 2023. 

Source: Authors, based on sample data. 

Examining the dynamics of structural change from the perspective of farm size 

distribution, we observe a decrease over time in the percentage of very small (farm 

size class: <10 hectares) and small farms (farm size class: 10-< 30 ha) (see Figure 3). A 

decline over time is also foreseen for the share of the farmland area of these farms. 

On the contrary, for the large (farm size class: 50-<100 ha), and very large farms (farm 

size class ≥100 ha), an increase in the shares of the farms and farmland area is 

foreseen. Medium-sized farms (farm size class: 30-<50 ha) show a weak upward trend 

in the share of farms and a weak downward trend in the share of farmland area. 

A very high concentration of farmland in very large farms (farm size class ≥100 

ha) is foreseen since, according to all examined scenarios, almost only 10% of farms 

will concentrate about 50% of the total farmland area. It is worth noting that the CAP 

Post-2020 and CAP Post-2020 & LWA scenarios (although they do not show substantial 

differences in the rate of structural change), compared to the BAU scenario, negatively 

impact the viability of small and very small farms. The above findings are in line with 

the estimates of the sample farmers who claim that in the region of Karditsa will 

gradually prevail, arable crop farms with a size of at least 30 hectares since such a farm 

size can ensure a decent standard of living for the rural household as well as growth 

prospects. 
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Figure 3. Share of farms and farmland area by farm size classes and scenario   

Note: The provisions of the CAP Post-2020 scenario apply from the year 2023. 

Source: Authors, based on sample data. 

 

Regarding the evolution of farm profitability, the simulation results depicted in 

Figure 4 reveal a gradual increase in the average Farm Net Profit after Tax (FNPAT) for 

all scenarios. This development can be considered reasonable since, through the 

structural change, the comparatively less profitable farms exit and release resources 

such as land, which the comparatively more profitable farms acquire. In this 

framework, surviving and consequently growing farms tend to make more efficient 

use of available resources, allocating them to comparatively more profitable 

productive activities, as we will see below. 
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Although there are no significant differences between the scenarios, in the last 

two years of the simulation (2025-26), a clear distinction is simulated in favor of the 

CAP Post-2020 and CAP Post-2020 & LWA scenarios, which is probably due to the 

higher rate of structural change. Further analyzing the evolution of average 

profitability by farm size class, the simulation results provided in Table 4 show an 

increase in profitability for farms with a size of at least 30 hectares, explaining the 

claim of the sample farmers that shortly the arable crop farms with a size of at least 

30 hectares will be able to remain in the production system. Even more, implementing 

the CAP Post-2020 and CAP Post-2020 & LWA scenarios is projected to enhance the 

profitability of these farms further. It is also worth noting that between these two 

scenarios, no substantial differences can be found in the evolution of profitability. 

 

 

 

Figure 4. Evolution of simulated average Farm Net Profit after Tax (FNPAT) by scenario 

Note: The provisions of the CAP Post-2020 scenario apply from the year 2023. 

Source: Authors, based on sample data. 

 

 

 

 

 

Table 4. Simulated mean Farm Net Profit after Tax (FNPAT) in EUR by farm size classes 

(2012-2026) 

 

Farm size class in ha 

(Characterization) 
2012 2019 

 

2026 (BAU 

scenario) 

 

2026 (CAP Post-

2020 scenario) 

 

 

2026 (CAP Post-

2020 & LWA 

scenario) 

<10 (Very Small) 18,156 13,706 12,196 - - 
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10-<30 (Small) 41,931 26,707 25,989 24,987 25,010 

30-<50 (Medium) 59,829 68,250 98,608 104,309 107,964 

50-<100 (Large) 110,370 69,918 115,803 122,013 126,539 

≥100 (Very Large) - 695,181 1.738,668 1.855,216 1.865,563 

Aggregate 39,526 84,644 271,183 323,692 327,622 

Note: The determination and characterization of farm size classes is based on Happe et al. (2008), and Huettel & 

Margarian (2009).  

Source: Authors, based on sample data.  

 

3.4.  Simulated land use change  

As regards the simulated land use change dynamics illustrated in Figure 5, the 

main change can be seen in the progressive expansion of the processing vegetable 

area and especially for processing pepper21. This finding thoroughly verifies farmers’ 

expectations for the further expansion of these crops. In particular, the processing 

pepper farmers of the sample state that their export activity will increase significantly 

in the coming years since they receive more than double commodity prices compared 

to domestic prices. Processing tomato farmers aspire to a significant expansion of 

their productive activity due to the positive growth prospects of the local tomato 

processing industry, as they also consider the role of the local group of processing 

tomato farmers to be particularly beneficial. An increasing trend in the processing 

vegetable area is simulated for both scenarios. Still, a more significant upward trend 

is simulated for the CAP Post-2020 reform scenario, possibly due to the increased rate 

of structural change leading to more efficient use of resources, in the sense that 

surviving farms tend to allocate farmland area to comparatively more profitable 

activities22.  

Conversely, we simulated a significant gradual decrease in the cotton and 

tobacco areas. In fact, for the CAP Post-2020 reform scenario, we observe a further 

reduction of the cotton and tobacco areas. Durum wheat area increases significantly 

over time for the BAU scenario, while for the CAP Post-2020 reform scenario, a 

decrease after 2022 is foreseen due to the set-aside applied by the vast majority of 

sample farms (more than 90%) in the context of eco-scheme payments. Based on this 

finding, we conclude that farms have a strong incentive to adopt eco-schemes since 

the majority exceed 10 hectares and, therefore, would be required to implement set-

aside on 4% of arable land without extra payment. In the CAP Post-2020 & LWA 

scenario, an expected increase is simulated for the area of the grain (durum wheat, 

maize), especially maize, due to the possible increase and maintenance of farm gate 

 
 
22 Details are provided in Table A1 in the Appendix. 
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prices at high levels due to the Ukrainian crisis. Accordingly, a further reduction in 

cotton and tobacco areas is simulated. 

     

         

Figure 5. Simulated arable land allocation by scenario 

Note: The provisions of the CAP Post-2020 reform scenario apply from the year 2023. 

Source: Authors, based on sample data. 

 

 

4.  DISCUSSION AND CONCLUSIONS 

Dynamic modeling methodologies are deemed crucial for comprehending the 

evolution of economic agents' behaviors in response to shifts in the economic 

 

(a) BAU scenario 

 

(b) CAP Post-2020 scenario 

 

(c)  CAP Post-2020 & LWA scenario 
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environment or policies (Gardebroek and Oude Lansink, 2008). Considering the 

volatile economic environment in which farms operate due to recent international 

developments, such assessments gain significant weight when using simulation 

models like the one we propose herein since they can support policy analysts in 

formulating and specifying the appropriate policy measures. 

In this context, this study described the conceptual framework of a newly 

developed farm-level recursive linear programming model primarily aiming at 

simulating the impact of policy reform on structural change in the arable production 

system of the region of Karditsa (NUTS-3 level), one of the central growing regions of 

arable crops in Greece. While managing to capture mainly endogenously the dynamics 

of structural change adaptation, the proposed simulation model can simultaneously 

be characterized by a comparatively low level of modeling complexity compared to 

other simulation models, such as agent-based models. 

From a general perspective, this paper seeks to contribute to the debate on 

dynamic assessments of the multidimensional effects in the context of the CAP Post-

2020 reform while considering recent geopolitical developments in the context of the 

Ukrainian crisis. 

Validation results demonstrate satisfactory performance of the simulation 

model in reproducing past changes. Therefore, we can use the model to assess the 

effects of various scenarios on the agricultural production system. By carrying out 

policy experiments for two different policy scenarios and a combined scenario (policy 

and geopolitical) we estimated an increased rate of structural change compared to 

the reference period (2012-19), and especially for the CAP Post-2020 and CAP Post-

2020 & Long War of Attrition (LWA) scenarios. The proposed model simulated an 

evident gradual concentration of farmland in relatively large farms (farm size ≥50 ha), 

accompanied by a decrease in the number of relatively small farms (farm size < 30 ha), 

making these findings consistent with the results obtained from simulation models 

(e.g., Happe et al., 2008; Bert et al., 2011; Donati et al., 2024) and other dynamic 

modeling approaches (Herrera et al., 2022; Schuh et al., 2022).  

