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Abstract. This article presents a multi-temporal uncertainty-based method that incor-
porates a statistical regression model with a view to establishing the risk (probabil-
ity) of land cover changes as a function of a set of environmental and socio-economic 
driving factors. The morphologic, climatic and socio-economic variables were exam-
ined using an Artificial Neural Network (ANN) model and the Multi-Layer Percep-
tron (MLP). Following the analysis, maps indicating the suitability to future changes 
were generated on the basis of observed transitions. From these maps two possible 
land use scenarios were built, applying the Markov chain principle. The region of 
Basilicata, in southern Italy, was selected for the analysis. The results highlight: a) a 
good inclination to change towards specialised crop systems, provided there is suffi-
cient water supply; b) that some cropping patterns are not suitable for changes, partly 
because they are found in a context with severe limitations for alternative uses. 
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1. Introduction

Agriculture and forestry play a crucial role in the production of environmental public 
goods, such as landscapes, agricultural lands, biodiversity, climate stability, and for their 
ability to prevent natural disasters, such as floods, drought and fires. On the other hand, 
many agricultural practices may have an environmental impact, thus causing soil degrada-
tion, water pollution as well as the destruction of natural habitats and biodiversity loss. 
This was reported in 2010 in the EC communication “CAP towards 2020”, COM (2010) 
672/5 (European Commission, 2010). The EC declaration emphasises that the role of agri-
culture and forestry is extremely important for the climate and the environment, both 
locally and globally.

Changes in land cover ensue from interacting processes which act at different scales 
in space and time and impact on human and physical environments (Munroe and Müller, 
2007; Schneeberger et al., 2007). At the same time, those processes are driven by biophysi-
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cal and socio-economic variables (driving forces), which shape landscape patterns and 
determine their spatial organisation (van Doorn and Bakker, 2007; Serra et al., 2008).

This article aims seeks to analyse the spatial and temporal dynamics of land use, and 
the mechanisms leading to changes by using multi-temporal variables and socio-economic 
indicators. Understanding the above relationships is extremely important for enabling sci-
entists, landscape managers and policy makers to design conservation/promotion strate-
gies aimed at preserving the unique features of landscapes (Kates et al., 2001).

Studies dealing with land use changes often make reference to research on global 
changes (Dai et al., 2005; Turner, 1990; Turner et al., 1994). Such models have been devel-
oped to assess the interactions between driving factors and land use changes, with a view 
to predicting variations in space and time (Pin Lin et al., 2011). Over the last few years, 
several studies have highlighted different approaches, as classified by Agraval et al. (2002) 
and Verbug et al. (2004). 

Such classifications include stochastic models of optimization, dynamic models of 
simulation and empirical models (Li and Yeh, 2002; Verburg et al., 2002; Dai et al., 2005; 
Castella et al., 2007; Dendoncker et al., 2007). In many cases, empirical models can cor-
rectly simulate the spatial processes of land use changes, although they are less reliable 
when they are confronted with human behaviour as the main factor affecting the changes 
in land use (Irwin and Geoghegan, 2001). This is not because empirical models do not 
take into account economic factors; on the contrary, they often include variables that 
catch economic effects (Irwin and Geoghegan, 2001). There are variables used in agri-
culture, such as the distance to roads, slope and agricultural GDP that help understand 
economic impacts. In addition to the empirical component, hybrid models also include 
simulation models that are designed to foresee all changes that are likely to occur in giv-
en scenarios. An example is provided by Markov chains, the aim of which is to simulate 
changes, as a function of explanatory variables.

The innovative aspect of this work consists in the real possibility to correlate spatial 
and temporal variations of land use to environmental and socio-economic variables and 
assess, at the same time, their possible effects on land use. 

In fact, the primary sector has been largely influenced by the past CAP measures, 
notably those related to the direct payment system. A significant example is the set-aside 
measures: it has been proven that they have resulted in expanding uncultivated areas, with 
the subsequent increase in the risk of erosion and land abandonment (Boellstorff et al., 
2005). Moreover, the subsequent measures, such as the single farm payment and the mid-
term review of the CAP, have produced direct impacts on the primary sector, causing, in 
particular, a decrease in the value of the agricultural landscapes (Riccioli et al., 2007). In 
addition, it has been demonstrated recently that reducing direct payments would result in 
the reduction of arable lands in favour of areas intended for pastures and natural grass-
lands (Sieber et al., 2013).

Changes in land use result from complex interactions between physical, but also 
social, economic and environmental, factors (Versterby and Heimlich, 1991; Dale et 
al., 1993; Houghton, 1994; Pijanowski et al., 2002; Erfu D., 2005). This means that the 
knowledge and understanding of territorial dynamics can help foresee the future trends 
of change. To do that, we need a modelling method that takes into consideration several 
variables and adjusts them over time to build reliable change scenarios (Chen et al., 2010). 
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A typical approach to land use change modelling is based on the understanding of the 
cause-and-effect relationship between some variables and historic changes. Such relations 
will be the cognitive layer needed for the implementation of an analytical model to make 
future predictions of transition/change in land use.

