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Abstract. Although the policy impacts on farms accumulate year by year, most farm 
decision models focus on short-term decisions, evaluating policies based on snap-
shots. Structural changes are gradually built; therefore, farm decision models should 
consider the sequences within the period under study. Multiyear data from the arable 
sector in Thessaly, Greece, have fed a newly developed farm-level recursive linear pro-
gramming model mainly to simulate farm structural change dynamics. The proposed 
model incorporates new evidence on the strategic decision of arable crop farms regard-
ing their remaining in the production system and farm expansion. Results reveal an 
evident gradual farmland concentration in relatively large farms, accompanied by a 
gradual expansion of the most profitable cropping activities, verifying the real-world 
survival strategy of farms.

Keywords: farm structural change, land use change, recursive linear programming 
model, arable production system, Greece.
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1. INTRODUCTION

The declining number of surviving farms over time and the increase 
in average farm size generally signal the evolutionary process of structural 
change in the agricultural sector of developed economies (Plogmann et al., 
2022), implying changes in the farm size distributions (Zimmermann and 
Heckelei, 2012; Saint-Cyr et al., 2019). 

Agricultural economists have shown great interest in describing struc-
tural change dynamics and understanding its drivers (Plogmann et al., 2022). 
Structural change is driven by various economic factors (Neuenfeldt et al., 
2019), environmental factors and social drivers (RIRDC, 2007). Neverthe-
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less, some authors (Wiborg, 1998; Plogmann et al., 2022) 
consider farm economic performance the primary driver 
of structural change since it somehow encloses all the 
above factors.

Structural change is a normal evolutionary process 
in an economy (Goddard et al., 1993). Over time, rising 
agricultural productivity enabled the transfer of produc-
tive factors required for the development of other sectors 
of the economy (Balmann and Valentinov, 2016). How-
ever, structural change in the agricultural sector is usu-
ally correlated with public concerns, which are mainly 
expressed through public debates in two terms, firstly 
as “dying peasants” and secondly as “factory farming” 
(Balmann and Valentinov, 2016).  

Highlighting the first public concern, this may be 
because, generally, structural change hardly leads to 
Pareto Superior states (Balmann and Valentinov, 2016). 
From this perspective, Cochrane (1958) concludes that 
increased agriculture productivity positively affects only 
a limited number of innovative farms, while most farm-
ers are affected negatively due to the following drop in 
agricultural commodity prices. Suppose we analyze this 
reasoning from the point of view of public policy; in that 
case, structural change may reduce the problem con-
cerning the profitability of remaining farms but, on the 
other side, reduce the number of small farms and thus 
counters the equity goals of public society (Finger and 
Benni, 2021). Within this context, some authors con-
sider the significant role of public policy in mitigating 
the consequences of structural change by pointing out 
that “much of the public policy agenda has clearly been 
established on a premise of optimality of a family farm 
structure” (Goddard et al., 1993: 486). However, imple-
menting appropriate policy interventions presupposes 
providing detailed information (by policy analysts) on 
structural change in agriculture through evidence-based 
policy-relevant research to support evidence-based agri-
cultural policy decision-making.

The European Common Agricultural Policy (CAP) 
marks essential shifts in the context where farms oper-
ate, with significant reforms attempted every decade. 
Policy impacts on farms accumulate year after year, 
affecting the farm structures and, by extension, the 
well-being of rural communities, creating a ripple effect 
on the local economy. In this framework, modeling 
the dynamics of structural change adjustment (i.e., the 
change over time of farm numbers and farm size distri-
bution) is highly desirable because it can provide policy-
makers and stakeholders with possible alternative sce-
narios of structural change adjustments, but it is still not 
widely used in policy analysis (Ciaian et al., 2013; Espi-
nosa et al., 2016). Modeling exercises such as dynamic 

appraisals can support policy analysts in formulating 
public policies to obtain the “desired farm structure” 
considering the societal demands for equity (Finger and 
Benni, 2021). 

Two main methodological approaches incorporate 
structural change in agriculture: econometrics and sim-
ulation models (which aim to analyze farm structural 
change endogenously) (Espinosa et al., 2016; Zimmer-
mann et al., 2009). Econometric models include Markov 
chains (Zimmermann and Heckelei, 2012) and various 
other regression approaches (Zimmermann et al., 2009). 
Simulation models include recursive programming mod-
els (e.g., Wiborg, 1998; Guinde et al., 2005; Henningsen 
et al., 2005; Offermann and Margarian, 2014; Djanibe-
kov and Finger, 2018; Mittenzwei and Britz, 2018) and 
agent-based models (e.g., Balmann, 1997; Berger, 2001; 
Happe et al., 2008; Freeman et al., 2009; Bert et al., 
2011; Troost and Berger, 2016; Beckers et al., 2018; Sun 
et al., 2022; Donati et al., 2024). As simulation mod-
els can endogenously capture farm structural change, 
they are considered suited to analyzing policy changes’ 
allocative and distributive effects on an agricultural pro-
duction system (Guinde et al., 2005; Happe et al., 2008; 
Espinosa et al., 2016). Although agent-based models such 
as AgriPoliS (Balmann, 1997) are considered by vari-
ous modelers the most comprehensive attempt at ana-
lyzing the impact of policies on structural change (e.g., 
Zimmermann et al., 2009), are characterized by greater 
complexity (e.g., Zimmermann et al., 2009), and they are 
very demanding in terms of parameterisation (e.g., Zim-
mermann et al., 2009; Rowan et al., 2011; Kremmydas 
et al., 2023) and calibration (e.g., Zimmermann et al., 
2009). In addition, the preference for simpler process-
based models1  should not be ignored (Troost and Berg-
er, 2020). Therefore, while capturing structural change 
endogenously and providing meaningful insights into 
the allocative and distributional effects of various exog-
enous factors, the farm-level recursive programming 
models can also be manageable regarding the degree of 
complexity and data requirements compared to other 
simulation models such as agent-based models. 

Based on the above discussion, the main objective 
of this research is to investigate the impacts of policy 
experiments on farm structural change dynamics in 
Greece through an endogenous modeling approach 
based on a newly developed farm-level recursive linear 
programming model. While primarily aimed at simulat-
ing the impact of policy experiments on the evolutionary 
process of farm structural change, the proposed simula-
tion model is also secondarily used to simulate the effect 

1 Process-based models include models such as simulation models and 
systems dynamics models.
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on land use change while analyzing its relationship with 
structural change adjustment.

In the context of structural changes, the strategic 
decision of farms is summarized through the phrase 
“grow or go” (Plogmann et al., 2022), implying the 
aspects of (i) farm viability and (ii) farm growth/expan-
sion. Through the proposed modeling approach, we 
integrate the farm’s economic performance as the main 
driver of this decision (e.g., Wiborg, 1998; Paroissien et 
al., 2021; Plogmann et al., 2022). In more detail, in addi-
tion to traditional monetary value criteria to determine 
a surviving/viable farm, we introduce a novel viabil-
ity criterion, assuming that farmers may compare their 
economic performance to societal consumption bench-
mark, in the sense that the agent (in our case, real-
world individual farm) must achieve a minimum level 
of profitability, allowing entry into the “rat race” accord-
ing to “Keeping up with the Joneses” (KUJ) preferences 
(e.g., Barnett et al., 2010; Lombardo, 2021; Paroissien 
et al., 2021). Regarding farm expansion, the proposed 
modeling approach introduces a further novel element 
through the concept of relative optimal farm growth in 
equity to reallocate/allocate resources between neighbor-
ing surviving farms.  

The proposed model can also be characterized as a 
One-Way Communication Model where the information 
flows from the econometric model to the recursive pro-
gramming farm model (Huang et al., 1980). In particular, 
the Autoregressive Integrated Moving Average (ARIMA) 
models are used to forecast the values of the exogenously 
determined parameters of interest to conduct out-of-sam-
ple simulations. Additionally, ARIMA stochastic process 
estimates express the agents’ quasi-rational expectations 
regarding agricultural commodity prices and crop yields 
(Nerlove and Bessler, 2001; Siegle et al., 2024).

For the empirical application of the proposed sim-
ulation model, a representative sample of arable crop 
farms (in terms of farm structure) of the region of Kar-
ditsa (NUTS-3 level), Thessaly, is chosen. The priority of 
empirical application given to the arable production sys-
tem is justified by the fact that Greek arable farming is 
characterized by a comparatively higher rate of structur-
al change concerning the other main types of farming 
(other permanent crops, other grazing livestock) (FADN 
Public Database). 

From a general perspective, with this analysis, we 
attempt to contribute to the debate on dynamic assess-
ments of the multidimensional effects in the context of 
policy reforms. Additionally, more specific contributions 
to literature are expressed through at least four ways: 

First, we add knowledge by integrating evolution-
ary and social psychology elements to define a farm as 

viable based on KUJ preferences. Second, we simulate 
resource reallocation based on the criterion of relative 
optimal farm growth in equity as an alternative farm 
expansion/growth criterion to traditional criteria such as 
the shadow values of resources (e.g., Guinde et al., 2005; 
Hennessy, 2007; Espinosa et al., 2016). Third, the utili-
zation of the ARIMA stochastic process for time series 
forecasting of the values of the exogenously determined 
parameters (such as agricultural commodities prices, 
input prices, and crop yields) is an addition to the exist-
ing literature since in similar simulation models; these 
values are mainly determined either from secondary 
data sources (e.g., Wiborg, 1998; Hennessy, 2007; Offer-
mann and Margarian, 2014) or through assumptions/
scenarios (e.g., Guinde et al., 2005; Henningsen et al., 
2005; Troost and Berger, 2016; Mittenzwei and Britz, 
2018) or simplified trend models (e.g., Happe et al., 2008; 
Bert et al., 2011; Beckers et al., 2018). Fourth, despite the 
great importance of the arable production system for the 
Greek agricultural sector and the comparatively higher 
rate of structural change than the other main produc-
tion systems, to our knowledge, farm-level recursive pro-
gramming models have not been used to provide a “bot-
tom-up” simulation of structural change of Greek arable 
production system. 

The rest of the paper is organized as follows. Sec-
tion 2 describes the applied methodology, the data used 
to apply the methodology, and the policy experiments. 
The empirical results are presented in Section 3, Section 
4 discusses them, and concludes.

2. METHODOLOGY AND DATA

2.1. Recursive programming models for impact assessment 
in agriculture

Recursive programming models have already been 
introduced in the 1960s to represent dynamic adjust-
ments of production capabilities at the farm level, and 
then with the study of Day and Cingo (1978) regional 
interdependence and structural elements were incor-
porated (Espinosa et al., 2016). Indicatively, recursive 
programming farm models have been utilized for the 
development of farm firm growth models (e.g., Chien 
and Bradford, 1976; Cittadini et al., 2008; Dowson et 
al., 2019) to investigate the economic consequences due 
to farmers’ adaptability to different water availability 
scenarios (e.g., Iglesias et al., 2003; Rowan et al., 2011; 
Robert et al., 2018; Dowson et al., 2019), to assess the 
impacts of various policy reform and price scenarios on 
farm income and investment behavior (e.g., Viaggi et 
al., 2010; Viaggi et al., 2011; Davis et al., 2013; Britz et 
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al., 2016) and to analyze the impact of policies on farm 
structural change (e.g., Wiborg, 1998; Guinde et al., 
2005; Henningsen et al., 2005; Offermann and Marga-
rian, 2014; Djanibekov and Finger, 2018; Mittenzwei and 
Britz, 2018). 

The main structural elements of a recursive pro-
gramming model correspond to a constrained optimi-
zation model and a data generator, where the data gen-
erator, given the optimal value or solution in period t, 
reinitializes the parameters of period t+1, including a 
set of constraints that relates the feasible values of cur-
rent variables to past values of variables and exogenous 
events (McCarl and Spreen, 1997). Following Chien and 
Bradford (1976) and McCarl and Spreen (1997), the gen-
eral formulation of the recursive programming farm 
model is as follows:

Max   E{Πt} = ∑
j
 E{Cj,t}T  Xj,t (1)

Subject to:

∑
j
 Ai,j,t  Xj,t ≤ bi,t           ∀i (2)

Xj,t ≥ 0                        ∀j (3)

where E{ } denotes the expectation operator; E{Πt} is 
farm’s expected gross profit in EUR which is maxi-
mized in year t ; E{Cj,t} is the vector of expected gross 
profit in EUR/hectare (ha) of the j cropping activity in 
period t ; Xj,t is the vector of the decisions variables that 
denotes the level of the j cropping activity (hectares for 
crops) in period t; Ai,j,t are the resource I usages by the 
j cropping activity per ha in period t; bi,t is the vector of 
available resources i in period t, functionally dependent 
upon lagged phenomena (Kay, 1971; McCarl and Spreen, 
1997).

The reinitialization of the vector of available 
resources (bi,t) is conducted through farm firm growth 
rules such as the Endogenous Feedback Mechanism 
(EFM) (e.g., Kay, 1971; Chien and Bradford, 1976; McCa-
rl and Spreen, 1997; Cittadini et al., 2008; Davis et al., 
2013; Robert et al., 2016).  Although EFM has been 
applied with some variations, the general mathematical 
formulation is as follows:

bi,t = f(bi,t-1, Xi,t-1*, Vi,t)) (4)

where the vector of available resources (bi,t) in period t 
is determined by the vector of available resources in 
the previous period (bi,t-1), the optimal decisions in the 
previous period (Xi,t-1) and by the vector Vi,t that allows 
for external changes in the resource restrictions due to 

exogenous events that will occur in the period t which 
are rather determined by external economic and envi-
ronmental factors (Kay, 1971; McCarl and Spreen, 1997; 
Davis et al., 2013; Robert et al., 2016).

Since the proposed model is used for structural 
change analysis, three more basic structural elements 
are included to determine (i) farm viability, (ii) farm 
growth/expansion, and (iii) capital stock evolution at the 
farm level. A detailed description of these structural ele-
ments of the model is carried out in subsequent sections.

2.2. ARIMA modeling for economic forecasting in agricul-
ture 

The usefulness of such a simulation model, which 
is optimized sequentially within a dynamic framework, 
lies in the ability to provide results outside the refer-
ence period (out-of-sample forecasts). Therefore, to con-
duct out-of-sample simulations, the forecasted values of 
the exogenously determined parameters of the farm are 
required.

Various modelers have used ARIMA models to fore-
cast exogenously determined parameters such as agri-
cultural commodity prices (e.g., Mao et al., 2022), crop 
yields (e.g., Petsakos et al., 2016), cost of production fac-
tors (e.g., Hloušková et al., 2018) and supply of various 
resources (e.g., the total amount of agricultural land, 
total amount of pesticides) (Costache et al., 2021).

ARIMA models are fitted utilizing the information 
in the series itself to predict future points in the series 
(Christodoulos et al., 2010; Garnier, n.d.), and there-
fore the independent variables are lagged values of the 
series. More specifically, the future values of the depend-
ent variable can only be described through their prob-
ability distribution rendering the series a stochastic pro-
cess2 (Pardoe, n.d.). In this vein, several modelers con-
sider that the use of ARIMA models is appropriate for 
economic forecasting in agriculture, especially in cases 
of lack of well-developed theory or limited informa-
tion (Petsakos et al., 2016); as a result, the forecasting of 
exogenous variables often present problems for econo-
metric model users (Oliveira et al., 1979). 

Within this context, the ARIMA stochastic pro-
cess is utilized for estimating the values of exogenously 
determined parameters of interest (in our case, agricul-
tural commodity prices, crop yields, costs, interest rate, 
total arable land, and total circulating capital) to per-
form out-of-sample forecasts in the medium term. In 

2 Details on ARIMA modeling framework are provided in Part A: 
Conceptual framework of ARIMA modeling in the supplementary 
material.
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addition, ARIMA models are utilized to estimate the 
values for random/stochastic parameters, such as agri-
cultural commodity prices and crop yields, to express 
agents’ quasi-rational expectations mechanism (Nerlove 
and Bessler, 2001; Siegle et al., 2024).

2.3. Simulation model specification and assumptions

2.3.1. Model’s basic structure 

The initial endowments with production factors 
are specified before the sequential simulation starts (in 
our case, arable land, irrigated land, circulating capital, 
capital stock, and borrowed capital) (Happe et al., 2008) 
(see Figure 1). To simulate farms’ productive decisions 
through the proposed farm-level recursive linear pro-
gramming model, we assume that farms optimize the 
expected gross profit (e.g., Rowan et al., 2011) for each 
year t given the farm’s resource, policy, and flexibility 
constraints. To elaborate more, resource constraints con-
tain: (i) Arable land constraint; (ii) Irrigated land con-
straint; and (iii) Circulating capital constraint. 

Policy constraints contain: (i) 2013 CAP reform 
constraints (greening obligations); (ii) CAP Post-2020 
reform scenario constraints; (iii) Nitrate pollution reduc-
tion program constraints; and (iv) Organic farming pro-
gram constraint. Flexibility constraint corresponds to 
the constraint of multiannual contract farming3.

