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Abstract. Weather variability disrupts food grain production and agricultural sus-
tainability. While existing literature highlights the stationary relationship between 
weather variables and agricultural outcomes, it often overlooks their bearing on land 
use changes. This study investigates the dynamic effects of weather variations on crop 
yields, land use and intensity in Odisha, Eastern India, using district-level data from 
2001-18. By employing a ‘panel auto-regressive distributive lag (P-ARDL) model, we 
assess long- and short-term relationships between weather parameters and agricultural 
yields. Results reveal a negative marginal impact of rainfall deviation on yield, rang-
ing from -0.16 for wheat to -0.48 for green gram in the long term. In the short term, 
however, the marginal impact is positive for some pulses (green gram, black gram) and 
oilseeds (groundnuts). Weather variability has adversely affected the intensity of land 
use but has induced crop diversification in both the short and long term. 

Keywords:	 climate change, crop yield response, land use intensity, panel ARDL mod-
el, Odisha, India.

JEL codes:	 C33, Q15, Q18, Q54.

1. INTRODUCTION

Over the last two decades, the issue of weather fluctuations and their 
impacts has been debated intensively among policymakers, scientists and 
academia globally. Evidence shows varying effects of long-term changes in 
weather patterns in various regions, with some areas severely affected and 
others observed to have had observable positive effects (Mohapatra et al., 
2023). The impact of weather variability differs across countries’ levels of 
development. It harms developing countries, whereas it carries possibly low 
to moderate impacts on developed countries, exacerbating the weather’s 
impact on inequality (Dudu and Çakmak, 2018; Asogwa et al., 2022; Xiang 
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et al., 2022). Yet, this pattern is not universal. Some 
developed nations have endured significant damage; 
for example, the catastrophic floods in Japan in 2018 
increased vulnerability, drove up healthcare costs and 
inflicted major losses in the manufacturing sector (Lin 
et al., 2020; Yamamoto and Naka, 2021; Yoshida et al., 
2023). Similarly, devastating floods in Germany in 2021 
and Spain in 2024 imposed substantial economic bur-
dens on their capitalist economies (Martin-Moreno et 
al., 2025). Agricultural competitiveness increases the 
temperature among countries. For example, agrar-
ian competition in developing countries has increased 
the temperature but declined in developed countries 
(Nugroho et al., 2023). 

In addition, weather variations have considerably 
impacted crop production, food availability and qual-
ity. The dynamic effects of weather shocks on agricul-
tural output in Peru show an adverse impact of weather 
shocks measured by excess heat or rainfall, which had a 
delayed negative impact on agricultural production, and 
its magnitude depends on various factors (Crofils et al., 
2025). The connectedness and variability effects trans-
mission between weather variables and agricultural pro-
ductivity in Morocco suggest that weather variability 
increases the spillover effects transmitted to agriculture 
(Belcaid and El Ghini, 2020). The dynamic impact of 
weather changes on vegetable price fluctuations in China 
observed that the specific vegetable price was affected by 
changes in particular weather factors, which were time-
varying (Yang et al., 2022).

However, in the case of developing countries like 
India, the consequence of weather variations is predict-
ed to be harmful, and the impact could be severe in the 
near future. Agricultural productivity will be reduced by 
4.5% with a 1°C increase in temperature in India, and 
it is predicted that the total factor productivity in agri-
culture will decline across all states by 2050 (Pattanayak 
et al., 2021). Several empirical studies have evidenced 
the deleterious impact of weather variations on farm 
production and productivity in India and some other 
countries (Arora, 2019; Xie et al., 2019; Chandio et al., 
2020; Seven and Tumen, 2020; Mohapatra et al., 2025). 
However, research on the issue of weather variations 
and their dynamic impact on land use patterns and land 
use intensity is scarce. Indeed, this problem has been 
ignored in the case of Indian agriculture1, specifically 
at the micro level in the agriculture of eastern India. In 
this paper, we thus attempt to answer the research ques-
tion of how weather variations influence crop yields and 
land use dynamics in eastern India.

1 Except a recent study by Birthal et al. (2021). 

At the micro level, weather fluctuations significantly 
affect the exposure and vulnerability of one ecosystem 
by altering the water supply and food production, dam-
aging infrastructure and causing morbidity and mortal-
ity, as noted by the Intergovernmental Panel on Climate 
Change (IPCC, 2014). All the outcomes have implications 
for land use. In the farm sector, the long-term changes 
in weather factors affect land use patterns and intensity 
through their impacts on crops’ comparative advantage: 
yields or profits (Birthal et al., 2021). Farmers decide 
their acreage allocation after carefully analysing their 
prospects for profit (yield) during the weather shock and 
their ability to cope with it. Again, in developing econo-
mies, institutional mechanisms for managing weather 
risks, such as crop insurance, soil management practices 
(soil health cards) and so on, are inadequate and inacces-
sible to resource-poor smallholders. Thus, fluctuations in 
rainfall, a rise in mean temperature and frequent weath-
er extremes severely threaten the food system and food 
security through changes in the pattern and intensity of 
land use (Opoku Mensah et al., 2023; Siotra and Kumari, 
2024). Our study bridges the research gap by empirically 
assessing the dynamic impact of weather variations on 
land use patterns and intensity, contributing to better 
micro-level risk management strategies.

Odisha is a major agriculture-intensive state on the 
eastern front of India. The farming sector contributes 
about 9% of the total rice production and 4.22% of the 
total food grain production of Indian agriculture (Barik, 
2023). The state’s economy and the livelihood of most of 
its people depend extensively on agriculture and allied 
activities. The agriculture sector contributes about 20.6% 
of gross value added to Odisha’s economy and supports 
about half of the state’s total employment, as reported by 
the Government of Odisha (GOO, 2022). However, being 
a poor agricultural state on India’s east coast, with about 
30% of the population below the poverty line, the state 
is highly vulnerable to weather shocks (Rout, 2021). This 
case resonates with much of India and the surrounding 
South and Southeast Asian economies.

Furthermore, Odisha’s location (extending from 
17.31-22.31N latitude and 81.31-87.29E longitude) in 
the tropical zone makes it susceptible to high tempera-
tures and humidity fluctuations. For instance, in recent 
decades, Odisha has frequently faced weather extremes, 
such as droughts, floods, storms, tropical cyclones and 
more (Srinivasa Rao et al., 2016). A limited number of 
studies in the literature have evaluated the impact of 
weather variations on the farm production and produc-
tivity of Odisha agriculture (Hoda et al., 2021; Senapati, 
2022). However, the effects of weather variations on land 
use are yet to be examined. Hence, the paper discusses 
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the dynamic effects of weather variations on crop yields, 
land use and intensity in eastern India, setting it apart 
from traditional studies that primarily focus on the 
impact of climate on yields. The study uses the panel 
auto-regressive distributed lag (P-ARDL) method using 
district-level data2 for 2001-2018, with 540 total obser-
vations. Land use is the ratio of land used for agricul-
ture to non-agricultural uses. Finally, variables like crop 
diversification represent land use patterns, and crop-
ping intensity represents land use intensity. The results 
underscore the significance of dynamic effects, revealing 
patterns and insights that static analyses would miss.

This study makes several significant contributions 
to the literature. First, it enhances our understanding 
of how land use patterns and intensity respond to long-
term changes in precipitation and temperature, which 
is crucial for improving crop yields, productivity, food 
security and livelihood strategies in India and other 
developing and emerging economies. Second, the find-
ings can assist policymakers in formulating incentives 
to encourage future adaptation strategies in response 
to increasing weather risks. Third, the study employs 
both short-term and long-term assessments, providing 
a sophisticated methodological approach. This helps in 
designing appropriate coping mechanisms to address 
the adverse impacts of weather variability and limited 
land. Finally, the findings are applicable to various other 
states in India, including West Bengal, Bihar, Assam and 
Andhra Pradesh, which share similar agro-weather zones 
and agricultural practices.

