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Abstract. In 1956, Freund introduced the analysis of agricultural price risk in a 
mathematical programming framework. His discussion admitted only constant abso-
lute risk aversion. This paper generalizes the treatment of risk preference in a math-
ematical programming approach along the lines suggested by Meyer (1987) who 
demonstrated the equivalence of expected utility of wealth and a function of mean 
and standard deviation of wealth for a wide class of probability distributions that dif-
fer only by location and scale. This paper extends the definition of calibration under 
Positive Mathematical Programming (PMP) by considering limiting input prices 
along with the traditional decision variables. Furthermore, it shows how to formu-
late an analytical specification for the estimation of the risk preference parameters 
and calibrates the model to the base data within small deviations. The PMP approach 
under generalized risk allows also the estimation of output supply elasticities and the 
response analysis of decoupled farm subsidies that recently has interested policy mak-
ers. The approach is applied to a sample of farms that do not produce all the sample 
commodities.

Keywords. Risk analysis, positive mathematical programming, model calibration, 
chance constraint, policy analysis.
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1. Introduction

This paper accomplishes several objectives:
1. It presents a procedure to estimate generalized risk preferences in combination with 

Positive Mathematical Programming (PMP).
2. It obtains a unique calibrating solution of a PMP model even with a sample of farms 

that produce zero levels of some crops.
3. It estimates a complete cost function that can be used in a calibrating model for poli-

cy analysis.
4. It shows that Phase I and Phase II of the classical PMP procedure give identical and 

unique results.
5. It shows how to incorporate exogenously given supply elasticities.
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6. It extends the meaning of calibration in PMP by minimizing the distance of optimal 
solutions from observed output levels and limiting input prices. In this way, it dis-
penses from the necessity of a user-determined parameter that was originally intro-
duced to guarantee a positive shadow price of binding constraints.
The treatment of agricultural price risk in a mathematical programming framework 

has dealt mainly with either an exponential utility function and constant absolute risk 
aversion (CARA) or the minimization of total absolute deviation (MOTAD) of income. 
The first approach, originally proposed by Freund (1956), appealed to the expected util-
ity (EU) hypothesis and assumed that random prices were normally distributed. These 
assumptions lead to a mean-variance specification of the certainty equivalent (CE) defined 
as total expected revenue minus a risk premium. Such a premium corresponds to half 
the variance of revenue multiplied by a constant absolute risk aversion coefficient. The  
MOTAD approach was proposed by Hazell (1971) who justified its introduction with the 
difficult access – at that time – to a quadratic programming computer software necessary 
to solve a mean-variance model. According to Hazell (1971, p. 56), the MOTAD specifica-
tion “has an important advantage over the mean-variance criterion in that it leads to a lin-
ear programming model in deriving the efficient mean-absolute deviation farm plans.” The 
MOTAD model approximates a mean-standard deviation (MS) criterion but it says noth-
ing about the economic agent’s risk preference with regard to either decreasing (constant, 
increasing) absolute or relative risk aversion.

Recently, Cortignani and Severini (2012), Arata et al. (2017) and Paris (2018) have 
combined PMP with a CARA specification of risk preferences. It is difficult, however, 
to accept the idea that farmers risk behavior does not account for changes in wealth as 
the CARA approach stipulates. Petsakos and Rozakis (2015) have presented a combina-
tion of the traditional PMP specification with a decreasing absolute risk aversion (DARA) 
parameter. The present paper combines a more encompassing specification of PMP (cali-
bration of output quantities and limiting input prices) with generalized risk preferences 
where the behavior of the risk-avert farmer can vary over all theoretically possible prefer-
ences (CARA, DARA, IARA, constant, decreasing and increasing relative risk aversion). 
The paper deals with market price risk leaving the treatment of production risk for further 
research.

