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Abstract 

The paper presents a methodological contribution to analysing the interactions between 

economic and environmental factors by using the Simplified International Model of 

Agricultural Prices, Land Use and Environment (SIMPLE) model and its gridded version 

(SIMPLE-G). While SIMPLE addresses national agricultural trends, SIMPLE-G offers a 

detailed, spatially disaggregated analysis essential for assessing local impacts. We 

improve these models by building a comprehensive database, capturing aggregate and 

georeferenced data regarding Italy. The use of the models with the extended dataset may 

support the implementation of adaptation strategies offering boundary conditions for local 

decision-makers while reflecting the impact of policies on national and global variables. 

The article outlines the models’ structure, data sources, and calibration process, providing 

a preliminary application of SIMPLE for updating the baseline. 
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1. Introduction  

Agricultural sustainability and food security face threats from unpredictable climate 

variations, especially in temperature and precipitation (World Bank, 2022). Like many 

other regions, Italy has witnessed a discernible rise in severe drought events over the last 

two decades, profoundly affecting crop yields in some of the most agriculturally crucial 

areas of the country (Spano et al., 2020). These changing and heterogeneous climatic 

events have distinct impacts on regional water availability, posing location-specific 

challenges for agricultural production and affecting prices and output both at a national 

and local level. In this context, tools are crucial to assess the local and global socio-

economic consequences of extreme weather events and shed light on effective adaptation 

strategies (Dorfman et al., 2024).  

The paper presents a methodological contribution to analysing the interactions between 

economic and environmental factors by extending the Simplified International Model of 

Agricultural Prices, Land Use and Environment (SIMPLE), and its georeferenced gridded 

version SIMPLE-G, to Italy. 1 Initially developed by Baldos & Hertel (2013) and later 

expanded by Liu et al. (2017) and Baldos et al. (2020b), both SIMPLE and SIMPLE-G 

are partial equilibrium models designed to analyse the dynamic interactions between 

economic and environmental systems. So far, the models are based on 17 regions, and the 

EU, including all of the Member States, is one of them.  Our main contribution is to extend 

the resolution of the models and create a database where Italy is singled out from the rest 

of the European Union (EU).2  

 
1 Grids are spatial units of equal length and width, with the area varying according to the latitude of the 

grid cell (larger at the equator and smaller moving toward the poles). 
2 The database already includes specific countries, such as the US, China, and Brazil. In all these cases, 

gridded data was collected by merging data from different data sources and harmonising the dimensions of 

the grids at a unique scale.  
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Italy is an ideal setting to test the model's validity for an EU country. First, several extreme 

climatic events have occurred in Italy over the last few years, and they most affected 

agriculture. The number of severe floods, river overflows, record heatwaves in urban and 

rural areas, landslides, and glaciers retreated is constantly increasing, exacerbating 

climate stressor effects on agricultural production.3 

Second, the agrifood sector in Italy still accounts for a significant part of the national 

GDP, much more than in a number of other EU countries. The Italian agrifood sector 

plays a key role in the national economy, mainly thanks to the added value generated by 

traditional processed products (e.g., tomato industry, pasta and wine). At the same time, 

Italy is the EU country that accounts for the highest number of geographical indications 

(GIs), representing high-quality traditional local production that must be produced in 

specific areas of the country (Reg. (EU) 2024/1143). The GI scheme aims to preserve 

local production by officially certifying their linkage with the territories of origin and 

limiting the production to those areas to avoid fraud competition and Italian sounding. 

The production process must be located within the demarcated area (i.e., list of 

municipalities) defined by the official Product Specification, and it cannot be delocalised. 

In this context, evaluating the effects of climatic events at the local level becomes even 

more relevant to understanding future projections of such productions (Tscholl, 2024). 

For example, as of today, most of the GI wines cannot be irrigated. However, over the 

past few years, irrigation needs have arisen to avoid production loss due to increasing 

temperatures.   

The SIMPLE model facilitates the analysis of agricultural production and consumption 

at an aggregate territorial level (i.e., countries or world regions), offering insights into 

 
3 More information available at Climate Change Knowledge Portal, World Bank Group: 

https://climateknowledgeportal.worldbank.org/country/italy 
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how crop demand and supply might respond to external factors such as income, 

population, and technology changes. SIMPLE-G provides, instead, a georeferenced 

extension that focuses on the effects of policies on agricultural production, land 

exploitation and water use, all within the broader context of regional and global 

commodity markets (Haqiqi & Hertel, eds.). In SIMPLE-G, while a specific country is 

considered at the grid level (i.e. local market), the rest of the world is considered at the 

national or regional world level (i.e., global market). This detailed representation allowsto 

capture the territorial diversity regarding cropland distribution, crop production, nitrogen 

application, and surface and groundwater irrigation. By integrating economic theories 

with environmental sciences, these family of models allows for the assessment of 

biophysical and economic impacts across various geospatial scales. In doing so, they 

differ from most previous partial economic models by investigating the global-to-local-

to-global interactions. 

The main challenge that researchers must address to run the model is the construction of 

an ad-hoc dataset for the country of interest. While national aggregate data are used to 

inform the SIMPLE model, georeferenced data sources are therefore needed to create a 

spatially disaggregated database for SIMPLE-G, with a resolution of 5 arcmin grids 

(approximately 10 km by 10 km) covering the entire country. From the methodological 

perspective, therefore, the extension provided in this paper contributes to the recent 

stream of research by creating the SIMPLE and SIMPLE-G datasets for an EU country. 

In addition, from the policy perspective, this study provides a new toolbox to investigate 

the effects of policy interventions and external shocks, such as climate change 

perspectives, at global and local levels. These results can be used to assist policymakers 

and practitioners in designing mitigation strategies and policy agendas. 
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The remainder of the paper is organised as follows. Section two provides an overview of 

the SIMPLE and SIMPLE-G models, focusing on the existing specifications and the 

models’ structure. Section three discusses the details of the Italian database construction 

and an in-depth explanation of model assumptions and calibration. Section four presents 

a first application of SIMPLE for Italy and, lastly, the conclusions discuss limitations, 

next steps and future application. 