The rest of the paper is organised as follows: Section 
2 reviews the literature, providing the background and 
context for the study; Section 3 describes the data sourc-
es and methodology used in the research, detailing the 
analytical techniques employed; Section 4 discusses the 
study’s findings, interpreting the results and their impli-
cations; Section 5 concludes the paper, summarising the 
key insights and suggesting policy implications based on 
the findings.

2. BRIEF LITERATURE 

The impact of weather variations is assessed by the 
effects of weather factors, like precipitation and tempera-
ture, on crop yields, and the magnitude of these effects is 
contingent upon the degree of change in these variables. 

2 Districts serve as the primary administrative units within Indian states. 
India has approximately 766 districts, each with an average popula-
tion of around 1.86 million. The state of Odisha comprises 30 districts. 
Accordingly, our dataset includes a total of 540 observations spanning 
an 18-year period.

Over the years, climate variability has influenced crop 
production in high-yield and high-technology agricultur-
al areas, particularly in agriculturally based economies in 
developing countries (Lemi and Hailu, 2019). The impact 
of climate change on crop yields was different across 
crops in Thailand. Climate change negatively affected 
longan yield, whereas it positively affected maize and had 
no significant effect on rice yield. There was no effect of 
rainfall on crop yields (Kyaw et al., 2023). Crop yields are 
highly sensitive to temperature globally, whereas their 
extent varies in continents (Liu et al., 2020).

Furthermore, the combination of reduced precipita-
tion and elevated temperatures has the potential to result 
in an escalation of global food prices. To mitigate this 
issue, farmers must use adaptive strategies to withstand 
the impacts of weather variations (Tuihedur Rahman et 
al., 2018). Studies found that compared with rainfall defi-
cit, excess temperature negatively affects agricultural pro-
ductivity more (Taraz, 2018; Zampieri et al., 2018). Tes-
faye and Tirivayi (2020) noted a maximum temperature 
increase in the pre-monsoon period (i.e., April-June). Pat-
tanayak and Kumar (2021) have estimated that agricultur-
al productivity has reduced by 4.5% with a 1°C increase in 
temperature in India. In addition, they predicted the total 
factor productivity in agriculture would decline across all 
states by 2050. Moulkar and Peddi (2023) state that the 
effects of weather variables on crop yield vary in seasons 
and across crops. Generally, the monsoon and winter crop 
yields are more sensitive to temperature (minimum and 
maximum) and rainfall. Vogel et al. (2019) found that var-
iation in crop yield is associated with temperature-related 
extremes. Climate change has threatened agricultural 
production in food-insecure regions of Asian countries 
(Habib-ur-Rahman et al., 2022). 

In India, the growing threat of climate change – 
manifested through rising greenhouse gas emissions, 
erratic weather patterns, and increasing temperature 
anomalies – poses serious challenges to agricultural sus-
tainability. The IPCC (2007) has underscored the long-
term risks of continued fossil fuel reliance, projecting 
a global temperature rise of up to 6.4°C and a sea level 
increase of 59 cm by the century’s end if current trends 
persist. Empirical evidence demonstrates a strong nexus 
between economic growth, energy use, and emissions: 
a 1% increase in fossil fuel consumption and GDP can 
raise CO₂ emissions by 0.67% and 0.61%, respectively, 
while a corresponding rise in renewable energy use and 
agricultural productivity reduces emissions by 3.65% 
and 0.41% (Raihan and Tuspekova, 2022). Both long-run 
and short-run relationships exist between agricultural 
production, economic growth, and CO₂ emissions (Ali et 
al., 2019). Greenhouse gas emissions tend to rise with the 
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intensification of agriculture and allied activities but can 
be mitigated through increased forest cover (Ahmed et 
al., 2025). In the Indian context, agricultural expansion 
and intensification are also linked to rising emissions. 
A study from Bangladesh shows that a 1% increase in 
agricultural land, crop output, and allied activities con-
tribute to emissions growth of 0.25%, 0.29%, and 0.40%, 
respectively (Raihan et al., 2023). Since Bangladesh is 
nearer to Odisha and other states in Eastern India, the 
results are more relevant to the present study context.

 The implications of this growth–energy–agricul-
ture–climate nexus are particularly acute in India’s agrar-
ian economy, where rainfall-dependent farming remains 
dominant. Weather variability – particularly deviations 
in rainfall and evapotranspiration – has directly under-
mined crop yields, including key staples and pulses such 
as groundnut and chickpea. Despite being one of the 
most climate-sensitive sectors, agriculture continues to 
receive limited policy and investment attention (Belford 
et al., 2022). Climate-induced weather extremes, includ-
ing droughts and heatwaves, disrupt food production, 
inflate prices, and depress consumption, ultimately wors-
ening household welfare, especially among smallholders 
and marginal farmers (Alvi et al., 2021). In Sweden, such 
extremes cause major yield losses (Sjulgård et al., 2023). 
In India, rainfall and evapotranspiration negatively affect 
groundnut and chickpea yields.

Methodologically, studies assessing the agricultural 
impacts of climate variability in India employ two domi-
nant approaches: general equilibrium and partial equilib-
rium models. While general equilibrium models offer sys-
tem-wide analysis, their application is limited in develop-
ing contexts due to data and specification issues (Deressa, 
2007). The partial equilibrium framework – particularly 
econometric models such as the Ricardian approach and 
crop simulation models – is more prevalent. The Ricard-
ian model, grounded in Ricardo’s (1817) theory of land 
rents and later adapted by Mendelsohn et al. (1994), esti-
mates the net impact of climate variables on farmland 
values or productivity. It remains a widely used tool for 
assessing the welfare effects of climate change, though 
its application in India often requires careful calibration 
to account for heterogeneity in climate zones, cropping 
systems, and socio-economic conditions (Paltasingh and 
Goyari, 2015; Hashida and Lewis, 2022).

To address these challenges, India must adopt inte-
grated climate adaptation strategies. These include edu-
cating farmers on climate risks, promoting diversified 
and resilient cropping patterns, strengthening agricul-
tural markets, and improving access to weather forecasts 
and financial safety nets. As Tripathi and Mishra (2017) 
argue, effective adaptation requires locally contextual-

ised measures grounded in an understanding of regional 
weather variability and its interaction with socio-eco-
nomic drivers. 

While existing literature predominantly address-
es the climate impact on yields, this paper uniquely 
explores the dynamic effects of weather variation on 
crop yields, land utilisation patterns and intensity in 
eastern India. This study employs a P-ARDL model on 
micro-level data, a methodological innovation compared 
to previous studies. The chosen methodology allows 
for an in-depth analysis of dynamic effects, provid-
ing insights that static models fail to capture. First, the 
P-ARDL model is particularly well-suited for datasets 
where variables exhibit a mixed order of integration, 
i.e., a combination of the I(0) and I(1) series (Pesaran 
and Shin, 1998). This flexibility aligns with the nature 
of our data, as confirmed by the panel unit root tests. 
In contrast, dynamic panel data models (e.g., Arellano-
Bond GMM) and panel cointegration techniques often 
require all series to be integrated in the same order, typi-
cally I(1), which was not the case in our study. Second, 
the P-ARDL framework allows for variable-specific lag 
structures, enabling us to more accurately capture the 
dynamic relationships among variables with differing 
temporal responses. Conversely, models such as dynamic 
fixed effects or traditional panel cointegration models 
generally impose uniform lag lengths across variables, 
which may lead to model misspecification when applied 
to heterogeneous datasets like ours. Third, the P-ARDL 
model provides a clear and tractable single-equation 
framework that simultaneously estimates both short-run 
dynamics and long-run equilibrium relationships (Pesa-
ran et al., 1999). This dual capability simplifies interpre-
tation and policy relevance. In contrast, cointegration-
based models (e.g., Pedroni, Kao, Westerlund tests) and 
system-based approaches often involve more complex 
estimations, with increased computational burden and 
interpretation challenges, especially in applied settings. 
Last, P-ARDL is well-suited for panels with a moderate 
time dimension and limited cross-sections, such as ours 
(T = 18 years; N = 30 districts), and performs robustly in 
small samples. In contrast, GMM-based dynamic panel 
data models can suffer from finite-sample bias and over-
identification problems, especially when the number of 
instruments exceeds the number of cross-sectional units.