The mean-standard deviation approach has a long history [Fisher (1906), Hicks 
(1933), Tintner (1941), Markowitz (1952), Tobin (1958)]. Meyer (1987) presented a rec-
onciliation between the EU and the MS approaches that may be fruitfully applied in a 
positive mathematical programming (PMP) analysis of economic behavior under risk. 
The main objective of Meyer was to find consistency conditions between the EU and the 
MS approaches in such a way that an agent who ranks the available alternatives according 
to the value of some function defined over the first two moments of the random payoff 
would rank those alternatives in the same way by means of the expected value of some 
utility function defined over the same payoffs. It turns out that the location and scale 
condition is the crucial link to establish the consistency between the EU and the MS 
approaches. We reproduce here Meyer’s argument (1987, p. 423):

“Assume a choice set in which all random variables Yi (with finite means and vari-
ances) differ from one another only by location and scale parameters. Let X be the ran-
dom variable obtained from one of the Yi using the normalizing transformation Xi = 
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(Yi-μi)/σi where μi and σi are the mean and standard deviation of Yi. All Yi, no matter 
which was selected to define X, are equal in distribution to μi+σiX. Hence, the expected 
utility from Yi for any agent with utility function u( ) can be written as

EU(Yi )= u(µi +σ ix)dF(x)≡V(
a

b

∫ µi ,σ i )  (1)

where a and b define the interval containing the support of the normalized random varia-
ble X.” “… under the location and scale condition, various popular and interesting hypoth-
eses concerning absolute and relative risk-aversion measures in the EU setting can be 
translated into equivalent properties concerning V(μi,σi).” Given the assumptions made by 
Meyer about first and second derivatives, V(μ,σ) is a concave function of μ and σ. Concav-
ity is established when second derivatives Vμμ and Vσσ are non-positive and VμμVσσ-Vµσ

2 ≥0. 
The structure of absolute risk (AR) is measured by the slope of the indifference curves 

in the (μ,σ) space that is represented as

AR(µ,σ )= −Vσ (µ,σ )
Vµ(µ,σ )  (2)

where Vμ(μ,σ) and Vσ(μ,σ) are first partial derivatives of the V(μ,σ) function. Some proper-
ties of this risk measure are:
1. Risk aversion is associated with AR(μ,σ)>0, risk neutrality with AR(μ,σ)=0 and risk 

propensity with AR(μ,σ)<0.
2. If u(μ+σx) displays decreasing (constant, increasing) absolute risk aversion for all 

μ+σx, then

 

∂AR(µ,σ )
∂µ  

<(=,>) 0 for all μ and σ>0.

3. If u(μ+σx) displays increasing (constant, decreasing) relative risk aversion for all μ+σx, 
then

 

∂AR(tµ,tσ )
∂t  

>(=,<) 0 for t>0.

Saha (1997) proposed a two-parameter MS utility function that conforms to Meyer’s 
specification:

V(μ,σ)= μθ-σγ (3)

and assumed that θ>0. According to this MS utility function, the absolute risk measure 
(AR) is specified as 

AR(µ,σ )= −Vσ (µ,σ )
Vµ(µ,σ )

= γ
θ
µ(1−θ )σ (γ −1)

. (4)
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Hence, risk aversion, risk neutrality and risk propensity are specified by γ>0, γ=0 and 
γ<0, respectively. As economic agents do not, in general, operate directly upon expected 
wealth and its standard deviation but, rather, upon a string of decision variables such as 
output and input levels, it is important to analyze the behavior of the absolute risk meas-
ure (AR) under risk aversion and risk propensity. The justification for this requirement is 
due to the fact that knowledge of parameters θ and γ is obtained only by empirical esti-
mation of economic relations involving entrepreneur’s decisions. The sign of these param-
eters, therefore, is an empirical question.

For γ>0, (risk aversion), decreasing, constant and increasing absolute risk aversion is 
defined by 

∂AR(µ,σ )
∂µ

= (1−θ )γ
θ

µ−θσ (γ −1) < (=,>)0  (5)

and, therefore, by θ>1, θ=1, θ<1, respectively. For γ>0, (risk propensity), decreasing, con-
stant and increasing absolute risk propensity is defined by θ<1, θ=1, θ>1, respectively.

For γ>0, (risk aversion), decreasing, constant and increasing relative risk aversion is 
defined by

∂AR(tµ,tσ )
∂t t=1

= (γ −θ )AR < (=,>)0  (6)

and, therefore, by θ>γ, θ=γ, θ<γ respectively. For γ<0, (risk propensity), neither decreas-
ing nor constant relative risk propensity are applicable because the combination of param-
eters’ signs produces always a positive derivative. Increasing relative risk propensity is 
defined by any value of θ>0. 