Regardless of the examined scenario, the simulated average farm profitability 

shows a gradual increase, which is partly explained by the fact that relatively more 

profitable farms remain in the production system confirming previous findings 

obtained from simulation models (Happe et al., 2008; Bert et al., 2011) and other 

dynamic modeling approaches (Herrera et al., 2022; Schuh et al., 2022). Obviously, 

the surviving farms which achieve growth in equity tend to allocate their growing 

resources (such as farmland, circulating capital and fixed assets) more efficiently, i.e., 



 

30 
 

to relatively more profitable productive activities (in our case, processing vegetables), 

further enhancing average farm profitability (Bert et al., 2011). However, a downward 

trend is simulated for the average profitability of relatively small farms (farm size < 30 

ha).  

In terms of land use change dynamics, regardless of the scenario, our model 

simulated an increasing trend of the land allocated to food crops such as processing 

vegetables and a simultaneous decreasing trend of the farmland allocated to 

industrial crops such as cotton and tobacco. The rationale explains this result 

discussed earlier, namely that surviving farms tend to expand productive activities 

with comparatively higher profitability, a finding that is also consistent with findings 

obtained from a simulation model applied to the agricultural system of the Argentine 

Pampas (Bert et al., 2011). Additionally, Bert et al. (2011) consider that this behavior 

of the farms is interpreted by their survival strategy. Considering the above, it could 

be said that a correlation of land use change with structural change emerges, in the 

sense that the viability of farms is strongly dependent on the land use chosen (Bert et 

al., 2011) and is expressed through their survival strategy to allocate their farmland 

area and capital to the most profitable cropping activity gradually.  

Focusing on the paper's main finding – namely, the agricultural production 

concentration in relatively large farms (farm size ≥ 50 ha) – it is found that this has 

some significant policy implications. In particular, an intensifying continuation of 

pressures towards fewer but larger farms (i.e., an increasing rate of structural change) 

could lead to a breakdown of social cohesion, a prerequisite for addressing rural 

communities' challenges (Knutson et al., 1986). From this perspective, appropriate 

policy measures could focus, for example, on the enhancement of farmers' market 

access since small and medium-sized farms have issues accessing markets, achieving 

a proper share in the EU food chain, including value-added processing, and 

maintaining bargaining power (Schuh et al., 2022). In this vein, cooperatives are one 

way to improve farmers’ access to markets and strengthen bargaining power, 

primarily through vertical integration, which can often play a significant role in 

increasing the economic benefits of farmers (Schuh et al., 2022). Therefore, it is 

essential to prioritize examining exemplary cooperative practices and supporting the 

adoption of similar operational models through policy actions (Schuh et al., 2022). 

Even if essential insights were gained, this modeling exercise is characterized by 

several caveats, where we will focus on the main ones. First, although the proposed 

recursive linear programming model utilizes input data of representative individual 

real-world farms, effectively capturing the heterogeneity in farm structure and 
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replicating varied farm behavior, it does not explicitly capture the interaction between 

individual farms in the sense of not incorporating an endogenous price formation 

mechanism for the market of locally available resource like land (Berger, 2001; Troost 

and Berger, 2015; Kremmydas, 2019). Additionally, it does not fully consider spatial 

relationships, overlooking the imperfect land allocation among farms by disregarding 

internal transport costs and the physical immobility of land (Berger, 2001; Troost and 

Berger, 2015; Kremmydas, 2019). In this context, the determination of the regional 

level at which farms can be regarded as competitors for the farmland offered is left to 

the subjectivity of the modeler. Although administrative units are often used as a 

realistic approach (in our case, the regional unit of Karditsa (NUTS-3 level)), ideally, 

the regional level could be defined by the viewpoint of active farmers who operate 

the land (Plogmann et al., 2022). Consequently, these weaknesses of the proposed 

model limit its ability to fully capture interactions between farms and spatial dynamics, 

limiting its explanatory power in policy analysis. Especially, the model cannot provide 

detailed insights into the impacts of policy scenarios/options on farm structure due to 

their effects on local resource markets (Kremmydas, 2019). Furthermore, the 

incomplete incorporation of spatial dynamics curtails the model's explanatory 

capacity regarding policy effects on the environment, where spatial aspects hold 

considerable importance (Kremmydas, 2019). 

Second, although the proposed simulation model considers the differences in 

profits among neighboring farms cultivating different farmland areas in the base year, 

providing a reasonable representation of the farm growth process, it does not 

consider economies of scale in an intertemporal context. The capture of economies of 

scale at a longitudinal level by the proposed model was not carried out to maintain its 

computational complexity. However, a more detailed model that considers this 

dimension could enhance the representation of farm heterogeneity and, 

consequently, policy representation towards a more realistic framework. Therefore, 

future developments of the proposed simulation model could incorporate cost 

reductions as a function of farm expansion and/or technological progress (Happe et 

al., 2008; Bert et al., 2011). 

Third, due to the lack of farm-level data for the interim years of the reference 

period, we were forced to use the available national-level time series for parameters 

of interest to bridge the time series data gap at the farm level. However, various 

authors have highlighted and documented the statistical differences between 

regional/national and farm-level time series data associated with underestimation of 

variability (e.g., Debrah and Hall, 1989). In particular, aggregated data tends to 
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underestimate the variability of parameters such as prices and yields at the farm level 

(Debrah and Hall, 1989), which may lead to a less adequate representation of reality 

regarding farms' behavior and adaptation. 

This modeling exercise has identified many avenues for further research, 

highlighting only a few. First, the geographical and sectoral coverage should be 

expanded. Second, it is of particular importance to run simulations using alternative 

allocation/reallocation mechanisms of resources, such as relative shadow values of 

resources. Third, an interesting avenue for further research is to conduct an 

environmental impact assessment by utilizing mean- and effect-based indicators 

(Lebacq et al., 2013; Donati et al., 2024) but also to incorporate social indicators, 

allowing us to assess sustainability performance at the farm level (e.g., Lairez et al., 

2023). Finally, further research could be conducted on the investigation of farm 

viability using alternative monetary and socio-economic viability criteria.  

To conclude, although our modeling results may not represent all Greek regions, 

they may be particularly informative for trends that may emerge due to structural and 

land-use changes in rural areas with similar arable production systems, not only in the 

country but also in the wider Mediterranean area. 
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APPENDIX 

Table A1. Simulated average gross margin for each cropping activity (EUR/ha) 

 2012 2019 

Cotton  1,176 1,549 

Tobacco (Virginia) 4,750 4,757 

Maize  2,300 1,409 

Processing Tomato  6,370 4,863 

Processing Pepper  17,331 27,800 

Alfalfa (hay) 807.3 817.6 

Alfalfa (seed production) - 509.5 

Durum Wheat 258.2 207.3 

 Source: Authors, based on sample data. 
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SUPPLEMENTARY MATERIAL to “Simulating farm structural change dynamics in 

Thessaly (Greece) using a recursive programming model” 

Part A: Conceptual framework of ARIMA modeling 

 

The Box-Jenkins method for Autoregressive Integrated Moving Average (ARIMA) 

models is considered one of the most efficient time series forecasting methods 

utilizing almost any set of data (Christodoulos et al., 2010). In this framework, other 

authors consider that ARIMA models have been remarkably successful with an 

excellent performance on small data sets (Garnier, n.d.). According to various 

modelers, ARIMA models can provide acceptable results when at least 16-time series 

data points are available (Gottardi & Scarso, 1994; Christodoulos et al., 2010).  

An important class of stochastic models for describing time series are called 

stationary models or Autoregressive-Moving Average (ARMA) models varying about a 

fixed constant mean level and with constant variance (Box et al., 2016). 

An ARMA (𝑝, 𝑞) model is formulated as follows: 

 

𝑌𝑡 = ∑ 𝜑𝑖
𝑝
𝑖=1 𝑌𝑡−𝑖 + 𝜀𝑡 − ∑ 𝜃𝑗

𝑞
𝑗=1 𝜀𝑡−𝑗,         (A1) 

 

where φ1 .…, φp   are the autoregressive (AR) parameters to be estimated, θ1 ,…,θq  

are the moving average (MA) parameters to be estimated, and 𝜀1…𝜀𝑡  are a series of 

unknown random “shocks” (or residuals) that are assumed to follow a normal 

distribution (Pardoe, n.d.).  