3. MATERIALS AND METHODS

3.1 Data sources and variable construction

The study uses data from 30 districts of Odisha 
(see Figure 1) from 2001 to 2018 from various second-
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ary sources such as the Department of Agriculture and 
Farmers’ Empowerment (Odisha Agriculture Statistics 
2001-18), ENVIS Centre of Odisha’s State of Environ-
ment and the Crop Production Statistics Information 
System (CPSIS). 

This study uses specific data on the area, produc-
tion and yield of nine major crops – rice, wheat, maize, 
horse gram, green gram, black gram, groundnut, rape-
seed and sesamum – these crops are among the major 
seasonal crops produced in Odisha, India3. Furthermore, 
the study uses other control variables, such as fertiliser 
consumption and agricultural credit, along with a group 
of weather factors, such as rainfall and maximum and 
minimum temperatures. We use the rainfall deviation 
from the normal rainfall ( ) instead of rainfall itself. 
The expression is standardised as , where  

  is the standard deviation of rainfall (see Table 1 for 
variable description). 

3 Cereals: Rice and wheat – the two primary food grains, forming the 
staple diet and occupying the largest share of cultivated land. Pulses: 
Green gram, black gram, and horse gram – important protein sources, 
particularly in rainfed and marginal areas. These legumes also contrib-
ute to soil nitrogen fixation and improve cropping system sustainability. 
Oilseeds: Groundnut, rapeseed, and sesamum – key oil-producing crops 
suited to Odisha’s agro-climatic conditions, cultivated for edible oil and 
as cash crops.

Data on weather factors related to the Monsoon 
cropping season are collected from secondary sources, 
comprising different phenological stages of crop growth, 
such as sowing and growing. The crop yield of all major 
crops is taken as the dependent variable in different crop 
yield response models. The study uses three definitions 
of agricultural land use patterns: (1) cropping intensity, 
(2) crop diversification, and (3) ratio of land use to non-
farm land use pattern. Cropping intensity is the ratio 
of gross cropped area to net sown area as 
, where GCA is the gross cropped area, and NSA is the 
net sown area in Odisha’s agriculture, which measures 
how intensively the land is used for farming purposes. 

The second definition is crop diversification. Crop 
diversification is a measure that indicates the degree of 
diverse patterns of land use in a farming system. Usu-
ally, farmers adopt crop diversification as a traditional 
strategy to minimise weather risks. This helps stabilise 
farm income volatility and augments income levels (Bas-
antaray et al., 2022). It also helps retain and revive soil 
health. Several diversification measures are available in 
the literature, but we use the Composite Entropy Index4, 
def ined as:  where CEI has two components: distribution and num-
ber of crops (N) or diversity. Here  is the share of  th 
crop in total operational landholding. 

The value of the CEI increases with the rise in the 
number of crops and decreases in concentration. The 
value of CEI ranges between zero and one, indicating no 
diversification to perfect diversification. The third vari-
able that captures the land use rate is the rate of agri-
cultural use of land, which is defined again as the ratio 
of total cultivable (000’ ha) land under agricultural use 
to non-agricultural use and is formally expressed as 

 where ALU stands for the rate of agricul-
tural use of land,  is the total land under agricultural 
use, and LNAt is the total land under non-agricultural 
use. This measure gives us a broad idea of how the cul-
tivable landmass is used for farming purposes and the 
trend over time. All these variables are gathered annu-
ally, and the total observations are 540. All variables and 
their definitions are described in Table A1. 

3.2 Empirical estimation methods

To prepare for the panel ARDL estimation, we first 
conduct descriptive statistics and correlation analysis 

4 This CEI, a modified version of Shannon-Weaver index, rectifies its 
drawbacks and assesses both richness and evenness which makes it 
possible to compare crop diversity across different places (Tesfaye and 
Tirivayi, 2020). So, it is an improved measure of diversification.

Figure 1. The shaded area within the map of India indicates the 
study region, Odisha. Source: Authors’ illustration. Note: The map 
delineates the state borders.
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to examine the central tendencies, dispersion, and pair-
wise relationships among the study variables – namely, 
crop yield, land use, rainfall deviation, and temperature 
variation. To assess the stationarity of these variables, we 
apply panel unit root tests, including the Levin-Lin-Chu 
(LLC) test (Levin et al., 2002) and the Im-Pesaran-Shin 
(IPS) test (Im et al., 2003), both of which are extensions 
of the augmented Dickey-Fuller (ADF) test and assume 
cross-sectional independence. The P-ARDL model is 
suitable when the panel data series are either I(0), I(1), 
or a combination of both, but not I(2). If any variable is 
found to be integrated with order two (I(2)), we exclude 
it from the estimation to maintain model validity. The 
panel ADF unit-root test estimates the following model:

� (1)

where in Eq. (1),  is the random process of one vari-
able, the period t = 1, 2…, T  and  i = 1, 2,…,N repre-
sents the cross-sectional units/groups. If the unit-root 
test results show that the variables are stationary, either 
in I(0) or I(1) or mixed order of integration, then the 
P-ARDL model is applied to explore the impact of 
weather variations and other factors on crop yields, rate, 
pattern and intensity of land use. Otherwise, in the case 
of non-stationary or stationary in different order, either 
I(1) or I(2), the Todo-Yamato causality test and vector 
error-correction (VEC) model are appropriate to meas-
ure the effects. We estimated the following baseline 
model using panel ARDL to carry out our objective as 
we get mixed stationarity conditions of variables:

�(2)

The dependent variable  is estimated for all 
nine major crops and three different forms of land use. 
The other control variables, such as areas under high-
yielding varieties (HYVA), total fertiliser consumption 
(FERT) and agricultural credit from banks (CRD), are 
also modelled. Although the variables are in different 
units, they are taken in logarithmic values to estimate 
the log-linear model from Eq. (2) for better analysis of 
results. The coefficients can be directly interpreted as 
elasticity values.

3.3 P-ARDL model specification

To term a P-ARDL model, we must first determine 
the optimal lag length. This has been done using the 
Schwarz information criterion (SIC), which indicates one 
lag as the optimum lag for use in the P-ARDL model, 
which estimates both long-term and short-term relation-

ships between variables5. Moreover, the dynamic hetero-
geneous P-ARDL model developed by Pesaran and Shin 
(1998) and Pesaran et al. (1999) can be expressed within 
the (p,q) lag approach. The period t=1, 2…T and groups 
i=1, 2…N. It is expressed as:

� (3)

where  is the dependent variable (crop yields, crop-
ping intensity and rate of land use),  is (K×1) vector 
of explanatory variables. The parameter vector  of 
the order (K×1) is the coefficient vector of the lagged 
dependent variable,  is the vector of coefficients of all 
explanatory variables to be estimated,  is a unit-specif-
ic fixed effect and  is an error term. Both p and q are 
optimal lag orders.

