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Abstract. The adoption of digital technologies in agriculture is essential for enhanc-
ing sustainability, productivity, and resource efficiency. This study investigates the fac-
tors influencing Italian horticultural farmers’ adoption of innovative water-smart agri-
cultural technologies using an extended Technology Acceptance Model (TAM3). The 
research employs a structured survey conducted with 251 Italian farmers, analysing 
their perceptions of technology usefulness, ease of use, social norms, and sustainabil-
ity outcomes. Structural equation modelling (SEM) confirms that perceived useful-
ness significantly influences adoption intentions, while perceived ease of use plays a 
limited role. Social norms and sustainability-related benefits also emerge as critical 
determinants. Results also indicate the impact of farm size and workforce on adoption 
behaviour. These findings highlight the need for targeted policies, training programs, 
and financial incentives to overcome adoption barriers. The study provides insights 
for policymakers, technology developers, and agricultural stakeholders to foster digital 
innovation in the horticultural sector, contributing to sustainable water management 
practices.

Keywords:	 digital agriculture, farmer adoption, Technology Acceptance Model 
(TAM), horticultural sector, water-smart sustainable farming.

HIGHLIGHTS

–	 A structured survey conducted with 251 Italian horticultural farmers
–	 The extended TAM3 explains 18% of the variance in the behaviour (the 

adoption of water-smart technologies), and 65% of the variance in inten-
tion

–	 Behavioural intention is a significant predictor of the behaviour 
–	 Perceived usefulness and social norms have a significant effect on adop-

tion intention
–	 Perceived ease of use has no influence on adoption intentions
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1. INTRODUCTION

The agricultural sector is facing many unprecedented 
challenges. These include the need to develop sustain-
able resource management strategies to meet the growing 
demand for food and to reduce the environmental impact 
of agri-food production (Kapsdorferová, 2024). Given the 
increasing pressure on agricultural systems, in particu-
lar on natural resources, it is crucial to identify effective 
measures to mitigate these negative impacts in line with 
the European Green Deal and the United Nations 2030 
Agenda (Montanarella and Panagos, 2021). In this con-
text, the application of digital technologies and the devel-
opment of smart solutions have emerged as key strategies 
to improve efficiency, productivity and sustainability in 
the agri-food sector (Yigezu et al., 2018). Among the vari-
ous forms of agricultural innovation, practices related to 
irrigation are of particular importance today (Asadi et 
al., 2020). Water scarcity and drought are now consid-
ered a global problem of paramount importance, that is 
likely to be exacerbated by climate change, which is one 
of the greatest environmental, social and economic chal-
lenges facing the entire planet (Ermolieva et al., 2022; 
Ungureanu et al., 2020). Water-smart agricultural prac-
tices can be helpful in two ways: from an environmental 
perspective, they can reduce pressure on water resources, 
improve water use efficiency and reduce water waste. 
From an economic perspective, these solutions can lead 
to cost savings and productivity increases and contrib-
ute to overall profitability by maximizing crop yields per 
amount of water used (Gemtou et al., 2024). The use of 
specific innovations, such as soil moisture sensors, auto-
matic irrigation systems and predictive models has the 
potential to address major challenges such as water scar-
city and the impact of climate variability (Adeyemi et al., 
2017), as well as energy savings (Patle et al., 2019). How-
ever, one of the biggest challenges facing smallholder 
agriculture is the low uptake of innovative technological 
solutions, which has led to relatively low technology pen-
etration in the sector (Senyolo et al., 2018). In this con-
text, it is crucial to gain insights into farmers’ behaviour, 
their willingness to adopt smart solutions and potential 
strategies to facilitate wider adoption of water technolo-
gies in the agricultural sector (Gemtou et al., 2024). 

It is evident that despite the general focus on a fair 
transition from agricultural practices to digital technolo-
gies, the diffusion and adoption of smart technologies 
remains uneven and is influenced by a complex inter-
play of individual, technological and contextual factors 
(Shang et al., 2021). Previous studies have shown that 
there are significant differences in adoption rates among 
farmers (Paustian and Theuvsen, 2017). 

Farmers’ decision-making processes, which are 
shaped by perceptions of benefits, ease of use and exter-
nal pressures, are key to understanding the adoption 
landscape (Cimino et al., 2024; Schulze Schwering et al., 
2022). Given the limited technological penetration of the 
agricultural sector and the potential benefits of digital 
technologies, it is crucial to investigate the factors influ-
encing the adoption of smart technologies (Gemtou et 
al., 2024). 

While previous research has investigated adop-
tion patterns among farmers, it has often focused on 
large-scale farming operations or specific regions with 
advanced technological infrastructures (Paustian and 
Theuvsen, 2017). Additionally, studies have highlighted 
barriers such as limited digital literacy, financial con-
straints, and a lack of institutional support for small and 
medium-sized farms (Senyolo et al., 2018; Shang et al., 
2021). Despite this growing body of work, several gaps 
in the literature remain. First, little research has focused 
on the adoption of water-smart technologies in the hor-
ticultural sector, which plays a crucial role in agricultural 
sustainability. Most studies on precision agriculture have 
examined large-scale cereal farming, neglecting horti-
cultural systems where irrigation efficiency is a key fac-
tor (Adeyemi et al., 2017). Second, while research has 
investigated the impact of farm size and socio-demo-
graphic characteristics on technology adoption, the role 
of sustainability considerations and social norms remains 
underexplored. Previous studies have suggested that per-
ceived usefulness and perceived ease of use drive adop-
tion, but the extent to which sustainability motivations 
influence farmers’ decisions is not well understood (Gem-
tou et al., 2024). Finally, existing literature has rarely 
examined the adoption of digital technologies in Italian 
agriculture, a sector characterized by fragmented land 
ownership, diverse regional farming practices and differ-
ent levels of technological readiness (Baldoni et al., 2018).