The model can be simplified by introducing the Box-Jenkins backward shift 

operator23 where 𝐵𝑖𝑌𝑡=𝑌𝑡−𝑖 and  𝐵𝑗𝜀𝑡=𝜀𝑡−𝑗 ; 𝑌1 ,…,𝑌𝑡    is any time series  ;  p<t and q<t 

(Pardoe, n.d.). 

 

Substituting backward shift operators in equation (A1), we obtain the following 

form: 

 

(1 − ∑ 𝜑𝑖
𝑝
𝑖=1 𝐵𝑖)𝑌𝑡 = (1 − ∑ 𝜃𝑗

𝑞
𝑗=1 𝐵𝑗)𝜀𝑡  (A2) 

 

 

Which is often reduced further to (Pardoe, n.d.): 

 
23 The Backward shift operator is a useful notational device expressing the length of previous data the model uses 
to provide forecasts (Christodoulos et al., 2010). 
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𝜑𝑝(𝐵)𝑌𝑡=𝜃𝑞(𝐵)𝜀𝑡                                          (A3) 

 

Many series encountered in industry or business reveal nonstationary behavior 

24and do not vary about a fixed mean, showing a stochastic trend (Box et al., 2016). 

We should therefore convert a non-stationary time series to a stationary one by 

differencing the ARMA (𝑝, 𝑞) model.  

Then the ARMA (𝑝, 𝑞) model can be extended and written using differences 

  𝛥𝑌𝑡= (1 − 𝛣)𝑑𝑌𝑡 = ∇
𝑑𝑌𝑡  as follows: 

 

 

𝜑𝑝(𝐵)(1 − 𝛣)
𝑑𝑌𝑡=𝜃𝑞(𝐵)𝜀𝑡  (A4) 

 

 

where d is the order of differencing. Replacing in the ARMA model with the 

differences above, we obtain the formal ARIMA (𝑝, 𝑑, 𝑞) model (Pardoe, n.d.). 

To detect non-stationarities, we utilize one of the most well-known tests, which 

corresponds to the augmented Dickey-Fuller (ADF) test (Asteriou & Hall, 2007; Mahan 

et al., 2015; Box et al., 2016). The identification of possible model orders (𝑝, 𝑞) is 

approached through the utilization of Autocorrelation function (ACF) and Partial 

Autocorrelation function (PACF) plots (Mahan et al., 2015; Box et al., 2016; Garnier, 

n.d.) while trying to keep the model orders at low levels (≤ 2) for most of the estimated 

models (Gottardi & Scarso, 1994). After estimating several models, we test whether 

the condition of invertibility (Asteriou & Hall, 2007; Garnier, n.d.) and statistical 

significance of the AR and MA parts of the model are satisfied (Mossad & Alazba, 

2015). The estimated models are then compared according to the Akaike information 

criterion (AIC) by selecting the model with the lowest value (Mahan et al., 2015; Box 

et al., 2016; Garnier, n.d.).   

The diagnostic check of the model is then performed, which is applied to 

residuals to detect whether they exhibit autocorrelation, utilizing the Breusch-

Godfrey Lagrange Multiplier (LM) test (Mahan et al., 2015; Weyerstrass, 2016; Ayele 

et al., 2017). The null hypothesis of the LM test is that there is no autocorrelation in 

the residuals series up to the pre-determined lag order (p=2 in our analysis) at the 5% 

 
24 ARIMA modeling requires that the time series be stationary (Schaffer et al., 2021). A stationary series 
is characterized by three properties: a constant mean, constant variance, and constant covariance that 
depends only on the time intervals (Schaffer et al., 2021). Time series with trends or changing variance 
is non-stationary.  
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level of significance (Weyerstrass, 2016; Ayele et al., 2017). Regarding the 

measurement of the forecasting accuracy of ARIMA models, there is no universally 

preferred measure; however, according to various modelers (Gottardi and Scarso, 

1994; Christodoulos et al., 2010), particular emphasis is given to the measure of Mean 

Absolute Percentage Error (MAPE). At this point, we would like to point out that there 

is no commonly accepted threshold for MAPE in the international literature; however, 

some authors consider that a forecasting model is characterized by good forecasting 

accuracy (or goodness-of-fit) when MAPE does not exceed 20%, whereas when it does 

not exceed 10%, the forecasting accuracy is characterized as high or perfect (e.g., 

Quartey-Papafio et al., 2021). Estimates and statistical tests of ARIMA models were 

performed using EViews statistical package. 
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Part B: Structure of the model’s objective function and constraints 

The following describes the objective function's structure and the constraints 

typical to each sub-model. The objective function of the expected gross profit of the 

farm f in year t is defined as follows: 

 

Max 𝐸{𝛱𝑓,𝑡 } =  ∑  𝑋𝑇𝑓,𝑗,𝑡  [𝐸{𝑝𝑓,𝑗,𝑡  }  𝐸{𝑦𝑓,𝑗,𝑡  } − 𝑣𝑐𝑓,𝑗,𝑡 + 𝑙𝑠𝑗,𝑡  +
𝑛
𝑗=1

𝑒 𝑓,𝑡 𝑒𝑐𝑜𝑝1𝑓,𝑗,𝑡  + 𝜀 𝑓,𝑡 𝑒𝑐𝑜𝑝2𝑓,𝑗,𝑡  ] +

 𝐷𝑃𝑓,𝑡 𝐷𝐿𝑓,𝑡  +  𝑏𝑓,𝑡  𝑁𝑃𝑓,𝑡  𝑁𝐿𝑓,𝑡  +  𝛽𝑓,𝑡  𝑂𝑃𝑓,𝑡 𝑂𝐿𝑓,𝑡 +  𝑟 𝑓,𝑡 𝑅𝑃𝑓,𝑡   𝐴𝐿𝑓,𝑡   (B1) 
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Subject to: 

Arable land constraint 

 

∑ 𝑋𝑓,𝑗,𝑡 = 𝐴𝐿𝑓,𝑡
𝑛

𝑗=1
         , 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇,  j ∈ J                                (B2) 

 

Irrigated land constraint 

∑ 𝑋𝑓,𝑤𝑗,𝑡 ≤ 𝐼𝐿𝑓,𝑡
𝑛

𝑤𝑗=1
   , 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇 , wj ∈ WJ, WJ ⊆ J            (B3) 

 

Circulating capital constraint 

 

∑ 𝑋𝑓,𝑗,𝑡 𝑣𝑐𝑓,𝑗,𝑡 ≤ 𝐶𝑅𝐶𝑓,𝑡
𝑛

𝑗=1
   , 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇    ,  j ∈ J            (B4) 

 

 

                            𝑋𝑓,𝑗,𝑡   ≥ 0 , 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇                                  (B5) 

 

where   𝐸{   } denotes the expectation operator;  𝐸{𝛱𝑓,𝑡 } denotes the expected 

gross profit of the farm f which is maximized in year t ; 𝑋𝑓,𝑗,𝑡   is the  J x 1 vector of 

decision variables and denotes the level of cropping activity j (hectares for crops) of 

the farm f in year t;  𝐸{𝑝𝑓,𝑗,𝑡  } denotes the J x J diagonal matrix of expected price of 

the output from cropping activity j in EUR/kg of the farm f in year t; 𝐸{𝑦𝑓,𝑗,𝑡 } denotes 

the J x 1 vector of expected yield of cropping activity j in kg/ha of the farm f in year t; 

𝑣𝑐𝑓,𝑗,𝑡 is the J x 1 vector of variable cost of cropping activity j in EUR/ha of the farm f 

in year t25,     𝑙𝑠𝑖,𝑡   is the J x 1 vector of land subsidy of cropping activity j in EUR/ha in 

year t. 