If the variables in Eq. (3) are I(1) and cointegrated, 
formerly, the error term is an I(0) for all i. A salient fea-
ture of cointegrated variables is that they respond to any 
deviation in the long-term equilibrium relationship. This 
means that the deviation from the long-term equilibrium 
captured by the error correction model (ECM) reveals 
the short-term dynamics of the variables. Hence, the 
short-term relationship between the study variables, the 
error correction model (ECM), is estimated based on the 
framework of (p, q) as:

�(4)

where

;

;

; j = 1, 2, …p-1 and 

;  j=1, 2, 3…q-1.
In the above Eq. (4),  is the ECM coefficient for 

each unit, and its value indicates the adjustment rate to 
the long-term equilibrium. The term should be negative 
and significant. If  then we don’t have a long-term 
relationship. Pesaran, Shin and Smith (1999) developed 
a pooled mean group (PMG) estimator that combines 
mean and pooling residuals, and this test incorporates 
the intercept, short-term coefficients and different error 
variances across the groups. However, based on this test, 

5 This estimation can be conducted using STATA, EVIEWS, or any suit-
able statistical software for time series or panel data analysis. For this 
study, we employed EVIEWS 13. The underlying code used in the 
analysis is available from the corresponding author upon reasonable 
request.
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long-term coefficients are assumed to be equal across the 
groups, like fixed effect estimators. This P-ARDL model 
can be applied when variables are of the order I (0), I (1) 
or a mix of both. A flowchart showing related data diag-
nosis is presented in Figure 2. All estimations, including 
the P-ARDL model and diagnostic tests6, were carried 
out using EVIEWS-13 software.

4. RESULTS AND DISCUSSION

4.1 Results of descriptive statistics

Table 1 reports the descriptive statistics of the study 
variables7. The results indicate that among the cereal 
crops, rice yield has the highest mean value (1580.30 
kg/ha) and the standard deviation (589.85), followed by 
wheat and maize yields (1393.79 kg/ha and 1376.35 kg/
ha), and wheat yield has the lowest standard deviation 
(521.79). The pulse crop yield indicates that horse gram 
yield has a higher mean value of (317.35 kg/ha) than 

6 In the case of omitted variable bias or endogeneity problem, the 
P-ARDL model has advantage as it takes care of endogeneity by select-
ing the optimal time lag in the model estimation. The problem of serial 
correlation, normality and heteroscadasticity can be performed in diag-
nostic tests.
7 The definition of study variables with their units of measurement are 
shown in Table A1.

green gram yield (297.08 kg/ha) and black gram yield 
(290.69 kg/ha), but horse gram has a lower standard 
deviation (99.10) than other pulse productions. Among 
the oilseeds, groundnut has a higher mean value (1145 
kg/ha) and standard deviation (411.85) than rapeseed 
and sesamum seeds. The skewness values of all crops’ 
productions are negative, except for maize and rapeseed, 
and kurtosis values are positive, indicating negatively 
skewed crop production. Similarly, the crop yield statis-
tics indicate that the mean value of rice, wheat, maize 
and groundnut yields are positive and other crop yields 
are negative. The standard deviation of maize yield is 
the highest (802.86 kg/ha), followed by rice yield, where-
as the least standard deviation is found in horse gram 
(99.10). Among the weather variables, rainfall has high-
er mean and standard deviation values (153.15 mm and 
2.10mm) than temperatures. The mean values of fertilis-
er consumption and agriculture land use are (320.83kg/
ha and 0.26). The mean values of cropping intensity and 
its standard deviation values are positive. The skewness 
and kurtosis values are also positive and very high. 

The cross-correlations between study-selected crop 
yields and other variables are reported in Table A2, which 
indicates that all crop yields are positively influenced by 
their production, fertiliser consumption, agricultural 
credit and agricultural land use. Among the weather 
variables, rainfall positively correlates with crop yields, 
whereas the temperature correlation varies among crops. 

Figure 2. Flowchart illustrating data diagnosis. Source: Authors’ illustration. Note: P-ARDL specification is excluded.
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The maximum temperature negatively correlates with the 
crop yields, except for the wheat yield. On the other hand, 
the minimum temperature8 positively correlates with crop 
yields except for wheat and rapeseed crops. The cropping 
intensity is positively correlated with rice, wheat, maize 
and groundnut, and it is harmful to other crop yields. The 
Jarque-Beara test statistics and their respective probabil-
ity values indicate that except for the Max_T variable, all 
variables are significant at a 1% significance level, which 
means the study variables are normally distributed.   

4.2 Results of the unit-root test and VAR lag selection

Before applying the P-ARDL model, it is necessary to 
test the stationarity condition of variables by using unit-
root tests, which will determine the reliability of the sub-
sequent model to determine whether variables are I(0) 
or I(1) or a mixed order of both, but should not be I(2). 
The stationarity of all variables is checked using Im et al. 
(2003), and Levin et al. (2002), and the results are report-
ed in Table A3. Table A3 reveals that the crop production 
and yields are stationary at their level values except for 
wheat yield, maize, horse gram and sesamum yields, and 
all of them are stationary at their first difference.

8 The minimum temperature is the minimum annual average temperature. 
In Odisha, for that matter in India, this minimum temperature 23 °C is 
absolutely normal during monsoon season. The max goes to 40-42 °C here 
during summer and around 30-35 °C during most of time in a year.

Other variables like fertiliser consumption, agricul-
tural credit, weather variables like rainfall deviation and 
temperatures, crop diversification, cropping intensity 
and rate of agricultural land use are stationary at their 
level. We find a mixed order of stationarity of variables 
from the estimated unit-root test results, which suggests 
the suitability of the P-ARDL model. The estimation 
of the P-ARDL model needs an appropriate lag length. 
The lag selection criteria decide the optimum lag length 
in model estimation. Table A4 reports the results of the 
optimum lag selection criteria, where the SIC suggests 
that one is the optimum lag, the least lag among all oth-
er criteria. We use one lag, as indicated by the SIC. 

4.3 Crop yield response to weather variation

Table 2 reports both the long-term relationship 
between the study variables and the error correction 
results for the short-term relations between the vari-
ables. From the long-term equation, it is found that agri-
cultural credit significantly and positively influences all 
crop yields, which means if agricultural credit increases 
by 1%, rice yield will increase by 0.04%, wheat yield by 
0.13%, horse gram yield by 0.08%, green gram (moong) 
yield by 0.19%, black gram yield by 0.16%, groundnut 
yield by 0.08%, rapeseed yield by 0.11% and sesamum 
seed by 0.09%. Similarly, weather variables, such as 
rainfall deviation and temperatures, have mixed effects 
on crop yields. If rainfall deviation (both excess or defi-

Table 1. Variables tags and descriptive statistics

Variables Mean Std. Dev. Skewness Kurtosis Jarque-Bera Probability

Rice yield (RICEY) 1580.30 589.85 0.37 3.15 13.02 0.00
Wheat yield (WHEATY) 1393.79 521.79 0.15 8.18 606.32 0.00
Maize yield (MAIZEY) 1376.35 802.86 2.95 20.12 7376.99 0.00
Horse gram yield (HGRAMY) 317.80 99.10 0.86 6.49 339.92 0.00
Green gram yield (MONGY) 297.08 114.94 1.03 5.23 207.45 0.00
Urad yield (URADY) 290.69 109.84 0.97 4.99 174.19 0.00
Groundnut yield (GNUTY) 1145.17 411.85 1.73 8.97 1069.40 0.00
Rapeseed yield (RPSEEDY) 832.24 144.51 3.17 37.92 6486.00 0.00
Sesamum yield (SESAY) 255.92 105.98 0.64 3.49 41.95 0.00
Credit (CR.) 2.03 0.53 -0.24 2.48 11.04 0.00
Fertiliser consumption (FERT) 320.83 268.14 20.24 43.73 4615.00 0.00
Rainfall deviation (RAIN_DEV) 153.15 2.10 0.88 10.89 1414.87 0.00
Maximum temperature (MAX_T) 35.25 0.03 -0.05 2.58 3.92 0.14
Minimum temperature (MIN_T) 23.00 0.05 -0.43 3.89 33.34 0.00
Cropping intensity (CROPINT) 2.32 2.73 3.77 19.14 6879.20 0.00
Rate of agr. Land use (ALU) 0.26 0.39 0.52 5.18 126.44 0.00
Crop diversification (CEI) 0.21 0.11 0.29 2.19 21.77 0.00

Source: Authors’ calculation. Note: Initial data is parenthesis.
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cit) increases by 1%, yields of wheat decrease by 0.16%, 
maize by 0.46%, green gram by 0.48%, black gram by 
0.06%, rapeseed by 0.28% and sesamum seed by 0.35%, 
but the yield of horse gram increases by 0.15%. Rainfall 
deviation has no significant impact on the yields of rice 
and groundnut. This is because rice is a water-guzzling 
crop, and any positive or negative deviation in rainfall 
affects its yield the least unless there is a large varia-
tion. Odisha agriculture is highly dominated by rice, and 
farmers mostly grow modern varieties that are either 
drought- or f lood-resistant, depending on the state’s 
agro-weather zone. Similarly, a 1oC increase in maxi-
mum temperature significantly increases rice yield by 
1.28%, maize by 0.66% and sesamum by 0.90%.