2. SIMPLE AND SIMPLE-G models for agriculture 

2.1 Existing specifications and applications 

In recent years, a growing body of literature has aimed at extending equilibrium models 

to consider the complex interdependencies governing global crop production, land and 

water use, and food demand. SIMPLE and SIMPLE-G models go in this direction, given 

their focus on the agriculture sector. In 2013, Baldos & Hertel (2013) introduced the 

SIMPLE model to comprehensively capture the main relevant socioeconomic factors 

influencing cropland use in 15 world regions. The initial SIMPLE model was further 

expanded to integrate additional modules accounting for different issues related to 

agriculture and agrifood sectors.  

First, a module accounting for greenhouse gas emissions (GHG) linked to agricultural 

activities was introduced by Lobell et al. (2013) and Hertel et al. (2014). Secondly, Baldos 

& Hertel (2014) extended the SIMPLE model by adding a food security module, which 

analyzed the global and regional effects of climate change and mitigation policies on 

caloric intake. They found that the model accurately reflects global data. By using this 

model, Baldos & Hertel (2015), for example, demonstrated that reducing market barriers 

could bolster food security worldwide and regionally in the face of climate change 

challenges to agriculture. More recently, Kabir et al. (2023) evaluated the effects of 

different policy scenarios on food security outcomes in rural and urban Niger into 2050. 
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Third, this framework has also been extended to Research & Development (R&D) 

activities, linking them with Total Factor Productivity (TFP) growth (Baldos et al., 

2020a), food prices, land use and GHG emissions (Hertel et al., 2020, Fugile et al., 2022 

and Baldos, 2023a). 

Despite its computational capacity and projection performance, the SIMPLE model lacks 

a detailed spatial resolution, limiting the analysis at the regional, or at maximum, national 

level (Hertel, 2018). To evaluate sub-national effects, in fact, the model should be based 

on a more disaggregated territorial level of analysis and include spatial data. The 

construction of the model requires, in fact, to build a database collecting a huge amount 

of different data (see the next section for more details), which are not always available 

and easily to access at the local level. Even when available, data comes from different 

sources, meaning a significant challenge in data collection and harmonisation. In 2017, 

Liu et al. (2017) published a gridded version of the SIMPLE model, called SIMPLE-G, 

that divided the world into over 39 thousand grids (30 arc-min,) to capture local patterns 

in crop supply and demand. As in the case of SIMPLE, also in SIMPLE-G specific 

countries can be isolated from the global context and considering for specific local 

analysis. To do that, a gridded database for the country must be created including all the 

data needed to run the model. Following this idea, Baldos et al. (2020b) developed the 

SIMPLE-G model for the USA, while Wang et al. (2020) and Liu & Wang (2021a) for 

China, and Wang et al. (2022a) for Brazil.4 Additionally, Haqiqi et al. (2023a) have 

employed a worldwide model to evaluate the implications pandemic-weather stress 

events. 

 
4 The USA was divided into over 75 thousand grids, China in 41 thousand grids by Wang et al. (2020) and 

88 thousand grids by Liu & Wang(2021a) and Brazil in 50 thousand grids by Wang et al (2022a). 

The rest of the world was aggregated into world regions.  
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Several are the modules that theoretically can be added at SIMPLE and SIMPLE-G 

databases to capture the intricates global-local-global interactions within economic and 

environmental systems. However, all the modules are conditioned at data availability, 

which become even more severe when we look at specific issues. For example, in the 

case of the US, Baldos et al. (2020b) could distinguish at the grid level between rainfed 

and irrigated water, as well as between ground and surface water, while Liu et al. (2022) 

focus their analysis solely on some specific crops such as corn and soybean. The 

availability of these data for the US allows, for example, Baldos et al. (2020b) and Haqaqi 

et al. (2023b) to study the implications of future population growth trends and 

groundwater management policies on local crop production and demand. Data on water 

were also available for China, enabling Wang & Liu (2021b) to analyse the impact of a 

new water policy, specifically the South-North Water Transfer Project. 

More recently, Wang et al. (2022b) integrated a transportation module to explore the local 

responses to macro-level policies with a focus on the relationship between transportation 

costs, agricultural production and grid-level cropland expansion.  

Lastly, Ray et al. (2023) incorporated data at the gridded level on agricultural labour 

market and mobility to simulate the impacts of agricultural policies not only on 

production, but also on wages and employment rate at both local and global levels. 

The construction of the database to extend the model at a new country is, therefore, a 

fulcrum of this research field. The next section presents the general structure of the model, 

which clarify even more the amount of data required.  

2.2 The general structure of the models 

Starting from the SIMPLE, the model operates on the assumption of a single aggregate 

crop produced and consumed across 17 distinct regions (see Table A1 in the Appendix for 

the list, Baldos et al., 2020b and Baldos 2023b). The crop sector encompasses various 
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uses, including consumption as food, feedstock for biofuels, and inputs for livestock and 

the processed food industry. On the supply side, the model operates under the assumption 

of a single agricultural sector at a regional level that uses land and non-land inputs (such 

as labour, capital and purchased materials) to produce homogeneous crops, aiming to 

minimize costs with a constant return-to-scale technology. The availability of cropland 

varies region by region and is influenced by the returns on cropland in each area, while 

non-land inputs also depend on the regional prices given. On the demand side, demand 

for agricultural products is based on the intuition that exogenous factors - such as 

population growth, income per capita, and biofuel demand -positively influence the 

quantity of agricultural products demanded. Conversely, endogenous changes in 

agricultural prices negatively impact demand. Regarding prices, agricultural prices are 

defined taking into consideration both potential drivers of food prices and economic 

responses. Demand and supply for crops clear in local and global markets, meaning that 

consumers and producers face two distinct crop prices, one in the local market and one in 

the global one. For other commodities, market equilibrium is achieved at the regional 

level. As a result, processed food, livestock, and non-food products each have unique 

regional prices. As far as endogenous and exogenous variables are concerned, the model 

endogenously determines agricultural crop production and prices. When it comes to 

inputs of production, these are partly influenced by exogenous variables such as land 

variations due to environmental or urban reasons as well as slack variables. These 

assumptions go in line with the first version of the model presented by Baldos & Hertel 

(2013). 

The overall structure of SIMPLE is described by Figure 1 (panel a), while technical details 

are provided in Annex I. 
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Figure 1. Basic structure of the models. 

