

Applying the Global Methane Pledge to the Italian Livestock Sector.

Davide Dell'Unto^a, Silvia Coderoni^b, Raffaele Cortignani^a

^a University of Tuscia, Department of Agriculture and Forest Sciences (DAFNE), Via San Camillo de Lellis, 01100, Viterbo, Italy. E-mail addresses: d.dellunto@unitus.it, cortignani@unitus.it

^b University of Teramo, Department of Biosciences and Agricultural and Environmental Technologies, Via Renato Balzarini, 1, 64100, Teramo, Italy. E-mail address: scoderoni@unite.it

*Corresponding author: scoderoni@unite.it - Via Renato Balzarini, 1, 64100, Teramo (TE)

This paper has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.

Please cite this article as:

Dell'Unto D., Coderoni S., Cortignani C.. (in press). Applying the Global Methane Pledge to the Italian Livestock Sector. , *Bio-Based and Applied Economics*, Just Accepted. DOI: 10.36253/bae-18002

Abstract

The Global Methane Pledge was launched by the EU and the US with the aim to cut 30% of methane (CH_4) emissions by 2030. Livestock systems are major contributors to CH_4 emissions. This study assesses a combined tax and subsidy policy tool applied at the farm level that would allow to reach the 30% reduction target for livestock CH_4 . The simulation is performed with the Positive Mathematical Programming model AGRITALIM calibrated using the Italian commercial livestock farms as represented by the Farm Accountancy Data Network. The micro-based model simulates at the farm level the imposition of a tax on each unit of emissions that exceeds the targeted amount, or the grant of a subsidy for each unit of emissions that is reduced above the target. The simulation exploits the heterogeneity of farmers' behaviour to reach a market-clearing permit price of one tonne of emissions to obtain a self-sustaining policy tool that would equate the amount of taxes and subsidies paid. Results point that with a price of EUR $110.50t^{-1}CO_{2eq}$. the system would self-sustain itself. Higher negative impacts are foreseen for less productive beef and mixed cattle farms as a result of the profitability and emission intensity of their activities. Findings could be used to help policymakers understand the diversified impacts of the target on farms and evaluate possible compensation they could provide for a more just transition.

Keywords: GHG emissions; Mathematical programming model; carbon tax; carbon subsidy; carbon price.

JEL Codes: Q15, Q18, Q54, H23

36 **1. Introduction**

37 Establishing plans to reduce the greenhouse gas (GHG) emissions produced by the world's livestock
38 systems is essential, given the expanding global population and the anticipated 20% increase in
39 demand for terrestrial animal products by 2050 (FAO, 2023).

40 Despite continuous advancements in production efficiency, GHGs from livestock systems continue
41 to pose a serious problem, as they account for a large portion of global emissions (Cerutti et al., 2023).
42 In particular, the Intergovernmental Panel on Climate Change (IPCC, 2021) has identified agricultural
43 production, primarily livestock, and the use of fossil fuels as major contributors to the rise in
44 atmospheric methane (CH_4) emissions. These emissions are second only to carbon dioxide (CO_2) in
45 their overall contribution to climate change (Milich, 1999). On a molecular level, CH_4 is more
46 powerful than CO_2 ; thus, although it is less persistent in the atmosphere, it has a significant effect on
47 climate change (IPCC, 2014; Gernaat et al., 2015).¹ Additionally, CH_4 contributes to the formation
48 of tropospheric ozone, a potent local air pollutant with serious health effects (European Commission,
49 2020). Consequently, cutting CH_4 emissions improves air quality and slows the rate of climate
50 change.

51 In recent years, there has been a worldwide political focus on CH_4 (European Commission, 2020;
52 Minister of Environment and Climate Change, 2023; Magnapera et al., 2025). The United States
53 (US)-China Joint Glasgow Declaration specifically points the urgent need for greater action to reduce
54 CH_4 (Wang et al., 2021). In New Zealand, the Zero Carbon Amendment Bill targets a net zero budget
55 for GHGs, including a separate target to reduce biogenic CH_4 emissions (New Zealand Ministry for
56 the Environment, 2024).

57 To put forward a global action, in 2021, the European Union (EU) and the US launched the Global
58 Methane Pledge (GMP) at the 26th Conference of Parties (COP26) in Glasgow to cut CH_4 emissions

¹ CH_4 is a so-called short-lived GHG (i.e., it has a strong initial climate impact that rapidly drops after 20 years, unlike CO_2). This attribute has significant consequences for calculating its effect on global warming and some stakeholders have urged that a distinct regime is needed for long-lived and short-lived GHGs. At present, however, CH_4 and CO_2 emissions belong to the same policy frameworks at the EU and national level.

59 by 30% by 2030. As part of its commitment to the GMP, the EU submitted the Methane Action Plan
60 (European Union, 2022), which outlines existing policies and further activities under development
61 that are expected to reduce CH₄ emissions until 2030 and beyond. The plan describes the expected
62 impact on CH₄ emissions from agriculture as a result of the proposed revision of the Industrial
63 Emissions Directive (IED)² that, for the first time, was intended to target cattle farms as well as the
64 pig and poultry farms already subject to the (old) directive. The proposal to include cattle farms in
65 the revised IED did not pass after much debate within the co-decision mechanism. However, by the
66 end of 2026, the EU Commission plans to publish a report with solutions that will more
67 comprehensively address emissions from the rearing of livestock, and cattle in particular.³

68 In this context, this work aims to simulate a combined tax and subsidy scheme to illustrate the likely
69 impacts of the GMP's proposed CH₄ reduction target of 30%. The simulation applies this reduction
70 target to the same livestock categories (i.e., specialised cattle, pig and poultry farms) targeted by the
71 proposed revision of the European IED, as it appears to be the most likely policy objective, based on
72 recent developments.⁴

73 This study's simulation also allows us to estimate the market-clearing permit price to obtain a self-
74 sustaining policy tool. We do so by exploiting the heterogeneous abatement costs of farms and
75 assessing the characteristics (including the specialisation) of farms that could be most heavily
76 impacted by such a policy.

77 The assessment requires a model that is based on micro-level (i.e. farm-level) data that allow
78 representing farms' heterogeneity in terms of productive and structural features (Baldi et al., 2024).

79 In this study we use the agroeconomic supply model called AGRITALIM (AGRIcultural Territorial

² COM (2022)156 final, at <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022PC0156> (accessed 08/11/24).

³ https://environment.ec.europa.eu/topics/industrial-emissions-and-safety/industrial-and-livestock-rearing-emissions-directive-ied-20_en#farming-under-the-ied-20 (accessed 08/11/2025).

⁴ Specialised sheep and goat farms, along with non-specialised livestock farms, fall outside the scope of the original directive, and including them in the revised IED has never been part of the debate for its revision.

80 tIme economic; Dell'Unto et al., 2025; Coderoni et al., 2024a; Cortignani and Coderoni, 2022;
81 Dell'Unto et al., 2023). The model is calibrated with microdata surveyed in the Farm Accountancy
82 Data Network (FADN) that include information on aspects regarding economic, financial, productive,
83 market, policy and structural features of farms. The model was recently implemented to account for
84 GHG emissions at the farm level (Coderoni et al., 2024a); the model's emitting units are the
85 specialised livestock farms of the 2020 sample of the FADN. Impacts are evaluated focusing on the
86 number of livestock units (LSUs) reared, the level of CH₄ emissions and the operating income (OI)
87 of farms.

88 Compared to the literature to date, this paper examines a hybrid policy tool that proposes the
89 simultaneous application of tax and subsidy to the sole livestock sector of one important livestock-
90 producing country (Italy). According to Aguilera et al. (2021) despite the large share of emissions
91 that can be attributed to livestock production, the mitigation of these emissions is an underrepresented
92 area in the research efforts in the Mediterranean agriculture.⁵ This tool reflects all the characteristics
93 that, according to Auld et al. (2014), a policy tool should have to create positive behavioural change,
94 i.e.: built-in flexibility (that is firms' discretion to decide how to meet an environmental target),
95 defined time frames, and expenditure instruments (tax or subsidy in this case). Previous works have
96 considered either a tax to incentivise farms to reduce emissions or a subsidy for those farms that
97 reduce this negative externality (see, among others: Acosta et al., 2023; Fellmann et al., 2018; Himics
98 et al., 2018; Pérez Domínguez et al., 2016; Van Doorslaer et al., 2015). Our study is unique in
99 combining these approaches.

100 Moreover, we conduct our assessment using a micro-based modelling approach, allowing us to
101 capture farms' heterogeneous abatement costs (Cai et al., 2016). It is worth noting that, at this stage
102 of the analysis proposed, the only mitigation strategy allowed is the reduction of LSU as the aim of
103 the study is not to assess the possible benefits and costs of eventual mitigation options, but to show

⁵ Moreover, running a search on the Scopus database (search string: "emission trading system" OR "ets" AND livestock AND "eu*") did not yield any paper that addressed the same issue with a similar approach.

104 the impact of the application of the GMP to the Italian livestock sector in a short-term scenario, with
105 no possible changes to the production technology. However, the GHG estimation approach here
106 adopted, allows the model to capture farms' optimizing behaviours characterized by different
107 emission intensities at the baseline, that reflect management intensity, even in the absence of explicit
108 mitigation strategies (see Section 3). The simulation aims to exogenously identify the price that could
109 yield a predetermined reduction target through a self-financing scheme⁶. In contrast, previous studies
110 mainly imposed a price on emissions and evaluated environmental and economic impacts (see, among
111 others: Coderoni et al., 2024a; Pérez Domínguez et al., 2020).

112 The rest of the paper proceeds as follows: Section 2 reviews some pertinent literature on the
113 economics behind the proposed approach, Section 3 presents the models and data used and the
114 simulated scenario, Section 4 presents the results, Section 5 discusses their implications, and Section
115 6 presents our conclusions.

116 **2. Background of the Analysis and Literature Review**

117 Although there has been substantial political attention on curbing CH₄ emissions, reaching this
118 objective remains difficult. GHG emissions are environmental externalities that lack a market price;
119 thus, farmers are unable to internalize their global impact on society (Acosta et al., 2023; Millock and
120 Nauges, 2006). Consequently, in Europe, the Scientific Advisory Board on Climate Change (2024)
121 recommends that, through a legislative proposal set to begin after 2030, the EU should extend the
122 pricing regime of GHG emissions to all key emitting sectors, including agricultural, food and land
123 use. This change would give farmers a definite financial incentive to lower emissions and increase
124 removals. This vision advances what the European Court of Auditors (2021) previously
125 recommended: that the EU should assess the potential of applying the polluter pays principle (PPP)
126 to agricultural emissions.

⁶ It is worth specifying that Monitoring Reporting and Verification (MRV) costs and transaction costs were not considered in this study.

127 However, there are many challenges in applying the PPP in agricultural GHG mitigation, including
128 the difficulty of monitoring, reporting and verification (MRV) for a non-point source of pollution that
129 is also linked to high levels of heterogeneity of farms environmental performances (European
130 Commission: Directorate-General for Climate Action et al., 2023; Coderoni, 2023). Farmers'
131 performances can in fact vary according to many structural features (farm size, typologies, etc.) that
132 inevitably translate into behavioural heterogeneity. Consequently, homogenous policies will produce
133 heterogeneous responses (Stetter et al., 2022; Esposti, 2022; Coderoni et al., 2024a). Moreover, even
134 when farms show similar structural and behavioural characteristics, site-specific agronomic,
135 ecological and biophysical variables can lead to uneven environmental effects (OECD, 2022).
136 These multiple and complex sources of heterogeneity are among the reasons that over the last two
137 decades, analysts and stakeholders have advocated for agri-environmental policies with a more
138 tailored design (Erjavec and Erjavec, 2015; Ehlers et al., 2021; Mahmoud and Hutchings, 2020).
139 However, not all farm characteristics are easily targetable due to practical or political constraints
140 (Coderoni et al., 2024b). Moreover, information asymmetries prevent policymakers from tailoring
141 policies to those farms that can more effectively mitigate emissions, as they are unaware of farms'
142 individual abatement costs.
143 In the context of information asymmetries, economic theory indicates that market-based policy
144 instruments, like a tax or a tradable permit system for emission rights (a so-called emissions trading
145 system, or ETS), are the most cost-effective way to abate emissions without knowing the cost
146 structure of each farm (NERA, 2007). Both ETS and carbon taxes leave the decision of how much to
147 pollute to the regulated parties, which are better informed about the costs and benefits of mitigation
148 options (NERA, 2007). Thus, regulated parties will abate the amounts of GHG that equal their
149 marginal costs of abatement. In the absence of uncertainty, an efficient level of abatement could be
150 achieved under either policy, even if their distributional effects are different (Walter 2020; McKibbin

151 and Wilcoxen, 2002)⁷. A pure emissions tax would generally induce large transfers of income from
152 firms to the government general funds, while the ETS would generate revenue for the governments
153 only through the (eventual) initial auction of emission permits (Carl and Fedor, 2016). Additionally,
154 it would represent a financial transfer from more to less polluting entities. Thus, some ETS-type of
155 instruments have been shown to be less regressive than carbon taxes, and even slightly progressive
156 (Roberts and Thumin, 2006). As a result, ETSs are usually more politically acceptable than carbon
157 taxes. Moreover, an ETS allows for reaching an environmental objective by setting a GHG reduction
158 target in a cost-effective way, without knowing the abatement costs of each firm (as convenience
159 assessments are left to individual cost-benefit analysis). Instead, to reach a desired emission
160 reduction, a carbon tax should be fixed at its optimal level; otherwise, the environmental outcome is
161 uncertain (NERA, 2007).