On the other hand, a 1oC increase in maximum 
temperature leads to a decrease in the yields of wheat 

by 0.48%, horse gram by 0.49%, black gram by 1.54%, 
groundnut by 1.83% and rapeseed by 0.78%; there is no 
significant impact on the green gram yield. The mini-
mum temperature increase negatively affects wheat, 
green gram, rapeseed and sesamum yields but positively 
impacts rice and black gram yields. Except for agricul-
tural credit and weather factors, other variables, such 
as the area under high-yield-variety seeds and fertiliser 
consumption, significantly affect crop yields. It is found 
that the HYVA coefficients are significant and positive 
except for groundnut, which means if the area under 
high-yield-variety crops increases by 1%, the yield of rice 
increases by 0.87%, wheat by 0.08%, maize by 0.11%, 
moong by 0.22%, black gram by 0.15%, rapeseed by 
0.05% and sesamum seed by 0.03%. In contrast, ground-
nut yield decreases by 0.03%. Similarly, suppose fertiliser 

Table 2. Results of P-ARDL model

Rice Wheat Maize Horse gram Moong Urad Groundnut Rapeseed Sesa

Long term Elasticities
HYVA 0.87*** 0.08*** 0.11*** 0.12*** 0.22*** 0.15*** -0.03* 0.05*** 0.03***
 (0.02) (0.01) (0.03) (0.02) (0.03) (0.02) (0.02) (0.01) (0.01)
FERT -0.07** -0.06* 0.16*** 0.15*** 0.07 -0.14*** 0.14** -0.12*** 0.04
 (0.04) (0.03) (0.04) (0.03) (0.06) (0.03) (0.05) (0.02) (0.04)
CRD 0.04*** 0.13*** 0.01 0.08*** 0.19*** 0.16*** 0.08*** 0.11*** 0.09***
 (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.01) (0.001) (0.01)
RAIN_DEV -0.05 -0.16*** -0.46*** 0.15*** -0.48*** -0.06* 0.06 -0.28*** -0.35***
 (0.04) (0.05) (0.09) (0.05) (0.10) (0.03) (0.05) (0.03) (0.04)
MAX_T 1.48*** -0.48* 0.66** -0.49** 0.40 -1.54*** -1.83** -0.78** 0.90**
 (0.40) (0.27) (0.34) (0.23) (0.53) (0.18) (0.40) (0.30) (0.37)
MIN_T 0.94*** -0.89*** -0.08 0.17 -0.67*** 0.61*** 0.15 -0.87*** -0.48***
 (0.15) (0.15) (0.16) (0.12) (0.22) (0.04) (0.11) (0.17) (0.14)

Short term Elasticities
ECM(-1) -0.69*** -0.80*** -0.33*** -0.60*** -0.46*** -0.35*** -0.46*** -0.46*** -0.71***
 (0.09) (0.08) (0.06) (0.08) (0.05) (0.05) (0.07) (0.10) (0.14)
∆ (HYVA) 0.11 0.02 0.17*** 0.23*** 0.15*** 0.27*** 0.15*** 0.20*** 0.16***
 (0.09) (0.02) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03) (0.03)
∆(FERT) -0.04 -0.11* 0.15 0.04 0.05 0.05 0.11 -0.03 0.01
 (0.08) (0.06) (0.11) (0.08) (0.06) (0.06) (0.09) (0.08) (0.13)
∆(CR.) -0.02 -0.04 -0.08 -0.03 0.001 -0.09** -0.03 -0.08 -0.05
 (0.06) (0.06) (0.05) (0.06) (0.03) (0.04) (0.03) (0.05) (0.06)
∆(RAIN_DEV) 0.14 0.25*** 0.07 -0.04 0.18*** 0.14*** 0.15*** 0.11 0.18*
 (0.07) (0.07) (0.09) (0.06) (0.06) (0.06) (0.05) (0.06) (0.11)
∆(MAX_T) -0.67*** -0.17*** -0.94 0.5 -1.20*** -2.63*** 0.86 0.02 0.81
 (0.09) (1.27) (1.01) (0.37) (0.60) (0.74) (0.83) (0.83) (0.84)
∆(MIN_T) 0.01 0.09 0.3 0.69* -0.28 -0.54 0.41 1.01* -0.31
 (0.90) (0.47) (0.73) (0.40) (0.46) (0.51) (0.62) (0.59) (0.72)
Const. -5.31*** 1.62 0.27*** -0.30*** 0.21*** 0.07*** 1.27*** 0.91 -0.26***
 (0.73) (0.16) (0.05) (0.03) (0.03) (0.01) (0.20) (0.20) (0.05)

Source: Authors’ calculation. Note: *** P < 0.01%, ** P< 0.05% and * P < 0.10. The coefficients of lagged values of yields are not reported. 
Standard errors in parenthesis.
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consumption increases by 1%. In that case, crop yields 
decrease, such as rice yield decreasing by 0.07%, wheat 
yield decreasing by 0.06%, black gram yield decreasing 
by 0.14% and rapeseed yield decreasing by 12%. 

The results of the short-term equation (Eq. 4) show 
that the ECM coefficients are significantly negative in 
all crop yields, indicating a need for short-term adjust-
ment for a long-term equilibrium relationship between 
the study variables. The coefficient of agricultural credit 
is significantly negative only on the black gram yield, 
whereas there is no significant effect in all other crop 
yield models. The rainfall deviation significantly posi-
tively impacts green gram, black gram, groundnut, wheat 
and sesamum yields. Since these are mostly pulses and 
oilseeds grown in rain-fed areas, they consume less water. 
So, any negative deviation may not harm their yield 
to a great extent. However, any positive deviation may 
positively affect their yield because it offers the required 
amount of moisture rather than creating a flood-like situ-
ation. These crops are grown when the monsoon period 
is over. So, the positive deviation over the normal trend 
helps the crops rather than creating a flood-like situation 
and reaps better yields of these dry-area crops. The maxi-
mum temperature significantly negatively impacts rice, 
wheat, green gram (moong) and black gram yields.

Similarly, the minimum temperature significantly 
and positively affects the horse gram and rapeseed yield, 
but it has no significant effect on all other crops. Fertiliser 
consumption is significantly negative only in wheat yield. 
The high-yielding-variety coefficients are significant and 
positive for almost all crops, which indicates that if the 
area under high-yielding varieties increases in the short 
term by 1%, the yields of maize, horse gram, moong, black 
gram, groundnut, rapeseed and sesamum seed rise.  

4.4 Land use response to weather variation

Table 3 reports the P-ARDL results of the impact of 
weather factors and other control variables on land use 
patterns and intensity. Since we have used three vari-
ables representing the rate, pattern and intensity of land 
use, i.e., rate of land use (ALU), crop diversification 
(CEI) and cropping intensity (CROPINT), we present 
the results separately. Here, we also have both long-term 
and short-term dynamics. We offer the long-term results 
first and then the short-term effects.

