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Abstract  

Weather variability disrupts food grain production and agricultural sustainability. While 

existing literature highlights the stationary relationship between weather variables and 

agricultural outcomes, it often overlooks their bearing on land use changes. This study 

investigates the dynamic effects of weather variations on crop yields, land use and intensity in 

Odisha, Eastern India, using district-level data from 2001-18. By employing a ‘panel auto-

regressive distributive lag (P-ARDL) model, we assess long- and short-term relationships 

between weather parameters and agricultural yields. Results reveal a negative marginal impact 

of rainfall deviation on yield, ranging from -0.16 for wheat to -0.48 for green gram in the long 
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term. In the short term, however, the marginal impact is positive for some pulses (green gram, 

black gram) and oilseeds (groundnuts). Weather variability has adversely affected the intensity 

of land use but has induced crop diversification in both the short and long term.  

Keywords: Climate change; Crop yield response; Land use intensity; Panel ARDL model; 

Odisha; India 

JEL codes: C33; Q15; Q18; Q54 

1 Introduction 

Over the last two decades, the issue of weather fluctuations and their impacts has been debated 

intensively among policymakers, scientists and academia globally. Evidence shows varying 

effects of long-term changes in weather patterns in various regions, with some areas severely 

affected and others observed to have had observable positive effects (Mohapatra et al., 2023). 

The impact of weather variability differs across countries’ levels of development. It harms 

developing countries, whereas it carries possibly low to moderate impacts on developed 

countries, exacerbating the weather’s impact on inequality (Dudu and Çakmak, 2018; Asogwa 

et al., 2022; Xiang et al., 2022). Yet, this pattern is not universal. Some developed nations have 

endured significant damage; for example, the catastrophic floods in Japan in 2018 increased 

vulnerability, drove up healthcare costs and inflicted major losses in the manufacturing sector 

(Lin et al., 2020; Yamamoto and Naka, 2021; Yoshida et al., 2023). Similarly, devastating 

floods in Germany in 2021 and Spain in 2024 imposed substantial economic burdens on their 

capitalist economies (Martin-Moreno et al., 2025). Agricultural competitiveness increases the 

temperature among countries. For example, agrarian competition in developing countries has 

increased the temperature but declined in developed countries (Nugroho et al., 2023).  
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In addition, weather variations have considerably impacted crop production, food availability 

and quality. The dynamic effects of weather shocks on agricultural output in Peru show an 

adverse impact of weather shocks measured by excess heat or rainfall, which had a delayed 

negative impact on agricultural production, and its magnitude depends on various factors 

(Crofils et al., 2025). The connectedness and variability effects transmission between weather 

variables and agricultural productivity in Morocco suggest that weather variability increases 

the spillover effects transmitted to agriculture (Belcaid and El Ghini, 2020). The dynamic 

impact of weather changes on vegetable price fluctuations in China observed that the specific 

vegetable price was affected by changes in particular weather factors, which were time-varying 

(Yang et al., 2022). 

However, in the case of developing countries like India, the consequence of weather variations 

is predicted to be harmful, and the impact could be severe in the near future. Agricultural 

productivity will be reduced by 4.5% with a 1℃ increase in temperature in India, and it is 

predicted that the total factor productivity in agriculture will decline across all states by 2050 

(Pattanayak et al., 2021). Several empirical studies have evidenced the deleterious impact of 

weather variations on farm production and productivity in India and some other countries 

(Arora, 2019; Xie et al., 2019; Chandio et al., 2020; Seven and Tumen, 2020; Mohapatra et al., 

2025). However, research on the issue of weather variations and their dynamic impact on land 

use patterns and land use intensity is scarce. Indeed, this problem has been ignored in the case 

of Indian agriculture1, specifically at the micro level in the agriculture of eastern India. In this 

paper, we thus attempt to answer the research question of how weather variations influence 

crop yields and land use dynamics in eastern India. 

 
1 Except a recent study by Birthal et al. (2021).  



 

4 

 

At the micro level, weather fluctuations significantly affect the exposure and vulnerability of 

one ecosystem by altering the water supply and food production, damaging infrastructure and 

causing morbidity and mortality, as noted by the Intergovernmental Panel on Climate Change 

(IPCC, 2014). All the outcomes have implications for land use. In the farm sector, the long-

term changes in weather factors affect land use patterns and intensity through their impacts on 

crops’ comparative advantage: yields or profits (Birthal et al., 2021). Farmers decide their 

acreage allocation after carefully analysing their prospects for profit (yield) during the weather 

shock and their ability to cope with it. Again, in developing economies, institutional 

mechanisms for managing weather risks, such as crop insurance, soil management practices 

(soil health cards) and so on, are inadequate and inaccessible to resource-poor smallholders. 

Thus, fluctuations in rainfall, a rise in mean temperature and frequent weather extremes 

severely threaten the food system and food security through changes in the pattern and intensity 

of land use (Opoku Mensah et al., 2023; Siotra and Kumari, 2024). Our study bridges the 

research gap by empirically assessing the dynamic impact of weather variations on land use 

patterns and intensity, contributing to better micro-level risk management strategies. 

Odisha is a major agriculture-intensive state on the eastern front of India. The farming sector 

contributes about 9% of the total rice production and 4.22% of the total food grain production 

of Indian agriculture (Barik, 2023). The state’s economy and the livelihood of most of its 

people depend extensively on agriculture and allied activities. The agriculture sector 

contributes about 20.6% of gross value added to Odisha’s economy and supports about half of 

the state’s total employment, as reported by the Government of Odisha (GOO, 2022). However, 

being a poor agricultural state on India’s east coast, with about 30% of the population below 

the poverty line, the state is highly vulnerable to weather shocks (Rout, 2021). This case 

resonates with much of India and the surrounding South and Southeast Asian economies. 
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Furthermore, Odisha’s location (extending from 17.31-22.31N latitude and 81.31-87.29E 

longitude) in the tropical zone makes it susceptible to high temperatures and humidity 

fluctuations. For instance, in recent decades, Odisha has frequently faced weather extremes, 

such as droughts, floods, storms, tropical cyclones and more (Srinivasa Rao et al., 2016). A 

limited number of studies in the literature have evaluated the impact of weather variations on 

the farm production and productivity of Odisha agriculture (Hoda et al., 2021; Senapati, 2022). 

However, the effects of weather variations on land use are yet to be examined. Hence, the paper 

discusses the dynamic effects of weather variations on crop yields, land use and intensity in 

eastern India, setting it apart from traditional studies that primarily focus on the impact of 

climate on yields. The study uses the panel auto-regressive distributed lag (P-ARDL) method 

using district-level data2 for 2001-2018, with 540 total observations. Land use is the ratio of 

land used for agriculture to non-agricultural uses. Finally, variables like crop diversification 

represent land use patterns, and cropping intensity represents land use intensity. The results 

underscore the significance of dynamic effects, revealing patterns and insights that static 

analyses would miss. 

This study makes several significant contributions to the literature. First, it enhances our 

understanding of how land use patterns and intensity respond to long-term changes in 

precipitation and temperature, which is crucial for improving crop yields, productivity, food 

security and livelihood strategies in India and other developing and emerging economies. 

Second, the findings can assist policymakers in formulating incentives to encourage future 

adaptation strategies in response to increasing weather risks. Third, the study employs both 

short-term and long-term assessments, providing a sophisticated methodological approach. 

This helps in designing appropriate coping mechanisms to address the adverse impacts of 

 
2 Districts serve as the primary administrative units within Indian states. India has approximately 766 districts, 

each with an average population of around 1.86 million. The state of Odisha comprises 30 districts. Accordingly, 

our dataset includes a total of 540 observations spanning an 18-year period. 



 

6 

 

weather variability and limited land. Finally, the findings are applicable to various other states 

in India, including West Bengal, Bihar, Assam and Andhra Pradesh, which share similar agro-

weather zones and agricultural practices. 