162 To attain a more desirable balance of trade-offs, alternative market-based policy designs could
163 capitalise on the advantages of both the carbon tax and the ETS. Hybrid tax-subsidy schemes offer a
164 potential solution (OECD, 2019; Povitkina et al., 2021).⁸ One of these hybrid approaches could take
165 the form of a joint tax and subsidy that applies both the PPP and the provider gets principle (PGP) to
166 CH₄ emissions mitigation. This scheme would apply an environmental standard (in this case, the
167 reduction of 30% CH₄ emissions) to each farm and establish a tax on each unit (tonne) of emissions
168 that exceeds the imposed reduction target or pay a subsidy for each unit of emissions that is reduced
169 above the target.

170 Farmers can decide to pay the tax while continuing to emit above their threshold, or they can receive
171 the subsidy by reducing emissions below this threshold, according to their economic convenience. If
172 this approach is designed so that the total amount of taxes paid by polluting farms equals the subsidies

⁷ As showed by Weitzman (1974), however, in the presence of uncertainties on marginal benefits and costs, taxes and permits are not equivalent. In this case, the relative slopes of the two curves determine which policy would cause a minor welfare loss for society.

⁸ Such a scheme could encourage the adoption of low-emission technologies by returning emissions tax income to firms (Ollier and De Cara, 2024).

173 paid by the government to farms, there would be no burden on government funds (apart from the
174 MRV system).

175 This combined policy tool mimics an ETS in terms of incentives, as it leaves farmers free to decide
176 their most convenient action. Meanwhile, policymakers can continue to ignore individual abatement
177 costs. Unlike the ETS, however, this system does not generate government revenue, as taxes are
178 recycled back to subsidised farmers. Moreover, if the price of the incentive (tax or subsidy) is fixed
179 in advance by the regulatory scheme, the uncertainty that usually exists in the likely future permit
180 price can be reduced, thus encouraging investment decisions (Pezzey, 2003).

181 **3. Materials and methods**

182 **3.1 Data and sample used**

183 The data used in this study are derived from the 2020 Italian FADN, the only harmonised
184 microeconomic database that merges data on farm structure, input use, output produced and economic
185 variables (European Council, 2009) with reference to specialised cattle, pig and poultry farms. The
186 use of the FADN database allows for some proxies of environmental pressure (e.g., input use) to be
187 linked to economic indicators, and for economic and environmental performances to be appraised at
188 the farm level.

189 The FADN survey sample is randomly drawn from the structural survey of the Italian National
190 Institute of Statistics and provides representative data along three dimensions: geographical region
191 (location), economic size and farm specialisation; this latter is of interest here. The survey does not
192 cover all farms, but only those which, due to their size, can be considered professional and market-
193 oriented (i.e., with a standard output higher than 8,000 EUR per year); consequently, the FADN
194 sample is not fully representative of the entire national agricultural sector.

195 The fact that only professional farms are considered in FADN is relevant for this study. Given that
196 many transaction costs associated with MRV are fixed expenses that are independent of farm size,
197 there are considerable MRV-related obstacles to the implementation of mitigation targets for the

198 whole agricultural sector (Bellassen et al., 2015). In fact, including the smallest farms would imply
199 covering relatively high MRV costs compared to the low environmental benefit associated with small
200 amount of GHG reduced. Literature has therefore concluded that optimal coverage is achieved when
201 the marginal benefit (GHG reduction) is equal to the marginal cost (for MRV) of adding another
202 emitter (Ancev et al., 2008). Thus, the approach followed here – of including only professional farms
203 rather than all emitters – seems suitable for achieving higher cost-effectiveness.⁹

204 The analysis is limited to farms that specialise in cattle, pig and poultry. Those were the targeted
205 animal categories included in the proposal for the revision of the European IED, which excludes
206 specialised sheep and goat farms, along with non-specialised livestock farms.

207 We consider the whole 2020 Italian FADN sample of these specialised livestock farms in this study
208 to retain the representativeness of the study in terms of livestock categories. Because the FADN
209 sample is not constant between years, using average values among two or three consecutive periods
210 would have meant losing the representativeness of the work.¹⁰

211 To estimate GHG emissions, we adopt an approach already used in the literature to achieve a farm-
212 level indicator of GHG emissions adapting the IPCC methodology at the micro level (see among
213 others: Coderoni and Vanino, 2022; Dabkiene et al., 2020; Baldoni et al., 2017). We thus reconstruct
214 farm-level CH₄ emissions from manure management and enteric fermentation and convert them in
215 tonnes of CO_{2eq}.¹¹ One of the main value added of the approach here used to estimate CH₄ emissions
216 is that, for enteric fermentation (that represent the bulk of national CH₄ emissions here considered),
217 it allows reflecting management intensity, by leveraging on FADN data on milk production at the
218 farm level (for details on emissions calculation please refer to the appendix A in the supplementary

⁹ It is worth noting that, although the sample refers only to professional farms, the GHG emissions produced by the livestock categories represented in this analysis and reported to the population universe of the Italian agricultural farms, represent 70% (11.1 MtCO_{2eq} against 15.85 MtCO_{2eq}) of 2021 emissions of CH₄ from the same livestock categories in Italy (as reported in the National Inventory Report; ISPRA, 2023).

¹⁰ An analysis on FADN datasets for the years 2019 and 2021 revealed only slight differences with the 2020 sample composition in terms of the main variables characterising different farm types (number of farms, LSUs, UAA, OI). Thus, opting for average values would not have affected results in a relevant way.

¹¹ Hereafter, when mentioning CO_{2eq} emissions, we mean missions from CH₄ converted into CO_{2eq}

219 materials). This makes possible to provide results that reflect farmers' optimization behaviours that
220 depend also on the different micro-level emissions intensity performances, thus letting farm-level
221 heterogeneity emerge in the solution of the model.

222 Table 1 describes some general characteristics of cattle, pig and poultry farms in the sample. Variables
223 reported include the total number of farms in the Italian sample, the utilised agricultural area (UAA),
224 the number of LSUs reared, and the total and average levels of OI and CH₄ emissions.

Table 1. Description of farm sample for the different farm specialisations.

Farms	Total UAA	Total LSU	Total OI	Total CH ₄ emitted	Average CH ₄ emitted	Average CH ₄ to be curbed ^a
<i>n.</i>	<i>Ha</i>	<i>n.</i>	<i>EUR ,000</i>	<i>t¹ CO_{2eq}</i>	<i>t¹ CO_{2eq}</i>	<i>t¹ CO_{2eq}</i>
Dairy cattle	931	40,189	99,782	76,868	321,580	345.4
Beef cattle	466	22,368	35,849	19,436	74,740	160.4
Mixed cattle	153	7,717	9,282	4,947	24,924	162.9
Pig	158	6,491	69,603	19,999	22,116	140.0
Poultry	78	1,025	32,391	11,776	6,306	80.8
Total	1,786	77,790	246,907	133,025	449,666	251.8
						75.5

^a Average quantity of baseline CH₄ emissions to be curbed at farm level to meet the 30% reduction target

Source: Authors' elaborations

225 Cattle farms (60.0% of which specialise in milk production) represent 86.8% of the farms in the
226 sample and produce 93.7% of emissions. Cattle farms rear 58.7% of LSUs on 90.3% of UAA and
227 generate 76.1% of OI. Dairy cattle farms have the highest emissions produced both totally and on
228 average, as well as the highest average quantity to be curbed per farm to meet the 30% mitigation
229 target. The lowest total emissions among cattle farms is produced by mixed farms, while beef farms
230 are intermediate (Table 1). However, on average, these two groups of farms produce a very similar
231 amount of emissions. Pig farms rear 28.2% of LSUs, generate 15% of OI and are responsible for 4.9%
232 of emissions. Finally, poultry farms rear 13.1% of LSUs, generate 8.9% of OI and account only for
233 1.4% of emissions. Compared to dairy cattle farms, these latter groups of farms produce about 40%
234 and 20% of emissions, respectively.

235

3.2 AGRITALIM model with integrated system of tax and subsidy and GHG mitigation

236

target

237

We performed the analysis using the AGRITALIM model, an agroeconomic supply model that uses much of the information reported in the FADN dataset on economic, financial, productive, market, political and structural aspects. The model allows to consider information about farms' geographical areas, altimetric levels and farm types (Cortignani et al., 2022; Dell'Unto et al., 2023); however, for the purpose of this study, results are shown only for farm specialization, OI and LSU.¹² The estimation of CH₄ emissions from livestock farms is a feature only recently included in the model (Cortignani and Coderoni, 2022; Coderoni et al. 2024a) and, for the purposes of this study, we further enrich it by implementing an integrated tax and subsidy system to achieve a reduction of 30% of CH₄ emissions from the baseline. This reduction target was selected because it represents the objective set by the GMP. Our study assumes that this reduction target is equal among all CH₄-emitting units.

247

To reach this target, we used an alternative system of tax or subsidy, modulating the unitary amounts of the incentive to achieve the mitigation target and an equilibrium between the total amount of tax paid and subsidies received by farmers. The model is constructed so that, at the farm level, two alternatives exist: (1) maintain the productive level (and emissions) and pay a tax on each unit of emissions (tonne of CO_{2eq}) exceeding the 30% target reduction, or (2) reduce emissions more than the target reduction (i.e., more than by 30%) and receive a subsidy for each unit of emissions (tonne CO_{2eq}) avoided above the target.

254

The mathematical structure of the model for each farm is specified in the following equations (1–6)¹³.

255

$$\max_X = C X - TL \Delta E^+ + SL \Delta E^- \quad (1)$$

¹² Other results are available upon request.

¹³ The specification of the AGRITALIM model in terms of crop hectares and number of livestock units is here used to represent farmers' decision-making process as farmers usually choose the hectares to cultivate and the number of animals to rear, rather than output quantities (yields and production levels are a subsequent outcome of these choices). From a primal perspective, the two types of models (the one that uses as the decision variable the output quantity and the one that uses crop hectares and number of livestock units) are fully solvable and yield the same solution. Also, from a dual perspective, a model with yields as outcome variable is fully solvable, as demonstrated for example in Cortignani and Severini (2012).

256 $s. to \mathbf{A} \mathbf{X} \leq \mathbf{B} \quad [\lambda] \quad (2)$

257 $\mathbf{LE} = \mathbf{UE} \mathbf{X} \quad (3)$

258 $\mathbf{LEB} = \mathbf{UE} \mathbf{X}^0 \quad (4)$

259 $\mathbf{LER} = \mathbf{LEB} \text{tel}\% \quad (5)$

260 $\mathbf{LE} - \Delta\mathbf{E}^+ + \Delta\mathbf{E}^- = \mathbf{LER} \quad (6)$

261 In these equations, \mathbf{C} is the unitary income of the various \mathbf{X} production activities, \mathbf{TL} is the tax level
 262 for $\Delta\mathbf{E}^+$ emissions above the farm threshold of emissions, and \mathbf{SL} is the subsidy level for $\Delta\mathbf{E}^-$
 263 emissions below the farm threshold of emissions.