We observed that rainfall deviation significantly 
harms cropping intensity. More specifically, its elasticity 
coefficient indicates an additional 1% increase in rainfall 
deviation, reducing the cropping intensity by 0.16%. It 
hampers both the gross cropped area and the net sown 
area. However, it affects the gross cropped area more 

than the net sown area, reducing the cropping inten-
sity. This is because rainfall deviation, either upward 
or downward, creates a flood- or drought-like situation 
affecting farming practices and ultimately decreasing the 
gross cropped area.

On the other hand, the net sown area is somewhat 
determined by the irrigation potential being used. So, 
it reduces the numerator of the ratio more than the 
denominator, reducing the cropping intensity. Some-
times, delays in the arrival of monsoons also adversely 
affect soil preparation and sowing/planting of seedlings. 
This also harms farming by reducing the gross cropped 
area. Naturally, a delayed monsoon will have more devi-

Table 3. Results for Land Use Response Model, P-ARDL, Odisha, 
India

CROPINT ALU CEI

Long term elasticities

FERT 0.08***
(0.02)

0.53***
(0.08)

0.07
(0.06)

CRED 0.02***
(0.01)

0.19***
(0.02)

0.19**
(0.06)

RAIN_DEV -0.16***
(0.03)

-0.20*
(0.11)

0.11**
(0.05)

MAX_T -0.68***
(0.16)

-1.36**
(0.68)

0.29***
(0.01)

MIN_T -0.01
(0.07)

-1.06***
(0.29)

0.58
(0.61)

Short term elasticities

ECM (-1) -0.52***
(0.05)

-0.66***
(0.08)

-61***
(0.06)

∆(CROINT 
(-1))

-0.338 ***
(0.044)

∆(ALU (-1)) -0.449***
(0.042)

∆(CEI (-1)) -0.584***
(0.049)

∆(FERT) 0.01
(0.02)

0.16
(0.12)

0.21*
(0.12)

∆(CRD) 0.03*
(0.01)

-0.05
(0.08)

0.02
(0.05)

∆(RAIN_DEV) -0.01
(0.01)

-0.15
(0.11)

0.88***
(0.12)

∆(MAX_T) -0.14
(0.23)

-2.96*
(1.59)

1.12*
(0.56)

∆(MIN_T) -0.20*
(0.10)

-0.28
(1.36)

-0.56
(0.41)

Const. 1.53
(0.14)

-2.28***
(0.26)

1.47**
(0.65)

Source: Authors’ calculation. Note: *** P < 0.01%, ** P < 0.05% and 
* P < 0.10. Variables are naturally log-transformed. In case of rain-
fall deviation, the absolute value is taken for log transformation. 
Standard errors in parenthesis.
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ations in precipitation by disturbing its spatiotemporal 
distribution. Our result aligns with other studies in Afri-
can countries, such as those of Duku et al. (2018). 

Similarly, as the negative elasticity coefficient of max-
imum temperature suggests, a 1% increase in maximum 
temperature (MAX_T) may reduce the cropping inten-
sity (CROPINT) by 0.68% over the long term. A plausi-
ble explanation is that a rise in temperature reduces the 
yields of certain crops, discouraging the allotment of 
land to those crops (Birthal and Hazrana, 2019). Similar-
ly, Zampieri et al. (2018) argued that excess temperatures 
and heatwaves affect crop yield more than drought and 
rainfall deviation in arid and semi-arid tropical zones. 
Our results are consistent with Birthal et al. (2021). 

Similarly, looking into the long-term impact of 
weather factors on crop diversification (CEI) and rate of 
land use (ALU), we observe that most weather factors sig-
nificantly induce crop diversification but harm the rate 
of land use in the long term. In fact, the elasticity coeffi-
cient of rainfall deviation concerning crop diversification 
shows that an additional 1% deviation in rainfall induces 
0.11% more crop diversification. This is because farmers 
adopt diversification as an ex-ante coping mechanism to 
counter the production shock due to weather variations 
(Gouraram et al., 2022). A diversified crop portfolio helps 
farmers increase the resilience of their farm production 
system and considerably lower their exposure and vul-
nerability to the harmful effects of changing environ-
mental conditions (Basantaray et al., 2022). Even in rain-
fed agriculture, vertical diversification9 is adopted as an 
effective risk management strategy (Prasada, 2020).

Similarly, maximum temperature also positively 
inf luences crop diversification. Higher temperatures 
reduce soil moisture and cause dryness. So, farmers 
shift the cropping pattern toward pulses, which require 
less water and little moisture in the soil (Zampieri et al., 
2018). The elasticity coefficient is 0.29, implying that an 
additional increase in average temperature by 1oC can 
induce crop diversification by 29% during the Mon-
soon season on a long-term basis. Moniruzzaman (2019) 
found similar evidence in neighbouring Bangladesh. The 
author simulated that increased temperature increased 
crop diversification over the baseline scenario of temper-
ature and rainfall during the rainy and summer seasons. 

However, rainfall deviation (RAIN_DEV) and tem-
perature (both MAX_T and MIN_T) adversely affect 
the rate of land use (ALU) in the long term. As observed 
from the elasticity coefficient, an additional 1% increase 
in deviation reduces the rate of agricultural use of land by 

9 Refers to the combination of multiple cropping and industrialization. 
Farmers invest in horticulture, agroforestry, livestock raising, the culti-
vation of fragrant herbs and more, as part of this type of diversification.

0.20%. Rainfall deviations harm the intensity of land use 
and thereby affect farm production. As stressed above, any 
deviation from the normal level affects soil preparation 
and the intensive use of land for cultivation. Similarly, if 
the average temperatures (MAX_T and MIN_T) increase 
by 1oC, agricultural use of land decreases by 1.36% and 
1.06%, respectively, which indicates that deviations from 
normal temperature levels have a severe adverse impact 
on the rate of agricultural use of land. 

Along with weather factors, we observed that over 
the long term, fertiliser consumption and agricultural 
credit affect cropping intensity, crop diversification and 
rate of agricultural land use. This is because easy and 
smooth access to credit facilitates the investment in 
necessary inputs, such as seeds and other equipment, 
and helps prepare the soil in advance. So, this positively 
impacts cropping intensity and crop diversification, lead-
ing to a rise in land use.

Regarding the short-term results, we observed that 
all forms of land use are negatively affected by their 
lagged values, which is counterintuitive as per the 
rational expectation theory. Observing the weather fac-
tors, we find that rainfall deviation does not significantly 
affect cropping intensity and rate of land use in the short 
term, though the coefficients are intuitively negative. 
However, rainfall deviation does induce a substantially 
higher degree of diversification. The elasticity coeffi-
cient indicates that a 1% rise in rainfall deviation brings 
0.88% more crop diversification. This may be attributed 
to the fact that a greater deviation (either positive or 
negative) has immediate implications for crops. 

A positive deviation leads to the submergence of 
crops, while a shortfall of rainfall from the normal level 
creates a drought-like situation, leading to crop fail-
ure. In both cases, it induces more diversification as an 
immediate strategy in the short term to counter the crop 
loss caused by weather variation. Many empirical stud-
ies argue that greater agro-biodiversity contributes to 
increased crop yield and reduced production risk (Di 
Falco and Veronesi, 2014). Even farmers adopt crop diver-
sification as an ex-ante measure to cope with weather-
induced income shocks (Moniruzzaman, 2019). So, rain-
fall deviation has a positive impact on crop diversification. 
The minimum temperature significantly affects the rate 
of agricultural land use and crop diversification, while 
its elasticity coefficient in the case of cropping intensity 
is statistically insignificant. However, the maximum tem-
perature adversely affects the rate of agricultural land use, 
while its impact on crop diversification is positive. Among 
other variables, we observed that credit access significant-
ly impacts cropping intensity in the short term, while fer-
tiliser consumption significantly induces a higher degree 
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of crop diversification. Both elasticity coefficients are sta-
tistically significant only at a 10% probability level.