The rest of the paper is organised as follows: Section 2 reviews the literature, providing the 

background and context for the study; Section 3 describes the data sources and methodology 

used in the research, detailing the analytical techniques employed; Section 4 discusses the 

study’s findings, interpreting the results and their implications; Section 5 concludes the paper, 

summarising the key insights and suggesting policy implications based on the findings. 

2 Brief literature  

The impact of weather variations is assessed by the effects of weather factors, like precipitation 

and temperature, on crop yields, and the magnitude of these effects is contingent upon the 

degree of change in these variables. Over the years, climate variability has influenced crop 

production in high-yield and high-technology agricultural areas, particularly in agriculturally 

based economies in developing countries (Lemi and Hailu, 2019). The impact of climate 

change on crop yields was different across crops in Thailand. Climate change negatively 

affected longan yield, whereas it positively affected maize and had no significant effect on rice 

yield. There was no effect of rainfall on crop yields (Kyaw et al., 2023). Crop yields are highly 

sensitive to temperature globally, whereas their extent varies in continents (Liu et al., 2020). 

Furthermore, the combination of reduced precipitation and elevated temperatures has the 

potential to result in an escalation of global food prices. To mitigate this issue, farmers must 

use adaptive strategies to withstand the impacts of weather variations (Tuihedur Rahman et al., 

2018). Studies found that compared with rainfall deficit, excess temperature negatively affects 

agricultural productivity more (Taraz, 2018; Zampieri et al., 2018). Tesfaye and Tirivayi 
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(2020) noted a maximum temperature increase in the pre-monsoon period (i.e., April-June). 

Pattanayak and Kumar (2021) have estimated that agricultural productivity has reduced by 

4.5% with a 1℃ increase in temperature in India. In addition, they predicted the total factor 

productivity in agriculture would decline across all states by 2050. Moulkar and Peddi (2023) 

state that the effects of weather variables on crop yield vary in seasons and across crops. 

Generally, the monsoon and winter crop yields are more sensitive to temperature (minimum 

and maximum) and rainfall. Vogel et al. (2019) found that variation in crop yield is associated 

with temperature-related extremes. Climate change has threatened agricultural production in 

food-insecure regions of Asian countries (Habib-ur-Rahman et al., 2022).  

In India, the growing threat of climate change—manifested through rising greenhouse gas 

emissions, erratic weather patterns, and increasing temperature anomalies—poses serious 

challenges to agricultural sustainability. The IPCC (2007) has underscored the long-term risks 

of continued fossil fuel reliance, projecting a global temperature rise of up to 6.4°C and a sea 

level increase of 59 cm by the century’s end if current trends persist. Empirical evidence 

demonstrates a strong nexus between economic growth, energy use, and emissions: a 1% 

increase in fossil fuel consumption and GDP can raise CO₂ emissions by 0.67% and 0.61%, 

respectively, while a corresponding rise in renewable energy use and agricultural productivity 

reduces emissions by 3.65% and 0.41% (Raihan and Tuspekova, 2022). Both long-run and 

short-run relationships exist between agricultural production, economic growth, and CO₂ 

emissions (Ali et al., 2019). Greenhouse gas emissions tend to rise with the intensification of 

agriculture and allied activities but can be mitigated through increased forest cover (Ahmed et 

al., 2025). In the Indian context, agricultural expansion and intensification are also linked to 

rising emissions. A study from Bangladesh shows that a 1% increase in agricultural land, crop 

output, and allied activities contribute to emissions growth of 0.25%, 0.29%, and 0.40%, 
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respectively (Raihan et al., 2023). Since Bangladesh is nearer to Odisha and other states in 

Eastern India, the results are more relevant to the present study context. 

 The implications of this growth–energy–agriculture–climate nexus are particularly acute in 

India’s agrarian economy, where rainfall-dependent farming remains dominant. Weather 

variability—particularly deviations in rainfall and evapotranspiration—has directly 

undermined crop yields, including key staples and pulses such as groundnut and chickpea. 

Despite being one of the most climate-sensitive sectors, agriculture continues to receive limited 

policy and investment attention (Belford et al., 2022). Climate-induced weather extremes, 

including droughts and heatwaves, disrupt food production, inflate prices, and depress 

consumption, ultimately worsening household welfare, especially among smallholders and 

marginal farmers (Alvi et al., 2021). In Sweden, such extremes cause major yield losses 

(Sjulgård et al., 2023). In India, rainfall and evapotranspiration negatively affect groundnut and 

chickpea yields. 

Methodologically, studies assessing the agricultural impacts of climate variability in India 

employ two dominant approaches: general equilibrium and partial equilibrium models. While 

general equilibrium models offer system-wide analysis, their application is limited in 

developing contexts due to data and specification issues (Deressa, 2007). The partial 

equilibrium framework—particularly econometric models such as the Ricardian approach and 

crop simulation models—is more prevalent. The Ricardian model, grounded in Ricardo’s 

(1817) theory of land rents and later adapted by Mendelsohn et al. (1994), estimates the net 

impact of climate variables on farmland values or productivity. It remains a widely used tool 

for assessing the welfare effects of climate change, though its application in India often requires 

careful calibration to account for heterogeneity in climate zones, cropping systems, and socio-

economic conditions (Paltasingh and Goyari, 2015; Hashida and Lewis, 2022). 
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To address these challenges, India must adopt integrated climate adaptation strategies. These 

include educating farmers on climate risks, promoting diversified and resilient cropping 

patterns, strengthening agricultural markets, and improving access to weather forecasts and 

financial safety nets. As Tripathi and Mishra (2017) argue, effective adaptation requires locally 

contextualised measures grounded in an understanding of regional weather variability and its 

interaction with socio-economic drivers.  

While existing literature predominantly addresses the climate impact on yields, this paper 

uniquely explores the dynamic effects of weather variation on crop yields, land utilisation 

patterns and intensity in eastern India. This study employs a P-ARDL model on micro-level 

data, a methodological innovation compared to previous studies. The chosen methodology 

allows for an in-depth analysis of dynamic effects, providing insights that static models fail to 

capture. First, the P-ARDL model is particularly well-suited for datasets where variables 

exhibit a mixed order of integration, i.e., a combination of the I(0) and I(1) series (Pesaran and 

Shin, 1998). This flexibility aligns with the nature of our data, as confirmed by the panel unit 

root tests. In contrast, dynamic panel data models (e.g., Arellano-Bond GMM) and panel 

cointegration techniques often require all series to be integrated in the same order, typically 

I(1), which was not the case in our study. Second, the P-ARDL framework allows for variable-

specific lag structures, enabling us to more accurately capture the dynamic relationships among 

variables with differing temporal responses. Conversely, models such as dynamic fixed effects 

or traditional panel cointegration models generally impose uniform lag lengths across 

variables, which may lead to model misspecification when applied to heterogeneous datasets 

like ours. Third, the P-ARDL model provides a clear and tractable single-equation framework 

that simultaneously estimates both short-run dynamics and long-run equilibrium relationships 

(Pesaran et al., 1999). This dual capability simplifies interpretation and policy relevance. In 

contrast, cointegration-based models (e.g., Pedroni, Kao, Westerlund tests) and system-based 
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approaches often involve more complex estimations, with increased computational burden and 

interpretation challenges, especially in applied settings. Last, P-ARDL is well-suited for panels 

with a moderate time dimension and limited cross-sections, such as ours (T = 18 years; N = 30 

districts), and performs robustly in small samples. In contrast, GMM-based dynamic panel data 

models can suffer from finite-sample bias and over-identification problems, especially when 

the number of instruments exceeds the number of cross-sectional units. 

3 Materials and methods 

3.1 Data sources and variable construction 

The study uses data from 30 districts of Odisha (see Figure 1) from 2001 to 2018 from various 

secondary sources such as the Department of Agriculture and Farmers’ Empowerment (Odisha 

Agriculture Statistics 2001-18), ENVIS Centre of Odisha’s State of Environment and the Crop 

Production Statistics Information System (CPSIS).  