To this purpose, it can be useful to use neural networks (Artificial Neural Net-
work) and multivariate analyses for assessing the potential future transitions of land use. 
Through the simulation of a deductive logical path, neural networks constitute excellent 
models of space-time simulations. One of the most important classes of unidirectional 
feed-forward ANN with supervised training is the Multi-Layer Perceptron (Werbos, 1974; 
Rumelhart et al., 1986). This procedure is able not only to assess the degree of relationship 
between the cause and effect variables of past phenomena, but can also simulate future 
scenarios of potential changes. Two possible scenarios are taken into account in our simu-
lation: the baseline scenario describes a stationary trend of incentives projected into the 
future, while the future CAP scenario simulates the effects induced by the next agricul-
tural incentive system provided for by the 2014-2020 CAP reform.

The ANN-MLP model has several advantages, including its non-linear modelling abil-
ity and the possibility to be spatialised. The results obtained represent a cognitive support 
and a valuable tool for decision-making intended to respond by way of targeted actions to 
the new economic and environmental challenges of the future.

2. Methodology

2.1 Artificial Neural Network Model

An ANN can be defined as an information/mathematical calculation model based on 
biological neural networks. The model includes several information interconnections, made 
up of artificial neurons, appropriately linked by connections2. Neurons receive and then 
elaborate some input stimuli, which are mathematically represented by weights. The result 
of such elaborations is called activation value and the neuron is activated when the result 
reaches a given threshold. Early stage neurons are connected to late stage neurons so as to 
form a neural network. A network is normally made up of three stages. In the first stage 
we have Inputs (I): this layer has the function to deal with inputs in order to adjust them 
to the requests of neurons; the second layer is the Hidden one (H) and deals with the real 
elaboration, and can also be made of several levels of neurons. The third layer is the Output 
(O) and deals with gathering the results together and adjusting them to the requests of the 
following block of the neural network. As compared to other predictive techniques, ANNs 
have the advantage of describing the existing relations between input and output variables, 
without previous knowledge of the links between the variables themselves. Moreover, they 
are able to identify the interactions and the nonlinear responses existing between the con-
sidered variables (Batchelor et al., 1997). Application examples of ANNs have been carried 
out to quantify land use changes (Nemmour et al., 2006) for risk analysis (Kanungo et al., 
2006) and for predicting environmental dynamics (Villa et al., 2007; Follador, 2008). 

2 Connections determine the information flow between the units. They can be unidirectional when information 
is transferred in one way, bidirectional when information is transferred in both ways.
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There are many different types of ANN. Their main differences are represented by the 
applied function, the accepted values and the learning algorithm. For the present work, 
the selected ANN model is the one with a supervised learning algorithm based on back-
propagation (Rumelhart et al., 1986). 

This is an iterative gradient algorithm designed to minimize measurement errors 
between the real output of the neural network and the desired output.

In the case under study, we have used an ANN model based on the use of the Multi-
Layer Perceptron (MLP). MLP is a recurring multilevel neural network with a feedback 
configuration. Such a neural structure is made up of three layers: an input layer (that in 
our case is represented by the variables involved in land use changes), one or more hidden 
layers and an output layer (represented by land use changes). 

The first layer (input) is represented by ith neurons; each of them is associated with a 
variable x involved in land use change. Each variable is in turn associated with a weight w, 
generating the signal, which will be sent to the neuron in the following layer:

netj = ΣiXi•Wi,j (1)

Where netj is the signal received by neuron j, Xi is the variable and Wi,j is the weight 
related to the input layer i and the hidden layer j. Then, the signal netj is submitted to jth 
neurons of the hidden layer.

Such a layer is activated only if it reaches a given pre-established threshold. It may be 
calculated using a sigmoid function:

ϕ j =
1

1+e−net j  (2)

The sigmoidal-type activation function produces an output ranging from 0 to 1; hence 
the response of the network can be interpreted as a changing probability. This study predicts 
5,000 interactions with an initial activation value of 0.1, as indicated by Eastman (2006).

From the Hidden layer, if activated, the signal will be transferred to the following lay-
er (output), made up of lth neurons, whose values represent the transition probabilities.

pl = Σjwj,lφj (3)

Where pl is the transition probability of lth neuron of the output layer; wj,l is the weight 
related to the hidden layer and the output layer; j is the activation function of jth neuron 
of the hidden layer.

The algorithm used for the generation of the output is a back-propagation algorithm. 
This type of algorithm was chosen since it can be applied to nonlinear functions, just like 
the cause-effect relationship considered in the analysis of land use changes. 