4.5 Diagnostic checks

The P-ARDL model results are diagnosed using the 
Wald diagnostic test. This has the null hypothesis that 
the covariate’s coefficient is equal to zero. The Wald coef-
ficient diagnostic test results of crop yields and land use 
patterns are reported in Tables A5 and A6, which indicate 
that the estimated F-statistic values are highly significant, 
meaning that the variables are significant to the model 
fit. We used different model residual diagnostic tests, 
such as the serial correlation LM test, normality tests, 
and heteroscedasticity test, to check the model’s diag-
nostic. Table A7 presents the results of model residual 
diagnostic tests. All the test results indicate that all null 
hypotheses of all tests are statistically significant at a 1% 
level. That means there is a rejection of the null hypoth-
esis concerning land use variables in all three models, 
which means the models are free from serial correlation 
and heteroscedasticity and are normally distributed.

5. CONCLUSIONS

The novelty of this study lies in considering, first, 
the heterogeneous impact of weather variables such as 
rainfall deviation and temperature, which vary among 
crops under study, similar to the evidence found by 
Guntukula and Goyari (2020). Second, rainfall devia-
tion harms the rate and intensity of land use over both 
the long and short terms, but rainfall deviation induces 
more crop diversification. So, weather variations may 
distort the rate and intensity of land use, but the change 
in land use patterns is favourable.

The study findings have significant implications for 
food security and the long-term viability of the indus-
trial system. Because almost all crop yields have been 
negatively damaged, predictions for food security and 
the sustainability of food production appear bleak. How-
ever, based on the findings, we make policy recommenda-
tions to reduce the impact of weather variations on agri-
cultural production in the study area. Adaptive policies, 
strategies and weather financing must be implemented. 
Because temperatures and the timing and amount of 
necessary rainfall have changed and are expected to vary 
in the study region, farmers must adopt new crop types 
and greater diversification techniques to combat weather 
hazards. By highlighting dynamic effects, this study pro-
vides a more nuanced understanding of weather-induced 
changes in land-use intensity; the policy suggestions hover 

around land management and efficient use of resources. 
This implies developing and initiating widespread adop-
tion of modern stress-tolerant cultivars resilient to vari-
ous weather-induced stresses and making an optimal crop 
choice – crop diversification strategies. Such adoption 
should be followed by acreage allocation, considering the 
expected weather shocks. To help farmers, the government 
could invest in research and development activities to 
develop crop varieties resilient to extreme weather shocks. 

Policymakers could provide funding for renovat-
ing the extension network to disseminate early weather 
warnings, thus helping sustain the optimal acreage 
allocation and intensity of land use. Crop diversifica-
tion is an effective ex-ante coping mechanism to coun-
ter the harms induced by weather variation. However, 
government policy has not been conducive to a diversi-
fied production system since we somehow promote a 
monoculture of certain crops that the Green Revolu-
tion initiated. Odisha agriculture used to be diversi-
fied indigenously. But after the Green Revolution of the 
1960s, rice has become the staple crop grown here at 
the expense of pulses. Though some recent concerted 
efforts have been made to promote crop diversification 
and return to indigenous cropping patterns, they have 
not been widely promoted. The “Millet Mission” is one 
such effort by the government of Odisha, but we need 
more such schemes that encourage diversification. We, 
too, found that weather variations would induce more 
diversification ex-post, but adopting diversification as 
an ex-ante strategy will be more effective. Agriculture in 
Odisha was traditionally characterised by a highly diver-
sified cropping pattern. However, following the 1960s, it 
became increasingly concentrated around rice cultiva-
tion. A return to diversified farming systems is proposed, 
encouraging the cultivation of millets, pulses, and other 
traditional crops to restore balance and resilience in the 
agricultural landscape. In addition, smallholders must 
be covered by crop insurance and hedging as part of the 
formal modern weather risk-mitigating mechanism. The 
paper’s emphasis on dynamic effects provides a critical 
contribution to the field, paving the way for future stud-
ies to explore these dimensions further.

Despite the robustness of the empirical strategy and 
the authenticity of the data sources, this study has certain 
limitations. The analysis is confined to 30 districts in Odi-
sha, which may limit the generalisability of the findings to 
other Indian states or agro-climatic zones. While all vari-
ables were sourced from the ENVIS Centre of Odisha’s 
State of Environment – an authoritative platform sup-
ported by the Ministry of Environment, Forest and Cli-
mate Change – certain critical variables such as irrigation 
infrastructure, mechanisation, and technological adoption 
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were not included. These factors can influence crop yield, 
cropping intensity, and land use, and their omission may 
lead to potential biases. Moreover, the weather variables 
used – rainfall deviation and average temperature – do 
not capture the full spectrum of extreme events, intra-
seasonal variability, or asymmetric effects of droughts and 
floods. Additionally, while the panel ARDL framework 
accommodates dynamic relationships, concerns related 
to endogeneity and omitted variables, such as input prices 
or market access, remain. The focus on major crops also 
excludes the vulnerability of minor crops and allied sec-
tors, while the lack of socio-economic disaggregation 
restricts the insights for targeted policy interventions.

These limitations offer avenues for future research. 
Subsequent studies could incorporate more granular 
weather data, such as temperature thresholds, rainfall 
timing, or extreme weather indices, alongside farm-
level primary data to better capture farmer behaviour 
and adaptation responses. Expanding the spatial scope 
to include other states with similar agro-ecological 
characteristics would enhance the external validity of 
the results. Furthermore, integrating irrigation access, 
mechanisation levels, crop insurance coverage, and insti-
tutional support would provide a more comprehensive 
understanding of the drivers of land use decisions and 
crop productivity under climate stress. The proposed 
model could also be assessed for its effectiveness in 
medium-term out-of-sample forecasting using approach-
es such as the Auto-Regressive Integrated Moving Aver-
age with exogenous variables (ARIMAX) model (Kozicka 
et al., 2018; Mantziaris et al., 2024) offering insights into 
yield responses under future weather variability, which 
would be of interest to both policymakers and potential 
investors. Future research could also explore gender- 
and caste-based vulnerability to weather shocks, assess 
the role of policy instruments such as PM-KISAN or the 
Millet Mission, and apply structural models or simula-
tions to evaluate the effectiveness of proposed adaptation 
strategies. Taken together, the integrated approach pro-
vides valuable insights that can inform future agricul-
tural adaptation strategies in weather-sensitive regions, 
thereby enriching the empirical base for designing cli-
mate-resilient agricultural policies.
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APPENDIX

Table A1. Description of study variables.

Variables Definitions Hypothetical 
sign

Dependent variable
YLD Crop yield (kg/hectare)
CI Cropping intensity is defined as the ratio of gross cropped area to net sown area (Index)
CEI Crop diversification is measured by the composite entropy index
ALU Rate of agricultural land use is defined as the ratio of land used for agriculture to non-agricultural use (Index)

Independent variables
FERT Total fertiliser consumption (kg/ha) +
HYVA Area under HYV or modern variety seeds (000’ acres) +
CRD Agricultural credit from banks (Rs. billion) +
RAIN_DEV Standardised deviation of average rainfall during the Kharif season (millimetres) from its historical normal value +/-
MAX_T Average maximum temperature during Kharif season (Celsius) -
MIN_T Average minimum temperature during Kharif season (Celsius) -

Source: Authors’ annotation. Note: Complied from ENVIS Centre of Odisha’s State of Environment, Odisha Agriculture Statistics (various 
issues) and other sources.

Table A2. Relationship between crops and key variables.