Each sub-model (based on representative individual 
real-world farm) optimized recursively4 for a sequence of 
15 years (from 2012 to 2026). Time progresses in discrete 
time intervals, symbolizing the commencement of a 
growing season at time t  (see Figure 1). To perform out-
of-sample simulations (i.e., outside the reference period, 
specifically after 2019), mainly ARIMA models are used 
to forecast the values of the exogenously determined 
parameters of interest (see Figure 1). 

2.3.2. Farm agents’ expectations specification and model 
validation

Various authors (e.g., Femenia et al., 2017) consider 
naïve and quasi-rational expectations (ARIMA mod-
eling), both based on past observations, to be the most 
frequent expectation mechanisms5 in some types of 

3 A detailed description of the objective function and constraints is 
provided in Part B: Structure of the model’s objective function and 
constraints in the supplementary material.
4 The model is written in GAMS language.
5 A detailed description of farm agents’ expectations mechanisms is 
provided in Nerlove and Bessler (2001), Haile et al. (2016), Femenia et 
al. (2017), and Siegle et al. (2024).

farming. Influenced by this finding, we emphasize these 
two mechanisms of expectations regarding agricultural 
commodity prices and crop yields in the present study, 
considering that they will be representative of sample 
farms and the information available to them (mainly 
based on past observations). 

More specifically, we have formulated two alter-
native models; one referred to as the Quasi-Rational 
expectations (QR) model and the other as the Naïve and 
Quasi-Rational expectations (NV&QR) model. In more 
detail, in the QR model case, the agent’’ expectations are 
expressed through quasi-rational expectations (ARIMA 
modeling) for agricultural commodity prices and crop 
yields (e.g., Narayana and Parikh, 1981; Nerlove and 
Bessler, 2001; Siegle et al., 2024). In the NV&QR mod-
el case, the agent’’ expectations are expressed through 
naïve price expectations for agricultural commodity 
prices (e.g., Nerlove and Bessler, 2001; Robert et al., 2018; 
Siegle et al., 2024) and through quasi-rational expecta-
tions for crop yields. 

Then the two proposed models are validated for 
their capability to reproduce activities allocation 
(Gómez-Limón et al., 2016), the number of surviving 
farms (Beckers et al., 2018), and the farm size distribu-
tion (Freeman et al., 2009; Beckers et al., 2018). 

2.3.3. Determining farm viability

Usual approaches to defining farm viability are 
based on the opportunity cost of farming (e.g., Loughrey 
et al., 2022) and the poverty line (e.g., Miller et al., 
1981; Loughrey et al., 2022). Other approaches to defin-
ing farm viability focus on monetary returns, where the 
farm income should ensure long-term farm growth in 
equity, or at least the equity should remain stable into 
the future (e.g., Bright et al., 2007; Barnes et al., 2015). 

Another interesting approach to defining farm via-
bility from a socio-economic perspective is based on 
the “Keeping up with the Joneses” (KUJ) preferences 
(Miller et al., 1981; Paroissien et al., 2021). Farmers may 
compare their profits to the overall standard of living 
(average living expenditures/average consumption level) 
of socially close reference group (neighboring farms), 
which is considered the societal consumption bench-
mark or social reference point of consumption level 
(Paroissien et al., 2021). 

From this perspective, agents that stand below 
their societal reference point (in the sense of not being 
able to finance this level of consumption) are forced to 
stay out of the “rat race of keeping up with the Joneses” 
(Barnett et al., 2010), may experience lower life satisfac-
tion and professional well-being, a situation which may 
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create incentives to exit the system (Paroissien et al., 
2021; Nguyen and Herron, 2021). Therefore, a farm must 
achieve a minimum level of profitability, allowing entry 
into the “rat race” (Lombardo, 2021) according to KUJ 
preferences (i.e., keeping up with a benchmark propor-
tional to the average level of consumption of the socially 
close reference group (Barnett et al., 2010) such as neigh-
boring farms).

The influences for this hypothesis come from evolu-
tionary and social psychology, where various research-
ers assume that the quest for status – frequently referred 
to in this context as “Keeping-up-with-the Joneses”– 
depends on the social norms related to a benchmark 
consumption level such as the average consumption level 

of the socially close reference group (Fisher and Hei-
jdra, 2009; Lombardo, 2021; Mageli et al., 2022). Based 
on the above reasoning, various researchers assume that 
the quest for social status can be linked to the striving 
to survive (Mageli et al., 2022). Notably, since social 
groups can distribute resources among their members, 
an agent’s chances to survive and reproduce are great-
ly enhanced if she/he belongs to a group and if she/he 
holds a relatively high social rank within the group, in 
the sense that an agent’s relative position may give her/
him a survival advantage through access to material and 
reproductive resources (Mageli et al., 2022). 

Alternatively, farm viability can be defined accord-
ing to a combination of monetary value and socio-eco-

Initial conditions : Number of neighboring surviving 
farms, farm size distribution, available arable land at 
farm level, available circulating capital at farm level, 
capital stock at farm level,  borrowed capital at farm 
level

Farm-level data
(Field survey)

Farm-level optimization model : 
Expected Farm Gross Profit maximization 
under resource, policy and flexibility 
constraints

Farm agents' expecations
Quasi-rational agents’ expectations 
for  prices and crop yields 
OR 
Naive agents’expecations for prices 
and quasi-rational agents’ 
expectations  for crop yields
Out-of-sample simulations
ARIMA models: Forecasting values  of 
costs, prices, crop yields,interest 
rate, total arable land,  and total 
circulating capital  
Linear trend model: Forecasting 
value of living expenditures index 

Farm viability algorithm:
i) Optimal Farm Net Profit After Tax ≥ 
Simulated Societal Consumption 
Benchmark of neighboring  farms AND
ii) Optimal Farm Growth in Equity ≥ 0

Number of 
neighboring 
surviving farms

Farm size 
distribution 

Share of 
farmland by farm 
size classes

Regional land use 
change dynamics

Economic 
performance  by 
farm size classes 

Environmental
impact 
assessement

Re-initialization of resources & farm 
firm growth rules of surviving farms:
-Endogenous Feedback Mechanism 
(EFM) for resources (land, circulating 
capital) 
Coupled with:  Relative optimal Farm 
Growth in Equity to reallocate/allocate 
resources (abandoned/relesased land 
available for rent, regional availability 
of circulating capital) between
neighboring surviving farms

N
ex

tg
ro

w
in

g 
se

as
on

 (t
=t

+1
)

Post-solution module of Economic
indicators :
i) Optimal  Farm Net Profit After Tax  ii) 
Optimal Farm Growth in Equity

Post-solution module of Means-based 
environmental indicators: i) Fertilizer 
use ii) Pesticide use  iii) Water use

Capital stock evolution (Investement module):
-Perpetual Inventory Method (PIM) coupled with:
-Leontief production relationship between capital stock and land

Actual prices; Actual crop yields

Determining required borrowing 
capital:
i)  Required borrowing circulating 
capital
ii) Required borrowing investment 
capital

Updated 
information on 

initial conditions

Optimal cropping activities allocation
Regional crop supply

Number of 
neighboring 
surviving 
farms

Farm size 
distribution

Times series data 
(Statistical 

authority, Rural 
institutions, FADN) 

Policy 
scenarios

Figure 1. Conceptual diagram of the proposed modeling framework. Notes: A post-solution module of means-based environmental indica-
tors enables the model to estimate the environmental performance of farms. However, to limit the size of this paper, the environmental 
impact assessment will not be presented here. Source: Authors
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nomic criteria (Bert et al., 2011; Mittenzwei and Britz, 
2018; Seidel and Britz, 2019). 

In the present modeling approach, a sample farm is 
considered viable/surviving by satisfying two viability 
criteria: (i) the criterion of societal consumption bench-
mark of neighboring farms (NBF)6 according to the KUJ 
preferences and, (ii) the criterion of non-negative opti-
mal farm growth in equity. At this point, we would like 
to mention that, following similar simulation models 
(Bert et al., 2011; Offermann and Margarian, 2014; Mit-
tenzwei and Britz, 2018; Seidel and Britz, 2019) we sim-
ulate only farm exit according to the farm exit module 
considering economic and socioeconomic criteria. Con-
sequently, we do not model the life cycle of agents who 
enter farming, get old, and retire (Bert et al., 2011). 

Therefore, following each discrete optimization 
time-step (annual), every neighboring farm nbf decides 
whether to remain in the system or exit (see also Figure 
1). Specifically, a neighboring farm is considered viable 
and remains in the production system when at the end 
of the year t meets both viability criteria, i.e., (i) the 
optimal Farm Net Profit after Tax (FNPAT*nbf,t) should 
be at least equal to the simulated average living expendi-
tures of neighboring farms in year t (LENBF,t

sim), and (ii) 
optimal farm growth in equity (FGE*nbf,t) should be at 
least equal to zero. 

6 The literature on whom agents compete with for social status, 
i.e., who the Joneses are, is relatively limited (Mageli et al., 2022). 
Nevertheless, it is conceivable that agents compare more intensely 
with agents who are socially proximate to them (Mageli et al., 2022). 
For example, society serves as a socially distant reference group, 
whereas colleagues are socially close reference groups (Mageli et al., 
2022). In this framework, we could consider a socially close reference 
group to each agent (individual real-world farm), farms with the same 
productive specialization located in the same region, i.e., neighboring 
farms (NBF) correspond to arable crop farms of the regional unit of 
Karditsa (NUTS-3 level). In particular, farmers of this reference group 
could be considered colleagues due to their similar professional goals 
and intense professional interactions, which are expressed through their 
professional collective bodies, such as trade union bodies, groups of 
producers, and cooperatives, which are mainly made up of farmers of 
common productive specialization. From this perspective, the intense 
professional and, consequently, social interactions may provide each 
agent of the reference group (neighboring farm) with a comparatively 
better level of information about the economic performance of its 
neighbors and the livelihood level (consumption level, particularly for 
visual commodities that are connected to income or wealth, e.g., cars 
and houses) (Mageli et al., 2022) than for socially distant reference 
groups (i.e., farms with different productive specializations compared 
to the agent). Consequently, this comprehensive information signals the 
process of forming social norms based on which a social group’s social 
status or position is determined. In our case, the quest for social status 
is reflected in KUJ preferences (Fisher and Heijdra, 2009; Lombardo, 
2021; Mageli et al., 2022). Finally, we also relied on a strict definition 
of neighboring farms for this selection based on the relevant literature 
(Paroissien et al., 2021), where only farms with the same specialization 
located in the same region are included in the socially close reference 
group (neighboring farms). 

As regards the mathematical formulations of the 
specific profitability measures are as follows considering 
the relevant literature (GRDC, 2015):

FNPAT*f,t = Π*f,t – (DEPf,t + LRCf,t + SFNCf,t + 
LFNCf,t + SICf,t + FPTXf,t) 

(5)

FGE*f,t = FNPAT*f,t – LEf,t (6)

where FNPAT*f,t is the optimal Farm Net Profit after Tax  
f in year t; Π*f,t is the optimal gross profit of farm f  in 
year t; DEPf,t is the depreciation of machinery of farm f  
in year t; LRCf,t are the land rental costs7 of farm f  in 
year t; SFNCf,t are the  short-term finance costs which 
correspond to the interest paid for short-term loans of 
farm f in year t; LFNCf,t are the  long-term finance costs 
which correspond to the interest paid for long-term 
loans of farm f in year t; SICf,t are the social insurance 
contributions paid by farm f in year t; FPTXf,t is the farm 
profit tax paid by farm f in year t; FGE*f,t is the optimal 
Farm Growth in Equity of farm f in year t; LEf,t are the 
living expenditures8 of farm f in year t. 

2.3.4. Re-initialization of resources and farm firm growth 
rules 

The annual re-initialization of resources required 
for the farms’ operation and growth/expansion process 
is conducted through the Εndogenous Feedback Mecha-
nism (EFM) (whose general structure has been present-
ed in the 2.1 section). An essential part of the literature 
indicates that growth in equity determines the prospects 
for growth/expansion of the farm (e.g., Painter, 2005; 
Cittadini et al., 2008; Bert et al., 2011; GRDC, 2015), that 
is, that the acquisition of resources will be determined 
through this profitability measure. Hence, we consider 
that optimal farm growth in equity could be used as an 
alternative criterion of farm expansion/growth to tra-

7 In case that farm rents out part of owned farmland, then receives land 
rental income LRINCf,t. Consequently the equation (5) is adapted as 
follows: FNPAT*f,t = (Π*f,t + LRINCf,t) – (DEPf,t + SFNCf,t + LFNCf,t + 
SICf,t + FPTXf,t), indicating that a farm cannot simultaneously rent in 
and rent out farmland, a condition we also find in similar simulation 
models (e.g., Donati et al., 2024).
8 The estimation of living expenditures following the base year (2012) 
is carried out by utilizing the living expenditures index (LEI) of 
households in rural areas (ELSTAT, 2021). That is, heterogeneity 
between farms in the living expenditures in the base year (2012) is 
captured, but its evolution over time is based on the exogenously 
determined living expenditures index (LEI). Since the available 
time series of the living expenditures index (LEI) does not meet the 
minimum required time horizon of 16 data points of the ARIMA model 
(Christodoulos et al., 2010), we use a linear trend model instead of the 
ARIMA model to make post-sample forecasts. 
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ditional criteria such as the shadow values   of resources 
(e.g., land, circulating capital) (Guinde et al., 2005; Hen-
nessy, 2007; Espinosa et al., 2016).

However, given resource constraints, especially 
land, farm expansion is possible when neighboring 
farms decide to downsize or abandon agricultural pro-
duction (Plogmann et al., 2022). Essentially, the pro-
cess of structural change drives the reallocation of the 
resources required for expansion, where the resources of 
non-viable neighboring farms (e.g., land) are reallocated 
to viable ones (see also Figure 1). Various modelers (e.g., 
Bert et al., 2011; Sheng et al., 2015; Herrera et al., 2022; 
Sun et al., 2022) highlight the role of relative profitabil-
ity as a criterion/mechanism for the reallocation/alloca-
tion of resources between surviving farms. Within this 
context, our concern was how optimal farm growth in 
equity could be expressed as a criterion/mechanism for 
resource reallocation among viable farms and integrated 
into the EFM. To model this mechanism, we adapted 
the concept of efficient allocation (Ayerst et al., 2020; 
Chen et al., 2022). According to the proposed adapta-
tion, we replace relative farming productivity with rela-
tive farm growth in equity. We consider this adjustment 
to be reasonable since Foster et al. (2008) found that 
“firms’ self-selection behavior (in choosing an oper-
ating scale, or to enter or exit) is made based on firm 
profitability rather than firm productivity and conse-
quently resource reallocation may not always align with 
firm productivity growth, particularly in the short run” 
(Sheng et al., 2015: 75). 

By incorporating the proposed resource realloca-
tion/allocation mechanism into the EFM, each farm’s 
annual level of resource is determined by the available 
level of the resource at the beginning of the previous 
growing season, the relative optimal growth in equity at 
the end of the previous growing season (indicating the 
optimal decisions), and by exogenous events9 that will 
occur in the current growing season. 

Since we have ensured (from the viability determi-
nation assumptions) that a viable farm will not reveal 
negative optimal growth in equity, the mathematical 
formulation of the share of any resource r ∈ {AL,CRC}  
allocated or reallocated is as follows:

Ωsim
rvf,nbf,t

 =  , for t = 1… T,  

0 ≤ Ωsim
rvf,nbf,t

 
(7)

9 We assume that exogenous events are expressed through successive 
differences in the aggregate level of resources where the relative optimal 
growth in equity of the previous growing season allocates these positive 
or negative differences across farms.

where Ωsim
rvf,nbf,t

 is the simulated share of resource r allo-
cated/reallocated to viable neighboring farm in year t; 
FGE*vf,nbf,t is the optimal Farm Growth in Equity of via-
ble neighboring farm in year t;  FGE*vf,nbf,t 
is the aggregate optimal Farm Growth in Equity of via-
ble neighboring farms in year t.

Essentially the simulated share of resource r allo-
cated to viable neighboring farm in period t (Ωsim

rvf,nbf,t
) 

expresses the part of EFM which corresponds to optimal 
decisions (Xjt*) while considering the interdependence of 
optimal decisions of viable neighboring farms, indicat-
ing competitiveness for resources. It is also worth noting 
that the simulated share (Ωsim

rvf,nbf,t
) remains the same for 

each resource allocated/reallocated.

(i) Arable land

Therefore, considering the above, the EFM mecha-
nism for the resource of arable land will be formulated 
as follows: 

ALvf,nbf,t = ALvf,nbf,t-1 + Ωsim
ALvf,t-1

 [  
ALnvf,nbf,t-1

sim + (TALNBF,t – TALNBF,t-1)], for t=2…T 
(8)

where ALvf,nbf,t is the available arable land of viable 
neighboring farm in year t; ALnvf,nbf,t-1 is the available 
arable land of viable neighboring farm at the beginning 
of year t-1; Ωsim

ALvf,nbf,t-1
 is the simulated share of arable 

land reallocated to viable neighboring farm at the end of 
the year t-1, that is, following the annual optimization;  

 ALnvf,nbf,t-1
sim is the simulated aggregate 

arable land of non-viable neighboring farms at the end 
of the year t-1, that is, following the annual optimiza-
tion; TALNBF,t is the actual total arable land of neighbor-
ing farms in year t; TALNBF,t-1 is the actual total arable 
land of neighboring farms in year t-1.