 𝑒𝑐𝑜𝑝1𝑗,𝑡    is the J x 1 vector of potential eco-scheme payment of cropping 

activity j in EUR/ha of the farm f with a size of less than or equal to 10 hectares in year 

t under the CAP Post-2020 reform ; 𝑒𝑐𝑜𝑝2𝑓,𝑗,𝑡    is the J x 1 vector of potential eco-

 
25 where 𝑣𝑐𝑓,𝑗,𝑡 = 𝑖𝑐𝑓,𝑗,𝑡 + ℎ𝑙𝑐𝑓,𝑗,𝑡 +𝑚𝑟𝑐𝑓,𝑗,𝑡 ;  𝑖𝑐𝑓,𝑗,𝑡 denotes the input cost ic of cropping activity j in EUR/ha of the 

farm f in year t; ℎ𝑙𝑐𝑓,𝑗,𝑡  denotes the cost of hired labour hlc of cropping activity j in EUR/ha of the farm f in year t ; 

𝑚𝑟𝑐𝑓,𝑗,𝑡  denotes the machinery rental costs of cropping activity i in EUR/ha of the farm f in year t; 
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scheme payment of cropping activity j in EUR/ha in year t of the farm f with a size 

greater than 10 hectares in year t under the CAP Post-2020 reform26;  𝑒𝑓,𝑡  denotes the 

binary variable that corresponds to the farm f in year t and is equal to 1 when the farm 

adopts the eco-schemes27 and the size of the farm does not exceed 10 hectares, while 

it gets the value 0 when the farm does not adopt the eco-schemes or when it exceeds 

10 hectares;  𝜀𝑓,𝑡  denotes the binary variable that corresponds to the farm f in year t 

and is equal to 1 when the farm adopts the eco-schemes and the size of the farm 

exceeds 10 hectares , while it gets the value 0 when the farm does not adopt the eco-

schemes or when it does not exceed 10 hectares (obligations concerning eco-schemes 

adoption are explained in constraints (B9)-(B12)).  

   𝐷𝑃𝑓,𝑡  is the entitlement value of decoupled payments in EUR/ha of the farm f 

in year t; 𝐷𝐿𝑓,𝑡  is the eligible farmland area of decoupled payments in hectares of the 

farm f in year t;   𝑁𝑃𝑓,𝑡  is the agri-environmental payment in EUR/ha of the nitrate 

pollution reduction programme of the farm f in year t;  𝑁𝐿𝑓,𝑡  is the farmland area in 

hectares included in the nitrate pollution reduction programme of the farm f in year t;  

 𝑂𝑃𝑓,𝑡  is the agri-environmental payment in EUR/ha of the organic farming programme 

of the farm f in year t;  𝑂𝐿𝑓,𝑡  is the farmland area in hectares included in the organic 

farming program of the farm f in year t;  𝑏𝑓,𝑡   denotes the binary variable that 

corresponds to the farm f in year t, and is equal to 0 when the farm does not 

participate in the nitrate pollution reduction programme, while it gets the value 1 

when it participates28;  𝛽𝑓,𝑡  denotes the binary variable that corresponds to the farm 

f in year t and is equal to 0 when the farm does not participate in the organic farming 

programme, while it gets the value 1 when it participates29 . In addition, when the 

binary variable  𝑏𝑓,𝑡  takes the value 1, the binary value  𝛽𝑓,𝑡 will take the value 0 and 

vice versa, indicating that a farm cannot simultaneously participate in the two different 

agri-environmental measures of pillar B of the Common Agricultural Policy 30 

 
26 The provisions concerning the voluntary measures of eco-schemes are included in the Greek Strategic Plan 
proposal for the CAP 2023-2027 (https://ead.gr/wp-content/uploads/2022/01/cap_sp_proposal_30_12_2021.pdf).  
 
27 To determine which farms are likely to adopt the eco-schemes (based only on economic criteria) for 2023-26, we 

estimate the average annual difference in the optimal farm net profit after tax (FNPAT*) for each farm due to 

adopting the eco-schemes. Therefore, the farm will adopt the eco-schemes if this annual average difference is 

positive. 

28 A farm's participation in the nitrate pollution reduction programme (Agri-Environmental measure of the Rural 
Development Programme) is determined through a priori information provided from sample farms. 
29 A farm's participation in the organic farming programme (Agri-Environmental measure of the Rural Development 
Programme) is determined through a priori information provided from sample farms. 
30 Of course, it may be true that  𝑏𝑓,𝑡  =  𝛽𝑓,𝑡 = 0, which indicates the non-mandatory nature of the specific agri-

environmental policy measures. 

https://ead.gr/wp-content/uploads/2022/01/cap_sp_proposal_30_12_2021.pdf
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(obligations concerning agri-environmental measures are explained in constraints 

(B13)-(B16)). 

  𝑟𝑓,𝑡  denotes the binary variable that corresponds to the farm f in year t, and is 

equal to 0 when the size of the farm exceeds 11 hectares or when it is less than 2 

hectares ; 𝑅𝑃𝑓,𝑡   is the redistributive payment in EUR/ha of the farm f in year t under 

the CAP Post-2020 reform;  𝐴𝐿𝑓,𝑡  is the available arable land in hectares of the farm f 

in year t; J is the set of potential activities31 ; 𝑋𝑓,𝑤𝑗,𝑡  𝑖𝑠 the level of irrigated cropping 

activity wj in hectares of the farm f in year t; WJ is the set of potential irrigated 

activities32   𝐼𝐿𝑓,𝑡   is the available irrigated land in hectares of the farm f in year t 

; 𝐶𝑅𝐶𝑓,𝑡  is the total available circulating capital in EUR of the farm f in year t. 

 

The remaining constraints are specific to the farm and correspond to policy and 

flexibility constraints:  

 

2013 CAP reform constraints (greening obligations) 

Crop diversification obligation for farm f with total available arable land 

(𝐴𝐿 𝑓,𝑡)> 10 hectares: 

𝑋𝑓,𝑗,𝑡   ℎ𝑓,𝑡 ≤  ℎ𝑓,𝑡 0.75 𝐴𝐿 𝑓,𝑡                                                              for 𝑡 = 2015,… , 𝑇                                                                                

(B6) 

where ℎ𝑓,𝑡  denotes the binary variable that corresponds to the farm f in year t, 

and is equal to 0 when the available arable land (𝐴𝐿 𝑓,𝑡) ≤ 10 hectares, while it gets 

the value 1 when the available arable land (𝐴𝐿 𝑓,𝑡) > 10 hectares. 

Ecologic focus area obligation for farms f with total available arable land 

(𝐴𝐿 𝑓,𝑡) > 15 hectares: 

0.7⟦∑  𝑛
𝑙𝑔𝑗=1 𝑋𝑓,𝑙𝑔𝑗,𝑡⟧ + 𝑋𝑓,𝑠𝑡,𝑡  ≥  𝑔𝑓,𝑡 0.05 𝐴𝐿 𝑓,𝑡        for 𝑡 = 2015,… , 𝑇, lgj ∈ LGJ, LGJ ⊆ J                                                                                          

(B7) 

where   𝑋𝑓,𝑙𝑔𝑗,𝑡  𝑖𝑠 the level of legume crops (lgj) in hectares of the farm f in year 

t; 𝐿𝐺𝐽= {alfalfa-hay (aa); alfalfa-seed (aasd)};   𝑔𝑓,𝑡  denotes the binary variable that 

corresponds to the farm f in year t, and is equal to 0 when the available arable land 

 
31 where J= {cotton(ct); tobacco(tb); maize(mz); pr. tomato(pt); pr. pepper(pp); alfalfa(aa); alfalfa-
seed(aasd); durum wheat(dw); set-aside(st)}, if  𝑏𝑓,𝑡 = 0  then st ∉ J 
32 where  𝑊𝐽= {cotton(ct); tobacco(tb); maize(mz); pr. tomato(pt); pr. pepper(pp); alfalfa(aa); alfalfa-seed 
(aasd} 
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(𝐴𝐿 𝑓,𝑡) ≤  15 hectares, while it gets the value 1 when the available arable land 

(𝐴𝐿 𝑓,𝑡) > 15 hectares. 

 

Crop diversification obligation for farm f with total available arable land 

(𝐴𝐿 𝑓,𝑡) > 30 hectares: 

[ 𝑋𝑓,𝐿1𝑗 ,𝑡     
∗ +  𝑋𝑓,𝐿2 𝑗 ,𝑡     

∗] 𝑢𝑓,𝑡 ≤  𝑢𝑓,𝑡  0.95  𝐴𝐿 𝑓,𝑡         for 𝑡 = 2015,… , 𝑇 ,  L1 j ∈ J,  L2 j ∈ J                                                                        

(B8) 

where    𝑋𝑓,𝐿1𝑗 ,𝑡     
∗  𝑖𝑠 the optimal level of cropping activity in hectares, to which 

the largest share (L1 j) of the available arable land (𝐴𝐿 𝑓,𝑡)  of farm f in year t is 

allocated;   𝑋𝑓,𝐿2 𝑗 ,𝑡     
∗ 𝑖𝑠 the optimal level of cropping activity in hectares, to which 

the second largest share (L2 j) of the available arable land (𝐴𝐿 𝑓,𝑡) of farm f in year t is 

allocated;  𝑢𝑓,𝑡  denotes the binary variable that corresponds to the farm f in year t, 

and is equal to 0 when the available arable land (𝐴𝐿 𝑓,𝑡) ≤ 30 hectares, while it gets 

the value 1 when the available arable land (𝐴𝐿 𝑓,𝑡) > 30 hectares. 