The meaning of decreasing absolute risk aversion relates to an economic agent who 
experiences a wealth increase and chooses to augment his investment – measured in abso-
lute terms – in the risky asset. Decreasing relative risk aversion relates to an economic 
agent who experiences a wealth increase and chooses to increase the share of his invest-
ment in the risky asset. It is possible, therefore, for an economic agent to behave according 
to a decreasing absolute risk aversion framework and an increasing relative risk aversion 
scenario if the absolute amount of increase in the risky asset is not sufficient to increase 
also the share of that asset. In any given sample of economic agents’ performances, there-
fore, the prevailing combination of risk preference is an empirical question. The risk anal-
ysis of Meyer (1987) admits all possible combinations of risk behavior (risk aversion and 
risk propensity). Saha (1997) listed the risk aversion combinations for the MS utility func-
tion specified in relation (3) when γ>0. Table 1, for example, admits absolute risk aversion 
behavior that may be decreasing, when θ>1 and γ>0, in association with either increasing 
relative risk aversion when γ>θ>0 or decreasing relative risk aversion when θ>γ. Decreas-
ing, constant and increasing absolute risk aversion are denoted by DARA, CARA and 
IARA, respectively. Decreasing, constant and increasing relative risk aversion are denoted 
by DRRA, CRRA and IRRA, respectively.
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Table 1. Possible risk preferences under risk aversion (θ>0, γ>0) 

DRRA CRRA IRRA

DARA θ>1, θ>γ θ>1, θ=γ θ>1, θ<γ
CARA θ=1, θ>γ θ=1, θ=γ θ=1, θ<γ
IARA θ<1, θ>γ θ<1, θ=γ θ<1, θ<γ

Table 2. Possible risk preferences under risk propensity (θ>0, γ<0)

DRRP CRRP IRRP

DARP θ<1, NA θ<1, NA θ<1, YES
CARP θ=1, NA θ=1, NA θ=1, YES
IARP θ>1, NA θ>1, NA θ>1, YES

“NA” stands for “Not Applicable” because the combi-
nation of parameters’ signs produces always a posi-
tive value of the derivative (6).

When θ>0 and γ<0, risk propensity is active and the behavior of the risk measure 
AR, under the given MS utility, assumes the specification reported in Table 2. Decreasing, 
constant and increasing absolute risk propensity are denoted by DARP, CARP and IARP, 
respectively. Decreasing, constant and increasing relative risk propensity are denoted by 
DRRP, CRRP and IRRP, respectively.

The V(μ,σ)=μθ-σγ function is concave with respect to μ and σ when θ<1 and γ>1. 
The same function V[μ(x),σ (x)]= μ (x)θ-σ (x)γ, however, exhibits a flexible behavior with 
respect to entrepreneur’s decisions, x. This behavior depends on the relative values of 
parameters θ and γ. In other words, the upper contour sets of V[μ(x),σ (x)]= μ (x)θ-σ (x)γ  
are convex for a wide range of values of parameters θ and γ. A few examples illustrate the 
function’s graph and the associated upper contour sets in the appendix. 

The rest of the paper is organized as follows. Section 2 discusses a PMP model that 
combines a generalized risk analysis with an extension of calibration constraints involving 
observed prices of limiting inputs. This extension integrates the traditional PMP specifi-
cation of calibration constraints dealing only with observed levels of realized outputs. In 
particular, the extension provides a unique estimate of the optimal decision variables and 
avoids the user-determined perturbation parameters introduced by Howitt (1995a, 1995b) 
to guarantee that the dual variables of binding structural constraints will assume positive 
values. Section 3 discusses a chance-constrained relation that anchors the θ and γ param-
eters to the decision quantities and, therefore, provides an independent relation for their 
estimation. Section 4 assembles a Phase-I estimation model of the novel PMP approach. 
Section 5 defines and estimates a complete cost function involving output quantities and 
limiting input prices. The derivatives of the cost function are used in calibrating models 
that are suitable for policy analysis. Section 6 discusses how to obtain endogenous (to a 
farm sample) output supply elasticities. This section matches exogenous (to the farm sam-
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ple) supply elasticities (available through econometric estimation, for example) with the 
endogenous supply elasticities. Section 7 states that optimal decision variables are identi-
cal whether estimated as solution of the Phase I model or solution of Phase I and Phase II 
models combined. Section 8 defines two alternative calibrating equilibrium models which 
reproduce calibrating solutions that are identical to those ones obtained in section 4. Sec-
tion 9 presents the empirical results of the more elaborate PMP and risky model applied 
to a sample of 14 farms when not all farms produce all commodities. Conclusions follow.