264 As shown more in detail in Appendix A, the objective function of the model is represented by the OI
 265 and it results from the optimal combination of activities and inputs. Farms' OI represents the
 266 difference between revenues (including financial support from the First Pillar of the Common
 267 Agricultural Policy), variable costs and part of the fixed costs linked to the annual depreciation of
 268 fixed capital endowments.¹⁴

269 The model is subject to the following structural constraints: In Equation (2), \mathbf{A} is the matrix of
 270 technical coefficients and \mathbf{B} is the matrix of resources availability. Equation (3) calculates the \mathbf{LE}
 271 level of total emissions from the \mathbf{UE} unitary emissions and the level of \mathbf{X} variables under simulation.
 272 Equations (4)–(5) calculate the \mathbf{LEB} level of observed emissions in the baseline (\mathbf{X}^0) and the \mathbf{LER}
 273 level of targeted emission level obtained by multiplying \mathbf{LEB} by the desired targeted emission level
 274 ($\text{tel}\%$; for a reduction target of 30%, the targeted emissions level is 70% of the baseline). Equation
 275 (6) refers to the relationship between \mathbf{LE} and \mathbf{LER} : for each farm, at equilibrium, the level of final
 276 emissions (\mathbf{LE}) must be equal to the level of target emissions (\mathbf{LER}) plus(minus) the emissions
 277 reductions(increase) incurred. It should be noted that $\Delta\mathbf{E}^+$ and $\Delta\mathbf{E}^-$ are both non-negative variables,

¹⁴ Annual depreciations of fixed capital endowments arise only when the corresponding structural variables change and therefore represent activity-related or quasi-fixed costs, rather than fixed costs in the strict accounting sense. Depreciation costs are calculated by dividing the replacement value of the relevant assets by their technical lifetime, as reported in FADN.

It is worth mentioning here that, although some long-term factors regarding new investments (i.e., the depreciation costs), are taken into account, the proposed model is not dynamic as the time factor is not explicitly modelled. Therefore, the analysis conducted is short-term, but it also considers some long-term factors.

278 so they measure the absolute size of the deviation in emissions from the farm threshold. For each
279 farm, only one value can be greater than zero, and the deviation cannot be positive and negative for
280 the same farm. This means that ΔE^+ and ΔE^- are selected in a minimizing way.

281 The model does not impose a constraint of equality between the total amount of taxes paid for
282 emissions exceeding the farm threshold and the subsidies received for emissions reduced below the
283 farm threshold. Instead, this constraint was obtained exogenously by reiterating the simulation with
284 different price levels until equilibrium was reached. Here is where the exploitation of the high
285 heterogeneity in the abatement costs for farms of the sample occurs. Since the farms are very different,
286 the same unitary amount of tax and subsidy splits the sample between those opting to pay the tax (for
287 which the opportunity cost of reducing emission is too high compared to the tax) and those opting to
288 receive the subsidy (for which the opportunity cost of reducing emission is too low compared to the
289 tax). The emergence of the market-clearing price that should be fixed for the unit of emissions to
290 build a system that is almost self-financing results from exploiting this heterogeneity. It should be
291 noted here that the concept of self-financing refers to the fact that the total amount of subsidy that
292 should be paid to farmers who reduce emission below the threshold is paid by taxes from farmers
293 who continue emitting above the threshold. This concept excludes all the implementation and
294 transaction costs incurred, including MRV costs. The equality is, indeed, not perfect (see Section 4),
295 since further adjustments of the unit value of tax and subsidy would be needed. However, in this
296 study, making these adjustments would have created problems in the model resolution phase, since it
297 is very unlikely (though theoretically possible) that the two groups of farms (paying the tax and
298 receiving the subsidy) are perfectly equal in terms of, e.g., number of LSU.

299 4. Results

300 The results of the simulation involve various technical-productive and economic aspects. All results
301 distinguish between the group of farms that would pay the tax and the group of farms that would

302 receive the subsidy, with reference to the different farm types (dairy cattle, beef cattle, mixed cattle,
303 pig, and poultry).

304 Table 2 reports the total emissions produced at the baseline by the different farm types, the quantity
305 of emissions curbed to meet the mitigation target, and the emissions produced above (ΔE^+) and below
306 (ΔE^-) the mitigation target (tonnes of CO_{2eq}). To ensure completeness, we also report the total amount
307 of taxes and subsidies paid.

Table 2. Baseline emissions, emissions curbed under simulation scenario and deviations from the mitigation target (t CO_{2eq}) and total amounts paid for farms opting for the tax or the subsidy.

	Tax				Subsidy			
	Baseline CO _{2eq}	CO _{2eq} curbed	ΔE^+	Total taxes (€)	Baseline CO _{2eq}	CO _{2eq} curbed	ΔE^-	Total subsidies (€)
Dairy cattle	198,234	34,976	24,494	2,706,554	123,347	56,378	19,374	2,140,795
Beef cattle	35,791	6,894	3,843	424,657	38,948	22,992	11,307	1,249,470
Mixed cattle	14,014	3,443	762	84,163	10,910	5,677	2,403	265,583
Pig	18,965	1,649	4,040	446,455	3,151	1,715	770	85,035
Poultry	4,865	437	1,023	112,997	1,441	804	371	41,031
Total	271,870	47,400	34,161	3,774,825	177,797	87,564	34,225	3,781,914

Source: Authors' elaborations.

308
309 In the overall results, ΔE^+ and ΔE^- emissions are nearly equal.¹⁵ The total emissions curbed (under
310 Tax and Subsidy, i.e.: 134,964 t⁻¹ CO_{2eq}) represent, as expected, 30% of baseline emissions (Table 1).
311 The unit value of emissions that is calibrated to achieve the mitigation target, is of course the same
312 for tax and subsidy and is equal to EUR 110.50 t⁻¹ CO_{2eq}. This would be like the clearing-market price,
313 if there was a market. Thus, the total taxes paid by farms that produce emissions exceeding their
314 threshold (EUR 110.5 \times ΔE^+) nearly equals that of subsidies granted to farms that reduce emissions
315 below their threshold (EUR 110.5 \times ΔE^-). This result suggests a neutral impact on public finances
316 (without considering implementation and transaction costs).

¹⁵ Perfect equality between the two values (taxes and subsidies) cannot be achieved for technical reasons. Since price calibration is external to the model, a more precise calibration (e.g., to the level of EUR cents) would theoretically bring the total amount of taxes and subsidies to perfect balance, but this would also cause issues in model resolution. In practice, as farms cannot simultaneously be subject to both the tax and the subsidy, and given their inherent heterogeneity, it is highly unlikely (though theoretically possible) that the two groups of farms (those paying the tax and those receiving the subsidy) would be perfectly identical, for example, in terms of LSU.

317 It is worth noting that farms opting for the tax produce 60% of baseline emissions but contribute only
318 35% to the mitigation effort. The majority (68%) of the mitigation effort is sustained by dairy cattle
319 farms. Despite this, this category continues to produce the highest amount of emissions exceeding the
320 mitigation threshold (ΔE^+). In contrast, beef and mixed cattle farms exhibit a large prevalence of
321 emissions reduced below the mitigation threshold (ΔE^-). As for pig and poultry farms, the quota of
322 ΔE^+ emissions largely exceeds that on ΔE^- emissions.

323 Table 3 reports the impacts on the LSU number yielded by the different farm types and overall, along
324 with their CO_{2eq} emissions. Moreover, it provides information on the percentage incidence of the
325 amount of the subsidy received and the tax paid, and the percentage of farms opting for the subsidy,
326 both within each type and overall. The absolute values of LSU number and CO_{2eq} emissions for the
327 different farm types at the baseline and under simulation are graphically represented in Figure 1
328 (Appendix B in the supplementary materials).

Table 3. Impacts on the LSU number and on CO_{2eq} emissions of farms opting for the tax, for the subsidy
and average ($\Delta\%$ under the simulation with respect to baseline) and percentage incidence of the amount of
the subsidy received and the tax paid and of farms opting for the subsidy on total farms.

	Tax		Subsidy		Average		Subsidy/Tax	Subsidised farms
	LSU	CO _{2eq}	LSU	CO _{2eq}	LSU	CO _{2eq}		
Dairy cattle	-17.6	-17.6	-45.7	-45.7	-28.5	-28.4	79.1	41
Beef cattle	-18.8	-19.3	-57.7	-59	-39.4	-40.0	294.2	41.2
Mixed cattle	-23.6	-24.6	-51.5	-52	-36.2	-36.6	315.6	56.2
Pig	-8	-8.7	-56.5	-54.4	-15.9	-15.2	19	11.4
Poultry	-7.2	-9	-57.5	-55.8	-18.7	-19.7	36.3	16.7
Total	-13	-17.4	-51.4	-49.2	-25.5	-30	100.2	38.7

Source: Authors' elaborations.

329
330 First, it is worth noting that a strict relationship binds the reduction of CH₄ emissions and the number
331 of LSUs, in the absence of any feasible mitigation option that reduces the amount of CH₄ emitted per
332 LSU like modifications of manure management practices, vaccination against methanogenic bacteria,
333 feed rations supplementation (Magnapera et al., 2025), etc... Such options were not considered at this
334 stage of the analysis; thus, curbing emissions was possible only by reducing the number of LSUs. In
335 fact, this study does not consider technological mitigation options because the objective here is not

336 to appraise the possible benefits and costs of these mitigation options. Therefore, impacts shown must
337 be considered as a worst-case or short-term scenario, in which it is not possible to change the
338 production technology.

339 In the overall results, farms opting for the tax reduced their emissions (and number of LSUs) much
340 less than those opting for the subsidy.

341 Regarding the different farm types, cattle farms (in particular, mixed and beef cattle) are most likely
342 to opt for the subsidy. Thus, cattle farms are the only type to receive an amount of subsidies that
343 exceeds the taxes paid, due to the relevant reduction of emissions they achieve. On opposite, only a
344 limited share of pig and poultry farmers opt for the subsidy. Pig farms were the least likely to adopt
345 the subsidy, and they received the lowest number of subsidies compared to the taxes paid. To
346 understand the technical and economic motivations behind these farms behaviours, Table 4 and the
347 corresponding Figure 2 in Appendix B in the supplementary materials show the values of three key
348 indicators for the different farm types and overall: (i) methane emission intensity (MEI; i.e., tonnes
349 of CH₄ in CO_{2eq} divided by the LSUs), (ii) profitability per LSU (PLSU; i.e., OI divided by the
350 number of LSUs) and (iii) methane productivity (MeP; i.e., the OI generated by one tonne of CH₄ in
351 CO_{2eq}).

352 The first section of the table (Baseline) shows the value of the indicators at the baseline for the two
353 groups of farms that opt for paying the tax or receiving the subsidy; the second section (Simulation)
354 reports the same information with reference to the same groups for the values assumed by the
355 indicators under the simulation.

Table 4. Average values of MEI, PLSU and MeP for the two groups of farms that opt for paying the tax or receiving the subsidy, under the Baseline and the Simulation.

	Baseline					
	Tax			Subsidy		
	MEI	PLSU	MeP	MEI	PLSU	MeP
Dairy cattle	3.25	903	278	3.18	562	177
Beef cattle	2.12	751	355	2.05	356	173
Mixed cattle	2.74	682	249	2.61	350	134
Pig	0.33	323	995	0.28	100	357

Poultry	0.19	427	2,189	0.19	151	780
Total	1.63	606	371	2.21	400	181
Simulation						
		Tax			Subsidy	
	MEI	PLSU	MeP	MEI	PLSU	MeP
Dairy cattle	3.25	1,004	309	3.18	1,010	318
Beef cattle	2.11	868	412	1.99	865	434
Mixed cattle	2.71	824	304	2.58	713	276
Pigs	0.32	342	1,059	0.29	231	788
Poultry	0.19	454	2,375	0.20	355	1,761
Total	1.55	653	421	2.30	815	354

Source: Authors' elaborations.

356

357 The results in the last row of the Baseline section reveal that farms opting for the subsidy tend to have
 358 a lower value of PLNU and MEI than those opting for the tax, and this is true across all the different
 359 farm types. The higher share of cattle farms among those opting for the subsidy leads the average
 360 value of MEI to be higher for farms opting for the subsidy, even though the values of the different
 361 farm types are lower than those opting for the tax.

362 Relevant differences also emerge among farm types. Dairy cattle farms exhibit the highest MEI and
 363 PLNU, while the highest MeP is found among beef cattle farms opting for the tax, as they tend to
 364 have a low MEI compared to the other cattle farms in this group. The highest value of MeP within
 365 the whole sample is associated with poultry farms, which have the lowest MEI and an intermediate
 366 level of PLNU. Pig farms exhibit an intermediate MEI, which, in combination with the lowest PLNU,
 367 leads to intermediate MeP values.