(a) SIMPLE 

 

(b) SIMPLE-G    

 

Source: Own elaboration based on Baldos & Hertel (2013) and Baldos et al. (2020b) 
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SIMPLE-G structure is built on SIMPLE but enabling crop production to be analysed at 

the grid level (Figure 1, panel b). Crop production in SIMPLE-G is no longer modelled 

at a world regional scale, but at a finer grid level.5 Since this model is georeferenced, it 

enables a more detailed representation of the various inputs used in crop production, such 

as land type, water use, and fertilizer application rates. Although this added complexity 

makes SIMPLE-G a more intricate variant of SIMPLE, both in modelling and scale, it 

also makes it a significantly more powerful analytical tool. First, it accounts for human 

systems' responses to environmental changes, including adjustments in food 

consumption, agricultural production, land use, and water withdrawals, all influenced by 

shifts in market prices. Second, it offers a framework for measuring spillover effects 

transmitted between locations through market interactions. The ability to incorporate 

market-mediated effects and feedback loops between human and natural systems is, in 

fact, one of the advantages of SIMPLE-G over other traditional biophysical models 

(Hertel & Haqiqi, eds.). Another strength is the multi-scale approach used in SIMPLE-G 

that facilitates the connection between local-to-global changes, as presented in Figure 2. 

At the grid level, there could be a different composition of crop production, driven by 

differentiated contextual conditions (e.g., agroclimatic conditions). At the national, the 

overall quantity can be obtained by aggregating the grids’ amount based on assumptions 

about product differentiation. The procedure is the same to obtain world regional values, 

starting from aggregating national values. The greater the diversity of crops grown within 

a region, the lower the elasticity of substitution between these grid-based crop outputs.  

 In this scenario, crop production can be supplied domestically (i.e., consumed within the 

country of origin) or exported. The decision to export or supply domestically depends on 

 
5 Grid cells need to be small enough to allow both the incorporation of available heterogeneity in data and 

parameters as well as not to influence commodity prices, so they can be treated exogenously. 



  
 

12 
 

several factors, including the relative price of crops, which is influenced by production 

costs. 

Figure 2. Representation of the local-to-global supply linkages in SIMPLE-G 

 

Source: Own elaboration based on Haqiqi & Hertel (eds.) 

3 The Italian database 

In this section, we describe the process followed to single out Italy from the macro-

regional EU dataset, dividing the SIMPLE and SIMPLE-G world into 18 regions rather 

than 17 as in Baldos (2023b). The SIMPLE-G database follows, in fact, the structure and 

data of the SIMPLE model, but with Italy no more aggregated at the national level but 

rather subdivided into 5-arc-minute grids (the remaining 17 regions are aggregated) 

(Baldos et al., 2020b; Haqiqi et al., 2023b). The two databases were constructed 

separately but in tandem. To collect data, and in alignment with the Baldos (2023b) 
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database, we referred, reviewed and processed various economic and biophysical 

information (Table 1).6 

 
6 Due to heterogeneity in terms of years and geographical coverage, certain assumptions have been done to 

ensure consistency. Due to SIMPLE-G's grid-based structure, datasets, typically presented in raster format, 

have been reviewed and processed using QGIS as a geoprocessing tool.  
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Table 1. Datasets reviewed, base year and geographical dimension. 

Dataset Time span Geographical Dimension Links 

FAOSTAT From 1961 to 2023 Country level https://www.fao.org/faostat/es/#data 

Earthstat 2000 10km x10 km http://www.earthstat.org/ 

ISIMIP From 1861 to 2017 50 km x 50 km https://www.isimip.org/ 

Agri4Cast 1980-2022 / 2010 25 km x 25 km / 10 km x 10 km https://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx 

AQUASTAT 2005 10 km x 10 km https://www.fao.org/aquastat/en/ 

GCWM 1998-2002 10 km x 10 km https://www.uni-frankfurt.de/45217988/Global_Crop_Water_Model__GCWM 

ISMEA Mercati Up to 2024 Italian regional level https://www.ismea.it/mercati 

Italian Farm Accountancy Data Network (FADN) 

Rete di Informazione Contabile Agricola (RICA) 

2017 Italian provincial level https://rica.crea.gov.it/ 

Indagine Mercato Fondiario - CREA Up to 2022 Italian regional level https://www.crea.gov.it/web/politiche-e-bioeconomia/-/indagine-mercato-

fondiario 

Source: Own elaboration. 

Table 2. FAOSTAT data sets used to calibrate the SIMPLE model. 

Dataset Description 

Production Provides country-level data on crop and livestock production, including variables such as harvested area, production, yields, 

and animal stocks. 

Population  Contains data on each country's total population, disaggregated by gender and by rural and urban areas. 

Macroeconomic Statistics Offers country-level data on GDP, gross output, value added, and gross capital formation for land-intensive sectors and the 

food processing industry. 

Land Use Contains country data for crop area and value of agricultural production.  

Prices Presents prices for all crops and livestock at a country level. 

Source: Own elaboration. 
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The benchmark primary data source was FAOSTAT, which provides different datasets at 

the national level (Table 2). However, FAOSTAT does not provide georeferenced data, so 

to create the SIMPLE-G model, we needed to consult the Earthstat database (Ramankutty 

et al., 2008). This database provides information on cropland, crop production, and 

fertilizer use by combining agricultural inventory data with satellite-derived land cover 

data, offering, thereby, information at a 5-minute (~10 km) spatial resolution. 

The Earthstat database was used to determine the structural base of the SIMPLE-G model, 

meaning the number of grids of the model. In doing so, we followed the construction of 

SIMPLE-G Brazil (Wang et al., 2022a), wherein crop production estimates are formulated 

by considering only the top 80% of the most significant crops in the country.  This 

approach helps eliminate potential statistical errors associated with minor crop estimates 

from Earthstat (Ramankutty et al., 2008).7  

The final database is composed of 3,745 grids, which exhibited both cropland and 

agricultural output (Table 3). 

Table 3. Grid definition based on Earthstat datasets. 

Number of grids Output 

0 >0 

Cropland 0 346 328 

>0 396 3745 

Source: Own elaboration. 