 

CAP Post-2020 reform scenario constraints 

Crop diversification obligation for farm f with total available arable land 

(𝐴𝐿 𝑓,𝑡)> 10 hectares: 

𝑋𝑓,𝑗,𝑡  ≤  ℎ𝑓,𝑡 0.75 𝐴𝐿 𝑓,𝑡  ,     𝑡 = 2023,… , 𝑇, j ∈ J                                                                                                     

(B9) 

 

CAP Post-2020 reform scenario constraints- (adoption of eco-schemes)  

Eco-schemes adoption: Extension of EFA application by farm f with total 

available arable land (𝐴𝐿 𝑓,𝑡)  ≤ 10 hectares: 

𝑋𝑓,𝑠𝑡,𝑡 = 𝑒 𝑓,𝑡 0.05 𝐴𝐿 𝑓,𝑡 ,  𝑡 = 2023,… , 𝑇, st ∈ J    

(B10)  

Eco-schemes adoption: Extension of EFA application by farm f with total 

available arable land (𝐴𝐿 𝑓,𝑡)> 10 hectares: 

𝑋𝑓,𝑠𝑡,𝑡 = 𝜀 𝑓,𝑡 0.1 𝐴𝐿 𝑓,𝑡,    𝑡 = 2023,… , 𝑇, st ∈ J 
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 (B11) 

CAP Post-2020 reform scenario constraints- (non-adoption of eco-schemes)  

 

EFA application by farm f with total available arable land (𝐴𝐿 𝑓,𝑡)> 10 hectares: 

𝑋𝑓,𝑠𝑡,𝑡 = 𝜀 𝑓,𝑡 0.04 𝐴𝐿 𝑓,𝑡,    𝑡 = 2023,… , 𝑇, st ∈ J 

 (B12) 

 

Nitrate pollution reduction program constraints (Agri-Environmental measure of the 

Rural Development Programme): 

∑ 𝑋𝑓,𝑛𝑤𝑗,𝑡  𝑏𝑓,𝑡 ≥  𝑏𝑓,𝑡 0.75 𝑁𝐿𝑓,𝑡
𝑛

𝑛𝑤𝑗=1
 , for    𝑡 = 1,… , 𝑇 , nwj ∈ NWJ ,  NWJ ⊆  J             

(B13) 

where  𝑋𝑓,𝑛𝑤𝑗,𝑡  𝑖𝑠 the level of irrigated cropping activity included in the nitrate 

pollution reduction program (nwj) in hectares of the farm f in year t; 𝑁𝑊𝐽= {cotton(ct); 

maize(mz); pr. tomato(pt); pr. pepper(pp) } 

 

∑ 𝑋𝑓,𝑛𝑑𝑗,𝑡 ≥  𝑏𝑓,𝑡 0.2 𝑁𝐿𝑓,𝑡
𝑛

𝑛𝑑𝑗=1
  , for    𝑡 = 1,… , 𝑇 , ndj ∈ NDJ,   NDJ ⊆  J               

(B14) 

where  𝑋𝑓,𝑛𝑑𝑗,𝑡  𝑖𝑠  the level of non-irrigated cropping activity included in the 

nitrate pollution reduction program (ndj) in hectares of the farm f in year t; 𝑁𝐷𝐽 = 

{durum wheat (dw)} 

 

𝑋𝑓,𝑠𝑡,𝑡  ≥  𝑏𝑓,𝑡 0.05 𝑁𝐿𝑓,𝑡   , for    𝑡 = 1,… , 𝑇 , st ∈ Ι               

(B15) 

where  𝑋𝑓,𝑠𝑡,𝑡  𝑖𝑠  the level of set-aside (st) included in the nitrate pollution 

reduction program (hectares) of the farm f in year t. 

We want to point out that from the year 2018 onwards, the vast majority of 

sample farms implemented the nitrate pollution reduction program as follows: the 
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share of 0.75 of constraint (B13) was set to 0.7; the share of 0.2 of constraint (B14) 

was set to 0.3, and the share of 0.05 of constraint (B15) was set to 0. 

 

Organic farming program constraint (Agri-Environmental measure of the Rural 

Development Programme): 

∑ 𝑋𝑓,𝑜𝑟𝑗,𝑡 ≥ 𝑂𝐿𝑜𝑟𝑔𝑓,𝑡
𝑛

𝑜𝑟𝑗=1
 𝛽𝑓,𝑡  ,for 𝑡 = 1,… , 𝑇,  orj ∈ ORJ ,  ORJ ⊆ J              

(B16) 

where  𝑋𝑓,𝑜𝑟𝑗,𝑡  𝑖𝑠 the level of organic cropping activity included in the organic 

farming program (orj) in hectares of the farm f in year t; 𝑂𝑅𝐽= {alfalfa (aa)}. 

Flexibility constraint of multiannual contract farming 

 

0.85 𝐶𝐿 𝑓,𝑡  𝑐𝑓,𝑡 ≤ 𝑋𝑓,𝑎𝑎𝑠𝑑,𝑡  𝑐𝑓,𝑡 ≤ 1.15 𝐶𝐿 𝑓,𝑡 𝑐𝑓,𝑡                            for 𝑡 = 2015,… , 𝑇,  aasd ∈ Ι 

           (B17) 

where  𝑋𝑓,𝑎𝑎𝑠𝑑,𝑡  𝑖𝑠 the level of alfalfa-seed (aasd) in hectares of the farm f in 

year t;  𝐶𝐿𝑓,𝑡  is the available land of the farm f in year t included in the multiannual 

contract farming program;   𝑐𝑓,𝑡  denotes the binary variable that corresponds to the 

farm f in year t, and is equal to 0 when the farm does not participate in the program 

of multiannual contract farming , while it gets the value 1 when it participates. 

 

Part C: Land rental costs/land rental income estimation 

 

As mentioned in the main text, land is reallocated only on a rental basis through 

farmland rental arrangements between tenants and landowners. LaPorte et al. (2020) 

state that “the most popular and frequently used farmland rental arrangement is a 

fixed cash rent agreement, where the landowner receives a predetermined fee to be 

paid by the tenant regardless of agricultural commodity price or crop yield” (p. 1). This 

type of landowners’ rental agreement is also maintained for the case under 

consideration, where the farmers pay after harvesting and selling the agricultural 

commodities in the market. The following is an estimate of land rental costs for each 

year after the initial one, where 𝐿𝑅𝐶 𝑣𝑓,𝑛𝑏𝑓,𝑡  are the land rental costs of viable 

neighboring farm in year t; 𝑅𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1  is the rented land of viable neighboring farm 

in year t-1; 𝐿𝑅𝐼𝑡  is the land rental price index in year t;   𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡=1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average 
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land rental price per land unit (EUR/ha) in base year (t=1) applicable to the region 

where the neighboring farms operate;  𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the average land rental price per 

land unit (EUR/ha) in year t applicable to the region where the neighboring farms 

operate;     𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1  is the simulated share of arable land reallocated to viable 

neighboring farm at the end of the year t-1, that is, following the annual optimization; 

  ∑ ∑ 𝐴𝐿𝑛𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑁𝑉𝐹
𝑛𝑣𝑓=1  is the simulated aggregate arable land of non-viable 

neighboring farms at the end of the year t-1, that is, following the annual optimization; 

𝑇𝐴𝐿𝑁𝐵𝐹,𝑡  is the actual total arable land of neighboring farms in year t; 𝛵𝐴𝐿𝑁𝐵𝐹,𝑡−1  is 

the actual total arable land of neighboring farms in year t-1;  𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡  is the available 

arable land of viable neighboring farm in year t. 