This study aims to address these gaps by analys-
ing the factors influencing Italian farmers in the adop-
tion of digital technologies for better water management 
and the barriers they face, with a focus on horticultural 
crops. Horticulture has been considered for some rea-
sons: first, because of the importance of this sector in 
the Italian agricultural system; secondly, for the rele-
vance of the irrigation in this cropping system (Patle et 
al., 2019); third because of the relevance of smart preci-
sion in horticulture (Adeyemi et al., 2017). The technolo-
gies studied relate to smart water management through 
a three-stage technology complexity: the first (basic) 
stage is represented by the introduction of soil moisture 
sensors, which proceeds to a system that combines sen-
sors with an automatic irrigation system, and in the last 
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stage the sensors are connected to an automated system, 
which in turn is connected to and dialogs with predic-
tive models1. Understanding how these farmers per-
ceive and adopt water-efficient innovations is crucial to 
develop targeted policies, design effective incentives, and 
promote sustainable agricultural practices. The results of 
this work can provide valuable insights to policymakers, 
technology providers, and other stakeholders (e.g., coop-
eratives, producers’ associations, etc.) seeking to promote 
sustainable and efficient agricultural practises through 
innovation. 

2. LITERATURE REVIEW AND 
THEORETICAL BACKGROUND 

As the existing literature shows, the process of 
adopting new technologies is inherently complex and 
dynamic (Montes de Oca Munguia et al., 2021). In par-
ticular, the decision-making process is influenced by 
various factors that affect the rate of technology adop-
tion by farmers (Gemtou et al., 2024; Osrof et al., 2023). 
Although the existing literature has explored the mecha-
nisms of innovation diffusion, there does not seem to be 
a unified set of theories or models that could explain the 
phenomenon. Some authors have highlighted the speci-
ficity of theories in modelling different aspects of the 
technology adoption process (Dissanayake et al., 2022; 
Osrof et al., 2023), while others have expressed doubts 
about the generalist ability of theories to represent differ-
ent technologies and practices (Montes de Oca Munguia 
et al., 2021). Indeed, there is still confusion about the 
methods of analysis and the choice of explanatory vari-
ables that should be used to model the adoption process 
(de Oca Munguia and Llewellyn, 2020). To illustrate, 
Shang et al. (2021) argue that the mechanisms of adop-
tion and diffusion of digital agricultural technologies 
need to be understood at both the farm level and the 
system level. They also suggest that the focus in deter-
mining technology diffusion should be on system inter-
actions in combination with individual characteristics. 
Given the evidence presented in the literature, it can be 
assumed that the categories of individual, technologi-
cal, social and economic factors influencing technology 
adoption can describe the entire decision-making pro-
cess (Dissanayake et al., 2022). There is a clear lack of 

1 Specifically, automatic irrigation systems are connected to sensors that 
monitor soil moisture and activate valves wirelessly; instead, predictive 
modelling integrates the first two solutions (soil moisture sensors and 
automatic irrigation systems) into predictive models that merge real-
time data with historical data, analyse it, and make autonomous irriga-
tion decisions thanks to water delivery schedules that optimize dosing 
based on specific crop requirements and environmental conditions.

convergence and consistency in the results regarding the 
impact and statistical significance of the individual fac-
tors assessed in the adoption models (de Oca Munguia 
and Llewellyn, 2020). This discrepancy can be attribut-
ed to the fact that most adoption studies do not include 
variables on technologies or practices. It is recognized 
that the use of multiple paradigms in modelling technol-
ogy adoption and diffusion can increase the explanatory 
power of the models. However, it is important to con-
sider the factors and their interactions in a way that is 
consistent with the objectives and context of the study 
within a specific food system (Dentoni et al., 2023). 

In the present work we applied the Technology 
Acceptance Model (TAM) (Davis, 1989) for measur-
ing the intention of Italian farmers to adopt innovative 
smart technologies. According to this paradigm, two 
dispositions towards a new technology (perceived use-
fulness and ease of use) determine a person’s attitude 
towards using that technology and influence their desire 
to use it. Perceived usefulness is the extent to which a 
person believes that job performance can be enhanced 
by using the new technology, whereas perceived ease of 
use is the extent to which a person believes that using 
the new technology is effortless. Some extensions of the 
original TAM conceptualization have been proposed, 
such as the TAM3 version (Venkatesh and Bala, 2008). 
The TAM3 extension introduces new constructs and 
determinants that affect the core variable perceived 
ease of use and proposes new relationships between 
the constructs. The factors influencing perceived ease 
of use in the TAM3 version are computer self-efficacy, 
perception of external control, computer anxiety, com-
puter playfulness, perceived enjoyment, and objective 
usability, whereas perceived usefulness is affected by 
subjective norm, image, relevance to work, output qual-
ity and demonstrability of results. Other innovations 
introduced by this extension include: (i) the correlation 
between perceived ease of use and perceived usefulness, 
(ii) the correlation between perceived ease of use and 
intention, and (iii) the concept of anxiety. The latter fac-
tor, which expresses the degree of emotional fear, appre-
hension, nervousness, or stress experienced when inter-
acting with a new technology, is supposed to negatively 
affect the perceived ease of use. The more anxiety a per-
son feels, the less likely they are to perceive the technol-
ogy as easy to use. 

Some minor adjustments were made to the original 
TAM3 version by Venkatesh and Bala (2008) to bet-
ter suit the purpose and context of the analysis. First, 
all constructs were considered in the context-specific 
environment, i.e. the adoption of new water-smart agri-
cultural technologies by Italian horticultural farms. 
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Moreover, some aspects were evaluated as very impor-
tant and emerged explicitly from the exploratory phase 
with the participants, such as technology self-efficacy 
and quality of outcomes. Other characteristics, such 
as (computer) playfulness or perceived enjoyment, that 
are characteristic of the original conceptualization of 
the TAM3 model in relation to information technolo-
gies, do not apply to the context of the current research 
and were therefore excluded from the model design. 
Then, some variables were found to be significant when 
considering sustainability issues (Gemtou et al., 2024). 
Consequently, a category based on with the Sustainabil-
ity Assessment of Food and Agriculture Systems (SAFA) 
(FAO, 2014) was included in the model. More specifi-
cally, the themes inspired by the FAO-indicators were (i) 
the reduced water-used thanks to the optimization of the 
irrigation system, (ii) the improved skills the employees 
and the holder/farmer need to reach to use the technol-
ogy, and (iii) new employees recruited thanks to their 
technological skills. Therefore, we tested the following 
main hypotheses on the factors influencing the adoption 
of new water-smart agricultural technologies by Italian 
horticultural farms (Figure 1):

H1: perceived usefulness is positively affected by output 
quality (H1a), by sustainability outcomes measured by 
SAFA indicators (H1b), and by subjective norms (H1c);
H2: perceived ease of use is positively affected by technol-
ogy self-efficacy (H2a), and is negatively affected by anxi-
ety (H2b);
H3: perceived ease of use has a positive impact on farm-
ers’ intention to adopt new technologies (H3a), and is pos-
itively affecting the perceived usefulness of new technolo-
gies (H3b);
H4: perceived usefulness has a positive impact on farmers’ 
intention to adopt new technologies;
H5: subjective norms have a positive impact on farmers’ 
intention to adopt new technologies; 
H6: the farmers’ intention to adopt new technologies is 
positively affecting the behaviour, i.e. the new technology 
adoption.