2. Generalized Risk Preference in a PMP Framework

A Positive Mathematical Programming approach has been adopted frequently to ana-
lyze agricultural policy scenarios ever since Howitt proposed the methodology (1995a, 
1995b). In this section, we extend the PMP methodology to deal with generalized risk 
preference and risky market output prices. Furthermore, we extend the PMP methodol-
ogy to deal with calibration constraints involving observed prices of limiting inputs, say 
land. This extension modifies the traditional specification of calibration constraints and 
the notion of calibrating solution, as explained further on. 

Suppose N farmers produce J crops using I limiting inputs and a linear technology. 
Let us assume that, for each farmer, the (J×1) vector of crops’ market prices is a ran-
dom variable !p  with mean E( !p)  and variance-covariance matrix ∑p. A (J×1) vector c 
of accounting unit costs is also known. The (I×1) vector b indicates farmer’s availability 
of limiting resources. The matrix A of dimensions (I×J,I<J) specifies a linear technology. 
The (J×1) vector x symbolizes the unknown output levels to be optimized. Furthermore, 
farmer has knowledge of previously realized levels of outputs that are observed (by the 
econometrician) as xobs. Random wealth is defined by previously accumulated wealth, w , 
augmented by the current random net revenue. Assuming a MS utility function under this 
scenario, mean wealth is defined as μ=[w +( E( !p) -c)´x] with standard deviation equal to 
σ=(x´∑px)1/2. 

Then, a primal PMP-MS model is specified as follows:

maxx,h,θ,γV(μ,σ)=μθ-σγ=[w +( E( !p) -c)´x]θ-(x´∑px)γ/2 (7)

subject to  Ax≤b  dual variable y
  x=xobs+h  dual variable λ

where h is a vector of deviations from the realized and observed output levels, xobs. The 
first set of constraints forms the structural (technological) relations while the second set 
constitutes the calibration constraints. This specification of the calibration constraints dif-
fers from the traditional statement x≤xobs(1+ε) where ε is a user-determined, small posi-
tive number whose purpose is to allow the dual variables of binding structural constraints 
to take on positive values. In Howitt’s words (1995a, p. 151): “The ε perturbation on the 
calibration constraints decouples the true resource constraints from the calibration con-
straints and ensures that the dual values on the allocable resources represent the marginal 
values of the resource constraints.” The present paper avoids the user-determined parame-
ter ε of the traditional PMP methodology and allows the empirical data to reveal the com-
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ponents of the vector of deviations h. Such deviations can take on either positive or nega-
tive values. To justify the specification of the calibration constraints x=xobs+h, we note that 
the vector of realized output levels, xobs, has been “observed”, that is measured, by persons 
other than the economic entrepreneur, say by an econometrician. It is likely, therefore, 
that the measured xobs vector may either overstate or understate the true levels of realiz-
able optimal outputs. The deviation vector h captures these likely measurement errors. 

The dual constraints of problem (7) – derived by Lagrange methods – turn out to be .

γ(x´∑px)(γ/2-1)∑px+A´y+λ≥θ[w +( E( !p) -c)´x](θ-1)[ E( !p) -c] (8) 

Parameters θ and γ are unknown as are the output levels, x, the deviations, h, the dual 
variables, y, and the Lagrange multipliers, λ. Appropriate initial values of the unknown 
variables are of great importance to achieve an admissible solution. Furthermore, it 
is often the case that also the (approximate) market price of some input – say land – is 
known for the region of the sample farms or even for a single farm. The PMP methodol-
ogy of this paper, therefore, uses also information yobs while the unknown dual variable y 
is treated as

y=yobs+u (9)

with u as an (I×1) vector of deviations from the observed input prices. 
Let W be a nonsingular diagonal matrix of dimensions (J×J) with positive diagonal 

terms equal to observed expected price E( !p j )> 0 . And let V be a nonsingular diagonal 
matrix of dimensions (I×I) with positive diagonal terms bi/yobs,i>0. The purpose of matri-
ces W and V is twofold. First, to render homogeneous the units of measurement of all 
terms in the objective function of models defined below. Second, to weigh the deviations 
h and u according to the scale of the corresponding expected price and input size, respec-
tively. Using a least-squares approach for the estimation of deviations h and u, it turns out 
that, by the self-duality of least squares (LS), λ=Wh and ψ=Vu, where ψ is the vector of 
Lagrange multipliers associated with constraints (9): see Paris (2015). To show this result, 
consider the following weighted LS problem

minLS=h´Wh/2+u´Vu/2

subject to  x=xobs+h  dual variable λ
  y=yobs+u  dual variable ψ.