𝐿𝑅𝐶 𝑣𝑓,𝑛𝑏𝑓,𝑡 =  𝑅𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1  
  𝐿𝑅𝐼𝑡    𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡=1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⏟            

 𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+  𝐿𝑅𝐼𝑡    𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡=1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⏟            
 𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

   𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1   [ ∑ ∑ 𝐴𝐿𝑛𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚

𝑁𝐵𝐹

𝑛𝑏𝑓=1

𝑁𝑉𝐹

𝑛𝑣𝑓=1

  

+ (𝑇𝐴𝐿𝑁𝐵𝐹,𝑡 − 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡−1 ) ] 

for t=2…T, 𝑅𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡  ⊆ 𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡                                                                                           

(C1) 

The average land rental price (applicable to the region where the neighboring 

farms operate)  ( 𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) was used as a single land rental price for all farms to 

simplify the modeling process, considering that the observed differences in payable 

land rental prices between farms are negligible. Since the land rental price is 

exogenously determined in this model version33, updating its variance for each year 

after the base year is conducted using the land rental price index  (𝐿𝑅𝐼𝑡 ) (ELSTAT, 

2019b). Additionally, we must mention that product 𝑅𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1  𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   indicates 

that land rental prices are renegotiated every cropping cycle. 

To simplify the presentation of the estimation of land rental costs on an annual 

basis, we did not separate the land into irrigated and non-irrigated. It is worth 

mentioning that the average land rental price of non-irrigated land is about 50% lower.  

To make post-sample forecasts in the medium term, the exogenously identified 

average land rental price per land unit  (  𝐿𝑅𝑃 𝑁𝐵𝐹,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ) is estimated through ARIMA 

stochastic process.  

 
33 Following similar simulation models (Bert et al., 2011; Djanibekov & Finger, 2018; Donati et al., 2024), the land 
rental price is exogenous in the suggested model. Unfortunately, this version of the model does not fully consider 
the interaction between farms and the spatial relationships to include a land rental market with the endogenous 
formation of the rental price through an auction mechanism (Bert et al., 2011) as it is usually applied in agent-based 
models. However, land rental price endogeneity could be approximated to some extent through shadow values, for 
example, using the distribution of shadow value for the land of viable farms based on the exogenously determined 
land rental price, but this aspect requires further investigation. 
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Although rare in our analysis, there is the case of viable farms that rent out part 

of owned land because the estimated reduction of the land attributed to them due to 

exogenous reasons 34  [ 𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
−1

  ( 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡 − 𝑇𝐴𝐿𝑁𝐵𝐹,𝑡−1 )   exceeds (i) the 

previous year rented land (𝑅𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1 )  and (ii) the land that accumulated 

endogenously, i.e., the released land available for rent, derived from non-viable 

neighboring farms  [𝛺𝑠𝑖𝑚𝐴𝐿𝑣𝑓,𝑛𝑏𝑓,𝑡−1   (∑ ∑ 𝐴𝐿𝑛𝑣𝑓,𝑛𝑏𝑓,𝑡−1 
𝑠𝑖𝑚𝑁𝐵𝐹

𝑛𝑏𝑓=1
𝑁𝑉𝐹
𝑛𝑣𝑓=1 )] .  

In this case, land rental costs are negative (𝐿𝑅𝐶 𝑣𝑓,𝑛𝑏𝑓,𝑡 < 0), equal to land rental 

income for the viable neighboring farm (𝐿𝑅𝐼𝑁𝐶 𝑣𝑓,𝑛𝑏𝑓,𝑡 > 0).  Consequently, the 

equation 𝐹𝑁𝑃𝐴𝑇∗𝑓,𝑡  =  𝛱∗𝑓,𝑡 − (𝐷𝐸𝑃𝑓,𝑡 +  𝐿𝑅𝐶𝑓,𝑡 + 𝑆𝐹𝑁𝐶𝑓,𝑡 +  𝐿𝐹𝑁𝐶𝑓,𝑡  + 𝑆𝐼𝐶𝑓,𝑡 + 𝐹𝑃𝑇𝑋𝑓,𝑡  )  (5) 

(in section 2.3.3.Determining farm viability of the main text) is adapted as follows: 

 

 𝐹𝑁𝑃𝐴𝑇∗𝑓,𝑡  =  (𝛱∗𝑓,𝑡 +  𝐿𝑅𝐼𝑁𝐶𝑓,𝑡 ) − (𝐷𝐸𝑃𝑓,𝑡 + 𝑆𝐹𝑁𝐶𝑓,𝑡 +  𝐿𝐹𝑁𝐶𝑓,𝑡  + 𝑆𝐼𝐶𝑓,𝑡 + 𝐹𝑃𝑇𝑋𝑓,𝑡  ) 

(C2) 

 indicating that a farm cannot simultaneously rent in and rent out farmland, a 

condition we also find in similar simulation models (e.g., Donati et al., 2024). 
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Part D: Borrowed capital & finance costs estimations 

D1. Borrowed circulating capital & short-term finance costs estimations 

Farm growth in equity is the surplus income available to put back into the 

business by either purchasing assets or debt repayment (Hofstrand, 2009; Bert et al., 

2011; GRDC, 2015). Therefore, the current level of short-term borrowing will be 

determined by the optimal farm growth in equity of the year t-1 minus the sum of the 

existing debt and the required circulating capital of the current year. More specifically, 

if the optimal farm growth in equity of the previous year is enough to serve: 1) the 

scheduled principal repayment of existing debt of farm f in year t-1  (𝐷𝑃𝑅𝑃𝑓,𝑡−1) which 

consists of (i) the borrowed circulating capital of farm f ( 𝐵𝐶𝑅𝐶𝑓,𝑡 ) to be repaid within 

the same year received and (ii) the borrowed investment capital of farm f (𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 ) 

to be repaid within a predetermined duration of years ( 𝑇𝐿  )
35   2) and the required 

circulating capital of farm f of the current year (𝐶𝑅𝐶𝑓,𝑡 ), then the farm f will not take 

out a short-term loan, otherwise the farm will be led to short-term borrowing. The 

mathematical formulation of the condition is as follows: 

 

 

 
35 We assume an equal annual repayment which corresponds to the ratio 

 𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 

 𝑇𝐿  
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 𝐵𝐶𝑅𝐶𝑓,𝑡 = {
0, 𝑖𝑓  𝐹𝐺𝐸∗𝑓,𝑡−1   −  𝐷𝑃𝑅𝑃𝑓,𝑡−1 −𝐶𝑅𝐶𝑓,𝑡 ≥ 0

> 0, 𝑖𝑓  𝐹𝐺𝐸∗𝑓,𝑡−1   −  𝐷𝑃𝑅𝑃𝑓,𝑡−1+𝑗 −𝐶𝑅𝐶𝑓,𝑡 < 0
               

 

for t=2…T 

(D1) 

 

where   𝐵𝐶𝑅𝐶𝑓,𝑡  is the borrowed circulating capital of farm f in year t; 

 𝐷𝑃𝑅𝑃𝑓,𝑡−1  is the principal repayment of existing debt of farm f in year t-1. 

In the case of a short-term loan, the level of borrowed circulating capital will be 

calculated as follows: 

 𝐵𝐶𝑅𝐶𝑓,𝑡 =  (𝐶𝑅𝐶𝑓,𝑡 +  𝐷𝑅𝑃𝑀𝑓,𝑡−1) −  𝐹𝐺𝐸
∗
𝑓,𝑡−1       (D2) 

 

 

Respectively the short-term finance costs will be estimated as follows: 

 

  𝑆𝐹𝑁𝐶𝑓,𝑡 = 𝐵𝐶𝑅𝐶𝑓,𝑡   𝑆𝐼𝑅𝑓,𝑡                                                 (D3) 

 

 

where  𝑆𝐹𝑁𝐶𝑓,𝑡  are the short-term finance costs of farm f in year t and  𝑆𝐼𝑅𝑡  is 

the short-term interest rate in year t. According to the Greek banking system, the 

short-term interest rate is based on the BFR (Basic Rate for Farmers). 