It is a supervised learning algorithm by which the output estimated by the network is 
compared with a known or desired output (i.e. the actual changes in land use occurred in 
the period under examination). The purpose of this comparison is to obtain an estimated 
output, which is as close as possible to the desired output. The difference between the two 
outputs produces an error used to correct the weights.
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In this study, the error is quantified using the standard deviation; the training set is 
repeated until the error function is reduced to an acceptable level

el = Σl(outl − pl )
2  (4)

Where el is the error of lth neurons of the output layer; outl is the output value of lth 
neuron of the output layer; pl is the estimated output of lth neuron of the output layer.

The tested variables can be expressed in terms of presence/absence, or by a gradient, 
which measures the variation along well-defined sets of time, such as topographic data, 
i.e. slopes and exposures, and climate data, i.e. rainfall and temperature. 

Sometimes there is no linear relationship between the two types of variables, where-
as non-linear mathematical relations may occur, so it is necessary to carry out statistical 
regression assessments.

The output layer has 2 neurons that correspond to 2 possible states: 1 = transition, 2 = 
permanence. 

The result of the transition is a raster (risk) map containing values ranging from zero 
(no likelihood of change) to 1.0 (maximum likelihood of change).

2.2 Scenario analysis

Upon obtaining the risk maps, we built some possible future land use change scenar-
ios by means of the Markov chain methodology. A Markov chain is a dynamic process 
made up of a finite number of states and some known probabilities in discrete sets of time 
(Logofet and Lesnaya, 2000; Yemshanov and Perera, 2002).

An existing discrete state ut can be used to predict an existing discrete state ut+1 multi-
plied by a transition probability matrix Pt, corresponding to the current set of time t:

ut+1 = ut • Pt  (5)

Thus, the transition probability Pi,j (that is from state i to state j) generally derives 
from a transition sample, which occurs in a set of time. The assessment of maximum like-
lihood of transition probability (Anderson and Goodman, 1957) is given by:

Pi , j ,t =nij / nij
j=1

n

∑
 (6)

Where nij is the number of transitions from state i to state j.
Once the potential transitions at a given time have been obtained, it is necessary to 

localize them in space. One of the most widely used and tested methods is the multi-
objective analysis, the main function of which is to determine the set of all efficient solu-
tions, which allows for the allocation of land across multiple use classes.

If we observe the ith pixel which passes from the land use u’ to u (xiu→u’), and the 
transition potential of the ith pixel pi u→u’, and considering the surface demand for the 
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land use u (Su), the allocation of changes is calculated in compliance with the principle of 
the function maximization, by using whole numbers according to the following equation:

MAX xU '→U •Pl
U '→U

K ,U∑  (7)

We use the principle of function maximization since in the final phase of the analysis 
it is necessary to place the ith pixel, which passes from the use u’ to u, where it is most 
likely to occur. If we do not apply this principle, the potential transitions calculated up to 
this point would not have the right space location but would be randomly distributed in 
the territory under examination. 

In the case study carried out, we used a simulator, the land change modeller, which 
was positively tested in a survey on the most important land change prediction models 
(Bibby and Sheperd, 2000). This simulator, operating in a GIS environment, enables taking 
into account any constraints (presence of protected areas, ope-legis constraints, etc.) and 
present and future incentives/disincentives (environmental and socio-economic parame-
ters, etc.), through the creation of suitable maps that have a considerable impact on poten-
tial transition and change in land use (Figure 1). 

Figure 1. Applied simulation model.
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2.3 Study area and characterization of land use

Basilicata is a southern Italian region the geographical position of which is marginal com-
pared to the main driving centres of Italian economic life. The region covers a territory of 
9,992 square kilometres. Despite its high diversity, it has a Mediterranean climate, character-
ised by hot and dry summers, cold rainy winters, with continental characteristics in the hinter-
land. The clear orographic diversification between the western and eastern parts of the region 
corresponds to a clear differentiation in climate between the territories of the two provinces. 
Rainfall is lower in the east, whereas the eastern-most part of the region usually records values 
ranging from 500 to 600 mm/year, which is typical of semi-arid or arid climates.

According to the specific morphologic and climate conditions, land use distribution is 
quite heterogeneous, ranging from extensive agricultural systems and natural areas, mostly 
in the western area of the region, to more specialised agricultural systems in the hilly and 
flat lands of the eastern part of the region.