This study uses specific data on the area, production and yield of nine major crops—rice, wheat, 

maize, horse gram, green gram, black gram, groundnut, rapeseed and sesamum—these crops 

are among the major seasonal crops produced in Odisha, India3. Furthermore, the study uses 

other control variables, such as fertiliser consumption and agricultural credit, along with a 

group of weather factors, such as rainfall and maximum and minimum temperatures. We use 

the rainfall deviation from the normal rainfall (�̅�) instead of rainfall itself. The expression is 

 
3 Cereals: Rice and wheat – the two primary food grains, forming the staple diet and occupying the largest share 

of cultivated land. Pulses: Green gram, black gram, and horse gram – important protein sources, particularly in 

rainfed and marginal areas. These legumes also contribute to soil nitrogen fixation and improve cropping system 

sustainability. Oilseeds: Groundnut, rapeseed, and sesamum – key oil-producing crops suited to Odisha’s agro-

climatic conditions, cultivated for edible oil and as cash crops. 
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standardised as 𝑅𝐷𝑖𝑡 =
(𝑅𝑖𝑡−�̅�)

𝜎𝑅
 , where 𝜎𝑅 is the standard deviation of rainfall (see Table 1 for 

variable description).  

Figure 1. The shaded area within the map of India indicates the study region, Odisha 

 

Source: Authors’ illustration. Note: The map delineates the state borders. 

 

Data on weather factors related to the Monsoon cropping season are collected from secondary 

sources, comprising different phenological stages of crop growth, such as sowing and growing. 

The crop yield of all major crops is taken as the dependent variable in different crop yield 

response models. The study uses three definitions of agricultural land use patterns: (1) cropping 

intensity, (2) crop diversification, and (3) ratio of land use to non-farm land use pattern. 

Cropping intensity is the ratio of gross cropped area to net sown area as 𝐶𝐼𝑡 =
𝐺𝐶𝐴𝑡

𝑁𝑆𝐴𝑡
, where 

GCA is the gross cropped area, and NSA is the net sown area in Odisha’s agriculture, which 

measures how intensively the land is used for farming purposes.  

The second definition is crop diversification. Crop diversification is a measure that indicates 

the degree of diverse patterns of land use in a farming system. Usually, farmers adopt crop 

diversification as a traditional strategy to minimise weather risks. This helps stabilise farm 
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income volatility and augments income levels (Basantaray et al., 2022). It also helps retain and 

revive soil health. Several diversification measures are available in the literature, but we use 

the Composite Entropy Index4, defined as: 𝐶𝐸𝐼𝑡 = −[∑ 𝑃𝑖𝑙𝑜𝑔𝑁𝑃𝑖
𝑁
𝑖=1 ] ∙ {1 − (

1

𝑁
)}, where CEI 

has two components: distribution and number of crops (N) or diversity. Here 𝑃𝑖 is the share of 

𝑖th crop in total operational landholding.  

The value of the CEI increases with the rise in the number of crops and decreases in 

concentration. The value of CEI ranges between zero and one, indicating no diversification to 

perfect diversification. The third variable that captures the land use rate is the rate of 

agricultural use of land, which is defined again as the ratio of total cultivable (000’ ha) land 

under agricultural use to non-agricultural use and is formally expressed as 𝐴𝐿𝑈 =
𝐿𝐴𝑡

𝐿𝑁𝐴𝑡
 where 

ALU stands for the rate of agricultural use of land, 𝐿𝐴𝑡 is the total land under agricultural use, 

and LNAt is the total land under non-agricultural use. This measure gives us a broad idea of 

how the cultivable landmass is used for farming purposes and the trend over time. All these 

variables are gathered annually, and the total observations are 540. All variables and their 

definitions are described in Table A1.  

3.2 Empirical estimation methods 

To prepare for the panel ARDL estimation, we first conduct descriptive statistics and 

correlation analysis to examine the central tendencies, dispersion, and pairwise relationships 

among the study variables—namely, crop yield, land use, rainfall deviation, and temperature 

variation. To assess the stationarity of these variables, we apply panel unit root tests, including 

the Levin-Lin-Chu (LLC) test (Levin et al., 2002) and the Im-Pesaran-Shin (IPS) test (Im et 

 
4 This CEI, a modified version of Shannon-Weaver index, rectifies its drawbacks and assesses both richness and 

evenness which makes it possible to compare crop diversity across different places (Tesfaye and Tirivayi, 2020). 

So, it is an improved measure of diversification. 
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al., 2003), both of which are extensions of the augmented Dickey-Fuller (ADF) test and assume 

cross-sectional independence. The P-ARDL model is suitable when the panel data series are 

either I(0), I(1), or a combination of both, but not I(2). If any variable is found to be integrated 

with order two (I(2)), we exclude it from the estimation to maintain model validity. The panel 

ADF unit-root test estimates the following model: 

∆𝑦𝑖,𝑡 = 𝜌𝑖𝑦𝑖,𝑡−1 + ∑ 𝜑𝑝𝑖∆𝑦𝑖,𝑡−𝑝 + 𝜃𝑖𝑗𝐷𝑖𝑗 + 𝜀𝑖𝑡

𝑝𝑖

𝑝=1

                                                                            (1) 

where in Eq. (1), 𝑦𝑡 is the random process of one variable, the period t = 1, 2…, T  and  i = 1, 

2,…,N represents the cross-sectional units/groups. If the unit-root test results show that the 

variables are stationary, either in I(0) or I(1) or mixed order of integration, then the P-ARDL 

model is applied to explore the impact of weather variations and other factors on crop yields, 

rate, pattern and intensity of land use. Otherwise, in the case of non-stationary or stationary in 

different order, either I(1) or I(2), the Todo-Yamato causality test and vector error-correction 

(VEC) model are appropriate to measure the effects. We estimated the following baseline 

model using panel ARDL to carry out our objective as we get mixed stationarity conditions of 

variables: 

𝑦𝑖𝑡 = 𝑓(𝐻𝑌𝑉𝐴𝑖𝑡, 𝐹𝐸𝑅𝑇𝑖𝑡, 𝐶𝑅𝐷𝑖𝑡, 𝑅𝐴𝐼𝑁_𝐷𝐸𝑉𝑖𝑡, 𝑀𝐴𝑋_𝑇𝑡, 𝑀𝐼𝑁_𝑇𝑡)                                      (2) 

The dependent variable 𝑦𝑖𝑡 is estimated for all nine major crops and three different forms of 

land use. The other control variables, such as areas under high-yielding varieties (HYVA), total 

fertiliser consumption (FERT) and agricultural credit from banks (CRD), are also modelled. 

Although the variables are in different units, they are taken in logarithmic values to estimate 

the log-linear model from Eq. (2) for better analysis of results. The coefficients can be directly 

interpreted as elasticity values. 
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3.3  P-ARDL model specification 

To term a P-ARDL model, we must first determine the optimal lag length. This has been done 

using the Schwarz information criterion (SIC), which indicates one lag as the optimum lag for 

use in the P-ARDL model, which estimates both long-term and short-term relationships 

between variables5. Moreover, the dynamic heterogeneous P-ARDL model developed by 

Pesaran and Shin (1998) and Pesaran et al. (1999) can be expressed within the (p,q) lag 

approach. The period t=1, 2…T and groups i=1, 2…N. It is expressed as: 

𝑦𝑖𝑡 = ∑ 𝛽𝑖𝑗

𝑝

𝑗=1

𝑦𝑖,𝑡−𝑗 + ∑ 𝛾𝑖𝑗

𝑞

𝑗=0

𝑥𝑖,𝑡−𝑗 + 𝜇𝑡 + 𝜀𝑖𝑡                                                                                  (3) 

where 𝑦𝑖𝑡 is the dependent variable (crop yields, cropping intensity and rate of land use), 𝑥𝑖𝑡 is 

(K×1) vector of explanatory variables. The parameter vector 𝛽𝑖𝑗 of the order (K×1) is the 

coefficient vector of the lagged dependent variable, 𝛾𝑖𝑗 is the vector of coefficients of all 

explanatory variables to be estimated, 𝜇𝑡 is a unit-specific fixed effect and 𝜀𝑡 is an error term. 