Essentially, the product Ωsim
ALvf,nbf,t-1

(TALNBF,t – 
TALNBF,t-1) corresponds to the vector Vit of EFM that allows 
for external changes in the resource restrictions due to 
exogenous events, and probably reflects the competition 
for resources with other types of farms or non-agricultural 
sectors which operate within the same region. 

However, competitive pressures are likely to lead to 
an unfavorable situation, i.e., TALNBF,t – TALNBF,t-1 < 0 
and consequently to a decrease of available arable land 
for the viable neighboring farms, which will be real-
located among them utilizing the inverse form of the 
simulated share of arable land (Ωsim

ALvf,nbf,t-1
-1), that is, less 

profitable albeit viable farms will abandon proportion-
ately more of their arable land. 

As can be easily understood by the reader, the above 
procedure is also applied to the available irrigated land 
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(ILvf,nbf,t), which is expressed as a share of the total arable 
land and is assumed to be constant at the base year level 
and equal to 80%.

Based on relevant literature (e.g., Bert et al., 2011; 
Djanibekov and Finger, 2018; Donati et al., 2024), the farm-
land is reallocated only on a rental basis through farmland 
rental arrangements between tenants and landowners, and 
the land rental price is exogenously determined 10.

(ii) Circulating capital 

Similarly, we apply the EFM in the case of determin-
ing the available circulating capital on an annual basis. The 
noticeable difference lies in the fact that the circulating 
capital of non-viable neighboring farms is not reallocated to 
viable neighboring farms as in the case of arable land.

CRCvf,nbf,t = CRCvf,nbf,t-1 + Ωsim
CRCvf,nbf,t-1

 (TCRCNBF,t – 
 CRCvf,nbf,t-1

sim), for t = 2…T   
(9)

CRCvf,nbf,t is the available circulating capital of via-
ble neighboring farm in year t; CRCvf,nbf,t-1 is the avail-
able circulating capital of viable neighboring farm at 
the beginning of year t-1; Ωsim

CRCvf,nbf,t-1
 is the simulated 

share of circulating capital allocated to viable neighbor-
ing farm at the end of the year t-1, that is, following the 
annual optimization;  CRCvf,nbf,t-1

sim is the 
simulated total circulating capital of viable neighbor-
ing farms at the end of the year t-1, that is, following the 
annual optimization; TCRCNBF,t is the actual total circu-
lating capital of neighboring farms in year t.

As before (in the case of available arable land), 
the product Ωsim

CRCvf,nbf,t-1
 (TCRCNBF,t –  

CRCvf,nbf,t-1
sim) ref lects the effect of the external eco-

nomic factors that can form the availability of financial 
resources at farm level, such as the financial system, 
the tax system, macroeconomic conditions (e.g., level of 
inflation), etc. These factors may create a healthy finan-
cial situation or financial stress. Financial stress could 
therefore lead to an unfavorable situation, i.e., TCRCNBF,t 
–  CRCvf,nbf,t-1

sim < 0 and consequently to a 
decrease of the available circulating capital for the viable 
neighboring farms which will be allocated to them uti-
lizing the inverse form of the simulated share of circu-
lating capital (Ωsim

CRCvf,nbf,t-1
-1), that is, less profitable, albeit 

viable farms, will lose proportionately more of their cir-
culating capital11. 

10 Detailed information concerning land rental costs/land rental income 
estimation is provided in Part C: Land rental costs/land rental income 
estimation in the supplementary material.
11 Detailed information concerning required borrowing circulating 

2.3.5. Capital stock evolution at the farm level (Invest-
ment module)

The intertemporal evolution of capital stock at the 
farm level is assessed utilizing the Perpetual Inventory 
Method (PIM) where the capital stock (machinery and 
equipment) of the farm f in year t is equal to the non-
depreciable capital stock of the year t-1 plus gross invest-
ment in fixed assets that will be made through the year 
t (Weyerstrass, 2016). The mathematical formulation of 
PIM is as follows:

Kf,t = (Kf,t-1 – DEPf,t-1) + If,t (10)

where Kf,t is the capital stock of farm f in year t; Kf,t-1 is 
the capital stock of farm f in year t-1; DEPf,t-1 is the depre-
ciation of farm f in year t-1, which is obtained from the 
equation DEPf,t-1 = δKf,t-1, where δ is the fixed deprecia-
tion rate equal to 5% (Weyerstrass, 2016; Femenia et al., 
2017), and If,t is the gross investment on fixed asset of 
farm f in year t. Gross investment in fixed assets includes 
annual cash expenditures for the maintenance of capital 
stock due to economic depreciation and the acquisition 
of required investment capital for farm expansion (net 
investment on fixed assets) (Smale et al., 1986).

Following similar modeling approaches (Kay, 1971; 
Freeman et al., 2009), we assume a Leontief production 
relationship between capital stock and land. It is there-
fore assumed that the capital stock remains constant 
per hectare of arable land at the base year level ( , 
so that the amount charged for depreciation in year t-1 
(DEPf,t-1) is constantly reinvested in new capital stock (or 
gross investment on fixed assets) in year t(If,t) (Freeman 
et al., 2009). Essentially, the constant intertemporal rela-
tionship between capital stock and arable land renders 
the investment process a continuous process of invest-
ment or disinvestment (Britz et al., 2016) determined by 
the arable land acquired or abandoned12. 

2.4. Farm data description and specification 

For the empirical application of the proposed simula-
tion model, a representative sample of arable crop farms 

capital & short-term finance costs estimations is provided in Part D: 
Borrowed capital & finance costs estimations /D1. Borrowed circulating 
capital & short-term finance costs estimations in the supplementary 
material.
12 Detailed information concerning required borrowing investment 
capital and long-term finance costs estimations is provided in Part D: 
Borrowed capital & finance costs estimations/D2. Borrowed investment 
capital & long-term finance costs estimations in the supplementary 
material.
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in Karditsa (NUTS-3 level) is chosen. The regional unit 
of Karditsa is one of the five regional units of the region 
of Thessaly (NUTS-2 level) located southwest of it. 

This study utilizes farm-level data provided by a 
research project that thoroughly investigated the per-
spective of a sample of farms of the regional unit of 
Karditsa that specialized in “Other fieldcrops/General 
field cropping” (according to the TF14 classification of 
FADN) to cultivate alternative crops such as energy 
crops. Initially, 70 farms were selected by stratified ran-
dom sampling, and detailed data on production, rev-
enues, fixed assets, and subsidies for 2005 and 2006 were 
collected through personal interviews. Two field surveys 
followed (after 2006) to update mainly data on produc-
tion, revenues, fixed assets, and subsidies through per-
sonal interviews. Through these two follow-up surveys, 
we collected additional socio-economic information 
such as living expenditures and how agricultural subsi-
dies were spent (e.g., living expenses, investments, pro-
duction costs, loans).

The first follow-up field survey was conducted in 
2012, where data from 48 remaining farms were updated 
(from the initial 70), and the second was in 2019, where 
data from 31 remaining farms (out of 48 in 2012) were 
updated. For the empirical application of the simula-
tion model, the data of the most recent period (2012-19) 
are utilized to manage the complexity of the model at a 
computable level. 

The sample represents at a satisfactory level the farm 
structure of 6,272 farms specializing in “Other fieldcrops/
General field cropping” in the regional unit of Karditsa 
for 2012. Specifically, based on a comparison of our sam-
ple with the Farm Accountancy Data Network (FADN) 
data for the base year (2012), we found a significant 
degree of similarity in terms of farm size distribution, 
where the Finger–Kreinin (FK) similarity index (Fin-
ger and Kreinin, 1979) stands at 90.2% (see also Table 
1). Consequently, although the farm sample size can be 
considered relatively small compared to the population, it 
sufficiently reflects the heterogeneity in farm structure13. 

Cotton and durum wheat are the main activi-
ties regarding total farmland area shares. All observed 
activities (i.e., cotton, processing vegetables, tobacco, 
maize, alfalfa) except durum wheat and set-aside require 
irrigation. The production of processing vegetables and 
tobacco is conducted through annual contracts with the 
industry, while for the activity of alfalfa (seed produc-
tion), the farmers conclude a ten-year contract. 

13 Using a relatively small sample of farms is not unusual for 
relevant in-depth analyses in the context of farm-level mathematical 
programming models (e.g., Iglesias et al., 2003; Viaggi et al., 2010; 
Viaggi et al., 2011; Djanibekov and Finger, 2018; Lairez et al., 2023).

Since field survey through personal interviews is 
a very costly and slow process (Khanal and Omobitan, 
2020), collecting data on an annual basis during the 
interim years of the period 2012-19 was not possible. 
This fact created the need to fill in the gaps in the time 
series of the model parameters. Model parameters were 
estimated for the period considered utilizing the avail-
able national times series setting 2012 as the base year. 
In addition, the available national times series provid-
ed the necessary input data for the ARIMA and linear 
trend models. The national time series are provided by 
various exogenous data sources14. However, it should be 
noted that for the activities cultivated under contract 
farming, we assume that prices remain constant at the 
base year levels for all simulation periods since sample 
farmers stated that they remained almost invariable for 
the period 2012-19. 

2.5. Policy experiments

Simulation experiments for two alternative policy 
scenarios were performed. Additionally, we ran simula-
tions for a combined (policy and geopolitical) scenario.

Business as usual (BAU) scenario: We assume that 
the baseline policy implemented from 2015 to 2022 (2013 
CAP reform), will continue to be implemented until 2026. 
Expressly, we assume that decoupled and coupled pay-
ments will remain stable at the levels of 2022, as well as the 
greening obligations related to crop diversification and the 
ecological focus area (EFA) to receive decoupled payments 
(Greek Ministry of Rural Development and Food, 2014). 

14 For more details see the Part E: Historical dataset and forecasting 
method of exogenously determined parameters in the supplementary 
material.

Table 1. Farm size distributions comparison of farms specialized in 
“Other fieldcrops/General field cropping” (according to the TF14 
classification of FADN) in the region of Karditsa, 2012

Farm size class (ha) Characterization
Sample farms FADN

Farms (%) Farms (%)

<10 Very Small 37.46 36.28
10-<30 Small 43.75 53.68
30-<50 Medium 12.5 7.94
50-<100 Large 6.25 2.23
≥100 Very Large - -

Notes: The determination and characterization of farm size classes is 
based on Happe et al. (2008), and Huettel & Margarian (2009). 
Source: Authors, based on sample data and FADN.
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CAP Post-2020 scenario: According to the Greek 
Strategic Plan proposal for the CAP 2023-27 (Greek 
Ministry of Rural Development and Food, 2022), the 
provisions of the CAP Post-2020 reform scenario apply 
from the year 2023. In the period 2023-26, internal full 
convergence will be implemented, i.e., the convergence 
of the value of payment entitlements at a single unit val-
ue (flat rate) at the agronomic region level15(Greek Min-
istry of Rural Development and Food, 2022). The value 
of the payment entitlements in the agronomic region 
of interest, i.e., arable land, will equal 231.4 EUR/ha in 
2026. Farms with available arable land of more than 
10 hectares are obligated to apply ecological focus area 
to 4% of it to receive decoupled payments. It should be 
mentioned that is maintained the measure of diversifica-
tion of crops for farms with available arable land larger 
than 10 hectares to receive decoupled payments, valid 
from 2015 in the context of the 2013 CAP reform. The 
proposed strategic plan also includes implementing the 
redistributive payment mechanism during the period 
2023-27. Specifically, relatively small farms with available 
arable land between 2 and 11 hectares, will be consid-
ered beneficiaries of the redistributive support, equal to 
117 ΕUR/ha.

In addition, the proposed national strategic plan 
aims to improve the environmental performance of 
arable crop farms by adopting voluntary environmental 
measures referred to as eco-schemes. One of the main 
measures is considered to be the extension of the appli-
cation of the ecological focus areas, where farms with 
available arable land less than 10 hectares can apply eco-
logical focus area to 5% of it, receiving an average eco-
scheme payment equal to 200 EUR/ha. Additionally, 
farms with available arable land more than 10 hectares 
can apply ecological focus area to 10% of it receiving 
an average eco-scheme payment equal to 240 EUR/ha 
(Greek Ministry of Rural Development and Food, 2022). 

CAP Post-2020 & Long War of Attrition (LWA) sce-
nario: This combined scenario is a variant of the previ-
ous one, integrating the serious possibility that Russia’s 
invasion of Ukraine will become a long war of attrition 
(Modern War Institute, 2022) with severe and prolonged 
consequences for the global economy. 

Given the emerging upward trends in grain prices 
(maize, wheat) due to Russia’s invasion of Ukraine and 
uncertainty over the future of the Black Sea Grain Initi-
ative (European Council, 2022), we assume a high grain 
price scenario for the period 2022-26 combined with the 
provisions of CAP Post-2020 reform scenario described 

15 Since the 2013 CAP reform, the process of payments convergence has 
started in the form of partial convergence.

above. In particular, we consider the upper bound   of the 
prediction intervals for durum wheat and maize prices 
provided by ARIMA model forecasts.

3. RESULTS

3.1. Validation of the simulation model 

The validation results presented in Table 2 confirm 
the ability of both models to reproduce the evolution of 
activities allocation to at least a satisfactory level (Per-
centage Absolute Deviation (PAD index): 8.05-29.6%; 
Finger–Kreinin (FK) similarity index (FK index): 85.2-
96%) according to the relevant literature16 (e.g., Gómez-
Limón et al., 2016), providing a good representation 
of reality. However, the NV&QR model is significantly 
superior in the base year. 

Validations of the models on their ability to repro-
duce the actual farm size distribution and the actual 
number of farms are carried out for the year 2019 as it 
is the only year of observations available after the base 
year. In this context, both models simulate to at least a 
satisfactory level the evolution of farm size distributions 
(PAD index = 17.58%; FK index = 91.2%) and the num-
ber of viable farms (Absolute Percentage Error (APE) 
= 6.4%)17 without revealing any difference in terms of 
forecasting accuracy (see also Table 3). As can be seen, 
both models slightly overestimate the rate of structural 
change, that is, the percentage change in the number 
of surviving farms, in the reference period (Simulated: 
39.6% (from 48 to 29 farms) vs. Actual: 35.42% (from 
48 to 31 farms)). Although both models are character-
ized by satisfactory forecasting accuracy, we will choose 
the best fitting model, the NV&QR Model, to assess the 
impact of policy and combined scenarios on structural 
change and land use change.

3.2. Forecasting models accuracy 

After estimating the best-fitting ARIMA models for 
the exogenously determined parameters of interest (i.e., 

16 Although there is no commonly accepted threshold in the 
international literature for these two indicators, Gómez-Limón et al. 
(2016) consider the values of PAD index = 33.2% and FK index = 83.4% 
satisfactory. 
17  Although there is no commonly accepted threshold for MAPE (Mean 
Absolute Percentage Error) in the international literature; however, 
some authors consider that a model is characterized by good forecasting 
accuracy (or goodness-of-fit) when MAPE (APE, in our case, due to a 
single year of observations available after the base year) does not exceed 
20%, whereas when it does not exceed 10%, the forecasting accuracy is 
characterized as high or perfect (e.g., Quartey-Papafio 2021).
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costs, prices, crop yields, total arable land, total circulat-
ing capital, and interest rate), we measured their fore-
casting accuracy by in-sample forecasts according to the 
MAPE measure. Most ARIMA models are characterized 
by high forecasting accuracy; the MAPE does not exceed 
10%, while the other models are characterized by good 
forecasting accuracy18 (e.g., Quartey-Papafio et al., 2021). 
A high forecasting accuracy also characterizes the uti-

18 For more details, see the Part F: ARIMA and linear trend models 
estimations in the supplementary material.

lized linear trend model for the rural households’ living 
expenditure index (LEI). 

3.3. Simulated structural change

Figure 2 depicts the evolution of the number of 
viable/surviving farms and the average farm size over 
time19. The simulated number of farms decreases by 

19 The initial number of farms is normalized to 100.

Table 2. Actual and simulated land allocation.

Activity Actual 2012 
Area (ha)

NV&QR Model 
2012 

Area (ha)

QR Model 2012 
Area (ha)

Actual 2019 
Area (ha)

NV&QR Model 
2019 

Area (ha)

QR  Model 2019 
Area (ha)

Cotton 467.9 454.36 365.48 305.1 296.52 266.15
Tobacco (Virginia) 58.6 83.74 94.02 82 109.15 105.56
Maize 27 11.82 11.82 27.15 14.83 48.95
Processing Tomato 31 23.11 23.11 52 55.57 55.53
Processing Pepper 30 25.66 37.06 68.8 70.95 71.33
Alfalfa (hay) 66.5 63.75 68.43 96.6 101.7 10
Alfalfa(seed production) - - - 58.5 45.47 45.47
Durum Wheat 139 163.13 217.85 236.75 236.95 236.88
Set-aside 27.2 21.62 29.41 17.9 13.81 14.89
Total area (ha) 847.2 847.2 847.2 944.8 944.8 944.8
PAD index (%) - 11.6 29.6 - 8.05 11.7
FK index (%) - 94.2 85.2 - 96 94.15

Note: NQR model: Naïve and Quasi-Rational expectations Model; QR model: Quasi-Rational expectations Model
Source: Authors, based on sample data.