Such a distribution has been accepted in the national planning instruments (National 
Strategic Plan for Rural Development, 2009) that classify the region as a totally rural terri-
tory (less than 150 inhab./km2), in which the following areas may be distinguished:

B: flat area deemed to be a “rural area with specialised intensive agriculture”
This area is located on the Ionian side of Basilicata region; it accounts for 8% of the 
regional surface area and includes six municipalities. It is characterised by flat land 
and access to water resources. Its agriculture is specialised, intensive and profitable. In 
fact, on an agricultural area accounting for 9.4% of the regional Utilised Agricultural 
Land, the value added of the primary sector in this area is 25% of the value added of 
the regional primary sector (Basilicata Rural Development Plan 2007-2013).
D: hilly and mountainous “rural areas with severe limitations for development” (92% 
regional surface; 125 municipalities). Within the macro-area D the following districts 
may be distinguished:
• D1: areas with more advanced farming models. This district covers 39% of the 

regional surface area and includes 60 municipalities. Its land area is mostly hilly 
with alternating plains. The agricultural activities in this district basically include 
arable crops and pastures, with specialised crop production in flat areas, special-
ised tree crops that account for 12% of the district Utilised Agricultural Area 
(Basilicata Rural Development Plan 2007-2013).

• D2: the hinterland of hilly and mountainous areas. This district is located in the 
central area of Basilicata region; it accounts for 53% of the regional surface area 
and includes 65 municipalities. It encompasses mostly mountainous lands with 
large woodland and pasture areas. Specialised crop systems are practiced only on 
5% of the district Utilised Agricultural Area (Basilicata Rural Development Plan 
2007-2013), due largely to the elevation and slope of the area that is unfavourable 
to those crops.

2.4 Multivariate analysis of potential future transitions

Once the most significant changes were identified, the multivariate analysis of poten-
tial future transitions was applied by examining a set of possible causes for changes.



158 S. Romano, M. Cozzi, P. Giglio, G. Catullo

The variables taken into account in land use changes can have a different level of cor-
relation depending on the changes that have already occurred. Moreover, as reported by 
Irwin and Geoghegan (2001), the empirical models of land use change include the explan-
atory variables acquired from different sources and calculated in a GIS. In accordance 
with the literature (Bernetti et al., 2010; Lombardo et al., 2005; Pijanowski et al., 2002), 
physical (distances, land type, slopes, altitude) and socio-economic variables (population, 
Gross Domestic Product) are taken into account. 

In order to highlight a statistical correlation between the cause (accessibility, climate, 
geomorphologic, and socio-economic data) and the subsequent change, we used Cram-
er’s test V3 (Cramer, 1999). This test was useful for the selection of the most significant 
variables to be taken into account for change. The choice of test V as a correlation meas-
urement is due to the data structure in the raster matrix, which does not show the same 
number of lines and columns.

This method represents a symmetric index of association that takes values ranging 
from 0 to 1, extremes included. Its value is 0 only if there is independence between the 
characters, while it is 1 if there is a perfect connection, namely at least one of the two 
characters perfectly depends on the other. Cramer’s V gives non-significant information if 
it is referred to continuous characters; its objective is to supply indications on the level of 
non-structured association between characters, especially qualitative and/or nominal ones. 

In the present study the applied V coefficient is >0.15, since beyond such a value there 
is good intensity of dependence between the variable and the considered change (Eastman 
2006). The choice of the variables, reported in Table 1, is based on the literature (Bernetti 
et al., 2010; Lombardo et al., 2005; Pijanowski et al., 2002) and is statistically confirmed by 
Cramer’s test V.

Each variable was included in the model as a raster datum; in particular the first group 
of variables includes information concerning the accessibility, defined as the easiness of 
reaching a specified point within the area under analysis. Moreover, among the three acces-
sibility variables we have considered the distance from current soil cover, assuming that 
bordering areas between two different covers may have a higher transition probability. 

The second group of variables refers to morphology, where the associated information 
layers express a different level of influence on land use. They were included as variables in 
the model since they help calculate several operational limitations, by restricting land uses 
and the level of mechanization.

The third group reports climate data. The environmental variables have been consid-
ered as being important in the analysis, as their values affect the crop choices for different 
areas. 

Lastly, the fourth group includes different socio-economic variables concerning the 
primary sector. The value reported in the information layers is obtained from the follow-
ing equation: 

3 The test is used to assess the correlation level between the variables considered. V is calculated from the 
standard deviation, according to the following function:

V = SQRT(χ2 / (n (k - 1))) 

Where χ2 is the standard deviation, and K is the lowest number of rows and columns in the matrices of 
the raster map.
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Table 1. Tested Variables.

Factor Variable Description

Accessibility 
Road distance (m)

Urban land cover distance (m)
Distance from current soil cover (m)

Binary maps (presence/absence) on 
which the distance was calculated.

Geomorphologic data Digital Elevation Model* (mamsl)
Slope* (%)

Layers reporting the altitude and grade 
of slope of the area (100mx100m 

resolution).

Climate data Total precipitation* (mm)
Mean temperature* (°C)

Layers reporting total yearly rainfall, and 
average annual temperatures of the area; 

both calculated as average values.