The corresponding Lagrange function and first-order-necessary conditions with 
respect to h and u are

L=h´Wh/2+u´Vu/2+λ´(x-xobs-h)+ψ´(y-yobs-u)

∂L
∂h

=Wh−λ = 0λ
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∂L
∂u

=Vu−ψ = 0

with the result that λ=Wh and ψ=Vu as asserted.
A crucial issue concerns parameters θ and γ. On the one hand, an economic entrepre-

neur wishes to maximize her utility of random wealth while minimizing the disutility of 
its risk. On the other hand, it is a fact that high levels of current income (a component of 
wealth) are associated with high risk of losses. Another fact is that this entrepreneur has 
already made her choice and executed a production plan, xobs, in the face of output price 
risk. It is also likely that she does not know (or that she is not even aware of) parameters θ 
and γ. The challenge, therefore, is to infer – from her decisions – the values of parameters 
θ and γ that could explain the behavior of this entrepreneur in a rational fashion. 

3. A Chance-Constrained Relation for θ and γ

Charnes and Cooper (1959) proposed a very interesting approach to deal with risky 
prospects based upon the notion of chance-constrained programming. This idea is par-
ticularly useful within the context of this paper because it establishes an independent link 
between the θ and γ parameters, on one side, and the entrepreneur’s decisions, x, on the 
other side. Consider the following scenario. With some probability, a farmer may survive 
unfavorable events such as total revenue being less than total cost. In terms of the chance-
constrained methodology this risky scenario is expressed by the following probabilistic 
proposition:

 Prob{ ! ′p x ≤ ′y Ax + (c + λλ ′) x} ≤1− β  (10)

where the probability that uncertain (random) total revenue ′!p x  be less than or equal 
to certain total cost y´Ax+(c+λ)´x should be smaller than or equal to 1-β. Intuitively, for 
how many years could a farmer survive while operating in the red? As an example, say 
once every ten years. In this case, the estimated probability equals to 1-β=1/10=0.10. The 
y´Ax term is total cost associated with fixed limiting inputs (y´Ax= y´x). The (c+λ)´x 
term is total variable cost associated directly with output levels. 

To derive a deterministic equivalent of relation (10) it is convenient to standardize the 
random variable ′!p x  by subtracting its expected value E( !p) ´x and dividing it by the cor-
responding standard deviation (x´∑px)1/2:

 

Prob
! ′p x − E( !p ′) x
( ′x Σ px)

1/2 ≤ ′y Ax + (c + λλ ′)) x − E( !p ′) x
( ′x Σ px)

1/2

⎛

⎝⎜
⎞

⎠⎟
≤1− β

Prob τ ≤ ′y Ax + (c + λλ ′)) x − E( !p ′) x
( ′x Σ px)

1/2

⎛

⎝⎜
⎞

⎠⎟
≤1− β

Prob[E( !p ′) x +τ ( ′x Σ px)
1/2 ≤ ′y Ax + (c + λλ ′)) x]≤1− β.

 (11)

ψ
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By assuming that τ is a standard normal random variable and choosing a value, say 
τ = τ , that corresponds to probability 1-β, the deterministic equivalent of relation (11) 
assumes the specification

 E( !p ′) x +τ ( ′x Σ px)
1/2 ≤ ′y Ax + ′c x + ′λλ x  (12)

To establish the relation between the τ  parameter and the MS coefficients θ and γ the 
dual complementary slackness condition of constraint (8) is subtracted from the deter-
ministic equivalent (12) (recall that λ=Wh):

 

                      E( !p ′) x +τ ( ′x Σ px)1/2 ≤ ′y Ax + ′c x + ′h Wx

−θ[w + (E( !p)− c ′) x]θ−1(E( !p)− c ′) x = − ′y Ax − ′h Wx −γ ( ′x ΣΣ px)γ /2 .  (13)

With simplification, relation (13) corresponds to

 E( !p ′) x − ′c x +τ ( ′x Σ px)
1/2 −θ[w + (E( !p)− c ′) x]θ−1(E( !p)− c ′) x + γ ( ′x ΣΣ px)

γ /2 ≤ 0  (14)

Relation (14) establishes a simultaneous and independent link between the risk 
parameters θ, γ and the decision variables x, once the value of τ  is selected by the 
researcher. As an example, if the survival probability is determined to be 1-β=0.10, the 
one tail value of the standard normal random variable is τ =-1.285.