 However, information coming from Earthstat needs to be historically validated. To do 

that, we used data provided by the Inter-Sectoral Impact Model Intercomparison Project 

 
7 Earthstat provides, in fact, reliable estimates only for major crops, leaving minor crops with some biases 

in the estimations. Considering all the crops in the sample would, therefore, imply severe limitations for 

the application of the model and huge discrepancies with the benchmark aggregate production values 

reported by FAOSTAT. According to FAOSTAT, these are: Sugarbeet, Maize, Grapes, Tomatoes, Wheat, 

Olives, Apples, Potatoes, Oranges, Barley and Peaches. 
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(ISIMIP), which consists of a time-varying historical land-use (LU) dataset including 

various land-use categories such as pastures, rangeland, and five distinct crop types.8  

The ISIMIP's geographical coverage is lower than Earthstat’s, and the geographical 

disaggregation is less fine (50 km by 50 km grid dimension), which is why we decided to 

consider Earthstat’s data in the model. The same applies to crop data from the Agri4Cast 

toolbox (25 km by 25 km grid dimension). Although the irrigation data available in the 

toolbox has a grid dimension equal to the one used (10 km by 10 km), it is outdated, 

corresponding to 2010, and lacks information on rainfed land. 

Given the current extreme relevance of water issues in the SIMPLE-G database for Italy, 

we decided to include the water model, following Haqiqi et al. (2023b). This extension 

allows for the estimation of local demand for agricultural water for irrigation water, which 

is crucial to modelling the impacts of sustainability policies and climate change shocks. 

These external events can have, in fact, different effects on irrigated versus non-irrigated 

(i.e., rainfed) crops due to their varying responses to heat and water stress. 

This approach means that within each grid cell, two distinct production functions, rainfed 

and irrigated crops, compete for irrigable land.  

Regarding data on water, we started collecting information from AQUASTAT (source: 

FAO), a global information system focused on hydric resources and agricultural water 

management. AQUASTAT provides georeferenced information at a 5-minute (~10 km) 

spatial resolution. Information on irrigated and rainfed hectares came from the Global 

Crop Water Model (GCWM) database, developed by Siebert & Döll (2008) within a 5-

minute (~10 km) grid dimension. In addition, to obtain information on prices and values 

 
8 This time series spans from 1861 to 2018 and primarily relies on the HYDE 3.2 dataset by Klein Goldewijk 

et al. (2017). 
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of irrigated vs non-irrigated land and crops, we consulted the Italian Farm Accountancy 

Data Network9 (FADN).10  

Another option for estimating crop prices in Italy is using data provided by ISMEA 

(Instituto di Servizi per il mercato agricolo alimentare), which represent market prices 

from the most representative local markets specific to product varieties and sales 

conditions.11  

However, reliance on this dataset could lead to misleading estimates, given that the 

dataset provides prices differentiated for crops and regions rather than an aggregated crop 

price, as needed for the models. SIMPLE and SIMPLE-G models lack, in fact, 

differentiation among various crops. In addition, prices are provided only for specific 

groups of crops, differentiated by regions, which are those crops considered the most 

relevant for the regional agricultural economic output. This dataset is not, therefore, 

suitable to generate a representative and comparable regional aggregate crop price, as 

requested by the model, generating potential estimation biases. 

Finally, we need data on the land market, collected from the dataset provided by the 

Council for Agricultural Research and Economics (CREA), to define the average 

farmland values at regional and national levels.  

 
9 Established by the European Economic Commission in 1965 and conducted in Italy since 1968, FADN 

survey targets professional, market-oriented agricultural companies. It provides representative data across 

three dimensions: region, economic size, and technical-economic order. The current sample includes 

approximately 11,000 farms, covering around 95% of the agricultural area, 97% of standard production 

value, 92% of work units, and 91% of livestock units in Italy. The database, organized by thematic area, 

includes detailed farm-level information on production, input use, costs, and crop types, with identifiers for 

province and region. 
10 It should be noted that the information on prices from FADN has some limitations, as the water 
cost reported by the survey is defined as the total cost of water without clarifying the potential 
exclusion of certain types of water. Conversely, in the case of water consumption, the metadata file 
only mentions “water distributed,” suggesting that water from private sources may not be included. 
We are not aware of any databases providing information on private withdrawals. 
11 It is a weekly survey encompassing minimum, maximum, and current price values. 
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To sum up, by utilizing the dataset mentioned above and applying the parameters 

provided by Baldos (2023b) regarding country-specific production shares in global and 

local markets, as well as income and price elasticities, we were able to build a new 

database for SIMPLE with 18 regions, specifically distinguishing Italy. For both SIMPLE 

and SIMPLE-G models, the base year is 2017. The choice of the base year is mainly due 

to the availability of data that would enable the construction of a coherent dataset for both 

SIMPLE and SIMPLE-G. 

Table 4 presents the estimated values for Italy in 2017 alongside the aggregate values for 

the remaining 17 regions, covering the key variables required for the model. 

Table 4. Key Variables Estimated for the SIMPLE Model Including Italy 2017. 

Variable Italy Other Regions 

Income per capita (in USD) 31,509 278,783 

Population (in 1000 person) 60,004 7,524,960 

Crop Use: Regional Biofuels (in 1000 Mt: Corn Eq) 3,013 447,499 

Crop Output (in 1000 MT: corn-eq) 132,549 12,789,222 

Value of Crop Output (in 1000 usd) 29,028,232 2,800,839,581 

Cropland cover (in 1000 ha) 9,218 1,557,064 

Value of Cropland (in 1000 usd) 4,830,646 540,050,675 

Value of Non-Land Inputs (in 1000 usd) 24,197,586 2,260,788,898 

Crop Use: Livestock sector (in 1000 Mt: Corn Eq.) 32,450 2,538,728 

Crop Use: Food processing sector (in 1000 Mt: Corn Eq.) 37,698 3,100,306 

Source: Own elaboration based on FAOSTAT and Baldos (2023b). 

3.1 Database illustration and calibration 

Figure 3 illustrates the 3,745 grids with cropland and crop production in Italy obtained 

from Earthstat database.  
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Figure 3.  Distribution of cropland area and crop production for Italy.  

(a) Cropland Area (in hectares) (b) Crop production (in tons) 

  
Source: Own elaboration based on Earthstat database from Ramankutty et al. (2008). 

 

The data populating the Italian dataset come from the data sources described in the 

previous section, and they are better discussed and visualised here. 

A first group of variables refers to environmental issues: nitrogen and water use.  