Socio-economic data 

GDP in agriculture (€)
Agricultural employment (%)

Change of bred cattle (%) 
Change of sheep cattle (%) 

All variables refer to the municipality 
unit and are calculated as the percent 

variation recorded in the reference 
period.

* Variable used in the creation of change suitability maps for the “Future CAP” scenario”.

Final value - Initial value
Initial value

×100  (8)

where the final and the initial values represent, respectively, the variables’ values at the 
end and at the beginning of the reference period of the analysis. 

The land use maps, considered in different time frames, refer to CORINE (CO-ordi-
nation of INformation on the Environment, Heymann, 1994) Land Cover (CLC) database. 
The complete nomenclature includes 44 classes organised in 3 levels; in the specific case it 
has been reclassified into 14 land use classes (Table 2) indicating also the extent and per-
centage of regional surface in each class.

As for the agricultural sector, cereals are mainly cultivated in hilly regions, while fruit 
and vegetables are almost exclusively concentrated in the flat and irrigated area. Pastures 
are instead spaced out by cereals in hilly areas and are associated with husbandry.

The analysis of the agricultural and rural context highlighted the widespread presence 
of agricultural and forestry activities, which may have beneficial effects on land manage-
ment, protecting the environment, and enable processes of enhancement of endogenous 
resources (De Vivo and D’Oronzio, 2007).

In analysing the land cover corresponding to the two time frames, according to the 
scheme reported in Table 2, there are 196 combinations (14 classes t x 14 classes t+1). 
Among these combinations we highlighted the ones that have a surface larger than 500 
ha (0.5% regional surface). Table 3 shows the transitions drawn from the comparison 
between CLC1990 and CLC2000. The testing and training set represent, respectively, the 
number of pixels on which the network performances are verified and the number of pix-
els on which the network is “trained”. 

The accuracy indicates the level of precision recorded at the end of the iterations. Its 
value is not constant across land uses , as it depends on the dimension of the testing set 
and on the number of variables involved in the change process. 
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Table 2. Land use classes considered in the analysis.

Land use classes 3rd level 
CLC

Extension 
(ha)

Regional surface
%

Urban areas 111-142 14314 1.43%
Arable land 211-213 369882 37.05%
Permanent crops 221-223 39002 3.91%
Pastures 231 12626 1.26%
Complex cultivation patterns 241-242 92546 9.27%
Land principally occupied by agriculture, with significant 
areas of natural vegetation 243-244 56317 5.64%

Broad-leaved forest 311 264556 26.50%
Coniferous forest 312 9634 0.96%
Mixed forest 313 13718 1.37%
Natural grasslands 321 40555 4.06%
Moors and heathland 322 17739 1.78%
Transitional woodland-shrub 324 42628 4.27%
Open spaces with little or no vegetation 331-334 20044 2.01%
Wetlands 411-523 4826 0.48%

Source: Corine data elaboration, 2006.

The variables reported in Table 1 have been used for building transition potential 
maps, or suitability maps for the “baseline” scenario. As in the case of suitability maps 
for the “future CAP scenario” (see Figure 1), they were designed by considering the same 
geomorphologic and climate variables in all of the transitions considered (Table 3), with 
an average level of accuracy of 75%.

We have generated a suitability map of each considered transition, reporting the most 
significant ones in Figure 2. The maps indicate the suitability of a given land area or territory 
to undergo a transition, and provide an indication of locations susceptible to change in the 
future. We have reported the two most significant maps, in terms of potential land use chang-
es: the former shows the potential abandonment of scarcely productive arable areas, while the 
latter indicates the potential degradation of forests, above all in hard-to-reach areas.

2.5 Scenario building and simulation 

The scenario analysis supplies a strategic planning method aimed at supporting 
decision-makers in making flexible long-term plans. It is based on the development and 
assessment of a future series of structurally different but plausible scenarios, which include 
the main uncertainties of the given context (Wack, 1985).

Based on transition potential maps, or suitability maps (Figure 2), we designed land 
use maps for 2050, by applying the Markov chain (Eastman and Toledano, 2000). To this 
end, we opted to perform the analysis on a broad time horizon, because rural develop-
ment measures do not produce “immediate” effects.
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Table 3. Matrix of potential future transitions (baseline scenario).