368 Similar considerations are seen when analysing the values of the indicators of the different farm types
 369 under the Simulation scenario. It is worth highlighting that PLNU and MeP increase compared to the
 370 baseline, even doubling in the case of the farms opting for the subsidy. This result is partly explained
 371 since 35% of farms opting for the subsidy would have a negative OI in the baseline, if the contribution
 372 from the Common Agricultural Policy (CAP) First Pillar payments were not included. Thus, these
 373 farms probably prefer to cut production, forgoing the CAP coupled support and opting for the CH₄

374 reduction subsidy. These farms also demonstrate a slight increase in MEI values in contrast with the
375 farms opting for the tax.

376 When analysing the impacts on the single farm types opting for the tax, it is necessary to consider
377 how reducing the number of LSUs (and emissions) affects mixed cattle farms, in comparison with
378 pig and poultry farms and other types of cattle farms. As shown in Table 4, these farms exhibit the
379 lowest value of MeP along with a still-high value of MEI (second only to dairy cattle farms). When
380 looking at the farms opting for the subsidy, the drop in production activities is particularly dramatic
381 for beef cattle, poultry and pig farms.

382 Table 5 shows the impacts on OI of the different farm types and overall. The left section reports actual
383 impacts on OI, including the economic cost of reducing production activities, as necessary to meet
384 the mitigation target, and the financial impacts of taxes and subsidies on farms' budgets. In the right
385 section of Table 5, we considered only the impacts of activities that reduced production, excluding
386 the financial impact of taxes and subsidies on farms' budgets. The absolute values of OI generated
387 by the different farm types under baseline and simulation are graphically reported in Figure 3
388 (Appendix B in the supplementary materials).

Table 5. Impacts on OI of farms opting for the tax, for the subsidy and average, with and without the impacts of taxes and subsidies on farms' budget ($\Delta\%$ under the simulation with respect to baseline).

	With taxes and subsidies			Without taxes and subsidies		
	Tax	Subsidy	Average	Tax	Subsidy	Average
Dairy cattle	-8.4	-2.4	-6.7	-3.5	-12.2	-5.9
Beef cattle	-6.3	2.8	-3.1	-2.9	-15.8	-7.4
Mixed cattle	-7.8	-1.2	-5.9	-5.4	-19.4	-9.5
Pig	-2.8	0.7	-2.7	-0.5	-6.9	-0.8
Poultry	-1.3	-0.2	-1.2	-0.2	-3.8	-0.5
Total	-6.3	-1.1	-5.0	-2.6	-12.8	-5.0

Source: Authors' elaborations.

389
390 The overall results in the left section of Table 5 indicate that farms opting for the subsidy are nearly
391 compensated for OI losses due to the reduction in their production activities (-1.1%), while tax burden
392 reduces the OI of the farms opting for this instrument by 6.3%. When excluding the financial impacts

393 of tax and subsidy, the situation is reversed. The much milder reduction of production activities
 394 undertaken by the farms opting for the tax would determine equally mild impacts on their OI (-2.6%).
 395 Instead, the negative impacts on OI are much stronger for the farms opting for the subsidy (-12.8%),
 396 although this impact is far less than proportional to the level of reduction of productive activities these
 397 farms undertake (-51.4% of LSU, as reported in Table 3). This less-than-proportional reduction of
 398 OI with respect to the level of production activities is due to the strong increase of PLSU and MeP
 399 that occurred for these farms in the simulation (Table 4).

400 When examining the different farm types and considering the financial impact of tax and subsidy,
 401 cattle farms (particularly dairy cattle and mixed cattle) are the most negatively affected due to having
 402 the highest MEI and lowest MeP (Table 4). Even when excluding the financial impact of tax and
 403 subsidy, the worst impacts again affect mixed cattle farms, since these farms more frequently opt for
 404 the subsidy and receive the highest amount of subsidies with respect to taxes paid. For the same
 405 reason, the opposite occurs considering the average impacts on OI of pig and poultry farms, which
 406 make less recourse to – and thus receive a lower share of – the subsidy.

407 To provide evidence of the wide heterogeneity between farms' performances, Table 6 shows baseline
 408 values of OI and CH₄ emitted and the impacts on these variables from the application of the combined
 409 economic policy tool, together with their Coefficients of Variation (CV).

Table 6. Average value of OI (EUR ,000) and CH₄ (t) at the baseline and Δ% under simulation, and
 respective Coefficients of Variation (CV).

	Baseline OI		Baseline CH ₄		Δ% OI		Δ% CH ₄	
	Average	CV	Average	CV	Average	CV	Average	CV
Dairy cattle	82.6	231.4	345.4	141.9	-27.0	-897.7	-29.9	-62.8
Beef cattle	41.7	334.8	160.4	237.9	-26.2	-787.4	-32.6	-75.0
Mixed cattle	32.3	387.1	162.9	291.1	-6.4	-412.0	-37.7	-65.1
Pig	126.6	166.8	140.0	145.1	-5.9	-360.5	-13.3	-137.0
Poultry	151.0	215.5	80.8	199.5	-2.4	-167.3	-13.8	-138.4
Total	74.5	250.7	251.8	176.2	-22.1	-926.3	-29.1	-75.1

Source: Authors' elaborations

410

411 As evidenced by the high values of CV, a large heterogeneity characterises the farm types under
412 analysis at the baseline, with beef and mixed cattle farms being the most heterogeneous both in terms
413 of OI and of CH₄ emitted. Instead, dairy cattle farms show the lowest heterogeneity in terms of
414 emissions, indicating that the high level of emissions is a characteristic inherent to this type of farming
415 (in line with the value MEI values reported in Table 4). Under simulation, these farms experiment the
416 worst impact on OI with the highest level of heterogeneity, closely followed by beef cattle farms.
417 Instead, both the extent of the impacts and their variability gradually reduce in mixed cattle, pig and
418 poultry farms. Thanks to the lowest MEI, these latter two farm types reduce the lowest their CH₄
419 emissions, although with the highest heterogeneity. For the opposite reason, cattle farms (and
420 particularly mixed cattle farms) reduce the most their emissions, with a halved level of variability.
421 Relevant heterogeneity also exists among different territorial areas of Italy (see Table A1 in the
422 Appendix C-Supplementary materials). Differences among territorial areas stem from the different
423 distribution of farm types within them and from their own peculiarities. A detailed analysis of these
424 aspects falls out the scope of this study, but some general considerations can be made. Farms located
425 in the Regions of central Italy show the highest heterogeneity in baseline OI, despite a lower average
426 than farms operating in northern Italy. As for emissions, the largest heterogeneity occurs in the insular
427 Regions, which however are characterised by the lowest average. Considering the negative impacts
428 on OI, the Regions of northern Italy show the highest magnitude, both in terms of variability and on
429 average. Instead, the highest variability among farms and the strongest average emissions reduction
430 occur in the insular Regions. A sensitivity analysis was finally performed to evaluate the eventual
431 different impacts derived from imposing d reduction targets (-25% and -35% with respect to baseline
432 level of emissions). The overall results indicate that the extent of the impacts on OI, LSU and
433 emissions increase in a consistent way as the mitigation target becomes more ambitious (Table A2 in
434 the Appendix D-Supplementary materials).

435 **5. Discussions and Policy Implications**

436 This study simulates the impacts of the application of GMP mitigation target to the Italian livestock
437 sector, simulating a policy tool that combines a tax and a subsidy that single farms can choose between
438 to reach the overall national target.

439 At the farm level, a tax is imposed on each unit of emissions that exceeds the targeted amount, while
440 a subsidy is granted for each unit of emissions that is reduced above the target. By opting for the tax,
441 a farm can produce CH₄ emissions exceeding its targeted reduction of emissions, potentially keeping
442 the emissions unchanged with respect to its baseline. If a farm instead opts for the subsidy, it chooses
443 to reduce CH₄ emissions more than the mitigation target, thus contributing more than the standard to
444 climate change mitigation.

445 The proposed policy instrument is exogenously built to approach financial self-sufficiency. The
446 heterogeneity of farms' characteristics and productivity, shown in Table 6, make this outcome likely.
447 As the degree of homogeneity increases, the instrument might become less efficient in reaching this
448 objective, as farms' relative convenience would converge.

449 The choice to reduce emissions or pay taxes drives the optimisation behaviour based on farm-level
450 abatement costs (represented in this case by the opportunity cost of production, i.e., PLSU) and
451 emissions' performances (MEI and MeP).

452 When examining the impacts generated, it is worth noting that in the study, a reduction of emissions
453 is currently possible only by reducing the number of animals (LSUs). As specified, in fact, our model
454 does not consider any technical or technological mitigation option for reducing emissions per LSU
455 while retaining animals. European Commission: Directorate-General for Climate Action et al. (2023)
456 stress that for cattle farms in particular, abatement using technical options has limited emissions
457 reduction potential. Therefore, these farms primarily need to reduce livestock numbers, as the number
458 of LSUs is inherently tied to the level of GHG emissions (USDA, 2004). Reducing LSUs represents
459 the most direct (and drastic) mitigation measure. Of course, impacts on OI are much lower than those
460 estimated by Coderoni et al. (2024a) for the introduction of a tax (of a maximum of 100 EUR per

461 tonne of CO₂eq) alone, as, in this case, farmers can choose to opt for mitigating emissions or paying
462 taxes. However, impacts on LSUs are almost identical.

463 In particular, the simulated impacts on production (specifically of farms opting for the subsidy) are
464 remarkable. The average reduction in LSUs in farms opting for the subsidy exceeds 50%, with peaks
465 of -56.5% and -57.5% for pig and poultry farms. For these farm types, it is notable that almost 30%
466 showed high dependence on the CAP First Pillar payment in the baseline, indicating that they are
467 inefficient in producing OI without the subsidy. In the presence of such taxation, they have likely
468 opted to reduce their herd size and receive the subsidy.

469 In this scenario, however, it is likely that many of the most impacted farms will be forced to exit the
470 market or drastically modify their productive specialisation in the medium to long run. These impacts
471 must be considered as the bottom line in case no policy intervention is undertaken to facilitate the
472 adoption of alternative mitigation options by farmers and no spontaneous adoption by the latter
473 occurs. Indeed, it may not be realistic to expect farmers to spontaneously adopt mitigation options,
474 particularly in the short run. Implementing these measures could contribute, on the one hand, to
475 mitigating the impact on production levels, but on the other hand, it requires having financial
476 resources available to invest, and thus increases production costs.

477 Usually, in the presence of a price on carbon, rational farmers adopt technologies for mitigating GHG
478 emissions if these technologies improve their economic sustainability; thus, what really matters in
479 implementing these measures is the interplay between mitigation potential (that would reduce the
480 amount of tax to pay or increase the subsidy to receive) and the costs of its implementation (Auld et
481 al., 2014; Blandford and Hassapoyannes, 2018; Bakam et al., 2012; Moran et al., 2010). In addition,
482 if the reduction targets are relevant, impacts on LSUs are as well, unless not all farms apply the
483 mitigation measures (Coderoni et al., 2024a). Thus, the policy should provide support to cover the
484 cost of mitigation technologies and ensure the effectiveness of the strategy.

485 Our results show that the choice to reduce productive activities, as well as the level of reduction with
486 respect to the mitigation target, can be explained by considering three proxies of productivity and

487 efficiency performance at the farm level, with respect to CH₄ emissions produced. The first (MEI)
488 pertains to CH₄ emission intensity (i.e., the ratio between emissions and the number of LSUs reared).
489 The second (PLSU) relates to the profitability (in terms of OI) of each LSU. The third (MeP)
490 combines the information from the first two, quantifying the productivity or profitability (in terms of
491 OI) of each unit of CH₄ emissions (expressed in CO_{2eq}). The modelling tool's optimisation of OI
492 involves increasing PLSU and MeP in the presence of taxes and subsidies. In general, the higher
493 PLSU in the farms opting for the tax prevents them from reducing the number of LSUs to the level
494 necessary to achieve the mitigation target. On the contrary, farms with lower PLSU opt for the subsidy
495 because it is convenient to reduce emissions far below the mitigation target, along with reducing their
496 production level. This makes it possible for these farms to (i) receive the subsidy on the quota of
497 curbed emissions below the threshold and (ii) reduce the production costs in the presence of a lower
498 baseline PLSU. This means that only farms with higher productivity will continue to emit in excess
499 of the mitigation target (paying the tax), while the others will reduce their emissions below the target
500 (receiving the subsidy).

501 An interesting aspect is that farms opting for the tax manage to reduce their CH₄ emissions more than
502 proportionally to the number of LSUs, while reducing emissions is more “costly” in terms of LSUs
503 for the farms opting for the subsidy (although they reach higher levels of reduction). However, these
504 farms achieve a less-than-proportional reduction of emissions with respect to the number of LSUs.
505 This is because they have a lower baseline MEI than the farms opting for the tax, which slightly
506 increases under the simulation.