Moreover, individual factors, such as socio-demo-
graphic and organizational factors, which determine the 
natural and structural conditions of the farm, have been 
found to correlate with farmers’ decisions. In particular, 
farmers’ education level, gender, age, technology litera-
cy, were among the individual drivers more frequently 
included in studies investigating the smart farming tech-
nologies adoption (Osrof et al., 2023). Farm size, mostly 

Figure 1. Model testing the factors affecting the adoption of water-smart agricultural new technologies by Italian horticulture farms. 
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expressed in total acreage farmland, is a prominent fac-
tor among the organizational ones, since larger farm size 
is consistently seen as pivotal for achieving economies of 
scale when adopting smart farming technologies. Farm 
income is another key element, as farmers with a higher 
income are more willing to invest in new technologies 
(Osrof et al., 2023). Farm location is also a notable bar-
rier within this theme, showing mixed effects in past 
studies. Some research indicates that it might negatively 
affects farmers’ motivation to adopt smart technology, 
particularly if farms face unfavourable climate conditions 
or soil quality (Paxton et al., 2011). In Italy, farms in the 
northern regions are generally more competitive, due to 
larger farm sizes, advanced mechanisation, and stronger 
market integration. In contrast, farms located in central 
and southern regions often face structural constraints, 
including smaller farms and lower productivity (Baldoni 
et al., 2018). Other studies emphasize the importance of 
social factors and access to information for the adopting 
of innovative smart technologies (Blasch et al., 2022). In 
this context, being a member of a farmers’ associations or 
a producer organizations (POs), where knowledge trans-
fer is one of the main objectives, might facilitate adoption. 
Therefore, we controlled the main endogenous variables 
of the model, i.e. perceived usefulness, perceived ease of 
use, adoption intention and behaviour, with individual 
factors, namely farmers’ age, education level and years of 
experience in the agricultural sector, and organizational 
ones, including farm size, farm location (expressed by the 
latitude of the province where the farm is located), num-
ber of employees, membership in a cooperative or a pro-
ducer organization, and farm turnover (Figure 1). 

3. DATA AND METHOD

3.1. Data collection

The data collection consisted in two phases: first we 
conducted a preliminary exploratory phase with qualita-
tive, unstructured interviews. The aim of the exploratory 
interviews was to identify relevant aspects to be included 
in the final model and to highlight those that could be 
omitted. In this way, relevant points such as the quality 
of results and self-efficacy were included in the final sur-
veys. The questions focused on previous experience with 
smart technologies, skills in using them, public finan-
cial support for the adoption of technical solutions and 
the farm structure, as well as farmers’ previous personal 
background. In the second phase, we conducted a survey 
among a sample of Italian horticultural farms. After an 
initial pilot phase (n=21 interviews) to test the question-
naire, the main study was conducted in the period from 

October to November 2024 by an international market 
research company using the CATI (Computer Assisted 
Telephone Interview) method. The survey lasted approx-
imately 30 minutes. The total defined sample consisted 
of 251 Italian farmers. 

The sample includes farmers who grow tomatoes 
(50% in northern Italy and 50% in the south), and those 
who grow fresh vegetables, such as carrots, peppers, egg-
plants, lettuce, etc., spread across northern, central and 
southern Italy (30%, 17%, and 53%, respectively). 

The geographical breakdown was chosen to be rep-
resentative of the horticultural farms according to the 
Italian National Institute of Statistics (ISTAT). The cov-
erage of different administrative regions throughout Italy 
ensures a comprehensive understanding of cultivation 
practices across the country and also illustrates the dif-
ferent technological levels. 

3.2. Measures

Together with the socio-demographic information 
and the descriptive indicators, the questionnaire was 
designed to test the model hypotheses. Overall, it includ-
ed 14 constructs, with a total of 45 items. The constructs 
included in the final model (Figure 1) were aimed to 
understand the drivers for the adoption of innovative 
water-smart agricultural technologies by Italian horticul-
tural farms. All TAM3 items were measured on a 7-point 
scale (from ‘strongly disagree’ to ‘strongly agree’) (see 
Annex Table A1). 

Subjective norm, i.e. the perceived social pressure to 
adopt the new technology, was assessed by three items 
(e.g., “Many producers I know have already adopted this 
innovation”). We measured the perceived usefulness 
with four items (e.g., “This innovation could improve 
my productivity”). Output quality, i.e. the perception of 
the quality of the technology in performing the task, was 
measured by four items (e.g., “Using this technology will 
improve the quality of my products”), whereas SAFA-
based aspects (i.e. the sustainability-related outcomes 
of the new technology adoption) were assessed by four 
items (e.g., “By using this innovation, I could help reduce 
water consumption”). We used two items for assessing 
the perceived ease of use (e.g., “This technology should 
be easy to use”). Technology self-efficacy, i.e. the belief in 
how well someone can perform actions to achieve per-
formance outcomes, was measured by three items (e.g., 
“I would use this innovation easily if I had technical 
support”), whereas anxiety was assessed by three items 
(e.g., “New technologies make me feel uncomfortable”). 
We used three items to assess behavioural intention (e.g., 
“I intend to use this technology in the near future”). 
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The study focused on the three levels of water-smart 
technologies described above: Level 1) – soil moisture 
sensors, Level 2) – a system combining sensors with an 
automatic irrigation system, and Level 3) – sensors con-
nected to an automated system, which in turn is con-
nected to and interacts with predictive models. If a 
farmer indicated they have adopted a certain level of the 
technology, the items were framed for the next level. For 
instance, if a respondent have already adopted soil mois-
ture sensors, we asked about the intention to adopt the 
sensors connected to an automated system. If no adop-
tion was reported, we asked about their intention to 
adopt soil moisture sensors (Level 1), whereas when they 
reported the highest level of adoption, we asked about 
the intention to adopt more advanced predictive models. 
Therefore, the behaviour was assessed with a single item, 
ranging from 1 to 4, considering the different adoption 
levels (1=no technology; 2=Level 1; 3=Level 2; 4=Level 3). 