Transition 

Description Variables 

Testing and 
training set 
(number of 

pixels)

Accuracy
From To 

Annual crops 
associated with 
permanent 
crops

Arable land

Poorly 
productive 

associated crops 
converted in 
arable land

Digital Elevation Model (DEM, mamsl)
Slope (%)

Mean temperature (°C)
Total annual precipitation (mm/y)

Distance from arable land (m)
GDP from agriculture (€/y)

Agricultural employment (%) 

169 79.84%

Land principally 
occupied by 
agriculture, 
with significant 
areas of natural 
vegetation

Arable land 

Local increase 
in arable land, 

with cultivation 
in shrub lands

Dem (mamsl)
Slope (%)

Mean temperature (°C)
Total annual precipitation (mm/y)

Distance from arable land (m)
GDP from agriculture (€/y)
Change of cattle farms (%)

Change of sheep and goat farms (%)

354 79.55%

Annual crops 
associated with 
permanent 
crops 

Fruit trees and 
berry plantations 

Areas which 
have specialised 

in fruit 
plantations

Dem (mamsl)
Slope %

Mean temperature (°C)
Total annual precipitation (mm/y)

Distance from orchards (m)
GDP from agriculture (€/y)

Agricultural employment (%)

287 95.47%

Land principally 
occupied by 
agriculture, 
with significant 
areas of natural 
vegetation 

Annual crops 
associated with 

permanent crops 

Increase of 
arable lands 

and permanent 
crops, with the 
transformation 
of shrub lands 

Dem (mamsl)
Slope (%)

Mean temperature (°C)
Total annual precipitation (mm/y)

GDP from agriculture (€/y)
Agricultural employment (%)

Change of sheep and goat farms(%)

307 89.77%

Arable land 

Land principally 
occupied by 
agriculture, 

with significant 
areas of natural 

vegetation 

Scarcely 
productive 

arable lands, 
left to natural 
spontaneous 

vegetation

Dem (mamsl)
Slope (%)

Mean temperature (°C)
Total annual precipitation (mm/y)

GDP from agriculture (€/y)
Agricultural employment (%)

327 87.18%

Land principally 
occupied by 
agriculture, 
with significant 
areas of natural 
vegetation

Broad-leaved 
forest 

Scarcely 
productive 

arable lands, 
partially covered 

with shrubs, 
left to natural 

woodland

Dem (mamsl)
Slope (%)

Mean temperature (°C)
Total annual precipitation (mm/y)

Distance from Broad-leaved forest (m)
Change of cattle farmers (%)

Change of sheep and goat farmers (%)

154 79.74
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Figure 2. Examples of suitability maps.

From annual crops to land principally occupied 
by agriculture, with significant areas of natural 

vegetation 
From broad-leaved forest to sparsely vegetated areas

This was a stochastic process where the transition probabilities (Table 4) were used in 
a matrix (Pt). Starting from the analysis of the changes that occurred in the time interval 
1990-2000 and using the probability matrix Pt, it is possible to implement a forecast for 
2050 (ut+1). 

Table 4. Stochastic matrix.

Status i (t+1)

St
at

us
 j 

(t)

p11 p12 … … p1n
p21 p22 … … p2n
… … …
… … …

pn1 pn2 … … pnn

Where n is the number of discrete statuses of Markov chain, and pij the transition 
probabilities (included between 0 and 1) from status j to status i in the time interval 
between t and t+1 (Coquillard and Hill, 1997). The matrix obtained describes a system 
that changes by time-discrete increases, where the sum of the fractions along a line of the 
matrix is equal to one; the diagonal, instead, gathers the number of pixels which do not 
undergo a transition between the initial (t) and the final (t+1) date. 

Some authors (Schwartz 1991, Roxburgh 2009) suggest the creation of just a small 
number of sufficiently distinct scenarios - usually two to four -, to demonstrate more 

Low transition 
probability

High transition 
probability
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clearly the existing differences. In the present study two scenario analyses were proposed. 
Scenarios were constructed by long-term simulations (2050) :
• “Baseline” scenario, based on current socio-economic trends;
• “Future Cap” scenario to highlight the effects of the next CAP Reform 2014-2020.

The two scenarios have been distinguished on the basis of the possible application of 
post-2013 measures. Thus the “baseline” scenario that simulates the persistence of current 
EU policy, with no hypotheses of future interventions, was solely created on the basis of 
the current socio-economic trends, determined by the CAP rules in force. Therefore, it is 
a strongly “deterministic” scenario because it forecasts that such trends will continue in 
the future. 

On the contrary, the “future CAP” scenario that simulates the implementation of new 
post-2013 measures may not be affected by the current socio-economic trends. Thus the 
transition probabilities included in the Markov matrix are only determined by geomor-
phologic and climate variables; this allows the identification of the effects of the post-2013 
measures, simulated by incentive/disincentive maps, that modify the transition probabili-
ties of the matrix. The scenarios obtained do not predict the future situation per se, but 
are rather a tool to improve the understanding of the possible long-term consequences 
of present and future trends of incentives/disincentives in the agricultural and agro-envi-
ronmental sector. Accordingly, we chose a long-term projection, without allowing for 
intermediate stages which could divert attention from the focus of the analysis and which 
would provide partial results or a poor differentiation between the scenarios. 

Within the agricultural policies we find plenty of driving forces which can result in 
meaningful future projections; however, building scenarios that include all of the compo-
nents would ultimately make the analysis and assessment phase too confusing. Therefore, 
we opted to choose some specific measures relative to both the new direct payment sys-
tem and the new priorities of rural development. 