 

D2. Borrowed investment capital & long-term finance costs estimations 

Farm growth in equity is the surplus income available to put back into the 

business by either purchasing assets or debt repayment (Hofstrand, 2009; Bert et al., 

2011; GRDC, 2015), and hence the current level of long-term borrowing will be 

partially determined by the optimal farm growth in equity. Therefore, the following 

conditions determine the need or not for borrowed investment capital in year t 

( 𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 ): 

 𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 = {
0, 𝑖𝑓  𝐹𝐺𝐸∗𝑓,𝑡−1  +  𝐷𝐸𝑃𝑓,𝑡−1−𝐷𝑃𝑅𝑃𝑓,𝑡−1 −𝐶𝑅𝐶𝑓,𝑡 −𝐼𝑓,𝑡 ≥ 0

> 0, 𝑖𝑓  𝐹𝐺𝐸∗𝑓,𝑡−1 +  𝐷𝐸𝑃𝑓,𝑡−1 −  𝐷𝑃𝑅𝑃𝑓,𝑡−1 −𝐶𝑅𝐶𝑓,𝑡 −𝐼𝑓,𝑡 < 0
  

for t=2…T     

(D4) 
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In case the sum of optimal farm growth in equity of year t-1  (𝐹𝐺𝐸∗
𝑓,𝑡−1

 ) and 

depreciation of year t-1 (  𝐷𝐸𝑃𝑓,𝑡−1 )   exceeds the sum of scheduled principal 

repayment of existing debt  in year t-1  (𝐷𝑃𝑅𝑃𝑓,𝑡−1) , the required level of circulating 

capital of year t  𝐶𝑅𝐶𝑓,𝑡  and the required gross investment on fixed assets in year t 

(𝐼𝑓,𝑡 ), then the farm will not take out a long-term loan. Alternatively, the farm will 

have to take out a long-term loan. 

In the case of a long-term loan, the level of borrowed investment capital 

( 𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 )  will be calculated as follows: 

 𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 =  (𝐶𝑅𝐶𝑓,𝑡 +  𝐷𝑅𝑃𝑀𝑓,𝑡−1 + 𝐼𝑓,𝑡 ) −  (𝐹𝐺𝐸
∗
𝑓,𝑡−1

+  𝐷𝐸𝑃𝑓,𝑡−1)  (D5) 

 

Respectively the long-term finance costs will be estimated as follows: 

 

  𝐿𝐹𝑁𝐶𝑓,𝑡 = 
 𝐵𝐼𝑁𝑉𝐶𝑓,𝑡 

 𝑇𝐿  
  𝐿𝐼𝑅𝑡                                               (D6) 

 

where  𝐿𝐹𝑁𝐶𝑓,𝑡  are the long-term finance costs of farm f in year t and  𝐿𝐼𝑅𝑡  is 

the long-term interest rate in year t. Based on literature (DAFWA, 2014), we consider 

that the repayment duration of borrowed investment capital  (𝑇𝐿 ) should be equal to 

15 years. The long-term interest rate is based on the BFR (Basic Rate for Farmers) 

according to the Greek banking system. 
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Part E: Historical dataset and forecasting method of exogenously determined 

parameters  

Table E1. Data sources of times series and forecasting method of exogenously 

determined farm model parameters  

Farm model parameter of 

interest 

              Range Data source Forecasting method 

Hired labor costs (𝒉𝒍𝒄𝒇,𝒋,𝒕) [2001-2018 ] ELSTAT (2019b) ARIMA model 

Input costs  (𝒊𝒄𝒇,𝒋,𝒕) [2000-2019 ] ELSTAT (2019c) ARIMA model 

Machinery rental costs ( 𝒎𝒓𝒄𝒇,𝒋,𝒕) [2000-2019 ] ELSTAT (2019b) ARIMA model 

Land rental price ( 𝑳𝑹𝑷 𝑵𝑩𝑭,𝒕̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) [2000-2018 ] ELSTAT (2019b) ARIMA model 

Interest rate  ( 𝑺𝑰𝑹𝒕 ; 𝑳𝑰𝑹𝒕 ) [2000-2020 ] ELSTAT (2019b) ARIMA model 

Cotton yield ( 𝒚𝒇,𝒄𝒕,𝒕  ) [1961-2017 ] Greek Ministry of Rural 

Development and Food; 

ARIMA model 

D. wheat yield ( 𝒚𝒇,𝒅𝒘,𝒕  ) [1961-2017 ] Greek Ministry of Rural 

Development and Food; Greek 

Ministry of Rural Development 

and Food (2019) 

ARIMA model 

Tobacco yield ( 𝒚𝒇,𝒕𝒃,𝒕  ) [1979-2017 ] Greek Ministry of Rural 

Development and Food; Greek 

Ministry of Rural Development 

and Food (2019) 

ARIMA model 

Pepper yield ( 𝒚𝒇,𝒑𝒑,𝒕  ) [1961-2007 ] Greek Ministry of Rural 

Development and Food 

ARIMA model 

Tomato yield ( 𝒚𝒇,𝒑𝒕𝒎,𝒕  ) [1961-2007 ] Greek Ministry of Rural 

Development and Food 

ARIMA model 

Legumes crops yield ( 

𝒚𝒇,𝒂𝒂𝒔𝒅,𝒕   ; 𝒚𝒇,𝒂𝒂,𝒕  ) 

[2000-2017 ] Greek Ministry of Rural 

Development and Food (2019) 

ARIMA model 

Maize yield ( 𝒚𝒇,𝒎𝒛,𝒕  ) [1981-2017 ] Greek Ministry of Rural 

Development and Food; Greek 

Ministry of Rural Development 

and Food (2019) 

ARIMA model 

Cotton price ( 𝒑𝒇,𝒄𝒕,𝒕  ) [2000-2019 ] ELSTAT (2019c) ARIMA model 

D. wheat price ( 𝒑𝒇,𝒅𝒘,𝒕  ) [2000-2019 ] ELSTAT (2019c) ARIMA model 

Legume crops price ( 

𝒑𝒇,𝒂𝒂𝒔𝒅,𝒕   ; 𝒑𝒇,𝒂𝒂,𝒕  ) 

[2000-2019 ] ELSTAT (2019c) ARIMA model 

Maize price ( 𝒑𝒇,𝒎𝒛,𝒕  ) [2000-2019 ] ELSTAT (2019c) ARIMA model 

Total arable land (𝑻𝑨𝑳𝑵𝑩𝑭,𝒕 ) [2004-2019 ] FADN Public Database* ARIMA model 
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Total circulating capital  

(𝑻𝑪𝑹𝑪𝑵𝑩𝑭,𝒕 ) 

[2004-2019 ] FADN Public Database* ARIMA model 

Living expenditures  (𝑳𝑬𝒇,𝒕 )              [2008-2020 ] ELSTAT (2021) Linear trend model 

Notes: * The available Farm Accountancy Data Network (FADN) time series were filtered to include Greek farms specialized in 

“Other fieldcrops” (according to the TF14 classification of FADN), utilizing the parameters of Arable land (SE026) and Other 

circulating capital (SE480), which were multiplied by the parameter Farms represented (SYS02) to obtain values at an aggregate 

level. Source: ELSTAT (2019b), ELSTAT (2019c), ELSTAT (2021), FADN Public Database, Greek Ministry of Rural 

Development and Food, Greek Ministry of Rural Development and Food (2019). 
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Part F: ARIMA and linear trend models estimations 

 

Table F1. ARIMA models of exogenously determined parameters of interest 

Εxogenously 

determined 

parameter of 

farm model 

(𝒀𝒕 ) 

Time 

series 

data 

points 

[period] 

ARIMA 

Model 

(𝒑, 𝒅, 𝒒) 

Φ1 Φ2 Φ3 Θ1 Θ2 Θ3 μ MAPE 

(%) 

AIC Augmented 

Dickey-Fuller 

t-Statistic  

Breusch-Godfrey 

Serial Correlation 

LM Test 

 [Prob. X2 (p)] 

Hired labor 

price index 

19 

[2001-

2018 ] 

(2,0,1) 1.64*** 

(0.05) 

-0.82*** 

(0.04) 

- -0.99*** 

(0.09) 

- - 92.79*** 

(0.59) 

0.95 3.84 -3.55* 

 

Prob. X2 (2)=0.059 

Input price 

index 

20 

[2000-

2019 ] 

(1,1,1) 0.87*** 

(0.06) 

- - -0.99*** 

(0.12) 

- - - 3.78 6.19 -4.29** 

 

Prob. X2 (2)=0.44 

Machinery 

rental price 

index 

20 

[2000-

2019 ] 