Table 3. Actual and simulated farm size distribution and number of farms.

Farm size class (ha) Actual 2019 
Farms (%)

Actual 2019 
Farms (%)

NV&QR Model 
2019 

Farms (%)

NV&QR Model 
2019 

Farms (%)

QR Model 2019 
Farms (%)

QR Model 2019 
Farms (%)

<10 22.57 7 13.79 4 13.79 4
10-<30 45.15 14 48.27 14 48.27 14
30-<50 12.9 4 13.79 4 13.79 4
50-<100 16.12 5 17.24 5 17.24 5
≥100 3.22 1 6.89 2 6.89 2

Total number of 
sample farms (N) - 31 - 29 - 29

APE (%) - - - 6.4 - 6.4
PAD index (%) - - 17.58 - 17.58 -
FK index (%) - - 91.2 - 91.2 -

Note: NV&QR model: Naïve and Quasi-Rational expectations Model; QR model: Quasi-Rational expectations Model. The determination of 
farm size classes is based on Happe et al. (2008), and Huettel & Margarian (2009).
Source: Authors, based on sample data.
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39.6% for the reference period 2012-19, while the aver-
age farm size increases from 17.65 hectares to 32.58 hec-
tares. As we can see, the process of structural change 
continues after 2019, when the simulation model fore-
casts a further reduction in the number of viable farms. 
According to the BAU scenario, for the period 2019-
2026, a decrease in the number of farms by 41.4% and 
an increase in the average farm size from 32.58 hec-
tares to 62.76 hectares are foreseen. For the CAP Post-
2020 reform and CAP Post-2020 & LWA scenarios, the 
simulation model forecasts a comparatively higher rate 
of structural change. Specifically, for 2019-26 the num-
ber of farms decreases by 48.3%, and the average farm 
size increases from 32.58 hectares to 70.35 hectares. This 
simulation result almost coincides with the estimates of 
some farmers in the sample, who consider that by 2026 
the studied farms will be reduced by 50% compared 
to 2019 (when the most recent survey was conducted). 
Therefore, regardless of the scenario, the model predicts 
an increase in the rate of structural change compared to 
that simulated in the period 2012-19. 

Examining the dynamics of structural change from 
the perspective of farm size distribution, we observe a 
decrease over time in the percentage of very small (farm 
size class: <10 hectares) and small farms (farm size 
class: 10-< 30 ha) (see Figure 3). A decline over time is 
also foreseen for the share of the farmland area of   these 

farms. On the contrary, for the large (farm size class: 
50-<100 ha), and very large farms (farm size class ≥100 
ha), an increase in the shares of the farms and farmland 
area is foreseen. Medium-sized farms (farm size class: 
30-<50 ha) show a weak upward trend in the share of 
farms and a weak downward trend in the share of farm-
land area.

A very high concentration of farmland in very large 
farms (farm size class ≥100 ha) is foreseen since, accord-
ing to all examined scenarios, almost only 10% of farms 
will concentrate about 50% of the total farmland area. It 
is worth noting that the CAP Post-2020 and CAP Post-
2020 & LWA scenarios (although they do not show sub-
stantial differences in the rate of structural change), com-
pared to the BAU scenario, negatively impact the viability 
of small and very small farms. The above findings are in 
line with the estimates of the sample farmers who claim 
that in the region of Karditsa will gradually prevail, arable 
crop farms with a size of at least 30 hectares since such a 
farm size can ensure a decent standard of living for the 
rural household as well as growth prospects.

Regarding the evolution of farm profitability, the 
simulation results depicted in Figure 4 reveal a gradual 
increase in the average Farm Net Profit after Tax (FNPAT) 
for all scenarios. This development can be considered rea-
sonable since, through the structural change, the compara-
tively less profitable farms exit and release resources such 

Figure 2. Simulated number of farms and average farm size by scenario. Note: The provisions of the CAP Post-2020 scenario apply from the 
year 2023. Source: Authors, based on sample data.
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as land, which the comparatively more profitable farms 
acquire. In this framework, surviving and consequently 
growing farms tend to make more efficient use of available 
resources, allocating them to comparatively more profit-
able productive activities, as we will see below.

Although there are no significant differences 
between the scenarios, in the last two years of the simu-
lation (2025-26), a clear distinction is simulated in favor 
of the CAP Post-2020 and CAP Post-2020 & LWA sce-

narios, which is probably due to the higher rate of struc-
tural change. Further analyzing the evolution of average 
profitability by farm size class, the simulation results 
provided in Table 4 show an increase in profitability 
for farms with a size of at least 30 hectares, explaining 
the claim of the sample farmers that shortly the arable 
crop farms with a size of at least 30 hectares will be able 
to remain in the production system. Even more, imple-
menting the CAP Post-2020 and CAP Post-2020 & LWA 

Figure 3. Share of farms and farmland area by farm size classes and scenario. Note: The provisions of the CAP Post-2020 scenario apply 
from the year 2023. Source: Authors, based on sample data.
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scenarios is projected to enhance the profitability of 
these farms further. It is also worth noting that between 
these two scenarios, no substantial differences can be 
found in the evolution of profitability.

3.4. Simulated land use change 

As regards the simulated land use change dynam-
ics illustrated in Figure 5, the main change can be seen 
in the progressive expansion of the processing vegetable 
area and especially for processing pepper. This finding 
thoroughly verifies farmers’ expectations for the further 
expansion of these crops. In particular, the process-
ing pepper farmers of the sample state that their export 
activity will increase significantly in the coming years 
since they receive more than double commodity prices 
compared to domestic prices. Processing tomato farm-

ers aspire to a significant expansion of their produc-
tive activity due to the positive growth prospects of the 
local tomato processing industry, as they also consider 
the role of the local group of processing tomato farmers 
to be particularly beneficial. An increasing trend in the 
processing vegetable area is simulated for both scenarios. 
Still, a more significant upward trend is simulated for 
the CAP Post-2020 reform scenario, possibly due to the 
increased rate of structural change leading to more effi-
cient use of resources, in the sense that surviving farms 
tend to allocate farmland area to comparatively more 
profitable activities20. 

Conversely, we simulated a significant gradual 
decrease in the cotton and tobacco areas. In fact, for 
the CAP Post-2020 reform scenario, we observe a fur-

20 Details are provided in Table A1 in the Appendix.

Figure 4. Evolution of simulated average Farm Net Profit after Tax (FNPAT) by scenario. Note: The provisions of the CAP Post-2020 sce-
nario apply from the year 2023. Source: Authors, based on sample data.

Table 4. Simulated mean Farm Net Profit after Tax (FNPAT) in EUR by farm size classes (2012-2026).

Farm size class in ha
(Characterization) 2012 2019 2026 (BAU scenario) 2026 (CAP Post-2020 

scenario)
2026 (CAP Post-2020 

& LWA scenario)

<10 (Very Small) 18,156 13,706 12,196 - -
10-<30 (Small) 41,931 26,707 25,989 24,987 25,010
30-<50 (Medium) 59,829 68,250 98,608 104,309 107,964
50-<100 (Large) 110,370 69,918 115,803 122,013 126,539
≥100 (Very Large) - 695,181 1.738,668 1.855,216 1.865,563
Aggregate 39,526 84,644 271,183 323,692 327,622

Note: The determination and characterization of farm size classes is based on Happe et al. (2008), and Huettel & Margarian (2009). 
Source: Authors, based on sample data. 
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ther reduction of the cotton and tobacco areas. Durum 
wheat area increases significantly over time for the BAU 
scenario, while for the CAP Post-2020 reform scenario, 
a decrease after 2022 is foreseen due to the set-aside 
applied by the vast majority of sample farms (more than 
90%) in the context of eco-scheme payments. Based on 
this finding, we conclude that farms have a strong incen-
tive to adopt eco-schemes since the majority exceed 10 
hectares and, therefore, would be required to implement 
set-aside on 4% of arable land without extra payment. 
In the CAP Post-2020 & LWA scenario, an expected 
increase is simulated for the area of the grain (durum 
wheat, maize), especially maize, due to the possible 
increase and maintenance of farm gate prices at high 

levels due to the Ukrainian crisis. Accordingly, a further 
reduction in cotton and tobacco areas is simulated.

4. DISCUSSION AND CONCLUSIONS

Dynamic modeling methodologies are deemed 
crucial for comprehending the evolution of economic 
agents’ behaviors in response to shifts in the economic 
environment or policies (Gardebroek and Oude Lansink, 
2008). Considering the volatile economic environment 
in which farms operate due to recent international devel-
opments, such assessments gain significant weight when 
using simulation models like the one we propose herein 
since they can support policy analysts in formulating 
and specifying the appropriate policy measures.

In this context, this study described the conceptual 
framework of a newly developed farm-level recursive 
linear programming model primarily aiming at simu-
lating the impact of policy reform on structural change 
in the arable production system of the region of Kar-
ditsa (NUTS-3 level), one of the central growing regions 
of arable crops in Greece. While managing to capture 
mainly endogenously the dynamics of structural change 
adaptation, the proposed simulation model can simul-
taneously be characterized by a comparatively low level 
of modeling complexity compared to other simulation 
models, such as agent-based models.

From a general perspective, this paper seeks to con-
tribute to the debate on dynamic assessments of the 
multidimensional effects in the context of the CAP Post-
2020 reform while considering recent geopolitical devel-
opments in the context of the Ukrainian crisis.

Validation results demonstrate satisfactory per-
formance of the simulation model in reproducing past 
changes. Therefore, we can use the model to assess the 
effects of various scenarios on the agricultural produc-
tion system. By carrying out policy experiments for 
two different policy scenarios and a combined scenar-
io (policy and geopolitical) we estimated an increased 
rate of structural change compared to the reference 
period (2012-19), and especially for the CAP Post-2020 
and CAP Post-2020 & Long War of Attrition (LWA) 
scenarios. The proposed model simulated an evident 
gradual concentration of farmland in relatively large 
farms (farm size ≥50 ha), accompanied by a decrease 
in the number of relatively small farms (farm size < 30 
ha), making these findings consistent with the results 
obtained from simulation models (e.g., Happe et al., 
2008; Bert et al., 2011; Donati et al., 2024) and other 
dynamic modeling approaches (Herrera et al., 2022; 
Schuh et al., 2022). 

(a) BAU scenario

(b) CAP Post-2020 scenario

(c) CAP Post-2020 & LWA scenario

Figure 5. Simulated arable land allocation by scenario. Note: The 
provisions of the CAP Post-2020 reform scenario apply from the 
year 2023. Source: Authors, based on sample data.
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Regardless of the examined scenario, the simulat-
ed average farm profitability shows a gradual increase, 
which is partly explained by the fact that relatively 
more profitable farms remain in the production system 
confirming previous findings obtained from simula-
tion models (Happe et al., 2008; Bert et al., 2011) and 
other dynamic modeling approaches (Herrera et al., 
2022; Schuh et al., 2022). Obviously, the surviving farms 
which achieve growth in equity tend to allocate their 
growing resources (such as farmland, circulating capital 
and fixed assets) more efficiently, i.e., to relatively more 
profitable productive activities (in our case, process-
ing vegetables), further enhancing average farm profit-
ability (Bert et al., 2011). However, a downward trend is 
simulated for the average profitability of relatively small 
farms (farm size < 30 ha). 

In terms of land use change dynamics, regardless of 
the scenario, our model simulated an increasing trend of 
the land allocated to food crops such as processing vegeta-
bles and a simultaneous decreasing trend of the farmland 
allocated to industrial crops such as cotton and tobacco. 
The rationale explains this result discussed earlier, namely 
that surviving farms tend to expand productive activities 
with comparatively higher profitability, a finding that is 
also consistent with findings obtained from a simulation 
model applied to the agricultural system of the Argentine 
Pampas (Bert et al., 2011). Additionally, Bert et al. (2011) 
consider that this behavior of the farms is interpreted by 
their survival strategy. Considering the above, it could be 
said that a correlation of land use change with structural 
change emerges, in the sense that the viability of farms 
is strongly dependent on the land use chosen (Bert et al., 
2011) and is expressed through their survival strategy to 
allocate their farmland area and capital to the most profit-
able cropping activity gradually. 

Focusing on the paper’s main finding – namely, the 
agricultural production concentration in relatively large 
farms (farm size ≥ 50 ha) – it is found that this has some 
significant policy implications. In particular, an intensi-
fying continuation of pressures towards fewer but larger 
farms (i.e., an increasing rate of structural change) could 
lead to a breakdown of social cohesion, a prerequisite 
for addressing rural communities’ challenges (Knutson 
et al., 1986). From this perspective, appropriate policy 
measures could focus, for example, on the enhancement 
of farmers’ market access since small and medium-sized 
farms have issues accessing markets, achieving a proper 
share in the EU food chain, including value-added pro-
cessing, and maintaining bargaining power (Schuh et al., 
2022). In this vein, cooperatives are one way to improve 
farmers’ access to markets and strengthen bargaining 
power, primarily through vertical integration, which can 

often play a significant role in increasing the economic 
benefits of farmers (Schuh et al., 2022). Therefore, it is 
essential to prioritize examining exemplary cooperative 
practices and supporting the adoption of similar opera-
tional models through policy actions (Schuh et al., 2022).

Even if essential insights were gained, this modeling 
exercise is characterized by several caveats, where we will 
focus on the main ones. First, although the proposed 
recursive linear programming model utilizes input data 
of representative individual real-world farms, effectively 
capturing the heterogeneity in farm structure and repli-
cating varied farm behavior, it does not explicitly capture 
the interaction between individual farms in the sense of 
not incorporating an endogenous price formation mech-
anism for the market of locally available resource like 
land (Berger, 2001; Troost and Berger, 2015; Kremmy-
das, 2019). Additionally, it does not fully consider spatial 
relationships, overlooking the imperfect land allocation 
among farms by disregarding internal transport costs 
and the physical immobility of land (Berger, 2001; Troost 
and Berger, 2015; Kremmydas, 2019). In this context, the 
determination of the regional level at which farms can be 
regarded as competitors for the farmland offered is left to 
the subjectivity of the modeler. Although administrative 
units are often used as a realistic approach (in our case, 
the regional unit of Karditsa (NUTS-3 level)), ideally, the 
regional level could be defined by the viewpoint of active 
farmers who operate the land (Plogmann et al., 2022). 
Consequently, these weaknesses of the proposed mod-
el limit its ability to fully capture interactions between 
farms and spatial dynamics, limiting its explanatory 
power in policy analysis. Especially, the model cannot 
provide detailed insights into the impacts of policy sce-
narios/options on farm structure due to their effects on 
local resource markets (Kremmydas, 2019). Furthermore, 
the incomplete incorporation of spatial dynamics curtails 
the model’s explanatory capacity regarding policy effects 
on the environment, where spatial aspects hold consider-
able importance (Kremmydas, 2019).

Second, although the proposed simulation model con-
siders the differences in profits among neighboring farms 
cultivating different farmland areas in the base year, pro-
viding a reasonable representation of the farm growth pro-
cess, it does not consider economies of scale in an inter-
temporal context. The capture of economies of scale at a 
longitudinal level by the proposed model was not carried 
out to maintain its computational complexity. However, a 
more detailed model that considers this dimension could 
enhance the representation of farm heterogeneity and, 
consequently, policy representation towards a more realis-
tic framework. Therefore, future developments of the pro-
posed simulation model could incorporate cost reductions 
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as a function of farm expansion and/or technological pro-
gress (Happe et al., 2008; Bert et al., 2011).

Third, due to the lack of farm-level data for the 
interim years of the reference period, we were forced to 
use the available national-level time series for param-
eters of interest to bridge the time series data gap at the 
farm level. However, various authors have highlighted 
and documented the statistical differences between 
regional/national and farm-level time series data asso-
ciated with underestimation of variability (e.g., Debrah 
and Hall, 1989). In particular, aggregated data tends to 
underestimate the variability of parameters such as pric-
es and yields at the farm level (Debrah and Hall, 1989), 
which may lead to a less adequate representation of real-
ity regarding farms’ behavior and adaptation.

This modeling exercise has identified many avenues 
for further research, highlighting only a few. First, the 
geographical and sectoral coverage should be expanded. 
Second, it is of particular importance to run simulations 
using alternative allocation/reallocation mechanisms of 
resources, such as relative shadow values of resources. 
Third, an interesting avenue for further research is to 
conduct an environmental impact assessment by utiliz-
ing mean- and effect-based indicators (Lebacq et al., 
2013; Donati et al., 2024) but also to incorporate social 
indicators, allowing us to assess sustainability perfor-
mance at the farm level (e.g., Lairez et al., 2023). Finally, 
further research could be conducted on the investigation 
of farm viability using alternative monetary and socio-
economic viability criteria. 