Both p and q are optimal lag orders. 

If the variables in Eq. (3) are I(1) and cointegrated, formerly, the error term is an I(0) for all i. 

A salient feature of cointegrated variables is that they respond to any deviation in the long-term 

equilibrium relationship. This means that the deviation from the long-term equilibrium 

captured by the error correction model (ECM) reveals the short-term dynamics of the variables. 

Hence, the short-term relationship between the study variables, the error correction model 

(ECM), is estimated based on the framework of (p, q) as: 

 
5 This estimation can be conducted using STATA, EVIEWS, or any suitable statistical software for time series 

or panel data analysis. For this study, we employed EVIEWS 13. The underlying code used in the analysis is 

available from the corresponding author upon reasonable request. 
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∆𝑦𝑖𝑡 = ∑ 𝛽∗
𝑖𝑗

𝑝−1

𝑗=1

𝑦𝑖,𝑡−𝑗 + ∑ 𝛾∗
𝑖𝑗

𝑞−1

𝑗=0

∆𝑥𝑖,𝑡−𝑗 + 𝜑𝑖 (𝑦𝑖,𝑡−1 − 𝛾′
𝑖𝑗

𝑥𝑖,𝑡) + 𝜇𝑖 + 𝜀𝑖𝑡                           (4) 

where 𝜑𝑖 = −(1 − ∑ 𝛽𝑖𝑗
𝑝
𝑗=1 ); 𝛽𝑖 = ∑ 𝛾𝑖𝑗

𝑞
𝑗=1 /(1 − ∑ 𝛽𝑖𝑘𝑘 ); 𝛽∗

𝑖𝑗
= − ∑ 𝛽𝑖𝑚

𝑝
𝑚=𝐽+1  ; j = 1, 2, 

…p-1 and 𝛾∗
𝑖𝑗

= − ∑ 𝛾𝑖𝑚
𝑞
𝑚=𝐽+1 ;  j=1, 2, 3…q-1. In the above Eq. (4), 𝜑𝑖 is the ECM 

coefficient for each unit, and its value indicates the adjustment rate to the long-term 

equilibrium. The term should be negative and significant. If 𝜑𝑖 = 0, then we don’t have a long-

term relationship. Pesaran, Shin and Smith (1999) developed a pooled mean group (PMG) 

estimator that combines mean and pooling residuals, and this test incorporates the intercept, 

short-term coefficients and different error variances across the groups. However, based on this 

test, long-term coefficients are assumed to be equal across the groups, like fixed effect 

estimators. This P-ARDL model can be applied when variables are of the order I (0), I (1) or a 

mix of both. A flowchart showing related data diagnosis is presented in Figure 2. All 

estimations, including the P-ARDL model and diagnostic tests6, were carried out using 

EVIEWS-13 software. 

Figure 2. Flowchart illustrating data diagnosis 

 

 

 

 

 

 

 
6 In the case of omitted variable bias or endogeneity problem, the P-ARDL model has advantage as it takes care 

of endogeneity by selecting the optimal time lag in the model estimation. The problem of serial correlation, 

normality and heteroscadasticity can be performed in diagnostic tests. 
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Source: Authors’ illustration. Note: P-ARDL specification is excluded. 

4 Results and discussion 

4.1 Results of descriptive statistics 

Table 1 reports the descriptive statistics of the study variables7. The results indicate that among 

the cereal crops, rice yield has the highest mean value (1580.30 kg/ha) and the standard 

deviation (589.85), followed by wheat and maize yields (1393.79 kg/ha and 1376.35 kg/ha), 

and wheat yield has the lowest standard deviation (521.79). The pulse crop yield indicates that 

horse gram yield has a higher mean value of (317.35 kg/ha) than green gram yield (297.08 

kg/ha) and black gram yield (290.69 kg/ha), but horse gram has a lower standard deviation 

(99.10) than other pulse productions. Among the oilseeds, groundnut has a higher mean value 

(1145 kg/ha) and standard deviation (411.85) than rapeseed and sesamum seeds. The skewness 

values of all crops’ productions are negative, except for maize and rapeseed, and kurtosis values 

are positive, indicating negatively skewed crop production. Similarly, the crop yield statistics 

indicate that the mean value of rice, wheat, maize and groundnut yields are positive and other 

crop yields are negative. The standard deviation of maize yield is the highest (802.86 kg/ha), 

followed by rice yield, whereas the least standard deviation is found in horse gram (99.10). 

Among the weather variables, rainfall has higher mean and standard deviation values (153.15 

mm and 2.10mm) than temperatures. The mean values of fertiliser consumption and agriculture 

 
7 The definition of study variables with their units of measurement are shown in Table A1. 

P-VEC residual diagnostic tests: Serial correlation LM 

tests, Normality tests, Heteroscedasticity tests 
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land use are (320.83kg/ha and 0.26). The mean values of cropping intensity and its standard 

deviation values are positive. The skewness and kurtosis values are also positive and very high.  

Table 1. Variables tags and descriptive statistics 

Variables Mean Std. Dev. Skewness Kurtosis Jarque-Bera Probability 

Rice yield (RICEY) 1580.30 589.85 0.37 3.15 13.02 0.00 

Wheat yield (WHEATY) 1393.79 521.79 0.15 8.18 606.32 0.00 

Maize yield (MAIZEY) 1376.35 802.86 2.95 20.12 7376.99 0.00 

Horse gram yield (HGRAMY) 317.80 99.10 0.86 6.49 339.92 0.00 

Green gram yield (MONGY) 297.08 114.94 1.03 5.23 207.45 0.00 

Urad yield (URADY) 290.69 109.84 0.97 4.99 174.19 0.00 

Groundnut yield (GNUTY) 1145.17 411.85 1.73 8.97 1069.40 0.00 

Rapeseed yield (RPSEEDY) 832.24 144.51 3.17 37.92 6486.00 0.00 

Sesamum yield (SESAY) 255.92 105.98 0.64 3.49 41.95 0.00 

Credit (CR.) 2.03 0.53 -0.24 2.48 11.04 0.00 

Fertiliser consumption (FERT) 320.83 268.14 20.24 43.73 4615.00 0.00 

Rainfall deviation (RAIN_DEV) 153.15 2.10 0.88 10.89 1414.87 0.00 

Maximum temperature (MAX_T) 35.25 0.03 -0.05 2.58 3.92 0.14 

Minimum temperature (MIN_T) 23.00 0.05 -0.43 3.89 33.34 0.00 

Cropping intensity (CROPINT) 2.32 2.73 3.77 19.14 6879.20 0.00 

Rate of agr. Land use (ALU) 0.26 0.39 0.52 5.18 126.44 0.00 

Crop diversification (CEI) 0.21 0.11 0.29 2.19 21.77 0.00 

Source: Authors’ calculation. Note: Initial data is parenthesis. 

The cross-correlations between study-selected crop yields and other variables are reported in 

Table A2, which indicates that all crop yields are positively influenced by their production, 

fertiliser consumption, agricultural credit and agricultural land use. Among the weather 

variables, rainfall positively correlates with crop yields, whereas the temperature correlation 

varies among crops. The maximum temperature negatively correlates with the crop yields, 

except for the wheat yield. On the other hand, the minimum temperature8 positively correlates 

with crop yields except for wheat and rapeseed crops. The cropping intensity is positively 

correlated with rice, wheat, maize and groundnut, and it is harmful to other crop yields. The 

 
8 The minimum temperature is the minimum annual average temperature. In Odisha, for that matter in India, this 

minimum temperature 23 °C is absolutely normal during monsoon season. The max goes to 40-42 °C here during 

summer and around 30-35 °C during most of time in a year. 
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Jarque-Beara test statistics and their respective probability values indicate that except for the 

Max_T variable, all variables are significant at a 1% significance level, which means the study 

variables are normally distributed.    