3.3. Data analysis

We performed the statistical analysis using SPSS 
v.29.0 and AMOS v.29.0 statistical software (IBM Corpo-
ration, Armonk, NY, USA). Means, standard deviations, 
median and interquartile range (IQR) were calculated 
for each questionnaire item and its related construct. 
Structural equation modelling (SEM) was used to test 
hypotheses H1–H6 and the theoretical framework in 
Figure 1. SEM allows models to be specified with both 
latent (e.g., perceived usefulness) and observed variables 
(e.g., farmer’s age) (Kline, 2016). Specifically, we have 
considered two models: in Model 1 we included only the 
variables of the extended-TAM3 model (i.e. behaviour, 
behavioural intention, subjective norm, perceived useful-
ness, perceived ease of use, output quality, SAFA, tech-
nology self-efficacy and anxiety). Then, we controlled for 
the effects of individual factors (i.e., farmers’ age, educa-
tional level, and years of experience in the agricultural 
sector) and organizational factors (i.e., farm size, farm 
location, number of employees, membership in a coop-
erative or a producer organization, and farm turnover) 
on the endogenous variables (i.e., perceived usefulness, 
perceived ease of use, behavioural intention, and behav-
iour) by adding them step by step to Model 1. We then 
run Model 2 by adding to Model 1 the significant effects 
of the individual and organizational factors previously 
found. Convergent validity of the model variables was 
assessed using average variance extracted (AVE), Cron-
bach’s α coefficient, and composite reliability (CR). Dis-
criminant validity was tested by comparing the square 
root of the AVE of each construct with the inter-con-
struct correlation (Bagozzi and Yi, 2012). The goodness-

of-fit of the models was assessed using the χ2 and their 
degrees of freedom (df), the Tucker-Lewis Index (TLI), 
the comparative fit index (CFI), the root mean square 
error of approximation (RMSEA) with a 90% confidence 
interval, and the standardised root mean square residual 
(SRMR) (Kline, 2016). The coefficient of determination 
(R2) was used to measure the explained variance of the 
endogenous variables. We applied the Maximum Likeli-
hood estimation routine (Byrne, 2010).

4. RESULTS

4.1. Descriptive statistics

The overall sample consisted of 251 respondents 
who were responsible for farm’s decisions (78% always, 
14% often, and 8% sometimes). Most respondents were 
male (92%), had completed upper secondary education 
(53%), had an average age of 53 years, and a median of 
30 years of experience in the agricultural sector (Table 
1). Most farms were located in southern Italy and on the 
islands (51.4), had a median utilised agricultural area 
(UAA) of 15 ha, employed less than 10 people (68%), 
with a median turnover of €200.000. The most frequent-
ly cultivated vegetables were tomatoes, both for fresh 
consumption (44%) and for the processing industry 
(41%), followed by peppers (16%) and zucchinis (11%).

Most of the sampled farmers had not yet adopted 
any of the proposed technologies (n=175, 69.7%). Those 
who have deployed any of these technologies relied on 
Level 1 (i.e. soil moisture sensors, n=43, 17.1%), and a 
few were already using automated irrigation systems 
(Level 2) or predictive models (Level 3), accounting for 
6.4% (n=16) and 6.8% (n=17) respectively (Table 1). In 
light of these findings, it is important to understand the 
motivation for the adoption of new technologies and the 
factors that hamper their introduction.

Overall, the results in Table 2 show a moderately 
positive perceived usefulness of water-smart agricultur-
al new technologies (mean score: 4.81), which means in 
particular that farmers moderately agree that by using 
this technology they could reduce water consumption 
and improve productivity. The results also show a mod-
erately positive perceived ease of use (4.69) and output 
quality (4.59). Furthermore, important others had no 
significant influence (3.63), and there was relatively low 
anxiety about applying new technologies (3.16). The 
results indicated a positive evaluation of the sustainabil-
ity aspects related to the new technology (e.g., reduced 
water consumption, enhanced technical skills, etc., mean 
score: 5.03), as well as positive technology self-efficacy 
(5.12). In particular, respondents stated that they would 
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use this innovation easily if they had technical support. 
Furthermore, consumers exhibited a moderately positive 
intention to adopt innovative water-smart agricultural 
technologies (4.58).

4.2. Drivers of digital innovation

Table 2 shows the descriptive statistics of the latent 
and observable variables, as well as the tests conducted 
on the constructs. The factor loadings of the variable 
items (λ) exceeded 0.50, the Cronbach’s α and CR values 
were above 0.70, and the AVE values exceeded 0.50; these 
results, with the only exception of perceived ease of use, 
demonstrated strong reliability, as well as convergent and 
discriminant validity of all factors in the measurement 
model. Discriminant validity was further confirmed by 
verifying that the square root of the AVE for each con-

struct, as shown in Table 3, was greater than the correla-
tions between the constructs (Bagozzi and Yi, 2012). 

Model 1 showed a good fit with the collected data: χ2 
(df) = 461.975 (280), CFI = 0.950, RMSEA = 0.051 (90%CI 
0.043 – 0.059), TLI = 0.942 and SRMR = 0.054. The stand-
ardized path coefficients and their significance levels are 
shown in Table 4, whereas the unstandardized coefficients 
and standard errors are shown in the Appendix Table A2.

Overall, the model shows R2 values of 0.65 for the 
intention and 0.16 for the behaviour in adopting a new 
water-smart technology. This means that, respectively, 
65.1% of the variance in intention and 16.4% of the vari-
ance in behaviour can be explained by the tested vari-
ables. The results suggest that the intention to adopt an 
innovative water-smart technology significantly influenc-
es the actual behaviour (i.e., the adoption of the technol-
ogy itself), as postulated by H6 (p<0.001). Behavioural 

Table 1. Description of the sample: farm characteristics and socio-demographic data of farmers (n=251).