(0,2,1) - - - -0.50** 

(0.21) 

- - - 1.29 4.09 -7.00*** 

 

Prob. X2 (2)=0.92 

Land rental 

price index 

19 

[2000-

2018 ] 

(1,0,1) 0.53** 

(0.20) 

- - 0.99*** 

(0.06) 

- - 99.05*** 

(1.57) 

1.05 3.76 -4.01** 

 

Prob. X2 (2)=0.40 

Interest rate 

index 

21 

[2000-

2020 ] 

(0,2,1) - - - -0.91*** 

(0.07) 

- - - 

 

5.51 6.49 -6.92*** Prob. X2 (2)=0.99 

Cotton yield 

(Kg/Ha) 

57 

[1961-

2017 ] 

(1,0,1) 0.92*** 

(0.01) 

- - -0.97*** 

(0.03) 

- - 299.23*** 

(5.36) 

7.55 9.21 -4.21*** 

 

Prob.X2 (2)=0.54 

D. wheat 

yield 

(Kg/ 0.1 Ha) 

57 

[1961-

2017 ] 

(2,0,1) 0.50*** 

(0.15) 

0.43*** 

(0.14) 

- -0.62*** 

(0.14) 

- - 278.04*** 

(51.51) 

11.30 9.83 -3.47** Prob.X2 (2)=0.98 

Tobacco 

yield 

(Virginia) 

(Kg/0.1 Ha) 

39 

[1979-

2017 ] 

(1,0,3) 0.87*** 

(0.02) 

- - -1.00*** 

(0.15) 

0.48** 

(0.21) 

-0.46*** 

(0.15) 

336.52*** 

(8.17) 

6.73 9.40 -4.21*** 

 

Prob.X2 (2)=0.35 

Pepper yield 

(Kg/0.1 Ha) 

47 

[1961-

2007 ] 

(1,0,2) 0.98*** 

(0.09) 

- - -0.66*** 

(0.14) 

-

0.29** 

(0.14) 

- 4396.72*** 

(1079.63) 

6.28 13.21 -4.10*** 

 

Prob.X2 (2)=0.81 

Tomato yield 

(Kg/0.1 Ha) 

47 

[1961-

2007 ] 

(1,1,0) -

0.44*** 

(0.14) 

- - - - - 81.27** 

(31.97) 

5.5 14.34 -7.21*** 

 

Prob.X2 (2)=0.36 

Legumes 

crops yield 

[Alfalfa (hay 

& seed)] 

(Kg/0.1 Ha) 

18 

[2000-

2017 ] 

(0,0,2) - - - 0.31*** 

(0.08) 

0.93**

* 

(0.02) 

- 740.24*** 

(26.53) 

4.69 10.83 -4.82*** 

 

Prob.X2 (2)=0.10 

Maize yield 

(Kg/0.1 Ha) 

37 

[1981-

2017 ] 

(2,0,0) 0.54*** 

(0.16) 

0.33*** 

(0.16) 

- - - - 1086.85*** 

(122.19) 

3.77 10.67 -4.18** 

 

Prob.X2 (2)=0.36 

Cotton price 

(EUR/kg) 

20 

[2000-

2019 ] 

(1,0,1) 0.85*** 

(0.06) 

- - -0.96*** 

(0.04) 

- - 0.48*** 

(0.048) 

 

15.17 -2.19 -3.39* 

 

Prob.X2 (2)=0.16 

D. wheat 

price 

(EUR/kg) 

20 

[2000-

2019 ] 

(3,0,0) 0.84*** 

(0.23) 

-0.62** 

(0.29) 

0.44* 

(0.22) 

- - - 0.19*** 

(0.02) 

10.81 -4.08 -3.19* 

 

Prob.X2 (2)=0.32 

Legume 

crops price 

(Alfalfa-hay) 

(EUR/kg) 

20 

[2000-

2019 ] 

(1,1,0) -0.43* 

(0.22) 

- - - - - - 6.00 -6.36 -4.36** 

 

Prob.X2 (2)=0.80 

Maize price 

(EUR/kg) 

20 

[2000-

2019 ] 

(1,0,1) 0.83*** 

(0.06) 

- - -0.99*** 

(0.10) 

- - 0.18*** 

(0.00) 

 

8.48 -4.70 -3.40* Prob.X2 (2)=0.08 
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Table F2. Linear trend model regression statistics of rural households' living expenditure index 

(LEI) 

Total arable 

land index 

16 

[2004-

2019 ] 

(0,1,3) - - - -1.26*** 

(0.28) 

1.17**

* 

(0.22) 

-0.82*** 

(0.14) 

3.19*** 

(0.89) 

3.67 6.98 -7.75*** 

 

Prob.X2 (2)=0.64 

Total 

circulating 

capital index 

16 

[2004-

2019 ] 

(0,1,1) - - - -0.93*** 

(0.06) 

- - 29. 7*** 

(2.31) 

10.91 10.24 -3.75** 

 

Prob.X2 (2)=0.19 

 

 

                    𝑁𝑜𝑡𝑒𝑠 ∶ ∇𝑑𝑌𝑡  = μ + 𝜙1∇𝑑𝑌𝑡−1 + ⋯ 𝜙𝑝∇𝑑𝑌𝑡−𝑝  + 𝜀𝑡  − 𝜃1 𝜀𝑡−1  − ⋯ − 𝜃𝑞 𝜀𝑡−𝑞  ; 

Φ1, . . . , Φp: autoregressive (AR)  model parameters of order p; Θ1, . . . , Θq: moving average (MA) model parameters of order q (Martínez-Acosta et al., 

2020) ; 𝜀𝑡    is white noise;  μ= a constant equal to the mean of the series if d = 0 (Narayana & Parikh, 1981)  ;    *  indicates significance at 0.1 level, ** 

indicates significance at 0.05 level, *** indicates significance at 0.01 level;  The null hypothesis  H0 of the  Breusch-Godfrey Serial Correlation LM Test is 

that there is no autocorrelation in the residuals series up to pre-determined lag order (p=2 in our analysis) at the 0.05 level of significance (Weyerstrass, 

2016).  

Source: Authors, based on ELSTAT (2019b), ELSTAT (2019c), FADN Public Database, Greek Ministry of Rural Development and Food, Greek Ministry of 

Rural Development and Food (2019). 

     

     
Variable Coefficient Std. Error t-Statistic Prob.   

     

     
C 0.954777 0.019644 48.60363 0.0000 

@TREND -0.023925 0.002778 -8.612057 0.0000 

     

     
R-squared 0.870843     Mean dependent var 0.811226 

Adjusted R-squared 0.859101     S.D. dependent var 0.099846 

S.E. of regression 0.037479     Akaike info criterion -3.589453 

Sum squared resid 0.015451     Schwarz criterion -3.502538 

Log likelihood 25.33145     Hannan-Quinn criter. -3.607318 

F-statistic 74.16753     Durbin-Watson stat 0.642814 

Prob(F-statistic) 0.000003    

     
Source: Authors, based on ELSTAT 

(2021) data. 
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64 
 

 

 

 

  

(s) 

Fig. F1. ARIMA and linear trend models of the exogenously determined parameters of interest 

Notes: the horizontal axis indicates the year; 0.1 Ha (hectare) =1 stremma is the Greek unit of land area. 

 (a) Hired labor price index; (b) Input price index; (c) Machinery rental price index; (d) Land rental price index; (e) Interest rate index; (f) Cotton yield (kg/0.1 Ha); (g) Durum 

wheat yield (kg/0.1 Ha); (h) Tobacco yield (kg/0.1 Ha); (i) Pepper yield (kg/0.1 Ha); (j) Tomato yield (kg/0.1 Ha); (k) Legume crops yield (kg/0.1 Ha) including Alfalfa (hay & 

seed); (l) Maize yield (kg/0.1 Ha); (m)  Cotton price (EUR/kg); (n)  Durum wheat price (EUR/kg); (o)  Alfalfa (hay) price  (EUR/kg); (p) Maize price (EUR/kg); (q) Total arable 

land index (r) Total circulating capital index ; (s) Living expenditures index;  

Source: Authors, based on ELSTAT (2019b), ELSTAT (2019c), ELSTAT (2021), FADN Public Database, Greek Ministry of Rural Development and Food, Greek Ministry of 

Rural Development and Food (2019). 
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