4.2 Results of the unit-root test and VAR lag selection 

Before applying the P-ARDL model, it is necessary to test the stationarity condition of 

variables by using unit-root tests, which will determine the reliability of the subsequent model 

to determine whether variables are I(0) or I(1) or a mixed order of both, but should not be I(2). 

The stationarity of all variables is checked using Im et al. (2003), and Levin et al. (2002), and 

the results are reported in Table A3. Table A3 reveals that the crop production and yields are 

stationary at their level values except for wheat yield, maize, horse gram and sesamum yields, 

and all of them are stationary at their first difference. 

Other variables like fertiliser consumption, agricultural credit, weather variables like rainfall 

deviation and temperatures, crop diversification, cropping intensity and rate of agricultural land 

use are stationary at their level. We find a mixed order of stationarity of variables from the 

estimated unit-root test results, which suggests the suitability of the P-ARDL model. The 

estimation of the P-ARDL model needs an appropriate lag length. The lag selection criteria 

decide the optimum lag length in model estimation. Table A4 reports the results of the optimum 

lag selection criteria, where the SIC suggests that one is the optimum lag, the least lag among 

all other criteria. We use one lag, as indicated by the SIC.  

4.3 Crop yield response to weather variation 

Table 2 reports both the long-term relationship between the study variables and the error 

correction results for the short-term relations between the variables. From the long-term 

equation, it is found that agricultural credit significantly and positively influences all crop 

yields, which means if agricultural credit increases by 1%, rice yield will increase by 0.04%, 
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wheat yield by 0.13%, horse gram yield by 0.08%, green gram (moong) yield by 0.19%, black 

gram yield by 0.16%, groundnut yield by 0.08%, rapeseed yield by 0.11% and sesamum seed 

by 0.09%. Similarly, weather variables, such as rainfall deviation and temperatures, have mixed 

effects on crop yields. If rainfall deviation (both excess or deficit) increases by 1%, yields of 

wheat decrease by 0.16%, maize by 0.46%, green gram by 0.48%, black gram by 0.06%, 

rapeseed by 0.28% and sesamum seed by 0.35%, but the yield of horse gram increases by 

0.15%. Rainfall deviation has no significant impact on the yields of rice and groundnut. This 

is because rice is a water-guzzling crop, and any positive or negative deviation in rainfall affects 

its yield the least unless there is a large variation. Odisha agriculture is highly dominated by 

rice, and farmers mostly grow modern varieties that are either drought- or flood-resistant, 

depending on the state’s agro-weather zone. Similarly, a 1oC increase in maximum temperature 

significantly increases rice yield by 1.28%, maize by 0.66% and sesamum by 0.90%. 

 

 

 

 



 

 

Table 2. Results of P-ARDL model 

 Rice Wheat Maize Horse gram Moong Urad Groundnut Rapeseed Sesa 

Long term Elasticities 

HYVA 0.87*** 0.08*** 0.11*** 0.12*** 0.22*** 0.15*** -0.03* 0.05*** 0.03*** 

  (0.02) (0.01) (0.03) (0.02) (0.03) (0.02) (0.02) (0.01) (0.01) 

FERT -0.07** -0.06* 0.16*** 0.15*** 0.07 -0.14*** 0.14** -0.12*** 0.04 

  (0.04) (0.03) (0.04) (0.03) (0.06) (0.03) (0.05) (0.02) (0.04) 

CRD 0.04*** 0.13*** 0.01 0.08*** 0.19*** 0.16*** 0.08*** 0.11*** 0.09*** 

  (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.001) (0.01) 

RAIN_DEV -0.05 -0.16*** -0.46*** 0.15*** -0.48*** -0.06* 0.06 -0.28*** -0.35*** 

  (0.04) (0.05) (0.09) (0.05) (0.10) (0.03) (0.05) (0.03) (0.04) 

MAX_T 1.48*** -0.48* 0.66** -0.49** 0.40 -1.54*** -1.83** -0.78** 0.90** 

  (0.40) (0.27) (0.34) (0.23) (0.53) (0.18) (0.40) (0.30) (0.37) 

MIN_T 0.94*** -0.89*** -0.08 0.17 -0.67*** 0.61*** 0.15 -0.87*** -0.48*** 

  (0.15) (0.15) (0.16) (0.12) (0.22) (0.04) (0.11) (0.17) (0.14) 

Short term Elasticities 

ECM(-1) -0.69*** -0.80*** -0.33*** -0.60*** -0.46*** -0.35*** -0.46*** -0.46*** -0.71*** 

  (0.09) (0.08) (0.06) (0.08) (0.05) (0.05) (0.07) (0.10) (0.14) 

∆ (HYVA) 0.11 0.02 0.17*** 0.23*** 0.15*** 0.27*** 0.15*** 0.20*** 0.16*** 

  (0.09) (0.02) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03) 

∆(FERT) -0.04 -0.11* 0.15 0.04 0.05 0.05 0.11 -0.03 0.01 

  (0.08) (0.06) (0.11) (0.08) (0.06) (0.06) (0.09) (0.08) (0.13) 

∆(CR.) -0.02 -0.04 -0.08 -0.03 0.001 -0.09** -0.03 -0.08 -0.05 

  (0.06) (0.06) (0.05) (0.06) (0.03) (0.04) (0.03) (0.05) (0.06) 

∆(RAIN_DEV) 0.14 0.25*** 0.07 -0.04 0.18*** 0.14*** 0.15*** 0.11 0.18* 

  (0.07) (0.07) (0.09) (0.06) (0.06) (0.06) (0.05) (0.06) (0.11) 

∆(MAX_T) -0.67*** -0.17*** -0.94 0.5 -1.20*** -2.63*** 0.86 0.02 0.81 

  (0.09) (1.27) (1.01) (0.37) (0.60) (0.74) (0.83) (0.83) (0.84) 

∆(MIN_T) 0.01 0.09 0.3 0.69* -0.28 -0.54 0.41 1.01* -0.31 

  (0.90) (0.47) (0.73) (0.40) (0.46) (0.51) (0.62) (0.59) (0.72) 

Const. -5.31*** 1.62 0.27*** -0.30*** 0.21*** 0.07*** 1.27*** 0.91 -0.26*** 

  (0.73) (0.16) (0.05) (0.03) (0.03) (0.01) (0.20) (0.20) (0.05) 

Source: Authors’ calculation. Note: *** P < 0.01%, ** P< 0.05% and * P < 0.10. The coefficients of lagged values of yields are not reported. Standard errors in parenthesis. 



 

 

On the other hand, a 1oC increase in maximum temperature leads to a decrease in the yields of 

wheat by 0.48%, horse gram by 0.49%, black gram by 1.54%, groundnut by 1.83% and 

rapeseed by 0.78%; there is no significant impact on the green gram yield. The minimum 

temperature increase negatively affects wheat, green gram, rapeseed and sesamum yields but 

positively impacts rice and black gram yields. Except for agricultural credit and weather 

factors, other variables, such as the area under high-yield-variety seeds and fertiliser 

consumption, significantly affect crop yields. It is found that the HYVA coefficients are 

significant and positive except for groundnut, which means if the area under high-yield-variety 

crops increases by 1%, the yield of rice increases by 0.87%, wheat by 0.08%, maize by 0.11%, 

moong by 0.22%, black gram by 0.15%, rapeseed by 0.05% and sesamum seed by 0.03%. In 

contrast, groundnut yield decreases by 0.03%. Similarly, suppose fertiliser consumption 

increases by 1%. In that case, crop yields decrease, such as rice yield decreasing by 0.07%, 

wheat yield decreasing by 0.06%, black gram yield decreasing by 0.14% and rapeseed yield 

decreasing by 12%.  

The results of the short-term equation (Eq. 4) show that the ECM coefficients are significantly 

negative in all crop yields, indicating a need for short-term adjustment for a long-term 

equilibrium relationship between the study variables. The coefficient of agricultural credit is 

significantly negative only on the black gram yield, whereas there is no significant effect in all 

other crop yield models. The rainfall deviation significantly positively impacts green gram, 

black gram, groundnut, wheat and sesamum yields. Since these are mostly pulses and oilseeds 

grown in rain-fed areas, they consume less water. So, any negative deviation may not harm 

their yield to a great extent. However, any positive deviation may positively affect their yield 

because it offers the required amount of moisture rather than creating a flood-like situation. 