4. Phase I PMP Model – Estimation of Calibrating Primal and Dual Solutions

The components of Phase I PMP model are ready to be assembled. For estimation 
purposes, deviations h and u will be minimized in a weighted least-squares objective 
function subject to relevant primal and dual constraints, their associated complementary 
slackness conditions and relation (14). This task leads to the following Phase I model

minLS=h´Wh/2+u´Vu/2 (15)

subject to

Ax≤b+Vu (16) 

 θ[w + (E( p)− c ′) x](θ−1)[E( p)− c]≤ ′A y +Wh ++ γ ( ′x Σ px)
(γ /2−1)Σ px  (17)

x=xobs+h (18)

y=yobs+u (19)

y´(b+Vu-Ax)=0 (20)

Σ

Σ

ΣΣ



200 Quirino Paris

 ′x { ′A y +Wh ++ γ ( ′x Σ px)
(γ /2−1)Σ px −θ[w + (E( p)− c ′) x](θ−1)[E( p)− c]} = 0  (21)

 E( !p ′) x − ′c x +τ ( ′x Σ px)
1/2 −θ[w + (E( !p)− c ′) x]θ−1(E( !p)− c ′) x + γ ( ′x ΣΣ px)

γ /2 = 0  (22) 

with x≥0,y≥0,θ>0,γ,h and u free.
With the specification of the calibration constraints as in relations (18) and (19), 

the notion of a PMP calibrating solution differs from the traditional concept according 
to which the optimal calibrating solution is equal to the observed output levels, that is, 
x* ≅ xobs , as the perturbation results in a very small (user-determined) positive number. 
With the methodology proposed in this paper, a calibrating solution (x̂, ŷ)  will not, in 
general, be exactly equal to the corresponding vectors of the observed production plan 
and input prices (xobs,yobs). The objective of model (15)-(22), therefore, is to minimize the 
deviations h and u in the amount allowed by the technological and risky environment fac-
ing farmers. 

Constraints (16) represent the structural (technological) relations of input demand 
being less-than-or-equal to the effective input supply. Constraints (17) represent the dual 
relations with marginal utility of the production plan being less-than-or-equal to its mar-
ginal cost. Here marginal cost has two parts: the marginal cost due to limiting and vari-
able inputs, A´y+Wh, and the marginal cost of output price risk, γ(x´∑px)(γ/2-1)∑px. Con-
straints (18) and (19) are the calibration relations. Constraints (20) and (21) are comple-
mentary slackness conditions of constraints (16) and (17). Constraint (22) results from the 
chance-constrained specification (10). Because constraints (16)-(22) represent primal and 
dual relations and their complementary slackness conditions, any feasible solution of rela-
tions (16)-(22) constitutes an admissible economic equilibrium that is consistent with the 
behavior of decision making under price risk. Furthermore, the calibrating solution (x̂, ŷ)  
is unique because the least-squares solution of (ĥ, û)  is also unique.

5. Phase II PMP Model – Estimation of the Cost Function

Phase II of the PMP methodology deals with the estimation of a cost function that 
embodies all the technological and behavioral information revealed in Phase I. Typically, a 
marginal cost function expresses a portion of the dual constraints in a Phase I PMP mod-
el. In the absence of risk, PMP marginal cost is defined as A´y+Wh+c, where A´y stands 
for the marginal cost due to limiting inputs and Wh+c for the effective marginal cost due 
to variable outputs. In the risky price case, marginal cost is given by the right-hand-side of 
relation (17) where all the elements are measured in utility units. It is crucial to obtain a 
dollar expression of marginal cost, as in the familiar relation  MC ≥ E( p) . To achieve this 
result, the elements of relation (17) will be divided by the term  θ[w + (E( p)− c ′) x](θ−1)  to 
write 

 MC ≥ E( p)  (23)

 
c + 1

θ
[w + (E( p)− c ′) x](1−θ )[ ′A y +Wh]++ γ

θ
[w + (E( p)− c ′) x](1−θ )( ′x Σ px)

(γ /2−1)Σ px ≥ E( p)

Σ Σ

Σ

Σ Σ

Σ

Σ
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In relation (23), all the terms are measured in dollars. The marginal cost due to limit-
ing and variable inputs is given by

 
c + 1

θ
[w + (E( p)− c ′) x](1−θ )[ ′A y +Wh]⎧

⎨
⎩

⎫
⎬
⎭

.