To conclude, although our modeling results may 
not represent all Greek regions, they may be particularly 
informative for trends that may emerge due to structural 
and land-use changes in rural areas with similar arable 
production systems, not only in the country but also in 
the wider Mediterranean area.

ACKNOWLEDGEMENTS 

This research is co-financed by Greece and the Euro-
pean Union (European Social Fund-ESF) through the 
Operational Programme “Human Resources Develop-
ment, Education and Lifelong Learning” in the context 
of the project “Strengthening Human Resources Research 
Potential via Doctorate Research” (MIS-5000432), imple-
mented by the State Scholarships Foundation (ΙΚΥ).

REFERENCES

Ayerst, S., Brandt, L., and Restuccia, D. (2020). Mar-
ket constraints, misallocation, and productivity in 

Vietnam agriculture, Food Policy, 94. https://doi.
org/10.1016/j.foodpol.2020.101840

Baldi, L., Calzolai, S., Arfini, F., & Donati, M. (2024). Pre-
dicting the effect of the Common Agricultural Poli-
cy post-2020 using an agent-based model based on 
PMP methodology. Bio-Based and Applied Econom-
ics. https://doi.org/10.36253/bae-14592

Balmann, A. (1997). Farm-based modelling of 
regional structural change: A cellular automata 
approach.  European Review of Agricultural Eco-
nomics, 24(1): 85–108. https://doi.org/10.1093/
erae/24.1.85

Balmann, Al., and Valentinov, V. (2016). Towards a the-
ory of structural change in agriculture: Just econom-
ics? 149 Th EAAE Seminar: Structural Change in 
Agri-Food Chain, New Relations between Farm Sec-
tor, Food Industry and Retail Sector, 3. https://doi.
org/10.22004/ag.econ.246420 

Barnes, A. P., Hansson, H., Manevska-Tasevska, G., 
Shrestha, S. S., and Thomson, S. G. (2015). The influ-
ence of diversification on long-term viability of the 
agricultural sector. Land Use Policy, 49, 404–412. htt-
ps://doi.org/10.1016/j.landusepol.2015.08.023 

Barnett, R. C., Bhattacharya, J., and Bunzel, H. (2010). 
Choosing to keep up with the Joneses and income 
inequality. Economic Theory, 45(3): 469–496. https://
doi.org/10.1007/s00199-009-0494-5

Beckers, V., Beckers, J., Vanmaercke, M., van Hecke, E., van 
Rompaey, A., and Dendoncker, N. (2018). Modelling 
farm growth and its impact on agricultural land use: 
A country scale application of an agent-based model. 
Land, 7(3). https://doi.org/10.3390/land7030109

Berger, T. (2001). Agent-based spatial models applied to 
agriculture: a simulation tool for technology diffu-
sion, resource use changes and policy analysis. Agri-
cultural Economics, 25(2-3): 245-260. https://doi.
org/10.1111/j.1574-0862.2001.tb00205.x

Bert, F. E., Podestá, G. P., Rovere, S. L., Menéndez, Á. N., 
North, M., Tatara, E., Laciana, C. E., Weber, E., and 
Toranzo, F. R. (2011). An agent-based model to sim-
ulate structural and land use changes in agricultural 
systems of the Argentine pampas. Ecological Model-
ling, 222(19): 3486–3499. https://doi.org/10.1016/j.
ecolmodel.2011.08.007

Bright, G., Florey, B., and Adams, J. (2007). Indicators 
and determinants of farm financial success. Jour-
nal of Farm Management 13(2): 75-93. https://www.
iagrm.com/files.php?file=large/journals/jofm/vol-
ume_13/jofm-vol13-no2-pages-75-93.pdf 

Britz, W., Lengers, B., Kuhn, T., and Schäfer, D. (2016). A 
highly detailed template model for dynamic optimi-
zation of farms-FARMDYN. Model documentation. 

https://doi.org/10.1016/j.foodpol.2020.101840
https://doi.org/10.1016/j.foodpol.2020.101840
https://doi.org/10.1093/erae/24.1.85
https://doi.org/10.1093/erae/24.1.85
https://econpapers.repec.org/scripts/redir.pf?u=https%3A%2F%2Fdoi.org%2F10.22004%252Fag.econ.246420;h=repec:ags:eaa149:246420
https://doi.org/10.1016/j.landusepol.2015.08.023
https://doi.org/10.1016/j.landusepol.2015.08.023
https://doi.org/10.1007/s00199-009-0494-5
https://doi.org/10.1007/s00199-009-0494-5
https://doi.org/10.3390/land7030109
https://doi.org/10.1111/j.1574-0862.2001.tb00205.x
https://doi.org/10.1111/j.1574-0862.2001.tb00205.x
https://doi.org/10.1016/j.ecolmodel.2011.08.007
https://doi.org/10.1016/j.ecolmodel.2011.08.007
https://www.iagrm.com/files.php?file=large/journals/jofm/volume_13/jofm-vol13-no2-pages-75-93.pdf
https://www.iagrm.com/files.php?file=large/journals/jofm/volume_13/jofm-vol13-no2-pages-75-93.pdf
https://www.iagrm.com/files.php?file=large/journals/jofm/volume_13/jofm-vol13-no2-pages-75-93.pdf


371Simulating farm structural change dynamics in Thessaly (Greece) using a recursive programming model

Bio-based and Applied Economics 13(4): 353-386, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14790 

Institute for Food and Resource Economics, Univer-
sity Bonn. https://www.ilr1.uni-bonn.de/en/research/
research-groups/economic-modeling-of-agricultural-
systems/farmdyn 

Chen, C., Restuccia, D., and Santaeulàlia-Llopis, R. 
(2022). The effects of land markets on resource 
allocation and agricultural productivity. Review 
of Economic Dynamics, 45, 41–54. https://doi.
org/10.1016/j.red.2021.04.006 

Chien, Y. I., and Bradford, G. L. (1976). A Sequential 
Model of the Farm Firm Growth Process. American 
Journal of Agricultural Economics, 58(3): 456-465. 
https://doi.org/10.2307/2290724

Christodoulos, C., Michalakelis, C., and Varoutas, D. 
(2010). Forecasting with limited data: Combining 
ARIMA and diffusion models. Technological Fore-
casting and Social Change, 77(4), 558–565. https://
doi.org/10.1016/j.techfore.2010.01.009 

Ciaian, P., Espinosa, M., Paloma, G.Y., Heckelei, T., 
Sckokai, P., Langrell, S., Louhichi, K., Thomas, A., 
and Vard, T. (2013). Farm level modelling of the 
CAP: a methodological overview. EUR 25873. Lux-
embourg (Luxembourg): Publications Office of the 
European Union; 2013. JRC79969. https://pub-
lications.jrc.ec.europa.eu/repository/bitstream/
JRC79969/jrc79969onlinefinal.pdf

 Cittadini, E. D., Lubbers, M. T. M. H., de Ridder, N., van 
Keulen, H., and Claassen, G. D. H. (2008). Exploring 
options for farm-level strategic and tactical decision-
making in fruit production systems of South Patago-
nia, Argentina. Agricultural Systems, 98(3): 189–198. 
https://doi.org/10.1016/j.agsy.2008.07.001

Cochrane, W. (1958). Farm Prices: Myth and Reality. 
Minneapolis: University of Minnesota Press, 1958. 
https://searchworks.stanford.edu/view/9972413 

Costache, M., Sebastian Cristea, D., Petrea, S. M., Necu-
lita, M., Rahoveanu, M. M. T., Simionov, I. A., Mog-
odan, A., Sarpe, D., and Rahoveanu, A. T. (2021). 
Integrating aquaponics production systems into 
the Romanian green procurement network. Land 
Use Policy, 108. https://doi.org/10.1016/j.landuse-
pol.2021.105531 

Davis, J., Caskie, P., and Wallace, M. (2013). Promoting 
structural adjustment in agriculture: The economics 
of New Entrant Schemes for farmers. Food Policy, 40, 
90–96. https://doi.org/10.1016/j.foodpol.2013.02.006 

Day, R. H., and Cigno, A. (1978). Modelling economic 
change: The recursive programming approach. Day, 
R H, Cigno, A (eds). Modelling Economic Change. 
Elsevier North-Holland, Inc.

Debrah, S., and Hall, H. H. (1989). Data Aggregation and 
Farm Risk Analysis. In Agricultural Systems (Vol. 31).

Djanibekov, U., and Finger, R. (2018). Agricultural risks 
and farm land consolidation process in transition 
countries: The case of cotton production in Uzbeki-
stan. Agricultural Systems, 164, 223–235. https://doi.
org/10.1016/j.agsy.2018.03.009

Dowson, O., Philpott, A., Mason, A. and Downward, A. 
(2019). A multi-stage stochastic optimization model 
of a pastoral dairy farm. European Journal of Opera-
tional Research 274: 1077–1089.

ELSTAT (2021). Household Budget Survey (after 2008), 
2020. Hellenic Statistical Authority. https://www.sta-
tistics.gr/en/statistics/-/publication/SFA05/2020 

Espinosa, M., Gocht, A., Heckelei, T., and Paloma, S. G. 
y. (2016). Incorporating farm structural change in 
models assessing the Common Agricultural Policy: 
An application in the CAPRI farm type model. Jour-
nal of Policy Modeling, 38(6): 1040–1059. https://doi.
org/10.1016/j.jpolmod.2016.03.005

European Council (2022). Infographic - Ukrainian grain 
exports explained. https://www.consilium.europa.eu/
en/infographics/ukrainian-grain-exports-explained/  

FADN Public Database. Farm Accountancy Data Net-
work Public Database. Directorate-General for Agri-
culture and Rural Development. https://agridata.
ec.europa.eu/extensions/FADNPublicDatabase/FAD-
NPublicDatabase.html

Femenia, F., Latruffe, L., and Chavas, J. P. (2017). Respon-
siveness of farm investment to price changes: An 
empirical study of the French crop sector. Journées 
de Microéconomie Appliquées (JMA), Groupe 
d’Analyse des Itinéraires et Niveaux Salariaux 
(GAINS). FRA. Université du Maine, FRA., Jun 2017, 
Le Mans, France. https://hal.science/hal-01571567

Finger, R., and el Benni, N. (2021). Farm income in Euro-
pean agriculture: New perspectives on measurement 
and implications for policy evaluation. European 
Review of Agricultural Economics, 48(2): 253-265. 
https://doi.org/10.1093/erae/jbab011

Finger, J. M., and Kreinin, M. E. (1979). A Meas-
ure of ‘Export Similarity’ and Its Possible Uses. 
The Economic Journal, 89(356). https://doi.
org/10.2307/2231506

Fisher, W. H., and Heijdra, B. J. (2009). Keeping up with 
the ageing Joneses. Journal of Economic Dynamics 
and Control, 33(1): 53–64. https://doi.org/10.1016/j.
jedc.2008.04.010 

Foster, L., Haltiwanger, J., and Syverson, C. (2008). Reallo-
cation, firm turnover, and efficiency: Selection on pro-
ductivity or profitability? American Economic Review, 
98(1): 394-425. https://doi.org/10.1257/aer.98.1.394

Freeman, T., Nolan, J., and Schoney, R. (2009). An agent-
based simulation model of structural change in 

https://www.ilr1.uni-bonn.de/en/research/research-groups/economic-modeling-of-agricultural-systems/farmdyn
https://www.ilr1.uni-bonn.de/en/research/research-groups/economic-modeling-of-agricultural-systems/farmdyn
https://www.ilr1.uni-bonn.de/en/research/research-groups/economic-modeling-of-agricultural-systems/farmdyn
https://doi.org/10.1016/j.red.2021.04.006
https://doi.org/10.1016/j.red.2021.04.006
https://doi.org/10.2307/2290724
https://doi.org/10.1016/j.techfore.2010.01.009
https://doi.org/10.1016/j.techfore.2010.01.009
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC79969/jrc79969onlinefinal.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC79969/jrc79969onlinefinal.pdf
https://publications.jrc.ec.europa.eu/repository/bitstream/JRC79969/jrc79969onlinefinal.pdf
https://doi.org/10.1016/j.agsy.2008.07.001
https://searchworks.stanford.edu/view/9972413
https://doi.org/10.1016/j.landusepol.2021.105531
https://doi.org/10.1016/j.landusepol.2021.105531
https://doi.org/10.1016/j.foodpol.2013.02.006
https://doi.org/10.1016/j.agsy.2018.03.009
https://doi.org/10.1016/j.agsy.2018.03.009
https://www.statistics.gr/en/statistics/-/publication/SFA05/2020
https://www.statistics.gr/en/statistics/-/publication/SFA05/2020
https://doi.org/10.1016/j.jpolmod.2016.03.005
https://doi.org/10.1016/j.jpolmod.2016.03.005
https://www.consilium.europa.eu/en/infographics/ukrainian-grain-exports-explained/
https://www.consilium.europa.eu/en/infographics/ukrainian-grain-exports-explained/
https://agridata.ec.europa.eu/extensions/FADNPublicDatabase/FADNPublicDatabase.html
https://agridata.ec.europa.eu/extensions/FADNPublicDatabase/FADNPublicDatabase.html
https://agridata.ec.europa.eu/extensions/FADNPublicDatabase/FADNPublicDatabase.html
https://doi.org/10.1093/erae/jbab011
https://doi.org/10.2307/2231506
https://doi.org/10.2307/2231506
https://doi.org/10.1016/j.jedc.2008.04.010
https://doi.org/10.1016/j.jedc.2008.04.010
https://doi.org/10.1257/aer.98.1.394


372

Bio-based and Applied Economics 13(4): 353-386, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14790 

Stamatis Mantziaris et al.

Canadian prairie agriculture, 1960-2000. Canadian 
Journal of Agricultural Economics, 57(4): 537–554. 
https://doi.org/10.1111/j.1744-7976.2009.01169.x

Gardebroek, C., and Oude Lansink, A., 2008. Dynamic 
microeconometric approaches to analysing agricultural 
policy. Paper presented at the 107th EAAE Seminar 
“Modelling of Agricultural and Rural Development 
Policies”, January 29–February 1, 2008, Seville, Spain.

Garnier, H. (n.d.). Introduction to time series analysis and 
forecasting. University of Lorraine. http://w3.cran.
univ-lorraine.fr/perso/hugues.garnier/Enseignement/
TSAF/C-TSAF-Box-Jenkins_method.pdf

Goddard, E., Weersink, A., Chen, K., and Turvey, C. G. 
(1993). Economics of Structural Change in Agricul-
ture. Canadian Journal of Agricultural Economics/
Revue Canadienne d’agroeconomie, 41(4): 475-489. 
https://doi.org/10.1111/j.1744-7976.1993.tb03772.x

Gómez-Limón, J. A., Gutiérrez-Martín, C., and Riesgo, L. 
(2016). Modeling at farm level: Positive Multi-Attrib-
ute Utility Programming. Omega (United Kingdom), 
65: 17-27. https://doi.org/10.1016/j.omega.2015.12.004 

Greek Ministry of Rural Development and Food (2014). 
The context of Common Agricultural Policy after 
2015-First Pillar: Direct Payments (in Greek). http://
minagric.gr/images/stories/agropol/Greek/Agro_pol/
KAP/ParousiasiFINAL2015_290715.pdf

Greek Ministry of Rural Development and Food 
(2022). Greek Strategic Plan proposal for the CAP 
2023-2027 (in Greek). https://ead.gr/wp-content/
uploads/2022/01/cap_sp_proposal_30_12_2021.pdf

GRDC (2015). How Do I Measure The Financial Perfor-
mance Of My Farm Business? Grains Research and 
Development Corporation (GRDC).

Guinde, L., Millet, G., Rozakis, S., Sourie, J.-C., and 
Tréguer, D. (2005). The CAP Mid-Term Reform 
Impacts to French Cereal-Oriented Farms. Pro-
ceedings of the 89th EAAE Seminar.10.22004/
ag.econ.232607 

Haile, M. G., Kalkuhl, M., and von Braun, J. (2016). World-
wide acreage and yield response to international price 
change and volatility: A dynamic panel data analysis 
for wheat, rice, corn, and soybeans. In Food Price Vola-
tility and Its Implications for Food Security and Policy. 
https://doi.org/10.1007/978-3-319-28201-5_7

Happe, K., Balmann, A., Kellermann, K., and Sahrbach-
er, C. (2008). Does structure matter? The impact of 
switching the agricultural policy regime on farm 
structures. Journal of Economic Behavior and Organ-
ization, 67(2): 431–444. https://doi.org/10.1016/j.
jebo.2006.10.009

Hennessy, T. C. (2007). Modelling the Effect of Policy 
Reform on Structural Change in Irish Farming. 

Irish Agriculture and Food Development Authority, 
Rural Economy Research Centre, Ionad Taighde Eac-
namaíochta Tuatha.