507 It is also interesting to note the strong increase, under the simulated scenario, of the average value of
508 PLSU and MEI, particularly for farms opting for the subsidy. This increase could also result from
509 reducing the herd size for those farms that would have not been profitable (without CAP support) in
510 the baseline and thus opt for reducing inefficient production units if taxed.

511 Results in terms of GHG reduction with respect to the GHG price are not directly comparable to other
512 studies that simulate the introduction of an ETS or the pricing of GHG emissions. We only address

513 CH₄ emissions from the Italian livestock sector, while other studies usually consider applying an ETS
514 or an emission price to the whole agricultural sector (at the European or country level) (see among
515 others: Pérez Domínguez et al., 2020). However, some comparisons are possible with other works in
516 the literature. For example, the market-clearing price derived in this study, which would permit
517 reaching the 30% GHG reduction target, is 110.50 EUR t⁻¹ CO₂eq. Isbasoiu et al. (2020) and Pérez
518 Domínguez et al. (2020), who calculated a similar GHG price (100 EUR t⁻¹ CO₂eq), estimate a GHG
519 reduction of 25%. Furthermore, in terms of subsidies, this emission price is similar to other payments
520 made under the Italian CAP (e.g., agro-environmental payments to reduce ammonia emissions or
521 livestock-related eco-schemes).

522 *5.1. Policy implications*

523 In terms of policy implications, the results presented here could be useful as they represent the first
524 ex-ante modelling of the application of the GMP to Italian livestock sector, thus, they could be used
525 to appraise the impacts of such target on different specialisations, to provide a policy to support the
526 transition for more heavily affected farms. Besides, they could provide a preliminary indication of
527 the tentative price required for livestock emissions to reach this ambitious target.

528 In terms of policy efficiency and efficacy, the analysed tool combining a tax and a subsidy, like an
529 emission standard, allows for reaching a desired reduction target, but unlike the standard, it also
530 compensates virtuous behaviour with the subsidy (thus purses the PGP).

531 From the policymaker perspective, like the ETS, this tool allows for reaching the environmental
532 objective by addressing the heterogeneity of farms' performances in terms of mitigation potentials
533 that overcome information asymmetries between the polluter (farms) and the policymaker. Unlike
534 ETS, this system does not foresee a mechanism for the market of credits; thus, part of the
535 implementation costs should be lower (as, for example, there is no need for a registry for the credits),
536 although MRV issues remain.

537 MRV issues are linked to two main (interlinked) problems: complexities and costs. MRV
538 complexities are present because agricultural emissions are challenging to quantify. The sector is a

539 non-point source of pollution, and emissions derive from all agricultural activities across the rural
540 landscape (Smith et al., 2014). Usually, there is a direct proportion between estimation accuracy and
541 the cost of estimation itself. This brings us to the second relevant issue: MRV costs. MRV costs per
542 tonne of GHG reduction are primarily driven by the size of the source. Significant transaction costs
543 associated with MRV are thought to be fixed expenses that are independent of farm size (Bellassen
544 et al., 2105). This fact heavily influences the discussion on the cost-effectiveness of including small
545 farms in the system. An “on farm” ETS option, like the one simulated here, although excluding small
546 non-professional farms, would include farmers as direct participants, bringing much higher
547 complexity and administrative costs compared to “downstream” and “upstream” options that involve
548 dairy and meat processors or fertiliser and feed sellers as participants (European Commission:
549 Directorate-General for Climate Action et al., 2023). Although the availability of proxy data can
550 reduce these costs, as some data required for MRV is already collected under existing agricultural
551 regulations and applications for subsidies under the EU CAP – and synergies could be established
552 with the IED (European Commission, 2022) – significant information remains to be collected to have
553 a proper estimation at the farm level.¹⁶
554 Another aspect to consider in implementing such a policy tool is that subsidising farmers to reduce
555 their emissions might be less efficient and potentially more market distortive than the alternative
556 approach based on taxation, beyond the risk of overcompensating farmers for reducing emissions
557 (OECD, 2019; 2022). In this approach, the potential for creating a distorting effect is partly
558 counterbalanced by the fact that the money needed to pay the subsidy is self-financed from an
559 environmental tax. This method yields a neutral impact on public finances (without accounting for
560 implementation and transaction costs), as well as an income transfer between farms. In the case
561 simulated by this study, funds are transferred from pig and poultry farms to cattle farms. The latter

¹⁶ Indeed, a proper estimation of agricultural GHG emission is a very complex issue and the private sector initiatives have worked extensively on data quality for the agricultural measures to be included the Science Based Target initiative (SBTi) (<https://sciencebasedtargets.org/blog/the-sbti-flag-updates>) (accessed 08/11/2025).

562 benefit most from the subsidy, both in terms of the number of farms and the amount of subsidy
563 received, but a similar redistributive effect also occurs among these farms (e.g. from dairy to beef and
564 mixed farms).

565 It is therefore necessary to reflect on losses in terms of employment¹⁷, territorial protection and control
566 of the territory by more extensive livestock farms, as well as carbon leakage. We consider these
567 factors in the absence of relevant modifications of consumers' behaviour towards the consumption of
568 animal products.¹⁸ Sustained internal demand is likely to lead, at least in part, to relocating production
569 to countries where no emissions mitigation policy is in place, with a consequent increase in imports
570 from outside the EU.

571 Moreover, policy coherence analysis should be assessed overall (Coderoni, 2023). While such a
572 policy framework could be coherent with the IED, the Farm to Fork Strategy, animal welfare
573 legislation and the CAP, it may conflict with coupled income support for livestock under the CAP
574 (European Commission: Directorate-General for Climate Action et al., 2023).

575 *5.2. Limitations of the study*

576 Among the limitations of the study, the AGRITALIM model cannot consider changes in internal
577 demand and international trade dynamics. However, the impacts it estimates – with a 25.5% reduction
578 of reared LSUs for Italy alone – will hardly avert such a phenomenon, which a substantial body of
579 literature warns about (Arvanitopoulos et al., 2021; Pérez Domínguez et al., 2016; Van Doorslaer et
580 al., 2015; Dumortier et al., 2012; Caro et al., 2017). This risk could be reduced through multilateral
581 agreements with countries exporting in the EU, free allocation of GHG permits to farms or a Carbon
582 Border Adjustment Mechanism (European Commission: Directorate-General for Climate Action,
583 2023).

¹⁷ European Commission: Directorate-General for Climate Action et al. (2023) identifies the presence of livestock as an important risk-reduction strategy for vulnerable rural communities, the use of a threshold level of LSUs for the smallest farms should be carefully considered.

¹⁸ For an assessment of the importance of integrating economic and environmental policies to enhance global food sustainability see Frontuto et al. (2025).

584 Another limitation of the study is the assumption that the emissions distribution across farms in a
585 particular year (in this case, 2020) represents an adequate baseline on which to base a tax and subsidy
586 regime, as individual farmers could claim that the baseline year chosen is not representative of their
587 farms. While not fully relevant to the ex-ante simulation here proposed, this issue should be
588 adequately considered in case of actual implementation of such policy tool.

589 Another means of improving the modelling tool would be to incorporate technological mitigation
590 options that could function as an alternative to reducing the number of LSUs.

591 **6. Conclusions**

592 The present study employed a micro-level economic modelling approach to assess the results of a
593 combined policy tool to curb CH₄ emissions from Italian cattle, pig and poultry specialist farms. The
594 tool combines a tax on farms whose emissions exceed a set threshold and a subsidy on farms that
595 reduce emissions below the threshold. This threshold is a 30% reduction target (with respect to the
596 2020 baseline) as set by the GMP. Farmers are thus free to decide whether to pay the tax on GHGs
597 emitted above the threshold or to reduce emissions below this threshold and receive a subsidy. They
598 make this decision according to their economic profitability, as determined by the optimisation
599 positive mathematical programming model. Furthermore, the proposed policy instrument is
600 financially self-sufficient because of the heterogeneity of farms' characteristics and productivity. This
601 heterogeneity causes the farms to split among those opting for the tax (i.e., those with higher
602 productivity) or the subsidy (i.e., those with lower productivity). The exogenous setting of a GHG
603 mitigation target also allows the simulation to determine the market-clearing price of CH₄ emissions
604 that would allow Italy's livestock sector to reach this target.

605 The results highlight the heterogeneity of farmers' behaviour, as influenced by the profitability and
606 emission intensity of their livestock activities. In general, the analysed policy instrument would yield
607 a stronger negative impact on less productive farms (i.e., beef and, particularly, mixed cattle). These
608 farms are characterised by a much higher MEI than pig and poultry farms and a lower PLSU than

609 dairy cattle farms. Consequently, the share of farms opting for the subsidy is highest among these
610 farms, with dramatic production losses. Insights from this research could be used to help
611 policymakers understand the diversified impacts of such a policy framework on livestock farms and
612 the possible compensation they could provide to specific specialisations and territories.
613 Future research could replicate the study by simulating different minimum farm sizes (in terms of
614 LSUs or income) to be included in the framework in order to assess the cost-effectiveness of the
615 policy, according to different point of obligations design. Moreover, the model could be implemented
616 considering alternative and combined technical mitigation options to assess the mitigation potential
617 of the sector and more properly estimate impacts on productions allowing technological progress.
618 This could be more easily implementable with database improvements that could capture the presence
619 and impacts of different mitigation measures (e.g. with the transition to the Farm Sustainability Data
620 Network). Lastly, future studies should simulate the impacts of a likely CAP reform that divert
621 financial resources to direct support to agricultural incomes, to direct support for GHG emissions
622 reduction.

623 **References**

624 Acosta A., Cicowicz M., Nicolli F., Rostan F. (2023). Economic, social and environmental effects of
625 reducing dairy methane emissions through market-based policies: An application of the Livestock
626 Policy Simulation Model, Journal of Policy Modeling 45 (2023) 345–361,
627 <https://doi.org/10.1016/j.jpolmod.2023.02.006>

628 Aguilera E., Reyes-Palomo C., Díaz-Gaona C., Sanz-Cobena A., Smith P., García-Laureano R.,
629 Rodríguez-Estévez V. (2021). Greenhouse gas emissions from Mediterranean agriculture:
630 Evidence of unbalanced research efforts and knowledge gaps, Global Environmental Change (69)
631 102319, <https://doi.org/10.1016/j.gloenvcha.2021.102319>

632 Ancev, T. (2008), All Cost Considered: Should Agriculture Be a Part of a National ETS?, Farm Policy
633 Journal: 5 (4): 21-29

634 Arvanitopoulos, T., Garsous, G. and Agnolucci, P. (2021). Carbon leakage and agriculture: A
635 literature review on emissions mitigation policies. OECD Food, Agriculture and Fisheries Papers
636 169, OECD Publishing: Paris, France.