These crops are grown when the monsoon period is over. So, the positive deviation over the 

normal trend helps the crops rather than creating a flood-like situation and reaps better yields 
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of these dry-area crops. The maximum temperature significantly negatively impacts rice, 

wheat, green gram (moong) and black gram yields. 

Similarly, the minimum temperature significantly and positively affects the horse gram and 

rapeseed yield, but it has no significant effect on all other crops. Fertiliser consumption is 

significantly negative only in wheat yield. The high-yielding-variety coefficients are significant 

and positive for almost all crops, which indicates that if the area under high-yielding varieties 

increases in the short term by 1%, the yields of maize, horse gram, moong, black gram, 

groundnut, rapeseed and sesamum seed rise.   

4.4 Land use response to weather variation 

Table 3 reports the P-ARDL results of the impact of weather factors and other control variables 

on land use patterns and intensity. Since we have used three variables representing the rate, 

pattern and intensity of land use, i.e., rate of land use (ALU), crop diversification (CEI) and 

cropping intensity (CROPINT), we present the results separately. Here, we also have both long-

term and short-term dynamics. We offer the long-term results first and then the short-term 

effects. 

We observed that rainfall deviation significantly harms cropping intensity. More specifically, 

its elasticity coefficient indicates an additional 1% increase in rainfall deviation, reducing the 

cropping intensity by 0.16%. It hampers both the gross cropped area and the net sown area. 

However, it affects the gross cropped area more than the net sown area, reducing the cropping 

intensity. This is because rainfall deviation, either upward or downward, creates a flood- or 

drought-like situation affecting farming practices and ultimately decreasing the gross cropped 

area. 
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Table 3. Results for Land Use Response Model, P-ARDL, Odisha, India 

 CROPINT ALU CEI 

Long term elasticities    

FERT 
0.08*** 

(0.02) 

0.53*** 

(0.08) 

0.07 

(0.06) 

CRED 
0.02*** 

(0.01) 

0.19*** 

(0.02) 

0.19** 

(0.06) 

RAIN_DEV 
-0.16*** 

(0.03) 

-0.20* 

(0.11) 

0.11** 

(0.05) 

MAX_T 
-0.68*** 

(0.16) 

-1.36** 

(0.68) 

0.29*** 

(0.01) 

MIN_T 
-0.01 

(0.07) 

-1.06*** 

(0.29) 

0.58 

(0.61) 

Short term elasticities 

ECM (-1) 
-0.52*** 

(0.05) 

-0.66*** 

(0.08) 

-61*** 

(0.06) 

∆(CROINT (-1)) 
-0.338 *** 

(0.044) 
  

∆(ALU (-1))  
-0.449*** 

(0.042) 
 

∆(CEI (-1))   
-0.584*** 

(0.049) 

∆(FERT) 
0.01 

(0.02) 

0.16 

(0.12) 

0.21* 

(0.12) 

∆(CRD) 
0.03* 

(0.01) 

-0.05 

(0.08) 

0.02 

(0.05) 

∆(RAIN_DEV) 
-0.01 

(0.01) 

-0.15 

(0.11) 

0.88*** 

(0.12) 

∆(MAX_T) 
-0.14 

(0.23) 

-2.96* 

(1.59) 

1.12* 

(0.56) 

∆(MIN_T) 
-0.20* 

(0.10) 

-0.28 

(1.36) 

-0.56 

(0.41) 

Const. 
1.53 

(0.14) 

-2.28*** 

(0.26) 

1.47** 

(0.65) 

Source: Authors’ calculation. Note: *** P < 0.01%, ** P < 0.05% and * P < 0.10. Variables are naturally log-

transformed. In case of rainfall deviation, the absolute value is taken for log transformation. Standard errors in 

parenthesis. 

 

On the other hand, the net sown area is somewhat determined by the irrigation potential being 

used. So, it reduces the numerator of the ratio more than the denominator, reducing the cropping 

intensity. Sometimes, delays in the arrival of monsoons also adversely affect soil preparation 

and sowing/planting of seedlings. This also harms farming by reducing the gross cropped area. 

Naturally, a delayed monsoon will have more deviations in precipitation by disturbing its 

spatiotemporal distribution. Our result aligns with other studies in African countries, such as 

those of Duku et al. (2018).  
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Similarly, as the negative elasticity coefficient of maximum temperature suggests, a 1% 

increase in maximum temperature (MAX_T) may reduce the cropping intensity (CROPINT) 

by 0.68% over the long term. A plausible explanation is that a rise in temperature reduces the 

yields of certain crops, discouraging the allotment of land to those crops (Birthal and Hazrana, 

2019). Similarly, Zampieri et al. (2018) argued that excess temperatures and heatwaves affect 

crop yield more than drought and rainfall deviation in arid and semi-arid tropical zones. Our 

results are consistent with Birthal et al. (2021).  

Similarly, looking into the long-term impact of weather factors on crop diversification (CEI) 

and rate of land use (ALU), we observe that most weather factors significantly induce crop 

diversification but harm the rate of land use in the long term. In fact, the elasticity coefficient 

of rainfall deviation concerning crop diversification shows that an additional 1% deviation in 

rainfall induces 0.11% more crop diversification. This is because farmers adopt diversification 

as an ex-ante coping mechanism to counter the production shock due to weather variations 

(Gouraram et al., 2022). A diversified crop portfolio helps farmers increase the resilience of 

their farm production system and considerably lower their exposure and vulnerability to the 

harmful effects of changing environmental conditions (Basantaray et al., 2022). Even in rain-

fed agriculture, vertical diversification9 is adopted as an effective risk management strategy 

(Prasada, 2020). 

Similarly, maximum temperature also positively influences crop diversification. Higher 

temperatures reduce soil moisture and cause dryness. So, farmers shift the cropping pattern 

toward pulses, which require less water and little moisture in the soil (Zampieri et al., 2018). 

The elasticity coefficient is 0.29, implying that an additional increase in average temperature 

by 1oC can induce crop diversification by 29% during the Monsoon season on a long-term 

 
9 Refers to the combination of multiple cropping and industrialization. Farmers invest in horticulture, agroforestry, 

livestock raising, the cultivation of fragrant herbs and more, as part of this type of diversification. 
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basis. Moniruzzaman (2019) found similar evidence in neighbouring Bangladesh. The author 

simulated that increased temperature increased crop diversification over the baseline scenario 

of temperature and rainfall during the rainy and summer seasons.  

However, rainfall deviation (RAIN_DEV) and temperature (both MAX_T and MIN_T) 

adversely affect the rate of land use (ALU) in the long term. As observed from the elasticity 

coefficient, an additional 1% increase in deviation reduces the rate of agricultural use of land 

by 0.20%. Rainfall deviations harm the intensity of land use and thereby affect farm production. 

As stressed above, any deviation from the normal level affects soil preparation and the intensive 

use of land for cultivation. Similarly, if the average temperatures (MAX_T and MIN_T) 

increase by 1oC, agricultural use of land decreases by 1.36% and 1.06%, respectively, which 

indicates that deviations from normal temperature levels have a severe adverse impact on the 

rate of agricultural use of land.  

Along with weather factors, we observed that over the long term, fertiliser consumption and 

agricultural credit affect cropping intensity, crop diversification and rate of agricultural land 

use. This is because easy and smooth access to credit facilitates the investment in necessary 

inputs, such as seeds and other equipment, and helps prepare the soil in advance. So, this 

positively impacts cropping intensity and crop diversification, leading to a rise in land use. 

Regarding the short-term results, we observed that all forms of land use are negatively affected 

by their lagged values, which is counterintuitive as per the rational expectation theory. 