Cereals Pulses Oilseeds

Rice Wheat Maize Horse gram Moong Urad Groundnut Rapeseeds Sesamum

HYVA 0.52 0.40 0.22 0.03 0.22 0.32 0.33 0.51 0.08
FERT 0.22 0.02 0.26 0.25 0.40 0.34 0.00 0.30 0.14
CRD 0.27 0.23 0.49 0.37 0.53 0.47 0.30 0.34 0.35
RAIN_DEV 0.26 0.01 0.02 0.12 0.08 0.13 0.12 0.09 0.06
MAX_T -0.05 0.00 -0.08 -0.05 -0.06 -0.04 -0.02 -0.05 -0.22
MIN_T 0.01 -0.06 0.05 0.01 0.01 0.07 0.18 -0.12 0.09
CROPINT 0.11 0.03 0.03 -0.19 -0.05 -0.14 0.06 -0.15 -0.31
AL 0.45 0.07 0.18 0.24 0.29 0.30 0.38 0.12 0.25

Source: Authors’ estimation. 

Table A3. Results of unit root test of study variables.

Levin, Lin & Chu t* Im, Pesaran and Shin W-stat

Intercept Intercept with Trend Intercept Intercept with Trend

Level 1st Difference Level 1st Difference Level 1st difference Level 1st Difference

RiceY -7.84*** - -6.49*** - -6.65*** - -5.12*** -
RiceP -6.36*** - -1.86** - -7.97*** - -5.76*** -
WheatY -1.09 -8.40*** -2.30** - -3.87*** - -5.13*** -
WheatP -3.91*** - -4.31*** - -3.76*** - -3.26*** -
MaizeY -2.46** - -1.74** - -1.31 -13.75** -3.02*** -
MaizeP -1.28 -11.38*** -1.05 -8.99*** -2.66*** - -1.66* -

(Continued)
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Levin, Lin & Chu t* Im, Pesaran and Shin W-stat

Intercept Intercept with Trend Intercept Intercept with Trend

Level 1st Difference Level 1st Difference Level 1st difference Level 1st Difference

HgramY -6.43*** - -6.46*** - -6.04*** - -7.21*** -
HgramP 0.55 -8.64*** -4.01*** - 0.3 -13.71** -3.42*** -
MoongY -3.66*** - -8.17*** - -1.18 -18.08** -6.41*** -
MoongP -5.54*** - -3.12*** - -6.69*** - -3.87*** -
UradY -3.15*** - -4.57*** - -2.43*** - -5.17*** -
UradP -4.36*** - -4.49*** - -4.46*** - -4.71*** -
GnutY -5.14*** - -6.96*** - -3.46*** - -4.66*** -
GnutP -5.14*** - -2.33** - -3.46*** - -0.92 -10.14***
RapeseedY -3.34*** - -5.96*** - -2.21** - -6.19*** -
RpseedP -6.16*** - -7.27*** - -6.73*** - -7.38*** -
SesaY -4.58*** - -6.67*** - -6.05*** - -7.23*** -
SesaP 1.90 -5.98*** -0.97 -4.07*** 1.03 -11.81*** -0.96 -10.1***
FERT -5.38*** - -1.08 -1.93** -2.83*** - -1.55* -
CR -5.95*** - -3.05*** -0.02 -8.68*** 0.82 -6.92***
RAIN_DEV -4.62*** - -1.67 2.25** -7.71*** - -5*** -
MAX_T -8.53*** - -6.92*** - -6.96*** - -4.76*** -
MIN_T -4.95*** - -3.46*** - -4.78*** - -1.86** -
CROPINT -5.85*** - -2.98*** - -4.17*** - 0.29 -7.52***

LN -9.55*** -10.90*** -5.84*** -6.87***

Source: Authors’ estimation. Note: *, ** and *** denote 10%, 5% and 1% significance levels, respectively.

Table A4. Wald test results of crop yields.

Rice Wheat Maize Horse-gram Green-gram Urad Groundnut Rapeseeds Sesamum

F-stat 603.01*** 87.07*** 18.34*** 43.51*** 57.83*** 183.42*** 25.79*** 1130.29*** 1156.39***
Chi-sqr 4221.08*** 609.50*** 128.39*** 304.57*** 404.80*** 1283.94*** 180.50*** 7912.02*** 8094.75***
Null Hypothesis: C (1) = C (2) = C (3) = C (4) = C (5) = C (6) = C (7) = 0
C (1) 0.87 0.08 0.11 0.12 0.22 0.15 -0.03 0.05 0.44
 0.02 0.01 0.03 0.02 0.03 0.02 0.02 0.01 0.03
C (2) -0.07 -0.06 0.16 0.15 0.07 -0.14 0.14 -0.12 -0.12
 0.04 0.03 0.04 0.03 0.06 0.03 0.05 0.02 0.02
C (3) -0.04 0.13 0.01 0.08 0.19 0.16 0.08 0.11 0.14
 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.00 0.01
C (4) 0.30 0.10 0.07 0.03 -0.01 0.09 0.12 0.04 0.06
 0.01 0.02 0.04 0.02 0.04 0.02 0.02 0.01 0.01
C (5) -0.05 -0.16 -0.46 0.15 -0.48 -0.06 0.06 -0.28 -0.29
 0.04 0.05 0.09 0.05 0.10 0.03 0.05 0.03 0.02
C (6) 1.48 -0.48 0.66 -0.49 0.40 -1.54 -1.83 -0.78 0.48
 0.40 0.27 0.34 0.23 0.53 0.18 0.40 0.30 0.17
C (7) 0.94 -0.89 -0.08 0.17 -0.67 0.61 0.15 -0.87 0.10
 0.15 0.15 0.16 0.12 0.22 0.04 0.11 0.17 0.05

Source: Authors’ estimation. Note: *, **, and *** denote 10%, 5% and 1% significance levels, respectively.

Table A3. (Continued).
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Table A5. Wald test results of land use.

CROPINT ALU CEI

F-statistic 30.17*** 59.26 33.17***
Chi-square 150.83*** 296.28 165.83***
Null Hypothesis: C (1) = C (2) = C (3) = C (4) = C (5) = 0
C (1) 0.08 0.53 0.09

0.02 0.08 0.01
C (2) 0.02 0.19 0.04

0.01 0.02 0.01
C (3) 0.16 0.20 0.12

0.03 0.11 0.03
C (4) -0.68 1.36 -0.61

0.16 0.68 0.19
C (5) -0.01 1.06 -0.02

0.07 0.29 0.09

Source: Authors’ estimation. Note: *** denotes a 1% significance level.

Table A6. P-VEC model residual diagnostic test.

CROPINT ALU CEI

Serial Correlation LM Tests (H0: no serial correlation at lag order h)
Lag 1 164.39*** 155.64*** 112.67***
Lag 2 189.35*** 197.83*** 129.22***
Normality Tests (Orthogonalisation: Cholesky)
Null hypothesis: residuals are multivariate normal
Skewness (Chi-sq) 334.89*** 399.75*** 418.05***
Kurtosis (Chi-sq) 11744.56*** 15727.93*** 8789.53***
Jarque-Bera 12079.44*** 16127.68*** 9207.58***
Heteroskedasticity Tests: No Cross Terms
Chi-square statistics 1075.67*** 1200.50*** 1492.41***

Source: Authors’ estimation. Note: *** denotes a 1% significance level.

Table A7. P-VEC model residual diagnostic test.

CROPINT ALU CEI

Serial Correlation LM Tests (H0: no serial correlation at lag order h)
Lag 1 164.39*** 155.64*** 112.67***
Lag 2 189.35*** 197.83*** 129.22***
Normality Tests (Orthogonalisation: Cholesky)
Null hypothesis: residuals are multivariate normal
Skewness (Chi-sq) 334.89*** 399.75*** 418.05***
Kurtosis (Chi-sq) 11744.56*** 15727.93*** 8789.53***
Jarque-Bera 12079.44*** 16127.68*** 9207.58***
Heteroskedasticity Tests: No Cross Terms
Chi-square statistics 1075.67*** 1200.50*** 1492.41***

Source: Authors’ estimation. Note: *** denotes a 1% significance level.
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