The scenario was built by adopting raster maps of constraints/incentives. Constraints 
values equal to 0 indicate an absolute constraints, and values equal to 1 indicate areas free 
to evolve . For incentives, values lower than 1 act as disincentives, whereas values above 1 
act as incentives.

Following this approach, three ‘new’ CAP measures have been “translated” into three 
raster maps, two being connected with the new direct payment system and the other con-
cerning the new rural development plan, differentiated on the basis of different effects that 
measures would have on the area, according to the land use.

The aim of these information layers is to modify the transition probabilities reported 
in the Markov matrix, in order to orient the change processes. In other words, a layer of 
incentives corresponds to an increase in the transition probability in the direction it trans-
lates, while a layer of constraints corresponds to a decrease in the transition probability in 
the direction indicated by the layer itself. 

The first raster map of CAP measures (2014-2020) was built by considering a signifi-
cant innovation in the direct payment system, as money allocation to fruit and vegetable 
crops and vineyards was not previously allowed, except for tomatoes, citrus orchards and 
processed fruit. Based on these remarks we have created an information layer of incen-
tives for the irrigated areas, which could potentially host fruit and vegetable crops but 
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which are now widely used for extensive cereal cultivation, since there is no incentive to 
transform them into more complex cropping patterns.

The second information layer was created by modifying the new direct payment sys-
tem and simulating the compliance with greening measures. This results in a constraint 
map that does not actually allow for the transformation of the meadow and permanent 
pasture areas into arable lands. 

Finally, the third variable we introduced is once again an incentive, spatially differ-
entiated on the basis of land use. Such an information layer was built on the new pri-
orities of the rural development policy, putting emphasis on the contents of priorities 4 
and 5 of the new rural development policy, namely “Protecting and improving ecosystems 
depending on agriculture” and “Transition towards a low carbon economy”, respectively. 
Such priorities include a large number of measures ranging from environmental sustain-
ability to forestation. These measures have been thus translated into an information layer 
with different incentive levels. More specifically, this layer provides incentives to perma-
nent wooded areas, mixed and broad-leaved woods, areas presently occupied by shrubs 
and evolving woods, to turn them into permanent woods. Incentives are also foreseen, to 
a lesser extent, to meadow and permanent pasture areas, which were already stimulated 
in the previous information layer, while the other land uses are left free to evolve, with no 
particular constraints, or incentives. This information layer is extremely important for the 
reference land, characterised by large areas directly concerned by the measures simulated 
by the layer.

As previously indicated, the measures associated with rural development may produce 
results only in the medium-long term, therefore the effects of raster maps were simulated 
until 2050 so as to be able to assess their impact, notably on forestry.

3. Results

Figures 3 and 5 show the localization of the changes recorded in the individual areas 
highlighted in the comparison (cross-tabulation) between the present land cover and the 
cover foreseen for 2050, respectively for the baseline and the future CAP scenarios. Fig-
ures 4 and 6 show the land use changes as percent distribution of the area type to which 
they were recorded in 2010.

In line with what has already been emphasised in the previous paragraph, the areas 
intended for pasture are expected to further decline (-16.50%) in the future, as a possible 
consequence of a progressive decrease in the number of raised heads. In the remaining 
areas we do not notice any particular change compared to the current state, except for a 
slight increase in wooded areas.

The decline in pasture areas can be explained by the lack of a policy specially targeted 
to protect those lands. The moderate increase in woodland areas may, instead, be linked to 
the abandonment of marginal areas and the subsequent transformation of the same areas 
that, if left uncultivated, would evolve towards natural environments.

The observation in Figure 3 highlights how almost all transitions concerning arable 
land are localized in the area characterised by a hilly topography, with difficult access to 
water resources. On the contrary, the transitions concerning the forestry sector are mostly 
recorded in area D2, where most of the regional woodlands are located. 
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Figure 3. Land use change map: “Baseline” scenario.

 1 

 2 

 3 
In this area we record a 10.5% increase of woodland. 
The limited transitions involving the fruit and vegetable sector are localized in the 

area b that is characterised by a flat trend and the possibility to irrigate. In this area the 
fruit and vegetable area increases by 10.15% (Figure 4).

Observing the map of “Future CAP” scenario shown in Figure 5, there are no new 
land conversions into arable crops, and the loss of wooded areas is prevented. This is the 
result of the pasture protection policy, simulated through the interaction of direct pay-
ments and rural development measures (first and third information layers). The analysis 
points out that natural grasslands and pasture areas declined compared to the baseline 
scenario, evolving towards wild woodlands.

At the same time, there are more specialised crops as well as better infrastructures in 
the areas featured by favourable geomorphologic and climate conditions. 