Observing the weather factors, we find that rainfall deviation does not significantly affect 

cropping intensity and rate of land use in the short term, though the coefficients are intuitively 

negative. However, rainfall deviation does induce a substantially higher degree of 

diversification. The elasticity coefficient indicates that a 1% rise in rainfall deviation brings 
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0.88% more crop diversification. This may be attributed to the fact that a greater deviation 

(either positive or negative) has immediate implications for crops.  

A positive deviation leads to the submergence of crops, while a shortfall of rainfall from the 

normal level creates a drought-like situation, leading to crop failure. In both cases, it induces 

more diversification as an immediate strategy in the short term to counter the crop loss caused 

by weather variation. Many empirical studies argue that greater agro-biodiversity contributes 

to increased crop yield and reduced production risk (Di Falco and Veronesi, 2014). Even 

farmers adopt crop diversification as an ex-ante measure to cope with weather-induced income 

shocks (Moniruzzaman, 2019). So, rainfall deviation has a positive impact on crop 

diversification. The minimum temperature significantly affects the rate of agricultural land use 

and crop diversification, while its elasticity coefficient in the case of cropping intensity is 

statistically insignificant. However, the maximum temperature adversely affects the rate of 

agricultural land use, while its impact on crop diversification is positive. Among other 

variables, we observed that credit access significantly impacts cropping intensity in the short 

term, while fertiliser consumption significantly induces a higher degree of crop diversification. 

Both elasticity coefficients are statistically significant only at a 10% probability level. 

4.5 Diagnostic checks 

The P-ARDL model results are diagnosed using the Wald diagnostic test. This has the null 

hypothesis that the covariate’s coefficient is equal to zero. The Wald coefficient diagnostic test 

results of crop yields and land use patterns are reported in Tables A5 and A6, which indicate 

that the estimated F-statistic values are highly significant, meaning that the variables are 

significant to the model fit. We used different model residual diagnostic tests, such as the serial 

correlation LM test, normality tests, and heteroscedasticity test, to check the model’s 

diagnostic. Table A7 presents the results of model residual diagnostic tests. All the test results 
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indicate that all null hypotheses of all tests are statistically significant at a 1% level. That means 

there is a rejection of the null hypothesis concerning land use variables in all three models, 

which means the models are free from serial correlation and heteroscedasticity and are 

normally distributed. 

5 Conclusions 

The novelty of this study lies in considering, first, the heterogeneous impact of weather 

variables such as rainfall deviation and temperature, which vary among crops under study, 

similar to the evidence found by Guntukula and Goyari (2020). Second, rainfall deviation 

harms the rate and intensity of land use over both the long and short terms, but rainfall deviation 

induces more crop diversification. So, weather variations may distort the rate and intensity of 

land use, but the change in land use patterns is favourable. 

The study findings have significant implications for food security and the long-term viability 

of the industrial system. Because almost all crop yields have been negatively damaged, 

predictions for food security and the sustainability of food production appear bleak. However, 

based on the findings, we make policy recommendations to reduce the impact of weather 

variations on agricultural production in the study area. Adaptive policies, strategies and 

weather financing must be implemented. Because temperatures and the timing and amount of 

necessary rainfall have changed and are expected to vary in the study region, farmers must 

adopt new crop types and greater diversification techniques to combat weather hazards. By 

highlighting dynamic effects, this study provides a more nuanced understanding of weather-

induced changes in land-use intensity; the policy suggestions hover around land management 

and efficient use of resources. This implies developing and initiating widespread adoption of 

modern stress-tolerant cultivars resilient to various weather-induced stresses and making an 

optimal crop choice—crop diversification strategies. Such adoption should be followed by 
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acreage allocation, considering the expected weather shocks. To help farmers, the government 

could invest in research and development activities to develop crop varieties resilient to 

extreme weather shocks.  

Policymakers could provide funding for renovating the extension network to disseminate early 

weather warnings, thus helping sustain the optimal acreage allocation and intensity of land use. 

Crop diversification is an effective ex-ante coping mechanism to counter the harms induced by 

weather variation. However, government policy has not been conducive to a diversified 

production system since we somehow promote a monoculture of certain crops that the Green 

Revolution initiated. Odisha agriculture used to be diversified indigenously. But after the Green 

Revolution of the 1960s, rice has become the staple crop grown here at the expense of pulses. 

Though some recent concerted efforts have been made to promote crop diversification and 

return to indigenous cropping patterns, they have not been widely promoted. The “Millet 

Mission” is one such effort by the government of Odisha, but we need more such schemes that 

encourage diversification. We, too, found that weather variations would induce more 

diversification ex-post, but adopting diversification as an ex-ante strategy will be more 

effective. Agriculture in Odisha was traditionally characterised by a highly diversified cropping 

pattern. However, following the 1960s, it became increasingly concentrated around rice 

cultivation. A return to diversified farming systems is proposed, encouraging the cultivation of 

millets, pulses, and other traditional crops to restore balance and resilience in the agricultural 

landscape. In addition, smallholders must be covered by crop insurance and hedging as part of 

the formal modern weather risk-mitigating mechanism. The paper’s emphasis on dynamic 

effects provides a critical contribution to the field, paving the way for future studies to explore 

these dimensions further. 

Despite the robustness of the empirical strategy and the authenticity of the data sources, this 

study has certain limitations. The analysis is confined to 30 districts in Odisha, which may limit 
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the generalisability of the findings to other Indian states or agro-climatic zones. While all 

variables were sourced from the ENVIS Centre of Odisha’s State of Environment—an 

authoritative platform supported by the Ministry of Environment, Forest and Climate 

Change—certain critical variables such as irrigation infrastructure, mechanisation, and 

technological adoption were not included. These factors can influence crop yield, cropping 

intensity, and land use, and their omission may lead to potential biases. Moreover, the weather 

variables used—rainfall deviation and average temperature—do not capture the full spectrum 

of extreme events, intra-seasonal variability, or asymmetric effects of droughts and floods. 

Additionally, while the panel ARDL framework accommodates dynamic relationships, 

concerns related to endogeneity and omitted variables, such as input prices or market access, 

remain. The focus on major crops also excludes the vulnerability of minor crops and allied 

sectors, while the lack of socio-economic disaggregation restricts the insights for targeted 

policy interventions. 

These limitations offer avenues for future research. Subsequent studies could incorporate more 

granular weather data, such as temperature thresholds, rainfall timing, or extreme weather 

indices, alongside farm-level primary data to better capture farmer behaviour and adaptation 

responses. Expanding the spatial scope to include other states with similar agro-ecological 

characteristics would enhance the external validity of the results. Furthermore, integrating 

irrigation access, mechanisation levels, crop insurance coverage, and institutional support 

would provide a more comprehensive understanding of the drivers of land use decisions and 

crop productivity under climate stress. The proposed model could also be assessed for its 

effectiveness in medium-term out-of-sample forecasting using approaches such as the Auto-

Regressive Integrated Moving Average with exogenous variables (ARIMAX) model (Kozicka 

et al., 2018; Mantziaris et al., 2024) offering insights into yield responses under future weather 

variability, which would be of interest to both policymakers and potential investors. Future 
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research could also explore gender- and caste-based vulnerability to weather shocks, assess the 

role of policy instruments such as PM-KISAN or the Millet Mission, and apply structural 

models or simulations to evaluate the effectiveness of proposed adaptation strategies. Taken 

together, the integrated approach provides valuable insights that can inform future agricultural 

adaptation strategies in weather-sensitive regions, thereby enriching the empirical base for 

designing climate-resilient agricultural policies. 
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Appendix 

Table A1. Description of study variables 

Variables Definitions Hypothetical sign 

Dependent variable  

YLD Crop yield (kg/hectare)  

CI Cropping intensity is defined as the ratio of gross cropped area to net sown area (Index)  

CEI Crop diversification is measured by the composite entropy index  

ALU Rate of agricultural land use is defined as the ratio of land used for agriculture to non-agricultural use (Index)  

Independent variables  

FERT Total fertiliser consumption (kg/ha) + 

HYVA Area under HYV or modern variety seeds (000’ acres) + 

CRD Agricultural credit from banks (Rs. billion) + 

RAIN_DEV Standardised deviation of average rainfall during the Kharif season (millimetres) from its historical normal value +/- 

MAX_T Average maximum temperature during Kharif season (Celsius) - 

MIN_T Average minimum temperature during Kharif season (Celsius) - 

Source: Authors’ annotation. Note: Complied from ENVIS Centre of Odisha’s State of Environment, Odisha Agriculture Statistics (various issues) and other sources. 