637 Auld G., Mallett A., Burlica B., Nolan-Poupart F., Slater R. (2014). Evaluating the effects of policy
638 innovations: Lessons from a systematic review of policies promoting low-carbon technology,
639 Global Environmental Change, 29: 444-458, <https://doi.org/10.1016/j.gloenvcha.2014.03.002>

640 Baldi, L., Calzolai, S., Arfini, F., Donati, M. (2024). Predicting the effect of the Common Agricultural
641 Policy post-2020 using an agent-based model based on PMP methodology. Bio-based and Applied
642 Economics 13(4):333-351. doi: 10.36253/bae-14592

643 Baldoni E., Coderoni S., Esposti R. (2017). The productivity and environment nexus through farm-
644 level data. The Case of Carbon Footprint applied to Italian FADN farms. Bio-based and Applied
645 Economics 6(2): 119-137, 2017, DOI: 10.13128/BAE-19112

646 Bakam I., Balana B.B. and Matthews R. (2012). Cost-effectiveness analysis of policy instruments for
647 greenhouse gas emission mitigation in the agricultural sector. Journal of Environmental
648 Management 112 (2012) 33-44, <http://dx.doi.org/10.1016/j.jenvman.2012.07.001>

649 Bellassen, V., Stephan, N., Afriat, M. et al. (2015). Monitoring, reporting and verifying emissions in
650 the climate economy. Nature Clim Change 5, 319–328. <https://doi.org/10.1038/nclimate2544>

651 Blandford, D. and Hassapoyannes K. (2018), The role of agriculture in global GHG mitigation,
652 OECD Food, Agriculture and Fisheries Papers, No. 112, OECD Publishing, Paris.
653 <http://dx.doi.org/10.1787/da017ae2-en>

654 Cai B., Bo X., Zhang L., Boyce J., Zhang Y., Lei Y. (2016). Gearing carbon trading towards
655 environmental co-benefits in China: Measurement model and policy implications, Global
656 Environmental Change, (39): 275-284, <https://doi.org/10.1016/j.gloenvcha.2016.05.013>

657 Carl J., Fedor D. (2016). Tracking global carbon revenues: A survey of carbon taxes versus cap-and-
658 trade in the real world, Energy Policy 96(2016)50–77,
659 <http://dx.doi.org/10.1016/j.enpol.2016.05.023>

660 Caro, D., Frederiksen, P., Thomsen, M., Branth Pedersen, A. (2017). Toward a more consistent
661 combined approach of reduction targets and climate policy regulations: The illustrative case of a
662 meat tax in Denmark, *Environmental Science & Policy*, 76: 78-81,
663 <https://doi.org/10.1016/j.envsci.2017.06.013>

664 Cerutti, N., Lamb, W.F., Crippa, M., Leip, A., Solazzo, E., Tubiello, F.N., Minx, J.C. (2023). Food
665 system emissions: a review of trends, drivers, and policy approaches, 1990–2018, *Environ. Res.
666 Lett.* 18 (2023) 074030, DOI 10.1088/1748-9326/acddfd

667 Coderoni S. (2023). Key policy objectives for European agricultural policies: Some reflections on
668 policy coherence and governance issues, *Bio-based and applied economics*, DOI: 10.36253/bae-
669 13971

670 Coderoni S., Dell'Unto D., Cortignani R. (2024a). Curbing methane emissions from Italian cattle
671 farms. An agroeconomic modelling simulation of alternative policy tools, *Journal of Environmental
672 Management*, 351 (2024) 119880, <https://doi.org/10.1016/j.jenvman.2023.119880>

673 Coderoni S., Esposti R., Varacca A. (2024b). How differ-ently do farms respond to agri-
674 environmental poli-cies? A probabilistic machine-learning approach. *Land Economics*, May 2024,
675 100 (2): 370–397, <https://doi.org/10.3368/le.100.2.060622-0043R1>

676 Coderoni S., Vanino S. (2022). The farm-by-farm relationship among carbon productivity and
677 economic performance of agriculture, *Science of the Total Environment*, 819, 153103.

678 Cortignani, R., Buttinelli, R. and Dono, G. (2022). Farm to Fork strategy and restrictions on the use
679 of chemical inputs: Impacts on the various types of farming and territories of Italy. *Science of the
680 Total Environment*, 810, 152259.

681 Cortignani, R. and Coderoni, S. (2022). The impacts of environmental and climate targets on
682 agriculture: Policy options in Italy. *Journal of Policy Modeling*, 44(6), 1095-1112.

683 Cortignani R., Severini S. (2012). A constrained optimization model based on generalized maximum
684 entropy to assess the impact of reforming agricultural policy on the sustainability of irrigated areas.
685 *Agricultural Economics*, 43(6), 621–633.

686 Dabkienė, V., Baležentis, T. and Štreimikienė, D. (2020). Calculation of the carbon footprint for
687 family farms using the Farm Accountancy Data Network: A case from Lithuania. *Journal of*
688 *Cleaner Production*, 262, 121509.

689 Dales, J. H. (1968). *Pollution, Property and Prices*. Toronto, University of Toronto Press.

690 Dell'Unto D., Dono G., Cortignani R. (2023). Impacts of Environmental Targets on the Livestock
691 Sector: An Assessment Tool Applied to Italy, *Agriculture*, 13, 742.

692 Dell'Unto, D., Selvaggi, R., Pappalardo, G. and Cortignani, R. (2025). Adoption of precision livestock
693 farming devices in the dairy cattle sector: An assessment based on agroeconomic
694 modelling. *Science of The Total Environment*, 1002, 180555.

695 Dumortier, J., Hayes, D. J., Carriquiry, M., Dong, F., Du, X., Elobeid, A., Fabiosa, J.F., Martin, P.A.,
696 Mulik, K. (2012). The effects of potential changes in United States beef production on global
697 grazing systems and greenhouse gas emissions. *Environmental Research Letters*, 7(2), 024023.

698 Ehlers, M. H., Huber, R., & Finger, R. (2021). Agricultural policy in the era of digitalisation. *Food*
699 *Policy*, 100, 102019.

700 Erjavec, K., Erjavec, E. (2015). Greening the CAP – Just a fashionable justification? A discourse
701 analysis of the 2014–2020 CAP reform documents. *Food Policy* 51: 53–62.

702 Esposti, R. (2022). The Coevolution of Policy Support and Farmers Behaviour and Performance. An
703 investigation on Italian agriculture over the 2008-2019 period. *Bio-Based and Applied Economics*
704 11(3): 49-82. <https://doi.org/10.36253/bae-12912>

705 European Commission: Directorate-General for Climate Action, Trinomics, Bognar, J., Lam, L.,
706 Forestier, O., Finesso, A., Bolscher, H., Springer, K., Nesbit, M., Nadeu, E., Hiller, N., Dijk, R.
707 v., Jakob, M., Tarpey, J., McDonald, H., Zakkour, P., Heller, C., Görlach, B., Scheid, A., &
708 Tremblay, L.-L., (2023). Pricing agricultural emissions and rewarding climate action in the agri-
709 food value chain, Publications Office of the European Union.
710 <https://data.europa.eu/doi/10.2834/200>

711 European Commission (2022). Proposal for amending Directive 2010/75/EU of the European
712 Parliament and of the Council of 24 November 2010 on industrial emissions and Council Directive
713 1999/31/EC of 26 April 1999 on the landfill of waste, COM(2022) 156 final/3, Strasbourg,
714 5.4.2022.

715 European Commission (2020). An EU strategy to reduce methane emissions COM(2020) 663 final,
716 Brussels.

717 European Commission (2019). The European Green Deal. COM(2019) 640 final, Brussels.

718 European Council (2009). Council Regulation (EC) No 1217/2009 of 30 November 2009 setting up
719 a network for the collection of accountancy data on the incomes and business operation of
720 agricultural holdings in the European Community. OJ L 328, 15.12.2009.

721 European Court of Auditors (2021). Special Report: The Polluter Pays Principle: Inconsistent
722 application across EU environmental policies and actions.

723 European Scientific Advisory Board on Climate Change (2024). Towards EU climate neutrality.

724 European Union (2022). European Union Methane Action Plan, available at the following url:
725 https://energy.ec.europa.eu/topics/carbon-management-and-fossil-fuels/methane-emissions_en,
726 accessed on 10/10/2024. Progress, policy gaps and opportunities. Assessment Report 2024,
727 Luxembourg: Publications Office of the European Union, 2024, ISBN 978-92-9480-612-3,
728 doi:10.2800/216446

729 FAO (2023). Pathways towards lower emissions – A global assessment of the greenhouse gas
730 emissions and mitigation options from livestock agrifood systems. Rome
731 <https://doi.org/10.4060/cc9029en>

732 Fellmann, T., Witzke, P., Weiss, F., Van Doorslaer, B., Drabik, D., Huck, I., ... and Leip, A. (2018).
733 Major challenges of integrating agriculture into climate change mitigation policy frameworks.
734 Mitigation and Adaptation Strategies for Global Change, 23, 451-468.

735 Fredriksson, P. (1997). The Political Economy of Pollution Taxes in a Small Open Economy. Journal
736 of Environmental Economics and Management, 33 (1): 44-58.

737 Frontuto V., Felici T., Andreoli V., Baglioni MM., CorsiA. (2025). Is there an Animal Food Kuznets
738 Curve, and does it matter? Bio-Based and Applied Economics, Just Accepted. DOI: 10.36253/bae-
739 16172

740 Gernaat D.E.H.J., Calvin K., Lucas P.L., Luderer G., Otto S.A.C., Rao S., Strefler J., van Vuuren
741 D.P. (2015). Understanding the contribution of non-carbon dioxide gases in deep mitigation
742 scenarios, Global Environmental Change, (33): 142-153,
743 <https://doi.org/10.1016/j.gloenvcha.2015.04.010>

744 Henderson B., Frezal C., Flynn E. (2020). A survey of GHG mitigation policies for the agriculture,
745 forestry and other land use sector, OECD Food, Agriculture and Fisheries Papers, No. 145, OECD
746 Publishing, Paris. <http://dx.doi.org/10.1787/59ff2738-en>

747 Heckelei, T., Britz, W. and Zhang, Y. (2012). Positive mathematical programming approaches—recent
748 developments in literature and applied modelling. Bio-based and Applied Economics Journal,
749 1(1050-2016-85729), 109-124.

750 Himics, M., Fellmann, T., Barreiro-Hurlé, J., Witzke, H. P., Domínguez, I. P., Jansson, T. and Weiss,
751 F. (2018). Does the current trade liberalization agenda contribute to greenhouse gas emission
752 mitigation in agriculture? *Food policy*, 76, 120-129.

753 IPCC (2021). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to
754 the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. First edition.
755 Cambridge University Press. <https://doi.org/10.1017/9781009157896>

756 IPCC (2014). AR5. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of
757 Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
758 Change.

759 IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I
760 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon,
761 S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)].
762 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

763 Isbasoiu, A., Jayet, PA, De Cara, S. (2021). Increasing food production and mitigating agricultural
764 greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production
765 targeting. *Environ Econ Policy Stud* 23, 409–440 (2021). <https://doi.org/10.1007/s10018-020-00293-4>

767 ISPRA, 2023. Italian Greenhouse Gas Inventory 1990-2021. National Inventory Report 2023, ISPRA,
768 Rome.

769 ISPRA, 2021. Italian Greenhouse Gas Inventory 1990-2019. National Inventory Report 2021, ISPRA,
770 Rome.

771 Magnapera C., Kazemekaityte A., Raffaelli R., Cerroni S. (2025). Farmers, experts and students'
772 subjective probability distributions on methane emission reductions in livestock farming: An
773 experimental comparison across elicitation methods, *Bio-Based and Applied Economics*, 2025(2).
774 DOI:10.36253/bae-17310

775 Mahmoud N., Hutchings, N.J. (2020). The advantages of using field- and farm-scale data to target
776 agri-environmental measures—an example of afforestation, *Environmental Science & Policy*, 114:
777 14-21, <https://doi.org/10.1016/j.envsci.2020.07.019>

778 McKibbin, W. J., and Wilcoxen, P. J. (2002). The Role of Economics in Climate Change Policy.
779 *Journal of Economic Perspectives* 16 (2): 107–29

780 Milich L. (1999). The role of methane in global warming: where might mitigation strategies be
781 focused? *Global Environmental Change*, 9: 179-201, [https://doi.org/10.1016/S0959-3780\(98\)00037-5](https://doi.org/10.1016/S0959-3780(98)00037-5)

783 Millock, K. and Nauges C. (2006), Ex Post Evaluation of an Earmarked Tax on Air Pollution, *Land
784 Economics*, 82(1): 68-84, <http://dx.doi.org/10.3368/le.82.1.68>

785 Moran, D., Macleod M., Wall E., Eory V., McVittie A., Barnes A., Rees R., Topp CFE, Moxey A.
786 (2011). Marginal abatement cost curves for UK agricultural greenhouse gas emissions. *Journal of
787 Agricultural Economics*, 62, 93–118, <https://doi.org/10.1111/j.1477-9552.2010.00268.x>

788 NERA (2007). Market Mechanisms for Reducing Greenhouse Gas Emissions from Agriculture,
789 Forestry and Land Management – NERA’s Interim conclusions. NERA Economic Consulting,
790 London.

791 New Zealand Ministry for the Environment (2024), Review of methane science and target, available
792 here <https://environment.govt.nz/what-government-is-doing/areas-of-work/climate-change/emissions-reductions/emissions-reduction-targets/review-of-methane-science-and-target/>
793 (accessed on 16th October 2024)

794 Minister of Environment and Climate Change (2023). Reducing Enteric Methane Emissions from
795 Beef Cattle. Federal Offset Protocol Public Consultation Draft, December 2023. His Majesty the
796 King in Right of Canada, ISBN: 978-0-660-69074-2.

797 OECD (2019), Enhancing Climate Change Mitigation through Agriculture, OECD Publishing, Paris,
798 <https://doi.org/10.1787/e9a79226-en>

800 OECD (2022), Agricultural Policy Monitoring and Evaluation 2022: Reforming Agricultural Policies
801 for Climate Change Mitigation, OECD Publishing, Paris.