The SIMPLE-G model considers nitrogen fertilizers as one of the key inputs of production 

function, and, therefore, the amount of nitrogen applications in each grid is needed to 

calibrate the base year. To achieve this, we used the Earthstat database, which collects 

national and sub-national data on fertilizer application rates for crops and crop groupings 

from the National Institute of Statistics (ISTAT). Figure 4 depicts the distribution across 

Italy depicting a more intensive use in the northern part of the country, which aligns with 

results obtained for cropland area and production. 

 

 

 

 



  
 

21 
 

Figure 4. Total nitrogen application distribution for the year 2000- In kilograms. 

 

Source: Own elaboration based on Earthstat database from Ramankutty et al. (2008). 

In the case of water use, SIMPLE-G model incorporates rainfed and irrigated water use 

as critical inputs for crop production, differentiating between irrigated and rainfed crop 

supply. In addition, in the irrigated crop production function, the demand for water is 

subdivided into groundwater and surface water. Figure 5 shows the distribution of 

irrigated (panel a) and rainfed (panel b) cropland hectares in each grid (source: GCWM), 

while Figure 6 depicts the gridded distribution of irrigated land through groundwater 

(panel a) and surface water (panel b) (source: AQUASTAT).12   

Figure 5. Distribution of Irrigated and Rainfed cropland hectares. 

(a) Irrigated cropland (b) Rainfed cropland 

 
12 AQUASTAT provides data on the percentage of land equipped for irrigation using groundwater and 

surface water. 
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Source: Own elaboration based on GCWM data. 

 

Figure 6. Distribution of surface and groundwater extraction on irrigated hectares. 

(a) Surface water (b) Groundwater 

  
 

Source: Own elaboration based on AQUASTAT data. 

Regarding economic variables, the model needs price information, specifically on land, 

crop, fertilizers and water prices. To estimate the prices of crops and fertilizers, we used 

the Italian FADN database at the NUTS3 level and considered the ratio between values 

and volumes (Figure 7). In estimating crop (panel a) and fertilizer (panel b) prices, to be 

faithful to Earthstat database, we considered crops included in the 80% of total 
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production. In the case of water (panel c), prices were also calculated starting from the 

Italian FADN data on total water use in m3.13   

 
13 For estimating the price of water used by farms, the assumption regarding the crops considered is slightly 

modified. Specifically, in NUTS3 of Caltanissetta, Monza e della Brianza, Rimini, Siena, and Varese, the 

restriction of using only the crops considered for production is not applied. While this introduces some 

inconsistency in the selection of farms in these provinces - since crop production was the original eligibility 

criterion - maintaining the criterion would have made obtaining water prices in these areas impossible. The 

surveyed farms in these provinces do not produce the crops selected to obtain crop production at the grid 

level, so if the eligibility criteria used for crop and fertilizer price estimations were maintained, there would 

be no price data for water used in the mentioned provinces. Data used are collected in metadata called Uso 

Acqua and Colture. 



  
 

24 
 

Figure 7. Crop, Fertilizers and Water prices per provinces  

(a) Crop Prices (b) Fertilizer Prices 

 
 

(c) Water Price  

 

 

 

Note: Crop and fertilizer prices expressed in current euros; water prices expressed in current euros/m3 

Source: Own elaboration based on Italian FADN - RICA. 

 

We also extracted data on farmers’ expenses from the Italian FADN database to estimate 

the prices and values of non-crop inputs for livestock and processed food (Figure 8 and 

Figure 9).14 To calculate the total value of non-crop inputs, we considered water, 

 
14 It should be noted that these expenses are at the general farm level (see Bilancio Conto Economico RICA 

metadata), so they may include expenses generated by other activities carried out in those farms. The farms 

to be considered are filtered using tables that identify those producing processed food and raising animals. 

Only farms that produce processed foods of non-animal origin are included, indeed. 
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electricity, fuels, veterinary and machinery expenses, commercial and processing 

expenses, general and land expenses, and salaries. The total values obtained were then 

divided by their corresponding quantities, distinguishing between the two types of 

activities to obtain prices.15 

Figure 8. Non-Crop Inputs Values for Livestock and Processed Food per provinces 

 

Note: Expressed in current million euros of 2017. 
Source: Own elaboration based on Italian FADN - RICA. 

 
15 In the case of livestock, quantities correspond to the number of adult animals.  

(a) Non-Crop Input Value for 

Livestock 

(b) Non-Crop Input Value for 

Processed Food 
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Figure 9. Non-Crop Inputs Prices for Livestock and Processed Food per provinces  

(a) Non-Crop Input Price for 

Livestock 

(b) Non-Crop Input Price for 

Processed Food 

  
Note: Expressed in current euros of 2017. 

Source: Own elaboration based on Italian FADN - RICA. 

 

Finally, calibrating the SIMPLE-G model requires determining the cropland values at a 

grid level. As anticipated in the previous section, we collected data from the CREA’s land 

market database (Indagine-mercato-fondiario) and downscaled them at the grid level 

(Figure 10). To do so, we have assumed that all cropland has a uniform value (expressed 

in euros per hectare) within a NUTS2 (Italian region) area.16  

To ensure time consistency, a final note should be made regarding treating the datasets 

above. In addition, since most georeferenced datasets are based between 2000 and 2005, 

it was necessary to update them to 2017 by rescaling the geospecial structures to the 

values provided by FAOSTAT.  

 

 

 

 
16 During data processing, outliers were removed, and weights were applied to scale the results to the 

population level. This process yields variables at the provincial level. 
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Figure 10.  Cropland value 

 

Note: Expressed in current euros of 2017 per hectare. 

Source: Own elaboration based on the land market database (source: CREA). 

 

3.2 Estimation of the drivers of the model 

The last step was to estimate the main driver variables needed to simulate a baseline 

scenario to 2030 for both the SIMPLE and SIMPLE-G models, with Italy as a single 

country. This scenario will serve as the basis for additional simulations.  

Population growth rates were derived using the population projections developed by 

Samir & Lutz (2017), while GDP per capita estimates were based on projections by 

Crespo Cuaresma (2017). These projections follow the intermediate Shared 

Socioeconomic Pathway (SSP2) the International Institute for Applied Systems Analysis 
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(IIASA) created. Regarding future biofuel demand, they were constructed using estimates 

provided by IEA (2024). The adoption of these databases aligns with the methodology 

proposed by SIMPLE modellers in Baldos et al. (2020b), Haqiqi et al. (2023b), and 

Baldos (2023b). For the TFP, econometric estimations were performed using a time series 

model to forecast output and input data for 2030 based on a panel data structure (see 

Annex I for details).  