Variables
Sample

N %

Age of the respondent 
Age (years, mean and SD) 52.8 (11.9)
Gender
Male 231 92.0
Female 20 8.0
Others or prefer not to answer 0 0.0
Educational level
Primary 8 3.2
Secondary lower 57 22.7
Secondary higher 132 52.6
Tertiary 54 21.5
Geographical area of the farm
North-West 28 11.2
North-East 66 26.3
Center 28 11.2
South and Islands 129 51.4
Farm size
UAA (ha, median and IQR) 15.0 (4.0-60.0)
Farms by UAA classes
< 2 ha 20 8.0
2 – 4.99 ha 47 18.7
5 – 19.99 ha 69 27.5
20 – 49.99 ha 45 17.9
> 50 ha 70 27.9

Variables
Sample

N %

Most cultivated vegetables 
Tomato (for fresh consumption) 110 43.8
Tomato (for the processed industry) 104 41.4
Peppers 40 15.9
Zucchinis 27 10.8
Eggplants 13 5.2
Lettuce 13 5.2
Potatoes 12 4.8
Melons 9 3.6
Cauliflowers 8 3.2
Enterprise n. employee category
Micro (1-9 employees) 171 68.1
Small (10-49) 64 25.5
Medium 1 (50-99) 12 4.8
Medium 2 (100-249) 4 1.6
Large (≥250) 0 0.0
Farm’s turnover
Turnover (.000 euro, median and IQR) 200 (90-650)
Farmer’s years of experience in agriculture
Years of experience (median and IQR) 30 (20-40)
Levels of water-smart technologies a

No technological innovation 175 69.7
Level 1 43 17.1
Level 2 16 6.4
Level 3 17 6.8

Notes: Data are presented as the mean (SD) for continuous variables for which the hypothesis of normal distribution cannot be rejected at 
p<0.05, as median (IQR) otherwise, or as number (%) for nominal variables. SD = Standard Deviation. IQR = Interquartile Range. UAA 
= Utilised Agricultural Area. a Levels of water-smart technologies: Level 1) – soil moisture sensors, Level 2) – a system combining sensors 
with an automatic irrigation system, and Level 3) – sensors connected to an automated system, which in turn is connected to and interacts 
with predictive models. 
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intention, in turn, is positively influenced by perceived 
usefulness with p<0.001, which is one of the two core 
variables of the TAM3 (H4 accepted). 

Perceived ease of use does not significantly affect the 
intention to adopt technologies, therefore not supporting 
H3a; however, it positively affects perceived usefulness 
of new technologies with p<0.05, confirming H3b. H5 is 
also supported since subjective norm has a positive effect 
on the intention to adopt a technology (p<0.001), show-
ing that perceived social pressure has an influence on the 

farmers’ motivation to adopt a new technology. The con-
struct of anxiety shows a negative effect on the perceived 
ease of use (p<0.05), a property that is stimulating and 
that could open up new ways of designing and conceptu-
alizing modern technologies. Perceived ease of use, on the 
other hand, is positively influenced by the self-efficacy of 
the technology, with p<0.001. In turn, perceived useful-
ness is influenced by the quality of the output (i.e., the 
perceived quality of the effects achieved by using the tech-
nology, p<0.001) and by the SAFA-based items (p<0.05). 

Table 2. Mean values (standard deviation, SD) and median values (interquartile range, IQR) of single items and constructs, factor loadings 
(λ), composite reliability (CR), average variance extracted (AVE) and Cronbach’s α of the sample (n=251).

Mean (SD) Median (IQR) λ CR AVE α

Perceived Usefulness 4.81 (1.06) 5.00 (4.25-5.25) 0.84 0.56 0.84
PU1 4.80 (1.25) 5.00 (4.00-5.00) 0.78
PU2 4.61 (1.34) 5.00 (4.00-5.00) 0.75
PU3 4.86 (1.20) 5.00 (4.00-5.00) 0.79
PU4 4.95 (1.37) 5.00 (4.00-6.00) 0.67
Perceived Ease of Use 4.69 (0.92) 4.50 (4.00-5.00) 0.61 0.45 0.61
PEU1 4.98 (1.06) 5.00 (4.00-5.00) 0.59
PEU2 4.40 (1.10) 5.00 (3.00-5.00) 0.75
Output Quality 4.59 (0.98) 4.75 (4.00-5.00) 0.83 0.56 0.84
OQ1 4.57 (1.15) 5.00 (4.00-5.00) 0.70
OQ2 4.52 (1.25) 5.00 (4.00-5.00) 0.78
OQ3 4.80 (1.16) 5.00 (4.00-5.00) 0.85
OQ4 4.48 (1.20) 5.00 (4.00-5.00) 0.64
SAFA 5.03 (1.00) 5.00 (4.67-5.67) 0.78 0.55 0.79
SAFA1 5.12 (1.21) 5.00 (5.00-6.00) 0.68
SAFA2 4.87 (1.17) 5.00 (4.00-5.00) 0.72
SAFA3 5.10 (1.20) 5.00 (5.00-6.00) 0.81
Anxiety 3.16 (1.18) 3.00 (2.67-3.67) 0.85 0.66 0.85
ANX1 3.28 (1.33) 3.00 (3.00-4.00) 0.74
ANX2 3.10 (1.33) 3.00 (2.00-3.00) 0.88
ANX3 3.10 (1.37) 3.00 (2.00-3.00) 0.81
Technology Self-Efficacy 5.12 (1.11) 5.00 (4.67-6.00) 0.92 0.80 0.92
TSE1 5.07 (1.22) 5.00 (5.00-6.00) 0.87
TSE2 5.20 (1.18) 5.00 (5.00-6.00) 0.93
TSE3 5.08 (1.18) 5.00 (5.00-6.00) 0.88
Subjective Norms 3.63 (1.09) 3.67 (3.00-4.33) 0.76 0.53 0.74
SN1 3.84 (1.31) 4.00 (3.00-5.00) 0.84
SN2 3.52 (1.41) 3.00 (3.00-5.00) 0.51
SN3 3.53 (1.31) 3.00 (3.00-5.00) 0.78
Behavioural Intention 4.58 (1.35) 4.67 (4.00-5.33) 0.91 0.77 0.91
BI1 4.41 (1.51) 5.00 (4.00-5.00) 0.93
BI2 4.54 (1.47) 5.00 (4.00-5.00) 0.89
BI3 4.80 (1.41) 5.00 (4.00-6.00) 0.80
Behaviour a 1.50 (0.89) 1.00 (1.00-2.00)