802 Ollier M., De Cara S. (2024). Give and take: An analysis of the distributional consequences of
803 emission tax-and-rebate schemes with an application to greenhouse gas emissions from European
804 agriculture, Ecological Economics 219 (2024) 108154,
805 <https://doi.org/10.1016/j.ecolecon.2024.108154>

806 Paris, Q. and Howitt, R. (1998). An analysis of Ill-Posed Production Problems Using Maximum
807 Entropy. Journal of Agricultural Economics, Vol. 80(1), pp. 124-138.

808 Perez Dominguez, I., Fellmann, T., Witzke, P., Weiss, F., Hristov, J., Himics, M., ... and Leip, A.
809 (2020). Economic assessment of GHG mitigation policy options for EU agriculture: A closer look
810 at mitigation options and regional mitigation costs (EcAMPA 3) (No. JRC120355). Joint Research
811 Centre.

812 Pérez Domínguez, I. P., Fellmann, T., Weiss, F., Witzke, P., Barreiro-Hurlé, J., Himics, M., ... and
813 Leip, A. (2016). An economic assessment of GHG mitigation policy options for EU agriculture.
814 JRC Science for Policy Report, EUR, 27973(10.2791), 843461.

815 Pezzey, J. (2003), Emission Taxes and Tradeable Permits A Comparison of Views on Long-Run
816 Efficiency, Environmental and Resource Economics, 26(2): 329-342,
817 <http://dx.doi.org/10.1023/a:1026393028473>.

818 Povitkina M., Carlsson Jagers S., Matti S., Martinsson J. (2021). Why are carbon taxes unfair?
819 Disentangling public perceptions of fairness, Global Environmental Change (70),
820 <https://doi.org/10.1016/j.gloenvcha.2021.102356>

821 Roberts S., Thumin J. (2006). A Rough Guide to Individual Carbon Trading – Report to Defra, Centre
822 for Sustainable Energy, November, London, UK

823 Slade, P. (2017). The Effects of Pricing Canadian Livestock Emissions.
824 <https://doi.org/10.1111/cjag.12157>

825 Stetter, C., Mennig, P., & Sauer, J. (2022). Using Machine Learning to Identify Heterogeneous
826 Impacts of Agri-Environment Schemes in the EU: A Case Study. European Review of Agricultural
827 Economics 49(4): 723-739.

828 USDA (2004). Agriculture and Forestry Greenhouse Gas Inventory: 1990–2001. Washington, DC:
829 US Department of Agriculture.

830 Van Doorslaer, B., Witzke, P., Huck, I., Weiss, F., Fellmann, T., Salputra, G., ... and Leip, A. (2015).
831 An economic assessment of GHG mitigation policy options for EU agriculture. EcAMPA vol
832 Report EUR.

833 Walter, J. M. (2020). Comparing the effectiveness of market-based and choice-based environmental
834 policy. Journal of Policy Modeling, 42(1), 173–191,
835 <https://doi.org/10.1016/j.jpolmod.2019.07.006>

836 Wang W., Deng X., Wang Y. (2024). Changes in Non-CO₂ Greenhouse Gas Emissions From
837 Livestock Production, Meat Consumption and Trade in China, Sustainable Production and
838 Consumption, 42 (2023): 281-291, <https://doi.org/10.1016/j.spc.2023.09.021>.

839 Weitzman M. L. (1974). Prices vs. Quantities. *Review of Economic Studies*. October, 41:4: 477–491.

Accepted Manuscript

841 **Appendix A -Mathematical representation and calibration of the AGRITALIM model**
842 **including CH₄ emissions**

843 The model is structured as follows:

844 **1. Objective function**845 $\max Z = GPS + CAP + RCA - VC - QC - EXL - FP - PW - DRO - DRNI$ 846 Operating income = Z 847 Gross Saleable Production = $GPS = pc * yc * XC + pm * ym * XA + revnm * XA$ 848 CAP payments = $CAP = dp + cpc * XC + cpa * XA$ 849 Revenues from Complementary Activities = RCA 850 Variable Costs = $VC = pfp * qfp * XC + acc * XC + aca * XA$ 851 Quadratic Costs = $QC = \frac{1}{2} XC' Q XC + \frac{1}{2} XA' Q XA^{19}$ 852 External Labour = $EXL = ph * XH$ 853 Feed Purchased = $FP = pf * XF$ 854 Pumped Water = $PW = pw * XW$ 855 Depreciation Rates Observed = DRO 856 Depreciation Rates New Investments = $DRNI = drtc * ADTC + drsf * ADSF$ 857 **Variables**858 XC = hectares of crops859 XA = number of animals860 XH = hours of labour861 XF = quantity of feed

¹⁹ The specification of multiple constraints allows for an initial calibration and validation of the model. In addition, to achieve a perfect calibration to the observed situation, a Positive Mathematical Programming (PMP) approach was subsequently applied, where linear costs correspond to observed variable production costs from FADN and represent the accounting costs associated with each activity and the quadratic term is introduced within the PMP framework as a calibration device to reproduce the observed production pattern.

862 XW = quantity of water pumping

863 ADTC = additional area of tree crops

864 ADSF = additional area of stables and facilities

865 *Market*

866 pc = prices of crops

867 pm = prices of milk

868 pfp = prices of factors of production (fertilizers, pesticides)

869 ph = prices of external labour

870 pf = prices of feed purchased

871 pw = prices of water pumped

872 drtc = depreciation rates of new investments (tree crops)

873 drsf = depreciation rates of new investments (animals)

874 *Production function*

875 yc = yields of crops

876 ym = yields of milk

877 qfp = quantities of factors of production (fertilizers, pesticides)

878 *Common Agricultural Policy payments*

879 dp = decoupled payments

880 cpc = coupled payments for crops

881 cpa = coupled payments for animals

882 *Revenues and average costs*

883 revnm = revenues from other animal products no milk (meat, eggs, honey, etc...)

884 acc = average costs for crops (per hectare)

885 aca = average costs for animals (per number)

886 ***2. Constraints***

887
$$\sum_j XC_{j,n} \leq ald_n \quad \forall n$$

888
$$\sum_j ml_{j,n} * XC_{j,n} + \sum_{ja} ml_{ja,n} * XA_{ja,n} \leq alb_n \quad \forall n$$

889
$$\sum_j mw_{j,n} * XC_{j,n} \leq awt_n \quad \forall n$$

890
$$\sum_{jt} XC_{jt,n} \leq atc_n + ADTC_n \quad \forall n$$

891
$$\sum_{ja} msf_n * XA_{ja,n} \leq asf_n + ADSF_n \quad \forall n$$

892
$$\sum_{ja} mf_n * XA_{ja,n} \leq afp_n + XF_n \quad \forall n$$

893
$$\sum_{jan} rc_n * XA_{jan,n} \geq \sum_{jap} XC_{jap,n} \quad \forall n$$

894 Sets shown in the mathematical representation

895 j = types of crops

896 n = farms

897 ja = types of animals

898 jt = tree crops

899 jan = types of animals non-productive

900 jap = types of animals productive

901 Other sets (not shown in the mathematical representation): geographical area [NUTS 2 and NUTS 902 3], altimetric level, types of cultivation (field, vegetable garden, greenhouse), following crops, main 903 vegetable product, animal production, time

904 Matrix coefficients

905 ml = labour (manual and mechanical) needs per each crop and animal

906 mw = water needs per each irrigated crop

907 msf = square meter of stables and facilities per each animal

908 mf = feed needs for each animal
 909 rc = ratio between productive and non-productive animals
 910 Availabilities
 911 ald = land availability per each farm
 912 alb = labour availability per each farm
 913 awt = water availability per each source (e.g. water users' association, well,...) and farm
 914 atc = tree crops area per each farm
 915 asf = total square meter of stables and facilities
 916 afp = quantity of feeds produced in farm.
 917 The emissions are introduced in the model as follows:
 918
$$\sum_{ja} emisa_{ja,n} * XA_{ja,n} = QE_n^A \quad \forall n$$

 919 Matrix coefficients, availabilities and variables
 920 emisa = emissions for animal
 921 QEA = quantity of emissions for animals
 922 XA = number of animals
 923 The calibration is performed with the Positive Mathematical Programming (PMP) approach, that
 924 perfectly calibrates the model to baseline (in this study, year 2020) and avoids adding ad-hoc
 925 constraints and over-specialised responses of the model in the simulation phase. In general, a PMP
 926 model can be built and calibrated using a very simplified farms' database, based only on production
 927 levels (e.g., land use and quantities produced) and the main economic information related to
 928 production processes (e.g., output prices and variable costs). In fact, even in presence of few data, a
 929 PMP model guarantees the reconstruction of the structure of variable costs, of the substitutability
 930 relationships between processes as well as of farm productions, used to carry out ex-ante analyses
 931 (Paris and Howitt, 1998; de Frahan 2019; Heckelei et al., 2012). However, more data and information

932 used to specify objective function and constraints, as in the case of the AGRITALIM model,
933 determine a more robust model in the simulation phase.

934 *Methane emissions estimation*

935 To estimate GHG emissions, we adapted the IPCC methodology (IPCC, 2006) at the farm/micro
936 level. This methodology represents the established international standard, which has been used in the
937 literature to achieve a farm-level indicator of GHG emissions (e.g., Coderoni and Vanino, 2022).
938 Following this approach, our calculations exclude emissions from input production and food
939 consumption. Computing GHG emissions relies on a linear relationship between emissions factors
940 (EF) and activity data (AD). AD are taken from livestock numbers in the FADN for the livestock sub-
941 categories shown in Table 1.

942 As regards EF, the IPCC approach foresees three methodological tiers for estimating GHG emissions
943 and removals, that represent increasing levels of methodological complexity and data specificity. The
944 Tier 1 is the default method and uses global default emission factors and simplified activity data
945 provided by the IPCC. The Tier 2 approach uses country-specific or region-specific emission factors
946 and more detailed activity data (e.g., technology types, management practices). The Tier 3 approach
947 employs detailed models, direct measurements, or comprehensive inventories (e.g., process-based
948 models, continuous monitoring systems). In our model, we can reconstruct farm-level GHG
949 emissions of CH₄ from manure management and enteric fermentation. For the latter, we constructed
950 a farm-specific emission factor for the pertinent categories, using the quantity of milk produced at the
951 farm level to estimate a more refined (Tier 2-like²⁰) EF. This calculation allows us to consider the
952 impact of increased milk productivity on GHG emissions compared to the use of a national EF (which
953 is identical for all farms)²¹; however, the approach does not allow us to appreciate any differences
954 based on variations in meat productivity (e.g. slaughter ages, etc.) or feeding practices.

²⁰ As the reference unit is here the farm, using farm-specific EF can be considered a Tier 2-like approach.

²¹ Although this refinement of the methodology is applied only to one emission source (enteric fermentation), it is still relevant, as this source constituted 83% of bovine and 69% of agricultural CH₄ emissions at the national level in 2021 (ISPRA, 2023).