Table 5 presents the percentage variations of each variable between 2017 and 2030. 

Table 5. Estimated percentage variations from 2017 to 2030. 
 

Population GDP per capita Biofuels demand TFP 

AUS_NZ 22.01 40.92 6.67 -0.5 

BRA 9.68 38.59 97.74 18.7 

CAN 15.41 29.57 64.23 13.3 

CC_AMER 13.48 41.23 58.33 0.9 

CHINA 1.32 126.32 19.56 10.3 

C_ASIA 30.61 334.19 224.75 30.2 

EU 4.26 39.46 52.86 7.1 

E_EURO -1.97 59.91 0.00 20.9 

ITA 0.77 69.70 103.38 1.7 

JPN_KR -1.92 9.03 224.75 3.9 

M_EAST 22.40 30.12 331.03 18.3 

N_AFR 17.28 33.27 0.00 48.3 

SE_ASIA 12.15 100.20 224.75 4.3 

SSA 38.17 67.84 16243.201 15.9 

S_AFR 11.90 49.55 0.00 15.2 

S_AMER 13.51 46.24 58.33 10.8 

S_ASIA 17.80 144.12 0.00 18.2 

US 11.83 20.83 24.29 10.1 

1Note: Estimates for the Sub-Saharan Africa region was unavailable in the IEA (2024) database. Hence, 

this projection was taken from Baldos (2023b). 

Source: Own elaboration. 

4. A first application of SIMPLE-IT 

In the case of SIMPLE, the Italian database has already been properly structured for 

integration into the GEMPACK software, and the model is ready to be tested. As a first 

application, we conducted a baseline simulation to evaluate the expected impacts of the 

evolution of population, GDP per capita, biofuel demand and crop TFP on agricultural 
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production and land use at the national level projected to 2030. Table 6 presents the results 

showing the percentage impact on crop prices, highlighting the contribution of each driver 

to the total effect. As shown, the estimated baseline has an overall negative impact on 

global crop prices (-6.36%) and in most regions, indicating that prices would decrease 

under the given scenario. This can be explained by the fact that although demand-side 

drivers (population growth, GDP per capita, and biofuels) exert upward pressure on prices 

due to increased crop demand (8.85% from population growth, 7.38% from GDP per 

capita, and 1.32% from biofuels), this effect is more than offset by improvements in sector 

productivity. Overall, the rise in productivity leads to a global price reduction of 17.21%, 

increasing production enough to counterbalance the higher demand. 

Table 6. Crop Prices results as percentage changes 

 Total Effect Population GDP per capita Biofuels Demand Crop TFP 

AUS_NZ -1.23 8.19 2.11 0.91 -12.43 

BRA -7.64 5.39 3.08 3.62 -19.73 

C_Asia -4.15 14.17 12.94 0.42 -31.68 

CAN -6.26 6.47 2.86 1.62 -17.22 

CC_Amer -1.53 7.05 3.31 0.98 -12.87 

CHINA -7.81 1.83 4.56 0.25 -14.45 

E_Euro -12.57 3.23 3.24 0.65 -19.70 

EU -6.57 5.49 2.30 1.17 -15.53 

ITA -4.62 4.12 1.34 1.56 -11.64 

JPN_KR -6.77 3.05 1.94 0.70 -12.46 

M_East -8.12 9.68 2.06 0.54 -20.39 

N_Afr -20.20 8.53 3.47 0.57 -32.77 

S_Afr -6.96 6.50 3.62 0.75 -17.83 

S_Amer -5.40 6.85 3.24 0.88 -16.38 

S_Asia -1.85 10.74 10.47 0.19 -23.25 

SE_Asia 6.91 7.74 8.39 0.50 -9.72 

SSA 7.82 18.89 5.41 5.88 -22.36 

US -5.33 5.49 1.91 3.85 -16.59 

WORLD -6.36 6.33 3.40 1.12 -17.21 

Source: Own elaboration. 
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Table 7 illustrates the impact of the simulation on crop production, breaking down the 

total impact by and the total effect of each driver in the model. Analysing the contribution 

of productivity changes to agricultural output, it is evident that productivity growth leads 

to an overall global production increase (6.54%). However, in some regions, production 

declines due to lower comparative competitiveness, as seen in Italy, where production 

decreased by 9.17%. Regarding demand-side drivers, all have a positive impact, as 

expected, with global effects of 8.73% from population growth, 6.19% from GDP per 

capita, and 1.82% from biofuels. 

Table 7. Crop Production results as percentage changes 

 Total Effect Population GDP per capita Biofuels Demand Crop TFP 

AUS_NZ -2.65 10.22 2.63 1.13 -16.63 

BRA 33.45 8.30 4.63 5.55 14.97 

C_Asia 69.06 22.54 18.90 0.67 26.94 

CAN 22.58 9.71 4.19 2.43 6.24 

CC_Amer 0.20 7.67 3.59 1.07 -12.14 

CHINA 12.26 2.14 5.19 0.29 4.65 

E_Euro 29.49 4.91 4.77 0.99 18.82 

EU 7.17 6.42 2.66 1.37 -3.27 

ITA -1.56 4.48 1.44 1.69 -9.17 

JPN_KR 0.90 2.92 1.85 0.67 -4.55 

M_East 30.75 13.91 2.89 0.77 13.19 

N_Afr 70.17 10.43 4.08 0.70 54.97 

S_Afr 25.32 9.19 5.01 1.06 10.06 

S_Amer 16.98 8.80 4.10 1.13 2.95 

S_Asia 38.31 13.57 12.80 0.24 11.69 

SE_Asia 16.57 8.27 8.89 0.53 -1.12 

SSA 48.75 24.93 7.02 7.75 9.06 

US 15.56 7.09 2.43 4.98 1.06 

WORLD 23.28 8.73 6.19 1.82 6.54 

Source: Own elaboration. 

Tables 8 and 9 present the results of cropland use, regarding hectares and land prices. As 

observed, demand-side drivers increase the need for cropland to meet rising crop demand, 

leading to a global increase of 7.44% in land use. This, in turn, creates upward pressure 

on land prices. However, once again, productivity improvements introduce a 
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compensatory effect. As the sector becomes more productive, fewer hectares are required 

to achieve the same production level, resulting in a global reduction of 2.59% in land use. 