Note: All items were measured on a 7-point scale (from ‘strongly disagree’ to ‘strongly agree’). a Behaviour was assessed with a single item, 
ranging from 1 to 4, considering the different adoption levels (1=No technological innovation; 2=Level 1; 3=Level 2; 4=Level 3).
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When controlling for individual and organiza-
tional factors we have found that, among all observed 
items, only the average farm size (expressed in hectares 

of utilised agricultural area, UAA) and the number of 
employees have an effect on the endogenous variables. 
In particular, the number of employees positively influ-

Table 3. Spearman’s rank-order correlations (ρ) between the constructs including the squared root of the AVE of each construct (reported 
in bold on the main diagonal).

PU PEU OQ SAFA ANX TSE SN BI BEH

PU 0.75 0.31*** 0.63*** 0.52*** -0.28*** 0.40*** 0.36*** 0.57*** 0.36***

PEU 0.67 0.24*** 0.31*** -0.17** 0.34*** 0.14* 0.28*** 0.15*

OQ 0.75 0.46*** -0.21*** 0.34*** 0.43*** 0.60*** 0.35***

SAFA 0.74 -0.23*** 0.63*** 0.16* 0.39*** 0.19**

ANX 0.81 0.16** -0.15* -0.29*** 0.17**

TSE 0.89 n.s. 0.39*** n.s.
SN 0.73 0.44*** 0.36***

BI 0.88 0.40***

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; OQ = Output Quality; SAFA = Sustainability Assessment of Food and 
Agriculture Systems; ANX = Anxiety; TSE = Technology Self-Efficacy; SN = subjective norms; BI = Behavioural Intentions; BEH = behav-
iour; Sign.: *** p<0.001, ** p<0.01, * p<0.01, n.s. = not significant.

Table 4. TAM3-extended model: coefficient of determination (R2), standardised coefficients (β), p-values, and research hypotheses (n=251). 

Model 1 Model 2

R2 β p Hypotheses R2 β p Hypotheses

PU 0.791 0.811
PEU → PU 0.133 0.044 H3b accepted 0.118 0.068 H3b accepted
OQ → PU 0.658 <0.001 H1a accepted 0.693 <0.001 H1a accepted
SAFA → PU 0.199 0.027 H1b accepted 0.172 0.052 H1b accepted
SN → PU 0.045 0.512 H1c rejected 0.033 0.627 H1c rejected
EMP → PU 0.157 <0.001
PEU 0.305 0.302
TSE → PEU 0.487 <0.001 H2a accepted 0.488 <0.001 H2a accepted
ANX → PEU -0.169 0.041 H2b accepted -0.161 0.051 H2b accepted
BI 0.651 0.653
PU → BI 0.601 <0.001 H4 accepted 0.616 <0.001 H4 accepted
PEU → BI 0.069 0.295 H3a rejected 0.056 0.380 H3a rejected
SN → BI 0.278 <0.001 H5 accepted 0.261 <0.001 H5 accepted
UAA → BI 0.081 0.068
BEH 0.164 0.178
BI → BEH 0.404 <0.001 H6 accepted 0.376 <0.001 H6 accepted
UAA → BEH 0.158 0.006
Model fit indices
χ2 (df ) 461.975 (280) 510.533 (328)
CFI 0.950 0.950
TLI 0.942 0.943
RMSEA (90% C.I.) 0.051 (0.043 – 0.059) 0.047 (0.039 – 0.055)
SRMR 0.054 0.062

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; OQ = Output Quality; SAFA = Sustainability Assessment of Food and 
Agriculture Systems; ANX = Anxiety; TSE = Technology Self-Efficacy; SN = subjective norms; BI = Behavioural Intentions; EMP = number 
of employees; UAA = average farm size (Utilised agricultural area); BEH = Behaviour. 
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ences respondents’ perceived usefulness (p<0.001), indi-
cating that decision-makers in larger farms, in terms 
of workforce, find the innovative technology capable 
of enhancing farm performance. In turn, the average 
farm size in UAA positively influences the behaviour 
(p<0.001) and behavioural intentions (p<0.10). In other 
words, respondents working in larger farms are more 
willing to adopt the new technologies, or have already 
adopted them. Overall, the Model 2 shows good fit with 
the data (χ2 (df) = 510.533 (328), CFI = 0.950, RMSEA 
= 0.047 (90%CI 0.039 – 0.055), TLI = 0.943 and SRMR 
= 0.062) while also improving the explained variance of 
behaviour, up to 17.8%. The overall path and the tested 
hypotheses are confirmed, albeit with some of them 
showing slightly lower significance levels (Table 4).

5. DISCUSSION

Our study found that approximately 70% of the 
farmers interviewed did not adopt any of the proposed 
digital technologies. This finding confirms the limited 
adoption of innovative water-smart solutions in the Ital-
ian horticultural sector, highlighting the need to thor-
oughly understand the barriers and the factors that 
could promote such adoption. Therefore, the results of 
this study represent an important step toward achieving 
this goal. The applied extended-TAM3 model consistent-
ly explains around 18% of the variance in the behaviour 
(the adoption of water-smart technologies), and 65% of 
the variance in individuals’ intention to adopt the new 
digital technologies. We confirm that behavioural inten-
tion is a significant predictor of the behaviour, indicating 
that farmers motivation in adopting the innovative tech-
nologies affect the actual adoption. The applied model 
further assumes that the effect of other variables (e.g., 
self-efficacy) on behavioural intention is mediated by 
perceived usefulness and perceived ease of use. The find-
ings are consistent with previous literature, particularly 
in relation to the importance of perceived usefulness 
(Davis, 1989; Venkatesh and Davis, 2000). Perceived use-
fulness was found to be a strong determinant of farmers’ 
intention to adopt new water-smart technologies, high-
lighting its role in shaping the adoption behaviour. Oth-
er studies conducted using TAM demonstrate that per-
ceived usefulness is a central aspect for technology adop-
tion, provided that it do not cause a significant increase 
in the production costs (Pierpaoli et al., 2013). This sup-
ports the findings of Paustian and Theuvsen (2017) and 
Shang et al. (2021), who emphasize the importance of 
clear and tangible benefits for adoption of technologies 
in agriculture. 