955 For other emissions sources, we instead adopted a Tier 1-like approach²², applying a default country-
956 specific EF. As the case study under analysis is the Italian one, we applied an EF derived from the
957 Italian national accounting system (ISPRA 2021). However, the present approach could be easily
958 applied to other EU countries by using their national FADN data and their country-specific EF
959 retrieved from the GHG monitoring system.²³

960 Finally, emissions are expressed in total CO₂eq by multiplying CH₄ emissions by their Global
961 Warming Potential (25) in accordance with the IPCC Fourth Assessment Report (IPCC, 2007).²⁴

962 References

963 Coderoni S. and Vanino S. (2022). The farm-by-farm relationship among carbon productivity
964 and economic performance of agriculture. *Science of the Total Environment*, 819, 153103,
965 <https://doi.org/10.1016/j.scitotenv.2022.153103>

966 de Frahan, B.H. (2019). Towards econometric mathematical programming for policy analysis.
967 In *Applied Methods for Agriculture and Natural Resource Management: A Festschrift in Honor of*
968 *Richard E. Howitt* (pp. 11-36). Cham: Springer International Publishing, https://doi.org/10.1007/978-3-030-13487-7_2

969 Heckelei, T., Britz, W., & Zhang, Y. (2012). Positive mathematical programming approaches—
970 recent developments in literature and applied modelling. *Bio-based and Applied Economics Journal*,
971 1(1), 109-124, <https://doi.org/10.13128/BAE-10567>

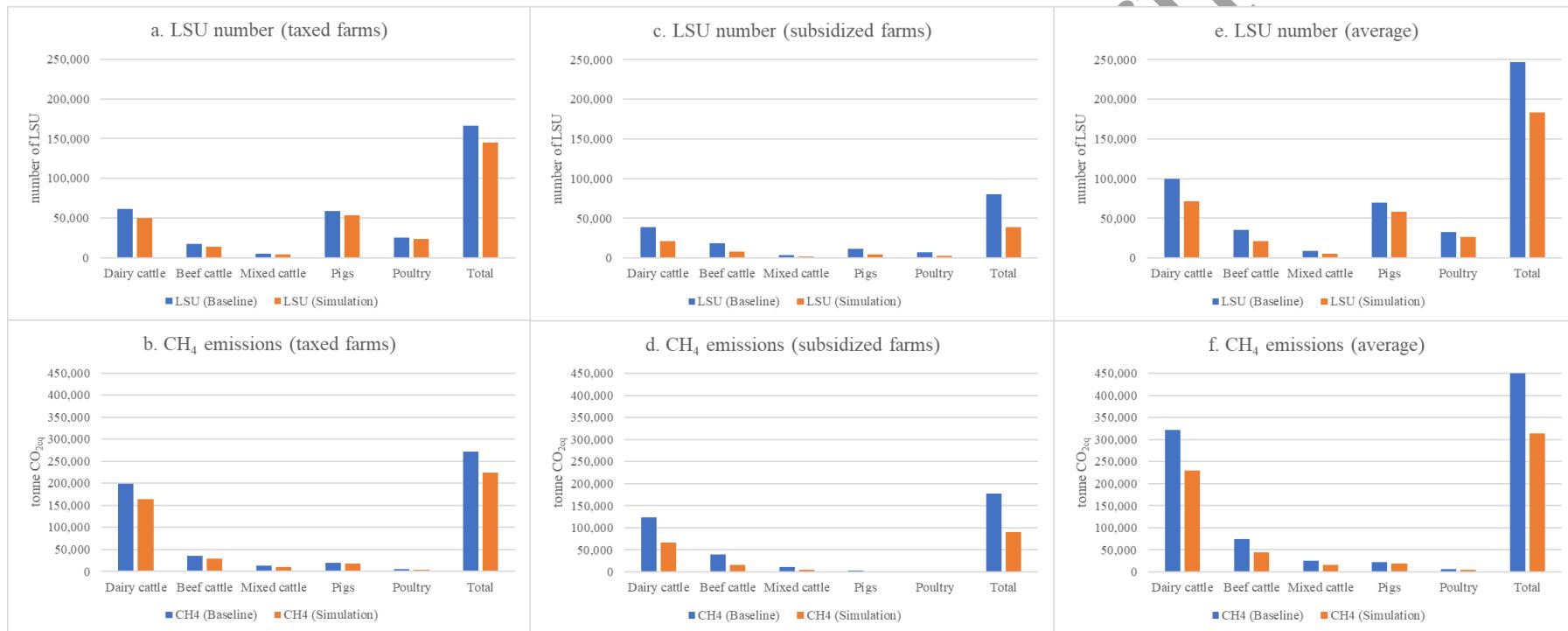
972 IPCC, 2006. *IPCC Guidelines for National Greenhouse Gas Inventories*, Prepared by the
973 National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T.
974 and Tanabe K. (eds). Published: IGES, Japan.

975 ISPRA (2021). *Italian Greenhouse Gas Inventory 1990-2019*. National Inventory Report 2021,
976 ISPRA, Rome.

977 ISPRA (2023). *Italian Greenhouse Gas Inventory 1990-2021*. National Inventory Report 2023,
978 ISPRA, Rome.

979 Paris, Q., & Howitt, R. E. (1998). An analysis of ill-posed production problems using maximum
980 entropy. *American journal of agricultural economics*, 80(1), 124-138,
981 <https://doi.org/10.2307/3180275>

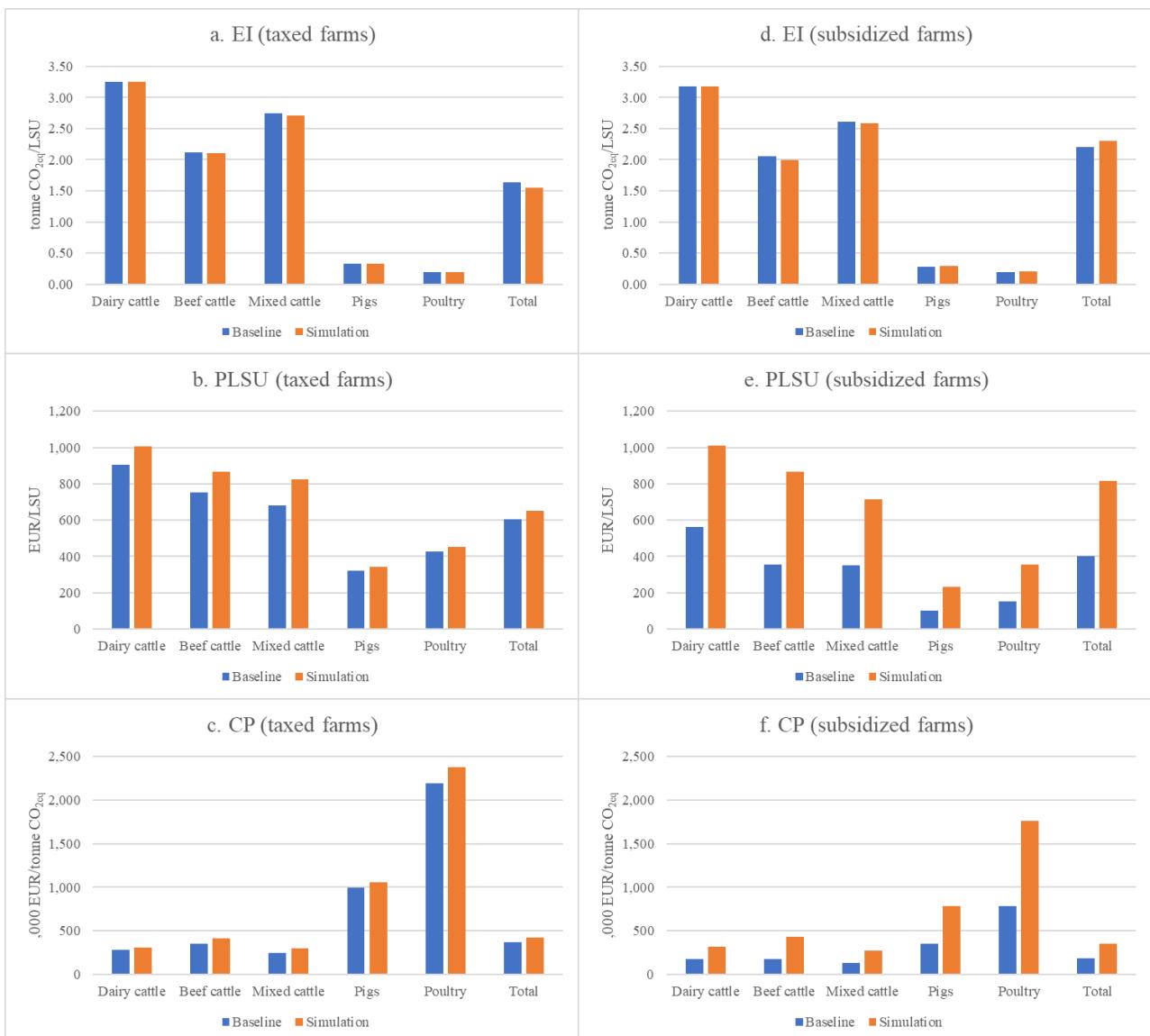
²² As the reference unit is here the farm, using country-specific EF can be considered a Tier 1-like approach.


²³ National emissions reported to the UNFCCC and the EU Greenhouse Gas Monitoring Mechanism can be found here: <https://www.eea.europa.eu/en/datahub/datahubitem-view/3b7fe76c-524a-439a-bfd2-a6e4046302a2> (accessed 07/02/24).

²⁴ We chose to refer to the IPCC Fourth Assessment Report (AR4) guidelines rather than the fifth (AR5) to derive CH₄ GWP due to the selection of 2020 as baseline year. For 2020, the EFs were taken in a 2021 National Inventory report, and the AR5 guidelines were only in use by 2022 in Italy and all EU member states. This change followed the COP27 decision in 2022 on the “Revision of the UNFCCC reporting guidelines on annual inventories for Parties included in Annex I to the Convention”. However, it should be noted that this metric should not change results in terms of the relative performances of livestock farms (as the coefficient is the same for all livestock categories). It might impact the final price estimated, which could be higher.

983

Appendix B - Figure 1. Graphical representation of absolute values originating the percentage variations reported in Table 3


984

985

986

987 Figure 2. Graphical representation of data reported in Table 4.

989 Figure 3. Graphical representation of absolute values originating the percentage variations reported in Table 5

990

991

1001

1002

1003

1004

1005

Appendix C – Baseline and simulation values by geographical location

Table A1. Average value of OI (EUR ,000) and CH₄ (t) at the baseline and Δ% under simulation, and respective Coefficients of Variation (CV) by geographic location

	Baseline OI		Baseline CH ₄		Δ% OI		Δ% CH ₄	
	Average	CV	Average	CV	Average	CV	Average	CV
North-West	72.7	243.6	272.2	167.1	-33.0	-702.2	-31.2	-73.0
North-East	106.0	235.1	284.3	167.9	-32.6	-906.2	-24.1	-75.5
Centre	69.2	302.5	210.9	190.6	-12.7	-651.4	-27.2	-76.3
South	52.1	145.9	245.4	168.2	-7.3	-629.5	-31.4	-63.6
Islands	39.6	232.8	168.4	242.4	-4.3	-625.5	-35.8	-82.2
Total	74.5	250.7	251.8	176.2	-22.1	-926.3	-29.1	-75.1

Source: Authors' elaborations

1009 **Appendix D – Sensitivity analysis with different mitigation targets.**

1010 Table A1 displays the results of a sensitivity analysis that considers the percentage variation of OI,
1011 LSU and CH₄ emissions, as well as the percentage incidence of the subsidy over the tax. These
1012 calculations were obtained by imposing increasing targets of reduction of emissions (–25%, –30%, –
1013 35% with respect to baseline level of emissions; we include the results of the 30% reduction target
1014 for a quicker comparison with other targets).

1015 The overall results indicate that the extent of the impacts on OI, LSU and emissions increase as the
1016 mitigation target becomes more ambitious. When considering the percentage incidence of the total
1017 amount of the subsidy granted on the tax collected, it is vital to highlight the different behaviour of
1018 farm types. Although for dairy and beef cattle farms, the value of this indicator remains nearly
1019 unchanged, it increases substantially for mixed cattle farms (from 239.6 to 389.3). Thus, it is less
1020 convenient for these farms to maintain the same level of production activities as the level of the tax
1021 increases. This is in line with the lowest value of MeP among cattle farms shown in Table 4, under
1022 the –30% reduction target.

1023 To a lesser extent, the same is true for poultry farms, while pig farms maintain the value of this
1024 indicator as the mitigation target increases (by limiting how many LSUs they must reduce).

Table A2. Sensitivity analysis performed on OI, LSU and emissions ($\Delta\%$ under the simulations with respect to baseline) and percentage incidence of the subsidy over the tax for different mitigation targets.

25%	OI	LSU	CO₂eq	% Subsidy/Tax
Dairy cattle	-4.5	-23.7	-23.6	79.8
Beef cattle	-2.1	-33.5	-34.1	288.9
Mixed cattle	-4.0	-29.1	-29.6	239.6
Pig	-1.8	-13.3	-12.6	20.2
Poultry	-0.8	-15.2	-16.1	34.0
Total	-3.4	-21.3	-25.0	100.4
30%				
Dairy cattle	-6.7	-28.5	-28.4	79.1
Beef cattle	-3.1	-39.4	-40.0	294.2
Mixed cattle	-5.9	-36.2	-36.6	315.6
Pig	-2.7	-15.9	-15.2	19.0
Poultry	-1.2	-18.7	-19.7	36.3
Total	-5.0	-25.5	-30.0	100.2
35%				
Dairy cattle	-9.4	-33.4	-33.2	78.0
Beef cattle	-4.6	-44.9	-45.4	293.9
Mixed cattle	-8.1	-43.2	-43.4	389.3
Pig	-3.7	-18.5	-17.9	18.3
Poultry	-1.6	-29.9	-28.7	64.6
Total	-7.1	-30.8	-35.0	99.6

Source: Authors' elaborations.

1025

1026