Although this mitigates the need for additional land, it does not fully offset it, leading to 

a net global increase of 4.86% in land use. At the regional level, however, some areas 

fully compensate for demand-side drivers through productivity gains—for example, in 

Italy, where total land use decreases by 0.44%. 

Table 8. Cropland results as percentage changes 

 Total Effect Population GDP per capita Biofuels Demand Crop TFP 

AUS_NZ -1.16 5.48 1.41 0.61 -8.65 

BRA 6.38 3.89 2.20 2.61 -2.32 

C_Asia 15.68 10.17 9.04 0.30 -3.84 

CAN 2.24 2.48 1.09 0.62 -1.96 

CC_Amer -0.22 2.47 1.16 0.34 -4.19 

CHINA 0.58 0.66 1.63 0.09 -1.79 

E_Euro 3.76 2.35 2.32 0.47 -1.38 

EU 0.01 0.82 0.34 0.18 -1.33 

ITA -0.44 0.61 0.19 0.23 -1.47 

JPN_KR -0.44 0.44 0.28 0.10 -1.25 

M_East 1.25 1.51 0.32 0.08 -0.66 

N_Afr 2.30 1.31 0.52 0.09 0.38 

S_Afr 2.53 2.45 1.36 0.28 -1.56 

S_Amer 3.12 4.67 2.20 0.60 -4.35 

S_Asia 5.28 3.83 3.71 0.07 -2.33 

SE_Asia 3.81 2.61 2.83 0.17 -1.80 

SSA 15.53 12.64 3.60 3.93 -4.64 

US 1.48 2.02 0.70 1.42 -2.65 

WORLD 4.86 4.15 2.25 1.04 -2.59 

Source: Own elaboration. 

The changes in land use also explain the observed impact on land prices, which increase 

globally by 10.33%. Since higher land demand drives prices up (with demand-side drivers 

contributing to a 17.55% global price increase), productivity improvements are unable to 

fully counteract this effect. While productivity growth reduces land prices by 7.22%, it is 

not enough to fully offset the upward pressure generated by demand-side factors. 
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Table 9. Cropland Prices results as percentage changes 

 Total Effect Population GDP per capita Biofuels Demand Crop TFP 

AUS_NZ -2.05 9.76 2.51 1.08 -15.40 

BRA 11.68 7.13 4.02 4.78 -4.25 

C_Asia 29.70 19.47 17.00 0.58 -7.36 

CAN 8.22 9.15 3.99 2.29 -7.21 

CC_Amer -0.80 8.81 4.13 1.23 -14.96 

CHINA 2.09 2.39 5.87 0.32 -6.49 

E_Euro 6.82 4.26 4.21 0.86 -2.51 

EU 0.08 7.48 3.11 1.60 -12.11 

ITA -3.91 5.42 1.75 2.05 -13.13 

JPN_KR -3.93 3.90 2.48 0.90 -11.22 

M_East 11.92 14.44 3.03 0.80 -6.35 

N_Afr 22.96 13.09 5.21 0.88 3.79 

S_Afr 9.32 9.06 4.99 1.05 -5.78 

S_Amer 5.64 8.45 3.97 1.09 -7.86 

S_Asia 20.17 14.76 14.11 0.27 -8.97 

SE_Asia 14.28 9.83 10.60 0.63 -6.78 

SSA 29.42 23.98 6.80 7.46 -8.82 

US 5.40 7.36 2.54 5.17 -9.67 

WORLD 10.33 8.85 7.38 1.32 -7.22 

Source: Own elaboration. 

Conclusion  

External shocks, such as climate change and extreme events, are shaping the sustainability 

of the agricultural and agrifood sectors worldwide, and this will become even more 

relevant due to climate scenario projections. Tools for ex-ante analyses are becoming 

increasingly crucial to understanding how policy design should evolve to address future 

challenges, such as international competitiveness and food security. In this context, this 

paper provides, for the first time, the scientific community with the extension of SIMPLE 

and SIMPLE-G models to a European country, Italy.  

The paper not only describes the models, discusses the related literature, and documents 

the work performed to create the database for a new country but also presents: (i) the 

estimated values used to calibrate the baseline (in both models for 2017); (ii) the 
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exogenous driver projections extending to 2030; (iii) a fist application of SIMPLE- IT 

model. 

The first application of SIMPLE, integrating for Italy, presented in Section 4, 

demonstrated that agricultural production is projected to increase due to the included 

drivers (demand and productivity). The observed reduction in production in certain 

regions, such as Italy, is primarily explained by the lower productivity gains in 

comparison to the other regions, leading to a reallocation of production toward these 

regions. The overall increase in global crop production is associated with a reduction in 

agricultural prices.  

Regarding land use, the results exhibit a similar pattern: an increase in the utilized area, 

except in regions where production decreased or where the increase was negligible. 

Higher agricultural productivity reduces the land requirements to achieve equivalent 

production levels. However, the rise in demand for agricultural products drives additional 

production, which in turn requires more land. This explains the increase in utilized 

hectares, although at a lower rate than the growth in production. Moreover, agricultural 

land prices exhibit an upward trend because of increased demand.  

Additional steps are required to validate the SIMPLE-G model presented in this paper 

before running simulations. Specifically, grid-level elasticities of substitution should be 

defined in the model, following the methodology employed by Haqiqi et al. (2023b). 

Once this validation is completed, the model will be ready to conduct location-specific 

simulations, such as assessing the impacts of local climatic events or policy interventions. 

Both SIMPLE and SIMPLE-G models can be, in fact, used to simulate policy-oriented 

shocks, such as changes in agricultural land exploitation, agricultural water use 

(wastewater), water management strategies (i.e., collective vs private) or in farming 
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processing (e.g., organic). The models incorporate, in fact, market-mediated effects and 

feedback loops between human and natural systems, guiding heterogeneous economic 

decisions at different spatial levels (national for SIMPLE while gridded for SIMPLE-G). 