However, our results differ from the TAM3 model 
with respect to the role of perceived ease of use, which 
has no influence on adoption intentions. While TAM3 
suggests that perceived ease of use is an important deter-
minant (Venkatesh and Bala, 2008), the limited impact 
observed can be attributed to contextual factors, such 
as the different levels of digital literacy and prior expe-
rience with technology among Italian farmers. The not 
significant effect of this factor was also found in another 
studies (for a review, see Osrof et al., 2023). In another 
study carried out in the Italian fruit and grapevine sec-
tor, perceived ease of use was found to be insignificant 
when adopting variable rate irrigation (Canavari et al., 
2021). Schulze Schwering et al. (2022) also found that 
perceived ease of use may become less important when 
end users rely more on external support or community 
recommendations, as social norms take precedence. 

Social norms were another important factor that 
positively influenced adoption intentions in our study, 
which is consistent with the findings of Senyolo et al. 
(2018). The role of perceived social pressure in motivat-
ing farmers suggests that fostering a culture of innova-
tion and demonstrating success among peers may be 
critical to increasing adoption rates. Furthermore, our 
findings echo the observations of Dissanayake et al. 
(2022) that contextual and cultural factors play a signifi-
cant role in shaping individuals’ intention to adopt inno-
vative technologies. 

By demonstrating that sustainability-related factors, 
such as improved water management and workforce skills, 
influence perceived usefulness, our study confirms the 
potential of sustainability considerations to improve tech-
nology uptake. This result is in line with the research find-
ings of Montes de Oca Munguia et al. (2021), who advo-
cate the inclusion of sustainability goals in the technology 
adoption framework. This last point is thought-provoking 
when it comes to examining the role of farmers and their 
commitment to sustainability, as well as their awareness of 
the use of smart devices to promote more sustainable prac-
tices. In the face of climate change and the pressure that 
agriculture is putting on environmental resources, only 
the direct and committed involvement of farmers can pro-
mote a more conscious and widespread use of smart tech-
nologies with the aim of reaping their benefits (Menozzi 
et al., 2015). Furthermore, linking sustainability aspects 
to the concept of usefulness could also promote higher 
acceptance and adoption rate, which underpins the posi-
tive impact for farmers in terms of profitability. This is also 
confirmed by the correlation indices between the SAFA-
inspired construct and the technology self-efficacy and 
output quality constructs, that are both high and signifi-
cant, 0.74 and 0.70 respectively. 
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Technology self-efficacy strongly affects perceived 
ease of use, indicating that individuals who are more 
confident in their ability to use the technology are more 
likely to perceive it as an easy task. In other studies, per-
ceived behavioural control has been found to predict 
intentions to adopt agricultural sustainability schemes 
(Menozzi et al., 2015). On the other hand, our results 
also suggest barriers to adoption, including lack of digi-
tal skills and limited access to information, which is 
consistent with the observations of other studies (Osrof 
et al., 2023; Sabbagh and Gutierrez, 2023; Yigezu et al., 
2018). To address these barriers, targeted training pro-
grams and policies are needed to lower the entry thresh-
old for farmers, especially for farmers in resource-poor 
regions. Interestingly, the negative correlation between 
anxiety and perceived ease of use highlights the impor-
tance of developing technologies that minimize cognitive 
and operational barriers. In our study, we controlled the 
endogenous variables of the model (i.e., perceived use-
fulness, perceived ease of use, intention to adopt, and 
behaviour) with individual and organizational factors. 
Only farm size and number of employees had a signifi-
cant effect on these variables, while the other constructs 
showed no significant effect. Another review revealed 
that several of these factors showed inconsistencies 
across multiple studies (Osrof et al., 2023). For instance, 
the insignificance effect of farmers’ level of education on 
decision-making could be explained by the possibility 
that highly educated farmers might opt for careers out-
side farming (Michels et al., 2020) or show interest in 
basic technology features that do not require extensive 
education (Wachenheim et al., 2021). Similarly, although 
numerous studies have found that older farmers are less 
motivated to adopt smart technologies on their farms, 
Osrof et al. (2023) identified a large number studies with 
inconsistent results, where age did not affect farmers’ 
adoption decisions. For example, age did not influence 
farmers’ intention to use smart technologies such as yield 
monitors with GPS (García-Jiménez et al., 2022). Farm 
location is also a notable barrier that might hamper the 
adoption of smart technologies, in particular if farms face 
unfavourable conditions such as climate, rainfall, or poor 
soil quality (Osrof et al., 2023; Paxton et al., 2011). How-
ever, in our case farm location did not significantly affect 
the endogenous variables, as other factors associated with 
this variable (e.g., farm size) likely masked this effect. 

On the contrary, our study indicated that larger 
farms, in terms of UAA acreage, are more likely to be 
motivated to adopt the innovative water-smart technolo-
gies or have already adopted them. This finding con-
firms that larger farm size is consistently seen as pivotal 
for achieving economies of scale when adopting smart 

technologies that entail high investments and initial 
costs (Osrof et al., 2023). 

The significant effect of the number of employees 
on the perceived benefit indicates that farms with a large 
workforce are more likely to believe that the use of water-
saving technologies will improve their performance. This 
result can be interpreted in different ways. On the one 
hand, it could indicate that the use of these technologies 
could reduce the need for farm labour and thus reduce 
labour costs. On the other hand, it could indicate that 
these technologies are perceived to improve the knowl-
edge and technical skills of employees and thus increase 
the productivity of the workforce. This second interpreta-
tion seems more consistent with the positive effect of the 
SAFA-based construct on perceived usefulness.

In summary, this study enriches the understanding 
of technology adoption in agriculture by confirming the 
relevance of the key TAM3 constructs and also high-
lighting context-specific variations. By addressing the 
identified barriers and harnessing the drivers of adop-
tion, policy makers, technology developers and stake-
holders can promote greater technology adoption and 
thus contribute to more sustainable and efficient agricul-
tural practices.