Henningsen, A., Henning, C., Struve, C., and Müller-
Scheessel, J. (2005). Economic impact of the Mid-Term 
Review on agricultural production, farm income and 
farm survival: A quantitative analysis for local sub-
regions of Schleswig-Holstein in Germany, 11th EAAE 
Congress, August 24-27, 2005. Copenhagen, Denmark.

Herrera, H., Schütz, L., Paas, W., Reidsma, P., and 
Kopainsky, B. (2022). Understanding resilience of 
farming systems: Insights from system dynamics 
modelling for an arable farming system in the Neth-
erlands. Ecological Modelling, 464: 109848. https://
doi.org/10.1016/j.ecolmodel.2021.109848

Hloušková, Z., Ženíšková, P., and Prášilová, M. (2018). 
Comparison of agricultural costs prediction approach-
es. Agris On-Line Papers in Economics and Informat-
ics, 10(1). https://doi.org/10.7160/aol.2018.100101 

Huang, W.-Y., Weisz, R. N., & Heady, E. O. (1980). An 
econometric-programming model for agricultural pol-
icy analysis. CARD Reports. 89, Center for Agricul-
tural and Rural Development, Iowa State University. 
http://lib.dr.iastate.edu/card_reports/89

Huettel, S., and Margarian, A. (2009). Structural change 
in the West German agricultural sector. Agricultural 
Economics, 40: 759–772. https://doi.org/10.1111/
j.1574-0862.2009.00413.x 

Iglesias, E., Garrido, A., and Gómez-Ramos, A. (2003). 
Evaluation of drought management in irrigated areas. 
Agricultural Economics, 29(2): 211–229. https://doi.
org/10.1016/S0169-5150(03)00084-7 

Kay, R. D. (1971). A dynamic linear programming model 
of farm firm growth in North Central Iowa. Retro-
spective Theses and Dissertations. 4470, Iowa State 
University. https://lib.dr.iastate.edu/rtd

Khanal, A. R., and Omobitan, O. (2020). Rural Finance, 
Capital Constrained Small Farms, and Financial Per-
formance: Findings from a Primary Survey. Journal 
of Agricultural and Applied Economics, 52(2). htt-
ps://doi.org/10.1017/aae.2019.45 

Knutson, R., Richardson, J., and Smith, E. (1986). Impact of 
Farm Policies on Agriculture, Farm Structure, and Rural 
Communities. Journal of Rural Social Sciences, 4(1). 

Kremmydas, D. (2019). Integrated mathematical pro-
gramming and agent based model for policy analysis 
of Greek agriculture. PhD Thesis, Agricultural Uni-
versity of Athens.

Kremmydas, D., Ciaian, P., and Baldoni, E. (2023). Mod-
eling conversion to organic agriculture with an EU-
wide farm model. Bio-Based and Applied Economics, 
12(4), 261–304. https://doi.org/10.36253/bae-13925 

https://doi.org/10.1111/j.1744-7976.2009.01169.x
http://w3.cran.univ-lorraine.fr/perso/hugues.garnier/Enseignement/TSAF/C-TSAF-Box-Jenkins_method.pdf
http://w3.cran.univ-lorraine.fr/perso/hugues.garnier/Enseignement/TSAF/C-TSAF-Box-Jenkins_method.pdf
http://w3.cran.univ-lorraine.fr/perso/hugues.garnier/Enseignement/TSAF/C-TSAF-Box-Jenkins_method.pdf
https://doi.org/10.1111/j.1744-7976.1993.tb03772.x
https://doi.org/10.1016/j.omega.2015.12.004
http://minagric.gr/images/stories/agropol/Greek/Agro_pol/KAP/ParousiasiFINAL2015_290715.pdf
http://minagric.gr/images/stories/agropol/Greek/Agro_pol/KAP/ParousiasiFINAL2015_290715.pdf
http://minagric.gr/images/stories/agropol/Greek/Agro_pol/KAP/ParousiasiFINAL2015_290715.pdf
https://ead.gr/wp-content/uploads/2022/01/cap_sp_proposal_30_12_2021.pdf
https://ead.gr/wp-content/uploads/2022/01/cap_sp_proposal_30_12_2021.pdf
https://grdc.com.au/resources-and-publications/all-publications/publications/2015/01/farming-the-business-manual/FB_Manual_Document_3rd-edition_Jul19-WEB-72dpi070-149.pdf
https://grdc.com.au/resources-and-publications/all-publications/publications/2015/01/farming-the-business-manual/FB_Manual_Document_3rd-edition_Jul19-WEB-72dpi070-149.pdf
https://doi.org/10.1007/978-3-319-28201-5_7
https://doi.org/10.1016/j.jebo.2006.10.009
https://doi.org/10.1016/j.jebo.2006.10.009
https://doi.org/10.1016/j.ecolmodel.2021.109848
https://doi.org/10.1016/j.ecolmodel.2021.109848
https://doi.org/10.7160/aol.2018.100101
http://lib.dr.iastate.edu/card_reports/89
https://doi.org/10.1111/j.1574-0862.2009.00413.x
https://doi.org/10.1111/j.1574-0862.2009.00413.x
https://doi.org/10.1016/S0169-5150(03)00084-7
https://doi.org/10.1016/S0169-5150(03)00084-7
https://lib.dr.iastate.edu/rtd
https://doi.org/10.1017/aae.2019.45
https://doi.org/10.1017/aae.2019.45
https://doi.org/10.36253/bae-13925


373Simulating farm structural change dynamics in Thessaly (Greece) using a recursive programming model

Bio-based and Applied Economics 13(4): 353-386, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14790 

Lairez, J., Jourdain, D., Lopez-Ridaura, S., Syfongxay, 
C., and Affholder, F. (2023). Multicriteria assess-
ment of alternative cropping systems at farm level. A 
case with maize on family farms of South East Asia. 
Agricultural Systems, 212. https://doi.org/10.1016/j.
agsy.2023.103777 

Lebacq, T., Baret, P. v., and Stilmant, D. (2013). Sustain-
ability indicators for livestock farming. A review. In 
Agronomy for Sustainable Development (Vol. 33, 
Issue 2, pp. 311–327). https://doi.org/10.1007/s13593-
012-0121-x

Lombardo, V. (2021). Social inclusion through social sta-
tus and the emergence of development traps. Metro-
economica, 72(4), 798–825. https://doi.org/10.1111/
meca.12348

Loughrey, J., O’Donoghue, C., and Conneely, R. (2022). 
Alternative measures of Family Farm Viabil-
ity – Incorporating gap measures. Journal of Rural 
Studies, 89: 257–274. https://doi.org/10.1016/j.
jrurstud.2021.11.022

Mageli, I., Mannberg, A., and Heen, E. E. (2022). With 
whom, and about what, do we compete for social 
status? Effects of social closeness and relevance of 
reference groups for positional concerns. Journal of 
Behavioral and Experimental Economics, 98. https://
doi.org/10.1016/j.socec.2022.101867  

Mao, L., Huang, Y., Zhang, X., Li, S., and Huang, X. 
(2022). ARIMA model forecasting analysis of the 
prices of multiple vegetables under the impact of the 
COVID-19. PLoS ONE 17(7): e0271594. https:// doi.
org/10.1371/journal.pone.0271594

McCarl, B.A., and Spreen, T.H. (1997). Applied Math-
ematical Programming Using Algebraic Systems. 
Texas A&M University, College Station, Texas. htt-
ps://agecon2.tamu.edu/people/faculty/mccarl-bruce/
mccspr/thebook.pdf 

Miller, T. A., Rodewald, G. E., and Mcelroy, R. G. (1981). 
Economies of Size in U.S. Field Crop Farming. 
Agricultural Economic Report No. 472, National 
Economics Division, Economics and Statistics Ser-
vice, U.S. Department of Agriculture. https://doi.
org/10.22004/ag.econ.307907  

Mittenzwei, K., and Britz, W. (2018). Analysing Farm-
specific Payments for Norway using the Agrispace 
Model. Journal of Agricultural Economics, 69(3): 
777-793. https://doi.org/10.1111/1477-9552.12268 

Modern War Institute (2022). What Comes Next in 
Ukraine: Three Scenarios. Modern War Institute – 
West Point. https://mwi.usma.edu/what-comes-next-
in-ukraine-three-scenarios/

Narayana, N. S. S., and Parikh, K. S. (1981). Estimation of 
farm supply response and acreage allocation: a case 

study of Indian agriculture. Research Report, Inter-
national Institute for Applied Systems Analysis, 81–1.

Nerlove, M. and D.A. Bessler (2001), “Expectations, 
Information and Dynamics” in B. Gardner and G. 
Rausser (Eds.) (2001), Handbook of Agricultural 
Economics, Vol.1 (Elsevier Science BV), pp. 155-206.

Neuenfeldt, S., Gocht, A., Heckelei, T. and Ciaian, P. 
(2019). Explaining farm structural change in the Euro-
pean agriculture: A novel analytical framework. Euro-
pean Review of Agricultural Economics 46: 713–768.

Nguyen, D. J., and Herron, A. (2021). Keeping Up With the 
Joneses or Feeling Priced Out?: Exploring How Low-
Income Students’ Financial Position Shapes Sense of 
Belonging. Journal of Diversity in Higher Education, 
14(3): 429-440. https://doi.org/10.1037/dhe0000191

Offermann, F., and Margarian, A. (2014). Modelling Struc-
tural Change in Ex-Ante Policy Impact Analysis. In: 
Zopounidis, C., Kalogeras, N., Mattas, K., van Dijk, G., 
Baourakis, G. (eds) Agricultural Cooperative Manage-
ment and Policy. Cooperative Management. Springer, 
Cham. https://doi.org/10.1007/978-3-319-06635-6_8 

Oliveira, R. A., O ’connor, C. W., and Smith, G. W. 
(1979). Short-Run Forecasting Models of Beef Prices. 
Western Journal of Agricultural Economics, 4(1).

Painter, M. J. (2005). Returns to Farmland and Farm 
Labour and Management in Western Canada. Jour-
nal of Farm Management, 12(3): 123-141. https://
ageconsearch.umn.edu/nanna/record/122234/files/
Painter%201.pdf?withWatermark=0&withMetadata=
0&version=1&registerDownload=1 

Pardoe, I. (n.d.). Course notes for  STAT 501: Regres-
sion Methods: T.2.5.1 - ARIMA Models. Department 
of Statistics, Pennsylvania State University. https://
online.stat.psu.edu/stat501/lesson/t/t.2/t.2.5/t.2.5.1-
arima-models 

Paroissien, E., Latruffe, L., and Piet, L. (2021). Early exit 
from business, performance and neighbours’ influ-
ence: a study of farmers in France. European Review 
of Agricultural Economics, 48(5): 1132–1161. https://
doi.org/10.1093/erae/jbab008

Petsakos, A., Hareau, G., Pradel, W., and Suarez, V. 
(2016). Forecasting Potato and Sweetpotato Yields for 
2050. International Potato Center (CIP) Lima, Peru. 
Working Paper 2016-1. 26 p.

Plogmann, J., Mußhoff, O., Odening, M., and Ritter, M. 
(2022). Farm growth and land concentration. Land 
Use Policy, 115: 106036. https://doi.org/10.1016/j.lan-
dusepol.2022.106036

Quartey-Papafio, T. K., Javed, S. A., and Liu, S. (2021). 
Forecasting cocoa production of six major producers 
through ARIMA and grey models. Grey Systems, 11(3): 
434-462. https://doi.org/10.1108/GS-04-2020-0050

https://doi.org/10.1016/j.agsy.2023.103777
https://doi.org/10.1016/j.agsy.2023.103777
https://doi.org/10.1007/s13593-012-0121-x
https://doi.org/10.1007/s13593-012-0121-x
https://doi.org/10.1111/meca.12348
https://doi.org/10.1111/meca.12348
https://doi.org/10.1016/j.jrurstud.2021.11.022
https://doi.org/10.1016/j.jrurstud.2021.11.022
https://doi.org/10.1016/j.socec.2022.101867
https://doi.org/10.1016/j.socec.2022.101867
https://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/thebook.pdf
https://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/thebook.pdf
https://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/thebook.pdf
https://doi.org/10.1111/1477-9552.12268
https://mwi.usma.edu/what-comes-next-in-ukraine-three-scenarios/
https://mwi.usma.edu/what-comes-next-in-ukraine-three-scenarios/
https://doi.org/10.1037/dhe0000191
https://doi.org/10.1007/978-3-319-06635-6_8
https://ageconsearch.umn.edu/nanna/record/122234/files/Painter 1.pdf?withWatermark=0&withMetadata=0&version=1&registerDownload=1
https://ageconsearch.umn.edu/nanna/record/122234/files/Painter 1.pdf?withWatermark=0&withMetadata=0&version=1&registerDownload=1
https://ageconsearch.umn.edu/nanna/record/122234/files/Painter 1.pdf?withWatermark=0&withMetadata=0&version=1&registerDownload=1
https://ageconsearch.umn.edu/nanna/record/122234/files/Painter 1.pdf?withWatermark=0&withMetadata=0&version=1&registerDownload=1
https://online.stat.psu.edu/stat501/lesson/t/t.2/t.2.5/t.2.5.1-arima-models
https://online.stat.psu.edu/stat501/lesson/t/t.2/t.2.5/t.2.5.1-arima-models
https://online.stat.psu.edu/stat501/lesson/t/t.2/t.2.5/t.2.5.1-arima-models
https://doi.org/10.1093/erae/jbab008
https://doi.org/10.1093/erae/jbab008
https://doi.org/10.1016/j.landusepol.2022.106036
https://doi.org/10.1016/j.landusepol.2022.106036
https://doi.org/10.1108/GS-04-2020-0050


374

Bio-based and Applied Economics 13(4): 353-386, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14790 

Stamatis Mantziaris et al.

RIRDC (2007). Drivers of Structural Change in Aus-
tralian Agriculture. Rural Industries Research and 
Development Corporation (RIRDC). Publication No. 
07/057.

Robert, M., Bergez, J. E., and Thomas, A. (2018). A sto-
chastic dynamic programming approach to ana-
lyze adaptation to climate change – Application to 
groundwater irrigation in India. European Journal of 
Operational Research, 265(3): 1033–1045. https://doi.
org/10.1016/j.ejor.2017.08.029

Robert, M., Thomas, A., and Bergez, J. E. (2016). Pro-
cesses of adaptation in farm decision-making models. 
A review. Agronomy for Sustainable Development, 
36(4): 64. https://doi.org/10.1007/s13593-016-0402-x

Rowan, T. S. C., Maier, H. R., Connor, J., and Dandy, G. 
C. (2011). An integrated dynamic modeling frame-
work for investigating the impact of climate change 
and variability on irrigated agriculture. Water 
Resources Research, 47(7): W0752. https://doi.
org/10.1029/2010WR010195

Saint-Cyr, L. D. F., Storm, H., Heckelei, T., and Piet, L. 
(2019). Heterogeneous impacts of neighbouring farm 
size on the decision to exit: Evidence from Brittany. 
European Review of Agricultural Economics, 46(2): 
237–266. https://doi.org/10.1093/erae/jby029

Schuh, B. et al. (2022) Research for AGRI Committee – 
The Future of the European Farming Model: Socio-
economic and territorial implications of the decline 
in the number of farms and farmers in the EU, Euro-
pean Parliament, Policy Department for Structural 
and Cohesion Policies, Brussels. https://www.euro-
parl.europa.eu/RegData/etudes/STUD/2022/699620/
IPOL_STU(2022)699620(SUM01)_EN.pdf 

Seidel, C., and Britz, W. (2019). Estimating a dual value 
function as a meta-model of a detailed dynam-
ic mathematical programming model. Bio-Based 
and Applied Economics, 8(1): 75-99. https://doi.
org/10.13128/bae-8147

Sheng, Y., Jackson, T., and Gooday, P. (2015). Resource 
reallocation and its contribution to productivity 
growth in Australian broadacre agriculture. Austral-
ian Journal of Agricultural and Resource Economics, 
61(1): 56-75. https://doi.org/10.1111/1467-8489.12137

Siegle, J., Astill, G., Plakias, Z., and Tregeagle, D. (2024). 
Estimating perennial crop supply response: A meth-
odology literature review. Agricultural Econom-
ics (United Kingdom). https://doi.org/10.1111/
agec.12812 

Smale M., Saupe W.E., Salant P. (1986). Farm family char-
acteristics and the viability of farm households in 
Wisconsin, Mississippi, and Tennessee. Agricultural 
Economics Research, 38: 11–27.

Sun, R., Nolan, J., and Kulshreshtha, S. (2022). Agent-
based modeling of policy induced agri-environmen-
tal technology adoption. SN Business & Economics, 
2(8). https://doi.org/10.1007/s43546-022-00275-6

Troost, C., and Berger, T. (2015). Dealing with uncertain-
ty in agent-based simulation: Farm-level modeling of 
adaptation to climate change in southwest Germany. 
American Journal of Agricultural Economics, 97(3), 
833–854. https://doi.org/10.1093/ajae/aau076

Troost, C., and Berger, T. (2016). Simulating structural 
change in agriculture: Modelling farming households 
and farm succession. In: Sauvage, S., Sánchez-Pérez, 
J.M., Rizzoli, A.E. (Eds.), 2016. Proceedings of the 
8th International Congress on Environmental Mod-
elling and Software, July 10-14, Toulouse, France. 
ISBN: 978-88-9035-745-9.