The marginal cost due to risky output prices is given by

 

γ
θ
[w + (E( p)− c ′) x](1−θ )( ′x Σ px)

(γ /2−1)Σ px
⎧
⎨
⎩

⎫
⎬
⎭ .

The cost function selected to synthesize the technological and behavioral relations of 
Phase I is expressed as a modified Leontief cost function such as 

C(x,y) = ( ′f x)( ′g y)+ ( ′g y)( ′x Qx) / 2 + ( ′f x)[(y1/2 ′) Gy1/2 ]  (24)

A cost function is non-decreasing in output quantities and input prices. It is lin-
early homogeneous and concave in input prices, y. The (I×I) matrix G has elements 
Gi,ii=Gii,i≥0,i≠ii,i,ii=1,…,I. The diagonal elements Gi,i can take on either positive or nega-
tive values. The (J×J) matrix Q is symmetric positive semidefinite. The components of vec-
tors f and g are free to take on any value as long as f´x>0 and g´y>0. The reason for intro-
ducing a term like (f´x)(g´y) is to add flexibility to the cost function.

The marginal cost function associated with cost function (24) is given by

MCx =
∂C
∂x

= f( ′g y)+ ( ′g y)Qx + f[(y1/2 ′) Gy1/2 ]  (25)

The derivative of the cost function with respect to input prices corresponds to 
Shephard’s lemma that produces the demand function for inputs:

∂C
∂y

= ( ′f x)g + g( ′x Qx) / 2 + ( ′f x)[Δ(y−1/2 ′) Gy1/2 ]= Ax  (26)

where ∆(y-1/2) represents a diagonal matrix with elements yi
-1/2 on the main diagonal. 

With knowledge of the solution components resulting from the Phase I model (15)-
(22), x̂, ŷ, ĥ, û,θ̂ ,γ̂ , a Phase II model’s goal is to estimate the parameters of the cost func-
tion, f,g,Q,G. This task is accomplished by means of the following specification

minAux=d´d/2+r´r/2 (27)

subject to

f( ′g ŷ)+ ( ′g ŷ)Qx̂ + f[(ŷ1/2 ′) Gŷ1/2 ]=  (28)
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c + 1

θ̂
[w + (E( !p)− c ′) x̂](1−θ̂ )[ ′A ŷ +Wĥ]++ γ̂

θ̂
[w + (E( !p)− c ′) x̂](1−θ̂ )( ′x̂ Σ px̂)

(γ̂ /2−1)Σ px̂ + d

( ′f x̂)g + g( ′x̂ Qx̂) / 2 + ( ′f x̂)[Δ(ŷ−1/2 ′) Gŷ1/2 ]= Ax̂ + r
 (29)

Q=LDL´ (30)

QQ-1=I (31)

with ′f x̂ > 0, ′g ŷ > 0,D ≥ 0 , f and g free. The GAMS software requires an objective func-
tion. The vector variables d,r perform the role of slack variables in the estimation of the 
marginal cost function and Shephard’s lemma, respectively. 

The objective function (27) is a typical least-squares specification. Relation (28) rep-
resents the marginal cost function. Relation (29) is Shephard’s lemma. Relation (30) is the 
Cholesky factorization of the Q matrix with D as a diagonal matrix with nonnegative ele-
ments on the main diagonal and L is a unit lower triangular matrix. The Cholesky factori-
zation guarantees symmetry and positive semidefiniteness of the Q matrix. Relation (31) 
defines the inverse of the Q matrix and, thus, guarantees the positive definiteness of that 
matrix. This constraint assumes relevance for computing the supply elasticities of the vari-
ous outputs. Any feasible solution of model (27)-(31) is an admissible cost function for 
representing the economic agent’s decisions under price risk. 