6. CONCLUSION

The integration of digital technologies in the Italian 
horticultural sector is a multifaceted challenge influenced 
by a variety of individual, technological, social and con-
textual factors. This study shows that individual inten-
tion is an important determinant of the actual adoption 
of innovative water-saving technologies and highlights 
the crucial role of farmer motivation in decision-making. 
Perceived usefulness of these technologies has a signifi-
cant effect on adoption intention, while perceived ease of 
use requires further investigation due to its limited rel-
evance in the current context. Social norms were identi-
fied as an important determinant of farmers’ intentions, 
highlighting the importance of community influence and 
external support in promoting the adoption of digital 
technologies. To close the observed adoption gap, target-
ed interventions should be developed to address barriers 
such as digital literacy, infrastructure and accessibility of 
technology. Furthermore, the regional and culture-spe-
cific nuances observed in this study should be taken into 
account when developing customised strategies. 

The results highlight important policy and business 
implications, suggesting that government agencies, agri-
cultural cooperatives, and technology developers should 
emphasize the economic and environmental benefits 
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of digital irrigation technologies. Encouraging farmer 
networks and knowledge-sharing initiatives could also 
accelerate adoption. By addressing these research gaps, 
this study contributes to both the academic literature 
and practical policy making. It provides a refined theo-
retical model to understand technology adoption in 
small- and medium-sized farms and offers practical 
insights to promote sustainable and efficient water man-
agement in agriculture. Further exploration of constructs 
that have negative correlates, such as anxiety, could lead 
to more user-centred technology design that reduces 
barriers to technology adoption and improves usability.

Some limitations of this study should be mentioned. 
The study reflects not only a specific context, such as the 
horticultural sector, but also national characteristics, 
which can vary greatly from country to country due to 
different regulatory and incentive frameworks, cultural 
practises and, most importantly, technological infra-
structures. Nevertheless, the sample is not representative 
of Italian farmers. This must be taken into account when 
interpreting the results and deriving consequences for 
corporate management. An extension of the sample and 
a repetition of the study in other countries could there-
fore be interesting to test the validity of all the hypoth-
eses put forward in the original theory. Second, we 
did not consider prospective behaviour, i.e., we did not 
measure actual behaviour in the future (i.e., future adop-
tion of the innovative technologies), but only current 
behaviour. Although this approach is quite common in 
similar studies, it might have limited the compatibility of 
behaviour with its antecedents (McEachan et al., 2011). 
Moreover, this study used self-report measures about 
the behaviour which may be subject to response biases. 
However, the CATI method can help with complex or 
sensitive questions by allowing the interviewer to clarify 
questions and guide the respondent, thus reducing mis-
interpretation and encouraging more accurate responses 
(Dillman et al., 2014).

Despite these limitations, this study is, to our knowl-
edge, one of the first aimed at investigating the relative 
importance of behavioural precursors in explaining the 
intention to adopt innovative water-smart technologies 
in Italian horticultural farms.
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APPENDICES 

Table A1. Constructs and Items.

Codes Items

Perceived Usefulness 
PU1 This innovation would make my work easier
PU2 This technology would make my work faster
PU3 This innovation could improve my productivity

PU4 By using this technology, I could reduce water 
consumption in my company
Perceived Ease of Use

PEU1 This technology should be easy to use
PEU2 Using this technology will not require much effort

Output Quality

OQ1 I expect that the results of using this technology will be 
excellent

OQ2 Using this technology will improve the quality of my 
products

OQ3 By using this system, I would increase the efficiency of my 
work

OQ4 By using this innovation, I would increase the quantity of 
product in the field
SAFA

SAFA1 By using this innovation, I could help reduce water 
consumption

SAFA2
With the introduction of this technology, employees could 
receive training and enhance their knowledge and technical 
skills

SAFA3 By introducing this innovation, I could receive training and 
improve my technical skills
Anxiety

ANX1 I get nervous when working with new technologies
ANX2 New technologies make me feel uncomfortable
ANX3 I am afraid of applying new technologies

Technology Self-Efficacy

TSE1 I would use this technology easily if someone showed me 
how to use it

TSE2 I would use this innovation easily if I had technical support

TSE3 I would use this innovation easily if I were familiar with 
the system
Subjective Norms

SN1 People whose opinions matter to me think that I should 
use this technology

SN2 Many producers I know have already adopted this 
innovation

SN3 My customers think that I should use this technology
Behavioural Intention

BI1 I will definitely use this technology in the near future
BI2 I intend to use this technology in the near future

BI3 If there were no significant barriers, I would use this system 
in the near future

Note: All items were measured on a 7-point scale (from ‘strongly 
disagree’ to ‘strongly agree’).
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Table A2. TAM3-extended model: unstandardized beta coefficients 
and standard errors (S.E.) (n=251). 

Model 1 Model 2

Beta S.E. Beta S.E.

PU
PEU → PU 0.202* 0.100 0.176# 0.097
OQ → PU 0.796*** 0.136 0.824*** 0.134
SAFA → PU 0.236* 0.106 0.200# 0.103
SN → PU 0.040 0.060 0.028 0.059
EMP → PU 0.249*** 0.068
PEU
TSE → PEU 0.308*** 0.064 0.307*** 0.064
ANX → PEU -0.098* 0.048 -0.093# 0.047
BI 
PU → BI 0.862*** 0.110 0.890*** 0.110
PEU → BI 0.149 0.142 0.121 0.138
SN → BI 0.351*** 0.082 0.324*** 0.080
UAA → BI 0.000# 0.000
BEH
BI → BEH 0.256*** 0.039 0.240*** 0.039
UAA → BEH 0.000** 0.000

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; 
OQ = Output Quality; SAFA = Sustainability Assessment of Food 
and Agriculture Systems; ANX = Anxiety; TSE = Technology Self-
Efficacy; SN = subjective norms; BI = Behavioural Intentions; EMP 
= number of employees; UAA = average farm size (Utilised agri-
cultural area); BEH = Behaviour. Sign.: *** p<0.001, ** p<0.01, ** 
p<0.05, # p < 0.10. 
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