 

 

 



 

42 

 

 

 

Table A2. Relationship between crops and key variables 

 Cereals Pulses Oilseeds 

 Rice Wheat Maize Horse gram Moong Urad Groundnut Rapeseeds Sesamum 

HYVA 0.52 0.40 0.22 0.03 0.22 0.32 0.33 0.51 0.08 

FERT 0.22 0.02 0.26 0.25 0.40 0.34 0.00 0.30 0.14 

CRD 0.27 0.23 0.49 0.37 0.53 0.47 0.30 0.34 0.35 

RAIN_DEV 0.26 0.01 0.02 0.12 0.08 0.13 0.12 0.09 0.06 

MAX_T -0.05 0.00 -0.08 -0.05 -0.06 -0.04 -0.02 -0.05 -0.22 

MIN_T 0.01 -0.06 0.05 0.01 0.01 0.07 0.18 -0.12 0.09 

CROPINT 0.11 0.03 0.03 -0.19 -0.05 -0.14 0.06 -0.15 -0.31 

AL 0.45 0.07 0.18 0.24 0.29 0.30 0.38 0.12 0.25 

Source: Authors’ estimation.  
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Table A3. Results of unit root test of study variables 

   

Levin, Lin & Chu t* Im, Pesaran and Shin W-stat 

Intercept Intercept with Trend Intercept Intercept with Trend 

Level 
1st 

Difference 
Level 1st   Difference Level 1st difference Level 1st   Difference 

RiceY -7.84*** - -6.49*** - -6.65*** - -5.12*** - 

RiceP -6.36*** - -1.86** - -7.97*** - -5.76*** - 

WheatY -1.09 -8.40*** -2.30** - -3.87*** - -5.13*** - 

WheatP -3.91*** - -4.31*** - -3.76*** - -3.26*** - 

MaizeY -2.46** - -1.74** - -1.31 -13.75** -3.02*** - 

MaizeP -1.28 -11.38*** -1.05 -8.99*** -2.66*** - -1.66* - 

HgramY -6.43*** - -6.46*** - -6.04*** - -7.21*** - 

HgramP 0.55 -8.64*** -4.01*** - 0.3 -13.71** -3.42*** - 

MoongY -3.66*** - -8.17*** - -1.18 -18.08** -6.41*** - 

MoongP -5.54*** - -3.12*** - -6.69*** - -3.87*** - 

UradY -3.15*** - -4.57*** - -2.43*** - -5.17*** - 

UradP -4.36*** - -4.49*** - -4.46*** - -4.71*** - 

GnutY -5.14*** - -6.96*** - -3.46*** - -4.66*** - 

GnutP -5.14*** - -2.33** - -3.46*** - -0.92 -10.14*** 

RapeseedY -3.34*** - -5.96*** - -2.21** - -6.19*** - 

RpseedP -6.16*** - -7.27*** - -6.73*** - -7.38*** - 

SesaY -4.58*** - -6.67*** - -6.05*** - -7.23*** - 

SesaP 1.90 -5.98*** -0.97 -4.07*** 1.03 -11.81*** -0.96 -10.1*** 

FERT -5.38*** - -1.08 -1.93** -2.83*** - -1.55* - 

CR -5.95*** - -3.05***  -0.02 -8.68*** 0.82 -6.92*** 

RAIN_DEV -4.62*** - -1.67 2.25** -7.71*** - -5*** - 

MAX_T -8.53*** - -6.92*** - -6.96*** - -4.76*** - 

MIN_T -4.95*** - -3.46*** - -4.78*** - -1.86** - 

CROPINT -5.85*** - -2.98*** - -4.17*** - 0.29 -7.52*** 
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LN -9.55***  -10.90***  -5.84***  -6.87***  

Source: Authors’ estimation. Note: *, ** and *** denote 10%, 5% and 1% significance levels, respectively. 

 

Table A4. Wald test results of crop yields. 

 Rice Wheat Maize Horse-gram Green-gram Urad Groundnut Rapeseeds Sesamum 

F-stat 603.01*** 87.07*** 18.34*** 43.51*** 57.83*** 183.42*** 25.79*** 1130.29*** 1156.39*** 

Chi-sqr 4221.08*** 609.50*** 128.39*** 304.57*** 404.80*** 1283.94*** 180.50*** 7912.02*** 8094.75*** 

Null Hypothesis: C (1) = C (2) = C (3) = C (4) = C (5) = C (6) = C (7) = 0 

C (1) 0.87 0.08 0.11 0.12 0.22 0.15 -0.03 0.05 0.44 

  0.02 0.01 0.03 0.02 0.03 0.02 0.02 0.01 0.03 

C (2) -0.07 -0.06 0.16 0.15 0.07 -0.14 0.14 -0.12 -0.12 

  0.04 0.03 0.04 0.03 0.06 0.03 0.05 0.02 0.02 

C (3) -0.04 0.13 0.01 0.08 0.19 0.16 0.08 0.11 0.14 

  0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.01 

C (4) 0.30 0.10 0.07 0.03 -0.01 0.09 0.12 0.04 0.06 

  0.01 0.02 0.04 0.02 0.04 0.02 0.02 0.01 0.01 

C (5) -0.05 -0.16 -0.46 0.15 -0.48 -0.06 0.06 -0.28 -0.29 

  0.04 0.05 0.09 0.05 0.10 0.03 0.05 0.03 0.02 

C (6) 1.48 -0.48 0.66 -0.49 0.40 -1.54 -1.83 -0.78 0.48 

  0.40 0.27 0.34 0.23 0.53 0.18 0.40 0.30 0.17 

C (7) 0.94 -0.89 -0.08 0.17 -0.67 0.61 0.15 -0.87 0.10 

  0.15 0.15 0.16 0.12 0.22 0.04 0.11 0.17 0.05 

Source: Authors’ estimation. Note: *, **, and *** denote 10%, 5% and 1% significance levels, respectively. 
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Table A5. Wald test results of land use 

 CROPINT ALU CEI 

F-statistic 30.17*** 59.26 33.17*** 

Chi-square 150.83*** 296.28 165.83*** 

Null Hypothesis: C (1) = C (2) = C (3) = C (4) = C (5) = 0 

C (1) 0.08 0.53 0.09 
 0.02 0.08 0.01 

C (2) 0.02 0.19 0.04 
 0.01 0.02 0.01 

C (3) 0.16 0.20 0.12 
 0.03 0.11 0.03 

C (4) -0.68 1.36 -0.61 
 0.16 0.68 0.19 

C (5) -0.01 1.06 -0.02 
 0.07 0.29 0.09 

Source: Authors’ estimation. Note: *** denotes a 1% significance level. 

 

Table A6. P-VEC model residual diagnostic test 

 CROPINT ALU CEI 

Serial Correlation LM Tests (H0: no serial correlation at lag order h) 

Lag 1 164.39*** 155.64*** 112.67*** 

Lag 2  189.35*** 197.83*** 129.22*** 

Normality Tests (Orthogonalisation: Cholesky) 

Null hypothesis: residuals are multivariate normal 

Skewness (Chi-sq) 334.89*** 399.75*** 418.05*** 

Kurtosis (Chi-sq) 11744.56*** 15727.93*** 8789.53*** 

Jarque-Bera 12079.44*** 16127.68*** 9207.58*** 

Heteroskedasticity Tests: No Cross Terms 

Chi-square statistics 1075.67*** 1200.50*** 1492.41*** 
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Source: Authors’ estimation. Note: *** denotes a 1% significance level. 

 

 