The increase in crop specialisation is related to the second information layer applied, 
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that simulates an incentive for the irrigated areas that could be intensively farmed. The 
incentive system applied led to an increase in crop specialisation mostly reserved to area 
B. This is an area characterised by better access to water resources and more efficient and 
modern infrastructures. 

Figure 6 shows that the transitions concerning the fruit and vegetable sector are most-
ly concentrated in area b, where specialised agriculture is practised. Within this scenario 
the fruit and vegetable land is shown to increase by 25.7% that is significantly higher than 
10.15% observed in the baseline scenario.

The other transitions concerning wood and pasture covers are distributed rather une-
venly between the areas D1 and D2. 

The comparison of the two change maps shows how the adoption of targeted CAP 
measures may play a role in the evolution of land use, in particular for the preservation of 
some natural environments that would be exposed to the risk of degradation and abandon-
ment in the absence of appropriate measures aimed at recovering their protective function. 
The simulation of EU measures through the incentive/disincentive layers leads to the per-
manence of agricultural activities in areas D1 and D2 and the reduction of agricultural land 
abandonment, compared to an evolution that would not be guided by targeted measures. 

Figure 4. Distribution of “Baseline” scenario transitions (in brackets the areas that shifted from use u to u’).
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Therefore, it is worth highlighting how the area covered by sparse vegetation, which 
is increasing in the baseline scenario, would decrease as a result of the adoption of the 
measures predicted in the “Future CAP scenario”, particularly following the application of 
priorities 4 and 5 of the rural development policy.

In particular, we can observe that when shifting from the “Baseline” scenario to the 
“Future CAP” scenario, arable land decreases while wooded areas, as well as pastures and 
grasslands, increase. 

These two different evolutions are associated with the interaction between the first 
and third information layers applied in the “Future CAP” scenario. The concurrent use of 
these two layers has, on one hand, hampered the conversion of pastures into arable lands 
(that occurred in the baseline scenario) and, on the other, by encouraging wooded areas, 
it resulted in the increase of natural areas and the decline of marginal land abandonment 
observed in the baseline scenario.

Figure 5. Land use change map: “Future CAP” scenario.

 1 

 2 

 3 
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Figure 6. Distribution of “Future CAP” scenario transitions.

4. Conclusions

In the model applied we have planned three post-2013 macro-interventions related to 
both the new system of direct payments and the new rural development priorities. In par-
ticular, we have envisaged incentive measures for the fruit and vegetable sector, programs 
targeted to limit the increase in annual (arable) crops, instruments aimed at improving the 
maintenance of wooded areas, and forestation actions.

Using these models in the regional context has revealed the different levels of reac-
tiveness of the Basilicata territory to the driving forces leading to change.

In particular, the model underscored the low transition potential of areas D1 and D2, 
characterised by a geomorphologic system that has severe limitations and difficult access to 
water resources. In fact, such areas are characterised by vast rain-fed arable lands. Moreo-
ver, due to incentives to more specialised crops, they are poorly susceptible to change. 

On the other hand, we have observed a high transition potential in specialised fruit 
and vegetable cropped areas where geomorphologic and climate conditions are suscepti-
ble to change, notably where water resources are easily accessible. In these areas we have 
observed that the implementation of specific measures could actually lead to turn exten-
sive crops into specialised fruit and vegetable production resulting in higher income per 
surface unit.
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Moreover, the “Future CAP” scenario showed the positive influence of the incen-
tive layer for shrubs and woodlands, mainly found in areas D1 and D2 as well as in the 
regions characterised by hillsides at risk of erosion. Thus, the safeguard of forest cover 
reduces the risk of hydrogeological instability.

The analysis of results confirms that the applied approach can be a valuable tool for 
studying the prediction of future land change scenarios and understanding the impacts of 
current policy strategies, which include actions involving land use in general and agronom-
ic practices in particular. Its main advantage lies in the possibility to gather a large number 
of variables in the model that affect, to a varying extent, the evolution of land use change.

The strength of such an approach lies in the possibility of formulating ex-ante assessment 
models of local development policies, on the basis of the results obtained. The reliability of 
the model is closely connected to the availability of the spatial data involved in the change 
processes; hence, it is better to have a wide basis of geo-referenced variables to emphasise the 
positive effects of some policies and mitigate the possible undesired consequences.

The limitations of the applied model are above all the quality and the level of spatial 
detail of input variables. For improving the accuracy of the analysis it would be useful to 
consider a higher number of variables involved in land use changes, maybe by means of 
discrete choice models (Choice Experiment) that can effectively describe behaviours, thus 
getting closer to understanding the actual evolutionary dynamics. 

Future developments of the model would require the use of dynamic climate variables 
in order to assess the effects of changes more accurately and identify the strengths and 
weaknesses of agriculture and forestry, which are playing an increasingly important role in 
the dynamics of climatic and environmental changes.
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