Troost, C., and Berger, T. (2020). Formalising validation? 
Towards criteria for valid conclusions from agent-
based simulation. 10th International Congress on 
Environmental Modelling and Software Brussels, Bel-
gium. https://scholarsarchive.byu.edu/iemssconfer-
ence/2020/

Viaggi, D., Raggi, M., and Gomez Y Paloma, S. (2010). 
An integer programming dynamic farm-household 
model to evaluate the impact of agricultural policy 
reforms on farm investment behaviour. European 
Journal of Operational Research, 207(2): 1130–1139. 
https://doi.org/10.1016/j.ejor.2010.05.012

Viaggi, D., Bartolini, F., Raggi, M., Sardonini, L., Sam-
meth, F., Gomez, Y., Paloma, S. (2011). Farm invest-
ment behaviour under the CAP reform Process. JRC 
European Comission: Luxembourg.

Weyerstrass, K. (2016). A tool for supporting economic 
policy-making in the former Yugoslavia. Documenta-
tion and applications of a macroeconomic multi-coun-
try model. Osteuropa: Geschichte, Wirtschaft, Politik, 
49. Wien: LIT-Verlag. 224 p.

Wiborg, T. (1998). KRAM - A Sector Model of Danish 
Agriculture: Background and Framework Development. 
http://lib.dr.iastate.edu/card_workingpapers/221

Zimmermann, A., and Heckelei, T. (2012). Structur-
al Change of European Dairy Farms - A Cross-
Regional Analysis. Journal of Agricultural Econom-
ics, 63(3): 576-603. https://doi.org/10.1111/j.1477-
9552.2012.00355.x

Zimmermann, A., Heckelei, T., and Domínguez, I. P. 
(2009). Modelling farm structural change for inte-
grated ex-ante assessment: review of methods and 
determinants. Environmental Science and Poli-
cy, 12(5): 601-618. https://doi.org/10.1016/j.envs-
ci.2009.01.014

https://doi.org/10.1016/j.ejor.2017.08.029
https://doi.org/10.1016/j.ejor.2017.08.029
https://doi.org/10.1007/s13593-016-0402-x
https://doi.org/10.1029/2010WR010195
https://doi.org/10.1029/2010WR010195
https://doi.org/10.1093/erae/jby029
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/699620/IPOL_STU(2022)699620(SUM01)_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/699620/IPOL_STU(2022)699620(SUM01)_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2022/699620/IPOL_STU(2022)699620(SUM01)_EN.pdf
https://doi.org/10.13128/bae-8147
https://doi.org/10.13128/bae-8147
https://doi.org/10.1111/1467-8489.12137
https://doi.org/10.1111/agec.12812
https://doi.org/10.1111/agec.12812
https://doi.org/10.1007/s43546-022-00275-6
https://doi.org/10.1093/ajae/aau076
https://scholarsarchive.byu.edu/iemssconference/2020/
https://scholarsarchive.byu.edu/iemssconference/2020/
https://doi.org/10.1016/j.ejor.2010.05.012
http://lib.dr.iastate.edu/card_workingpapers/221
https://doi.org/10.1111/j.1477-9552.2012.00355.x
https://doi.org/10.1111/j.1477-9552.2012.00355.x
https://doi.org/10.1016/j.envsci.2009.01.014
https://doi.org/10.1016/j.envsci.2009.01.014


375Simulating farm structural change dynamics in Thessaly (Greece) using a recursive programming model

Bio-based and Applied Economics 13(4): 353-386, 2024 | e-ISSN 2280-6172 | DOI: 10.36253/bae-14790 

APPENDIX

Table A1. Simulated average gross margin for each cropping activ-
ity (EUR/ha).

2012 2019

Cotton 1,176 1,549
Tobacco (Virginia) 4,750 4,757
Maize 2,300 1,409
Processing Tomato 6,370 4,863
Processing Pepper 17,331 27,800
Alfalfa (hay) 807.3 817.6
Alfalfa (seed production) - 509.5
Durum Wheat 258.2 207.3

Source: Authors, based on sample data.

SUPPLEMENTARY MATERIAL TO 
“SIMULATING FARM STRUCTURAL CHANGE 
DYNAMICS IN THESSALY (GREECE) USING 

A RECURSIVE PROGRAMMING MODEL”

Part A: Conceptual framework of ARIMA modeling

The Box-Jenkins method for Autoregressive Integrated 
Moving Average (ARIMA) models is considered one of 
the most efficient time series forecasting methods utiliz-
ing almost any set of data (Christodoulos et al., 2010). In 
this framework, other authors consider that ARIMA mod-
els have been remarkably successful with an excellent per-
formance on small data sets (Garnier, n.d.). According to 
various modelers, ARIMA models can provide acceptable 
results when at least 16-time series data points are avail-
able (Gottardi & Scarso, 1994; Christodoulos et al., 2010). 

An important class of stochastic models for describ-
ing time series are called stationary models or Autore-
gressive-Moving Average (ARMA) models varying about 
a fixed constant mean level and with constant variance 
(Box et al., 2016).

An ARMA (p,q) model is formulated as follows:

Yt = φiYt-i + εt – θjεt-j, (A1)

where φ1 .…, φp   are the autoregressive (AR) param-
eters to be estimated, θ1 ,…,θq  are the moving average 
(MA) parameters to be estimated, and ε1…εt are a series 
of unknown random “shocks” (or residuals) that are 
assumed to follow a normal distribution (Pardoe, n.d.). 

The model can be simplified by introducing the 
Box-Jenkins backward shift operator21 where BiYt = Yt-i 

21 The Backward shift operator is a useful notational device expressing 

and Bjεt = εt-j; Y1,…,Yt    is any time series  ;  p<t and q<t 
(Pardoe, n.d.).

Substituting backward shift operators in equation 
(A1), we obtain the following form:

(1 – φiBi)Yt = (1 – θjBj)εt (A2)

Which is often reduced further to (Pardoe, n.d.):

φp(B)Yt = θq(B)εt (A3)

Many series encountered in industry or business 
reveal nonstationary behavior 22and do not vary about a 
fixed mean, showing a stochastic trend (Box et al., 2016). 
We should therefore convert a non-stationary time series 
to a stationary one by differencing the ARMA (p,q) model. 

Then the ARMA (p,q) model can be extended and 
written using differences ΔYt = (1 – Β)dYt = ∇dYt as fol-
lows:

φp(B)(1 – Β)dYt = θq(B)εt (A4)

where d is the order of differencing. Replacing in the 
ARMA model with the differences above, we obtain the 
formal ARIMA p,d,q) model (Pardoe, n.d.).

To detect non-stationarities, we utilize one of the 
most well-known tests, which corresponds to the aug-
mented Dickey-Fuller (ADF) test (Asteriou & Hall, 2007; 
Mahan et al., 2015; Box et al., 2016). The identification 
of possible model orders (p,q) is approached through the 
utilization of Autocorrelation function (ACF) and Par-
tial Autocorrelation function (PACF) plots (Mahan et 
al., 2015; Box et al., 2016; Garnier, n.d.) while trying to 
keep the model orders at low levels (≤ 2) for most of the 
estimated models (Gottardi & Scarso, 1994). After esti-
mating several models, we test whether the condition of 
invertibility (Asteriou & Hall, 2007; Garnier, n.d.) and 
statistical significance of the AR and MA parts of the 
model are satisfied (Mossad & Alazba, 2015). The esti-
mated models are then compared according to the Akai-
ke information criterion (AIC) by selecting the model 
with the lowest value (Mahan et al., 2015; Box et al., 
2016; Garnier, n.d.).  

The diagnostic check of the model is then performed, 
which is applied to residuals to detect whether they exhibit 

the length of previous data the model uses to provide forecasts 
(Christodoulos et al., 2010).
22 ARIMA modeling requires that the time series be stationary (Schaffer 
et al., 2021). A stationary series is characterized by three properties: a 
constant mean, constant variance, and constant covariance that depends 
only on the time intervals (Schaffer et al., 2021). Time series with trends 
or changing variance is non-stationary. 
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autocorrelation, utilizing the Breusch-Godfrey Lagrange 
Multiplier (LM) test (Mahan et al., 2015; Weyerstrass, 
2016; Ayele et al., 2017). The null hypothesis of the LM test 
is that there is no autocorrelation in the residuals series 
up to the pre-determined lag order (p=2 in our analysis) 
at the 5% level of significance (Weyerstrass, 2016; Ayele 
et al., 2017). Regarding the measurement of the forecast-
ing accuracy of ARIMA models, there is no universally 
preferred measure; however, according to various model-
ers (Gottardi and Scarso, 1994; Christodoulos et al., 2010), 
particular emphasis is given to the measure of Mean Abso-
lute Percentage Error (MAPE). At this point, we would like 
to point out that there is no commonly accepted threshold 
for MAPE in the international literature; however, some 
authors consider that a forecasting model is character-
ized by good forecasting accuracy (or goodness-of-fit) 
when MAPE does not exceed 20%, whereas when it does 
not exceed 10%, the forecasting accuracy is characterized 
as high or perfect (e.g., Quartey-Papafio et al., 2021). Esti-
mates and statistical tests of ARIMA models were per-
formed using EViews statistical package.
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The following describes the objective function’s 
structure and the constraints typical to each sub-model. 
The objective function of the expected gross profit of the 
farm f in year t is defined as follows:

Max E{Πf,t} = XT
f,j,t [E{pf,j,t} E{yf,j,t} – vcf,j,t 

+ lsj,t + ef,tecop1f,j,t + εf,tecop2f,j,t] + DPf,tDLf,t + 
bf,tNPf,tNLf,t + βf,t OPf,tOLf,t + rf,tRPf,tALf,t 

(B1)

Subject to:
Arable land constraint

Xf,j,t = ALf,t    ,for t = 1,…,T,  j ∈ J (B2)

Irrigated land constraint
Xf,wj,t ≤ ILf,t    ,for t = 1,…,T,  wj ∈ WJ, WJ ⊆ J (B3)

Circulating capital constraint
Xf,j,tvcf,j,t ≤ CRCf,t    ,for t = 1,…,T,  j ∈ J (B4)

Xf,j,t ≥ 0    ,for t = 1,…,T (B5)
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where E{ } denotes the expectation operator; E{Πf,t} 
denotes the expected gross profit of the farm f which 
is maximized in year t ; Xf,j,t is the J x 1 vector of deci-
sion variables and denotes the level of cropping activ-
ity j (hectares for crops) of the farm f in year t; E{pf,j,t} 
denotes the J x J diagonal matrix of expected price of the 
output from cropping activity j in EUR/kg of the farm 
f in year t; E{yf,j,t} denotes the J x 1 vector of expected 
yield of cropping activity j in kg/ha of the farm f in year 
t; vcf,j,t is the J x 1 vector of variable cost of cropping 
activity j in EUR/ha of the farm f in year t23, lsi,t is the J 
x 1 vector of land subsidy of cropping activity j in EUR/
ha in year t.

ecop1j,t is the J x 1 vector of potential eco-scheme 
payment of cropping activity j in EUR/ha of the farm 
f with a size of less than or equal to 10 hectares in year 
t under the CAP Post-2020 reform; ecop1f,j,t is the J x 1 
vector of potential eco-scheme payment of cropping 
activity j in EUR/ha in year t of the farm f with a size 
greater than 10 hectares in year t under the CAP Post-
2020 reform24; ef,t denotes the binary variable that cor-
responds to the farm f in year t and is equal to 1 when 
the farm adopts the eco-schemes25 and the size of the 
farm does not exceed 10 hectares, while it gets the value 
0 when the farm does not adopt the eco-schemes or when 
it exceeds 10 hectares; εf,t denotes the binary variable that 
corresponds to the farm f in year t and is equal to 1 when 
the farm adopts the eco-schemes and the size of the farm 
exceeds 10 hectares , while it gets the value 0 when the 
farm does not adopt the eco-schemes or when it does not 
exceed 10 hectares (obligations concerning eco-schemes 
adoption are explained in constraints (B9)-(B12)). 

DPf,t is the entitlement value of decoupled payments 
in EUR/ha of the farm f in year t; DLf,t is the eligible 
farmland area of decoupled payments in hectares of the 
farm f in year t; NPf,t is the agri-environmental pay-
ment in EUR/ha of the nitrate pollution reduction pro-
gramme of the farm f in year t; NLf,t is the farmland area 
in hectares included in the nitrate pollution reduction 
programme of the farm f in year t; OPf,t is the agri-envi-

23 where vcf,j,t = icf,j,t + hlcf,j,t + mrcf,j,t; icf,j,t denotes the input cost ic of 
cropping activity j in EUR/ha of the farm f in year t; hlcf,j,t denotes the 
cost of hired labour hlc of cropping activity j in EUR/ha of the farm f in 
year t ; mrcf,j,t denotes the machinery rental costs of cropping activity i 
in EUR/ha of the farm f in year t.
24 The provisions concerning the voluntary measures of eco-schemes 
are included in the Greek Strategic Plan proposal for the CAP 
2023-2027 (https://ead.gr/wp-content/uploads/2022/01/cap_sp_
proposal_30_12_2021.pdf). 
25 To determine which farms are likely to adopt the eco-schemes (based 
only on economic criteria) for 2023-26, we estimate the average annual 
difference in the optimal farm net profit after tax (FNPAT*) for each 
farm due to adopting the eco-schemes. Therefore, the farm will adopt 
the eco-schemes if this annual average difference is positive.

ronmental payment in EUR/ha of the organic farming 
programme of the farm f in year t; OLf,t is the farmland 
area in hectares included in the organic farming pro-
gram of the farm f in year t; bf,t denotes the binary vari-
able that corresponds to the farm f in year t, and is equal 
to 0 when the farm does not participate in the nitrate 
pollution reduction programme, while it gets the value 
1 when it participates26; ßf,t denotes the binary variable 
that corresponds to the farm f in year t and is equal to 0 
when the farm does not participate in the organic farm-
ing programme, while it gets the value 1 when it partici-
pates27. In addition, when the binary variable bf,t takes 
the value 1, the binary value ßf,t will take the value 0 
and vice versa, indicating that a farm cannot simultane-
ously participate in the two different agri-environmental 
measures of pillar B of the Common Agricultural Poli-
cy28 (obligations concerning agri-environmental meas-
ures are explained in constraints (B13)-(B16)).

rf,t denotes the binary variable that corresponds to 
the farm f in year t, and is equal to 0 when the size of 
the farm exceeds 11 hectares or when it is less than 2 
hectares ; RPf,t is the redistributive payment in EUR/ha 
of the farm f in year t under the CAP Post-2020 reform;  
ALf,t is the available arable land in hectares of the farm 
f in year t; J is the set of potential activities29; Xf,wj,t is 
the level of irrigated cropping activity wj in hectares of 
the farm f in year t; WJ is the set of potential irrigated 
activities30 ILf,t is the available irrigated land in hectares 
of the farm f in year t; CRCf,t is the total available circu-
lating capital in EUR of the farm f in year t.

The remaining constraints are specific to the farm 
and correspond to policy and flexibility constraints: 

2013 CAP reform constraints (greening obligations)

Crop diversification obligation for farm f with total 
available arable land (ALf,t) > 10 hectares:

Xf,j,t hf,t ≤ hf,t 0.75 ALf,t       for t = 2015,…,T (B6)

26 A farm’s participation in the nitrate pollution reduction programme 
(Agri-Environmental measure of the Rural Development Programme) is 
determined through a priori information provided from sample farms.
27 A farm’s participation in the organic farming programme (Agri-
Environmental measure of the Rural Development Programme) is 
determined through a priori information provided from sample farms.
28 Of course, it may be true that bf,t = ßf,t = 0, which indicates the non-
mandatory nature of the specific agri-environmental policy measures.
29 where J= {cotton(ct); tobacco(tb); maize(mz); pr. tomato(pt); pr. 
pepper(pp); alfalfa(aa); alfalfa-seed(aasd); durum wheat(dw); set-
aside(st)}, if bf,t = 0 then st ∉ J
30 where WJ = {cotton(ct); tobacco(tb); maize(mz); pr. tomato(pt); pr. 
pepper(pp); alfalfa(aa); alfalfa-seed (aasd}

https://ead.gr/wp-content/uploads/2022/01/cap_sp_proposal_30_12_2021.pdf
https://ead.gr/wp-content/uploads/2022/01/cap_sp_proposal_30_12_2021.pdf
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where hf,t denotes the binary variable that corresponds to 
the farm f in year t, and is equal to 0 when the available 
arable land (ALf,t) ≤ 10 hectares, while it gets the value 1 
when the available arable land (ALf,t) > 10 hectares.