They provide a framework for measuring spillover effects transmitted across locations 

through markets and accounts for tele-coupling distant regions, enabling the analysis of 

interregional dependencies on a local-global scale. The capacity of SIMPLE-G to capture 

interactions is one of the main strengths of this model, especially for policy design 

(Baldos et al., 2020b). Overall, the several potential applications of both of these models 

will provide unique insights for sustainable policy targeting at the local, national and 

global levels (Hertel & Haqiqi, eds.). Today, the issue is more relevant than ever, given 

the current vibrant debate on what will come after the 2030 Agenda goals and how to plan 

sustainable development trajectories in the future within an anticipatory governance 

framework.  
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Appendix 

Table A1. Original regional disaggregation included in the SIMPLE and SIMPLE-G 

model 

Name Region description 

E_Euro Eastern Europe 

N_Afr North Africa 

SSA Sub Saharan Africa 

S_Amer South America 

BRA Brazil 

AUS_NZ Australia & New Zealand 

EU European Union 

S_Asia South Asia 

CC_Amer Central America and the Caribbean 

S_Afr Southern Africa 

SE_Asia Southeast Asia 

CAN Canada 

US United States of America 

CHINA China and Hong Kong 

M_East Middle East 

JPN_KR Japan and Korea 

C_Asia Central Asia 
Source: Baldos et al. (2020b) and Baldos (2023b). 
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Annex I 

Technical details of models’ structure (Section 2 of the manuscript) 

Agricultural prices are defined based on the following equation (1): 

(1)   𝑝𝐴
∗ =

∆𝐴
𝐷 + ∆𝐿

𝑆 − ∆𝐿
𝐷

𝜂𝐴
𝑆,𝐼 + 𝜂𝐴

𝑆,𝐸 + 𝜂𝐴
𝐷

 

The equation indicates that agricultural prices are positively influenced by the increasing 

global demand in crop demand (∆𝐴
𝐷)  and a shift of the global supply of agricultural land 

(∆𝐿
𝑆), while negatively affected by variations in the derived global demand for land due 

to global changes in yields (∆𝐿
𝐷) which, in this model, are exogenously determined.  The 

model accounts for the magnitude of these variations on agricultural prices through three 

economic responses. First, an intensive margin response, represented by the elasticity of 

substitution between land and non-land inputs (𝜂𝐴
𝑆,𝐼

).  Second, an extensive margin 

response in land use, captured by the land supply elasticity (𝜂𝐴
𝑆,𝐸). Third, a demand 

response, reflected in the price elasticity of food demand (𝜂𝐴
𝐷). 

Land use for agricultural production is determined based on equation 2:  

(2) 𝑞𝐿
∗ =

[
 
 
 
 
∆𝐴

𝐷 + ∆𝐿
𝑆 − ∆𝐿

𝐷

1 +
𝜂𝐴

𝑆,𝐼

𝜂𝐴
𝑆,𝐸 +

𝜂𝐴
𝐷

𝜂𝐴
𝑆,𝐸

]
 
 
 
 

− ∆𝐿
𝑆 

On the one side, quantity of agricultural land positively depends on increasing in global 

demand (∆𝐴
𝐷), potentially motivated by an upward demand of biofuels or food. On the 

other side, it negatively depends on the related global demand for land (∆𝐿
𝐷) that could 

result from exogenous growth in yields (e.g., due to prior investments in agricultural 

R&D). Additionally, the quantity of agricultural land negatively depends on the potential 

shifts of the global supply of agricultural land (∆𝐿
𝑆) potentially motivated by different 

conservation or urbanization policies. Finally, as in the case of agricultural prices, the 
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variation in land quantity is influenced by the relative elasticities incorporated in the 

model. As shown, a higher land global supply elasticity (i.e., the extensive margin 

response) leads to greater variations in agricultural land use. Conversely, higher elasticity 

of substitution between land and non-land inputs (i.e., the intensive margin response) and 

higher price elasticity of food demand (i.e., the demand response) result in smaller 

variations in the quantity of land used. 

Demand for agricultural products is defined as following: 

(3)    𝑞𝐴
𝐷 = −𝜂𝐴

𝐷𝑝𝐴 + Δ𝐴
𝐷 

Technical details of total factor productivity estimation (Section 3 of the 

manuscript)  

The first step was to estimate the panel data econometric model (Van Beveren, 2007) 

using a fixed effects estimation and the information in “International Agricultural 

Productivity”. We apply a logarithmic transformation to linearize the production function, 

which depends on capital, labor, materials, and the Hicksian neutral efficiency level17. 

The estimated equation was: 

(4) 𝑦𝑖𝑡 = 𝛽0 + 𝛽𝑘𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑡 + 𝛽𝑙𝐿𝑎𝑏𝑜𝑟𝑖𝑡 + 𝛽𝑚𝑓𝑒𝑒𝑑𝐹𝑒𝑒𝑑𝑖𝑡 + 𝛽𝑚𝑓𝑒𝑟𝑡𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖𝑡 + 𝜔𝑖 +

𝜑𝑡 + 𝑢𝑖𝑡 

 where Capitalit includes the value of the agricultural capital stock for region i at time t, 

Laborit is the number of economically active people in agriculture, Feedit and Fertilizerit 

represent the use of materials in agriculture, and uit the error. From this estimation, we 

 
17 While this method can be extended to other production functions if certain additional conditions are met 

(Ackerberg et al., 2007), it was estimated using a Cobb-Douglas specification for simplicity. 
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obtain the coefficients that can be used to calculate the productivity of the sector, which 

can be defined as:  

(5) 𝜔𝑖�̂� = 𝑦𝑖𝑡 − 𝛽�̂�𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖𝑡 − 𝛽�̂�𝐿𝑎𝑏𝑜𝑟𝑖𝑡 − 𝛽𝑚𝑓𝑒𝑒𝑑
̂ 𝐹𝑒𝑒𝑑𝑖𝑡 − 𝛽𝑚𝑓𝑒𝑟𝑡

̂ 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖𝑡 

With this equation and the available data, productivity (the exponential of 𝜔𝑖𝑡) could be 

estimated for each of the regions between 2017 and 2021. To estimate productivity to 

2030, this model has to be complemented with a forecast of the output and inputs, so 

several time series models were estimated.18  

 

 
18 For each of the variables in every region, an ARIMA model was determined for each series4 and with 

that model each value between 2022 and 2030 was forecasted. Using these forecasts and the parameters 

estimated in the panel data model, an estimate of productivity in 2030 can be obtained for each of the 

regions (using equation 5). 
 