Ecologic focus area obligation for farms f with total 
available arable land (ALf,t) > 15 hectares:

0.7⟦ Xf,lgj,t⟧ + Xf,st,t ≥ gf,t0.05ALf,t   for t = 
2015,…,T, lgj ∈ LGJ, LGJ ⊆ J 

(B7)

where Xf,lgj,t is the level of legume crops (lgj) in hectares 
of the farm f in year t; LGJ = {alfalfa-hay (aa); alfalfa-
seed (aasd)}; gf,t denotes the binary variable that corre-
sponds to the farm f in year t, and is equal to 0 when 
the available arable land (ALf,t) ≤ 15 hectares, while it 
gets the value 1 when the available arable land (ALf,t) > 
15 hectares.

Crop diversification obligation for farm f with total 
available arable land (ALf,t) > 30 hectares:

[Xf,L1 j,t   * + Xf,L2 j,t   *]uf,t ≤ uf,t 0.95ALf,t)   for t = 
2015,…,T,  L1 j ∈ J, L2 j ∈ J 

(B8)

where Xf,L1 j,t   * the optimal level of cropping activity in hec-
tares, to which the largest share (L1 j) of the available ara-
ble land (ALf,t) of farm f in year t is allocated; Xf,L2 j,t   * the 
optimal level of cropping activity in hectares, to which 
the second largest share (L2 j) of the available arable 
land (ALf,t) of farm f in year t is allocated; uf,t denotes the 
binary variable that corresponds to the farm f in year t, 
and is equal to 0 when the available arable land (ALf,t) ≤ 
30 hectares, while it gets the value 1 when the available 
arable land (ALf,t) > 30 hectares.

CAP Post-2020 reform scenario constraints

Crop diversification obligation for farm f with total 
available arable land (ALf,t) > 10 hectares:

Xf,j,t ≤ hf,t 0.75 ALf,t       for t = 2023,…,T,  j ∈ J (B9)

CAP Post-2020 reform scenario constraints- (adoption of 
eco-schemes) 

Eco-schemes adoption: Extension of EFA application 
by farm f with total available arable land (ALf,t) ≤ 10 hec-
tares:

Xf,st,t = ef,t 0.05 ALf,t       for t = 2023,…,T,  st ∈ J (B10) 

Eco-schemes adoption: Extension of EFA application by 
farm f with total available arable land (ALf,t) > 10 hectares:

Xf,st,t = εf,t 0.1 ALf,t       for t = 2023,…,T,  st ∈ J (B11) 

CAP Post-2020 reform scenario constraints- (non-adop-
tion of eco-schemes) 

EFA application by farm f with total available arable 
land (ALf,t) > 10 hectares:

Xf,st,t = εf,t 0.04 ALf,t       for t = 2023,…,T,  st ∈ J (B12) 

Nitrate pollution reduction program constraints 
(Agri-Environmental measure of the Rural Development 
Programme):

Xf,nwj,tbf,t ≥ bf,t 0.75 NLf,t,   for t = 1,…,T, 
nwj ∈ NWJ, NWJ ⊆ J 

(B13)

where Xf,nwj,t is the level of irrigated cropping activ-
ity included in the nitrate pollution reduction pro-
gram (nwj) in hectares of the farm f in year t; NWJ = 
{cotton(ct); maize(mz); pr. tomato(pt); pr. pepper(pp) }

Xf,ndj,t ≥ bf,t 0.2 NLf,t,   for t = 1,…,T, ndj ∈ 
NDJ, NDJ ⊆ J 

(B14)

where Xf,ndj,t is the level of non-irrigated cropping activ-
ity included in the nitrate pollution reduction program 
(ndj) in hectares of the farm f in year t; NDJ = {durum 
wheat (dw)}

Xf,st,t ≥ bf,t 0.05 NLf,t,   for t = 1,…,T, st ∈ I (B15)

where Xf,st,t is the level of set-aside (st) included in the 
nitrate pollution reduction program (hectares) of the 
farm f in year t.

We want to point out that from the year 2018 
onwards, the vast majority of sample farms implemented 
the nitrate pollution reduction program as follows: the 
share of 0.75 of constraint (B13) was set to 0.7; the share 
of 0.2 of constraint (B14) was set to 0.3, and the share of 
0.05 of constraint (B15) was set to 0.

Organic farming program constraint (Agri-Environmen-
tal measure of the Rural Development Programme):

Xf,orj,t ≥ OLorgf,tβf,t,   for t = 1,…,T,  orj ∈ 
ORJ, ORJ ⊆ J 

(B16)
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where Xf,orj,t is the level of organic cropping activity 
included in the organic farming program (orj) in hec-
tares of the farm f in year t; ORJ = {alfalfa (aa)}.

Flexibility constraint of multiannual contract farm-
ing

0.85 CLf,t cf,t ≤ Xf,aasd,t cf,t ≤ 1.15 CLf,t cf,t,   for t = 
2015,…,T,  aasd ∈ Ι 

(B17)

where Xf,aasd,t is the level of alfalfa-seed (aasd) in hec-
tares of the farm f in year t; CLf,t is the available land 
of the farm f in year t included in the multiannual con-
tract farming program; cf,t denotes the binary variable 
that corresponds to the farm f in year t, and is equal to 
0 when the farm does not participate in the program of 
multiannual contract farming , while it gets the value 1 
when it participates.

Part C: Land rental costs/land rental income estimation

As mentioned in the main text, land is reallocated 
only on a rental basis through farmland rental arrange-
ments between tenants and landowners. LaPorte et al. 
(2020) state that “the most popular and frequently used 
farmland rental arrangement is a fixed cash rent agree-
ment, where the landowner receives a predetermined 
fee to be paid by the tenant regardless of agricultural 
commodity price or crop yield” (p. 1). This type of land-
owners’ rental agreement is also maintained for the 
case under consideration, where the farmers pay after 
harvesting and selling the agricultural commodities in 
the market. The following is an estimate of land rental 
costs for each year after the initial one, where LRCvf,nbf,t 
are the land rental costs of viable neighboring farm in 
year t; LRCvf,nbf,t-1 is the rented land of viable neighbor-
ing farm in year t-1; LRIt is the land rental price index in 
year t; LRPNBF,t=1 is the average land rental price per land 
unit (EUR/ha) in base year (t=1) applicable to the region 
where the neighboring farms operate; LRPNBF,t is the 
average land rental price per land unit (EUR/ha) in year 
t applicable to the region where the neighboring farms 
operate; Ωsim

ALvf,nbf,t-1
 is the simulated share of arable land 

reallocated to viable neighboring farm at the end of 
the year t-1, that is, following the annual optimization; 

ALnvf,nbf,t-1 is the simulated aggregate ara-
ble land of non-viable neighboring farms at the end of 
the year t-1, that is, following the annual optimization; 
TALNBF,t is the actual total arable land of neighboring 
farms in year t; TALNBF,t=1 is the actual total arable land 
of neighboring farms in year t-1; ALvf,nbf,t is the available 
arable land of viable neighboring farm in year t.

for t = 2…T, RLvf,nbf,t ⊆ ALvf,nbf,t (C1)

The average land rental price (applicable to the 
region where the neighboring farms operate) (LRPNBF,t) 
was used as a single land rental price for all farms 
to simplify the modeling process, considering that 
the observed differences in payable land rental pric-
es between farms are negligible. Since the land rental 
price is exogenously determined in this model version31, 
updating its variance for each year after the base year 
is conducted using the land rental price index (LRIt) 
(ELSTAT, 2019b). Additionally, we must mention that 
product RLvf,nbf,t-1 LRPNBF,t indicates that land rental pric-
es are renegotiated every cropping cycle.

To simplify the presentation of the estimation of 
land rental costs on an annual basis, we did not sepa-
rate the land into irrigated and non-irrigated. It is worth 
mentioning that the average land rental price of non-
irrigated land is about 50% lower. 

To make post-sample forecasts in the medium term, 
the exogenously identified average land rental price per 
land unit (LRPNBF,t) is estimated through ARIMA sto-
chastic process. 

Although rare in our analysis, there is the case 
of viable farms that rent out part of owned land 
because the estimated reduction of the land attrib-
uted to them due to exogenous reasons32 [Ωsim

ALvf,nbf,t-1
 -1 

(TALNBF,t – TALNBF,t-1)] exceeds (i) the previous year rented 
land (RLvf,nbf,t-1) and (ii) the land that accumulated endoge-
nously, i.e., the released land available for rent, derived from 

31 Following similar simulation models (Bert et al., 2011; Djanibekov 
& Finger, 2018; Donati et al., 2024), the land rental price is exogenous 
in the suggested model. Unfortunately, this version of the model 
does not fully consider the interaction between farms and the spatial 
relationships to include a land rental market with the endogenous 
formation of the rental price through an auction mechanism (Bert et 
al., 2011) as it is usually applied in agent-based models. However, land 
rental price endogeneity could be approximated to some extent through 
shadow values, for example, using the distribution of shadow value for 
the land of viable farms based on the exogenously determined land 
rental price, but this aspect requires further investigation.
32 Competitive pressures from other farm types or non-agricultural 
sectors are likely to lead to an unfavorable situation, i.e., TALNBF,t – 
TALNBF,t-1 < 0 and consequently to a decrease of available arable land 
for the viable neighboring farms, which will be reallocated among 
them utilizing the inverse form of the simulated share of arable land 
(Ωsim

ALvf,nbf,t-1
), that is, less profitable albeit viable farms will abandon/

release proportionately more of their arable land. 
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non-viable neighboring farms [Ωsim
ALvf,nbf,t-1

 (  
ALnvf,nbf,t-1

sim)]. 
In this case, land rental costs are negative (LRCvf,nbf,t 

< 0), equal to land rental income for the viable neighbor-
ing farm (LRINCvf,nbf,t > 0). Consequently, the equation 
FNPAT*f,t = Π*f,t – (DEPf,t + LRCf,t + SFNCf,t + LFNCf,t 
+ SICf,t + FPTXf,t) (5) (in section 2.3.3.Determining farm 
viability of the main text) is adapted as follows:

FNPAT*f,t = (Π*f,t + LRINCf,t) – (DEPf,t + SFNCf,t + 
LFNCf,t + SICf,t + FPTXf,t) 

(C2)

indicating that a farm cannot simultaneously rent in and 
rent out farmland, a condition we also find in similar 
simulation models (e.g., Donati et al., 2024).
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borrowed investment capital of farm f (BINVCf,t) to be 
repaid within a predetermined duration of years (TL)33  
2) and the required circulating capital of farm f of the 
current year (CRCf,t), then the farm f will not take out a 
short-term loan, otherwise the farm will be led to short-
term borrowing. The mathematical formulation of the 
condition is as follows:

for t = 2,…,T (D1)

where BCRCf,t is the borrowed circulating capital of farm 
f in year t; DPRPf,t-1 is the principal repayment of exist-
ing debt of farm f in year t-1.

In the case of a short-term loan, the level of bor-
rowed circulating capital will be calculated as follows:

BCRCf,t = (CRCf,t + DPRMf,t-1) – FGE*f,t-1 (D2)

Respectively the short-term finance costs will be 
estimated as follows:

SFNCf,t = BCRCf,t SIRf,t (D3)

where SFNCf,t are the short-term finance costs of farm f 
in year t and SIRf,t is the short-term interest rate in year 
t. According to the Greek banking system, the short-
term interest rate is based on the BFR (Basic Rate for 
Farmers).
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D2. Borrowed investment capital & long-term finance 
costs estimations

Farm growth in equity is the surplus income avail-
able to put back into the business by either purchasing 
assets or debt repayment (Hofstrand, 2009; Bert et al., 
2011; GRDC, 2015), and hence the current level of long-
term borrowing will be partially determined by the opti-
mal farm growth in equity. Therefore, the following con-
ditions determine the need or not for borrowed invest-
ment capital in year t (BINVCf,t):

for t = 2,…,T (D4)

In case the sum of optimal farm growth in equity of 
year t-1 (FGE*f,t-1) and depreciation of year t-1 (DEPf,t-1)  
exceeds the sum of scheduled principal repayment of 
existing debt  in year t-1 (DPRPf,t-1), the required level of 
circulating capital of year t CRCf,t and the required gross 
investment on fixed assets in year t (If,t), then the farm 
will not take out a long-term loan. Alternatively, the 
farm will have to take out a long-term loan.

In the case of a long-term loan, the level of bor-
rowed investment capital (BINVCf,t) will be calculated as 
follows:

BINVCf,t = (CRCf,t + DPRPf,t-1 + If,t) – (FGE*f,t-1 + 
DEPf,t-1)  

(D5)

Respectively the long-term finance costs will be esti-
mated as follows:

LFNCf,t +  LIRt (D6)

where LFNCf,t are the long-term finance costs of farm f 
in year t and LIRt is the long-term interest rate in year t. 
Based on literature (DAFWA, 2014), we consider that the 
repayment duration of borrowed investment capital (TL) 
should be equal to 15 years. The long-term interest rate 
is based on the BFR (Basic Rate for Farmers) according 
to the Greek banking system.
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Part E: Historical dataset and forecasting method of exogenously determined parameters 

Table E1. Data sources of times series and forecasting method of exogenously determined farm model parameters 

Farm model parameter of interest Range Data source Forecasting method

Hired labor costs (hlcf,j,t) [2001-2018 ] ELSTAT (2019b) ARIMA model
Input costs (icf,j,t) [2000-2019 ] ELSTAT (2019c) ARIMA model
Machinery rental costs (mrcf,j,t) [2000-2019 ] ELSTAT (2019b) ARIMA model
Land rental price (LRPNBF,t) [2000-2018 ] ELSTAT (2019b) ARIMA model
Interest rate (SIRt; LIRt) [2000-2020 ] ELSTAT (2019b) ARIMA model
Cotton yield (yf,ct,t) [1961-2017 ] Greek Ministry of Rural Development and Food; ARIMA model

D. wheat yield (yf,dw,t) [1961-2017 ] Greek Ministry of Rural Development and Food; Greek Ministry of 
Rural Development and Food (2019) ARIMA model

Tobacco yield (yf,tb,t) [1979-2017 ] Greek Ministry of Rural Development and Food; Greek Ministry of 
Rural Development and Food (2019) ARIMA model

Pepper yield (yf,pp,t) [1961-2007 ] Greek Ministry of Rural Development and Food ARIMA model
Tomato yield (yf,ptm,t) [1961-2007 ] Greek Ministry of Rural Development and Food ARIMA model
Legumes crops yield (yf,aasd,t; yf,aa,t) [2000-2017 ] Greek Ministry of Rural Development and Food (2019) ARIMA model

Maize yield (yf,mz,t) [1981-2017 ] Greek Ministry of Rural Development and Food; Greek Ministry of 
Rural Development and Food (2019) ARIMA model

Cotton price (pf,ct,t) [2000-2019 ] ELSTAT (2019c) ARIMA model
D. wheat price (pf,dw,t) [2000-2019 ] ELSTAT (2019c) ARIMA model
Legume crops price (pf,aasd,t; pf,aa,t) [2000-2019 ] ELSTAT (2019c) ARIMA model
Maize price (pf,mz,t) [2000-2019 ] ELSTAT (2019c) ARIMA model
Total arable land (TALNBF,t) [2004-2019 ] FADN Public Database* ARIMA model
Total circulating capital (TCRCNBF,t) [2004-2019 ] FADN Public Database* ARIMA model
Living expenditures (LEf,t) [2008-2020 ] ELSTAT (2021) Linear trend model

Notes: * The available Farm Accountancy Data Network (FADN) time series were filtered to include Greek farms specialized in “Other 
fieldcrops” (according to the TF14 classification of FADN), utilizing the parameters of Arable land (SE026) and Other circulating capital 
(SE480), which were multiplied by the parameter Farms represented (SYS02) to obtain values at an aggregate level. Source: ELSTAT (2019b), 
ELSTAT (2019c), ELSTAT (2021), FADN Public Database, Greek Ministry of Rural Development and Food, Greek Ministry of Rural Devel-
opment and Food (2019).
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

   
(m) (n) (o) 

 

 
  

(p) (q) (r) 

 

 

 
  

(s) 

Figure F1. ARIMA and linear trend models of the exogenously determined parameters of interest. Notes: the horizontal axis indicates the 
year; 0.1 Ha (hectare) =1 stremma is the Greek unit of land area. (a) Hired labor price index; (b) Input price index; (c) Machinery rental 
price index; (d) Land rental price index; (e) Interest rate index; (f) Cotton yield (kg/0.1 Ha); (g) Durum wheat yield (kg/0.1 Ha); (h) Tobac-
co yield (kg/0.1 Ha); (i) Pepper yield (kg/0.1 Ha); (j) Tomato yield (kg/0.1 Ha); (k) Legume crops yield (kg/0.1 Ha) including Alfalfa (hay 
& seed); (l) Maize yield (kg/0.1 Ha); (m) Cotton price (EUR/kg); (n) Durum wheat price (EUR/kg); (o) Alfalfa (hay) price (EUR/kg); (p) 
Maize price (EUR/kg); (q) Total arable land index; (r) Total circulating capital index; (s) Living expenditures index. Source: Authors, based 
on ELSTAT (2019b), ELSTAT (2019c), ELSTAT (2021), FADN Public Database, Greek Ministry of Rural Development and Food, Greek 
Ministry of Rural Development and Food (2019).
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