6. PMP and Output-Supply Elasticities

It may be of interest to estimate price supply elasticities for the various commodity 
outputs involved in a PMP-MS approach. The supply function for outputs is derivable 
from relation (25) by equating it to the expected market output prices,  E( p) , and invert-
ing the marginal cost function:

 x = −Q−1f −Q−1f[(y1/2 )Gy1/2 ] / ( ′g y)+ [1 / ( ′g y)]Q−1E( p)  (32) 

that leads to the supply elasticity matrix

 
Ξ = Δ[E( p)] ∂x

∂E( p)
Δ[(x−1)]= Δ[E( p)]Q−1Δ[(x−1)] / ( ′g y)  (33)

where matrices  Δ[E( p)]  and Δ[x−1]  are diagonal with elements  E( pj )  and x j
−1  on the 

main diagonals, respectively. Relation (33) includes all the own- and cross-price elasticities 
for all the output commodities admitted in the model. 

PMP has been applied frequently to analyze farmers’ behavior to changes in agricul-
tural policies. A typical empirical setting is to map out several areas in a region (or state) 
and to assemble a representative farm for each area (or to treat each area as a large farm). 
When supply elasticities are exogenously available (say the own-price elasticities of crops) 
at the regional (or state) level (via econometric estimation or other means), a connection of 

Σ Σ
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all area models can be specified by establishing a weighted sum of all the areas endogenous 
own-price elasticities and the given regional elasticities. The weights are the share of each 
area’s expected revenue over the total expected revenue of the region. The advantage of 
using exogenously supply elasticities has been asserted by Mérel and Bucharam (2010) and 
Petsakos and Rozakis (2015) in order to account for second-order conditions’ information.

Let us suppose that exogenous own-price elasticities of supply are available at the 
regional level for all the J crops, say η j , j = 1,..., J . Then, the relation among these exog-
enous own-price elasticities and the corresponding areas’ endogenous elasticities can be 
established as a weighted sum such as 

η j = wnj
n=1

N

∑ ηnj

where the weights are the areas’ expected revenue shares in the region (state)

 

wnj =
E( pnj )xnj
E( ptj )xtjt=1

N∑  (34)

 ηnj = E( !pnj )Q
jjxnj

−1 / ( ′gnyn )  (35)

where Qjj is the jth element on the main diagonal in the inverse of the Q matrix. 
The Phase II model that executes the estimation of the cost function parameters and 

the disaggregated (endogenous) output supply elasticities for a region (state) that is divid-
ed into N areas takes on the following specification:

minAux = ′dndn / 2
n=1

N

∑ + ′rnrn / 2
n=1

N

∑  (36)

subject to

fn ( ′gnŷn )+ ( ′gnŷn )Qx̂n + fn[(ŷn
1/2 ′) Gŷn

1/2 ]=  (37)

  

cn +
1
θ̂n

[wn + (E( !pn )− cn ′) x̂n ](1−θ̂n )[ ′Anŷn +Wnĥn ]

                         ++ γ̂ n

θ̂n

[wn + (E( !pn )− cn ′) x̂n ](1−θ̂n )( ′x̂nΣ px̂n )(γ̂ n /2−1)Σ px̂n + dn ≥ E( !pn )

( ′fnx̂n )gn + gn ( ˆ ′xnQx̂n ) / 2 + ( ′fnx̂n )[Δ(ŷn
−1/2 ′) Gŷn ]= Anx̂n + rn  (38)

Q=LDL´  positive semidefiniteness (39)

QQ-1=I   positive definiteness (40)

Σ Σ
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 Ξn = Δ[E( !pn )]Q
−1Δ[(xn

−1)] / ( ′gnyn )  endogenous own- and cross-price elasticities (41)

 

wnj =
E( pnj )x̂nj
E( ptj )x̂tjt=1

N∑  
expected revenue weights (42)

 ηnj = E( !pnj )Q
jj x̂nj

−1 / ( ′gnŷn )  own-price elasticities (43)

η j = wnj
n=1

N

∑ ηnj  disaggregation of exogenous elasticities (44)

with Dn≥0,gn and fn free and ′fnx̂n > 0 , ′gnŷn > 0 .
The GAMS software requires an objective function. The objective function Aux mini-

mizes the pseudo slack variables, rn and dn, of the primal and dual constraints.

7. Phase I Versus Phase I-II Estimates of the Calibrating Solution 

A strand of the PMP literature has discussed the issue of whether the Phase I esti-
mates of decision variables and input shadow prices, x,y, are consistent with the corre-
sponding Phase II estimates where the cost function parameters are estimated simul-
taneously with them. The short answer is positive because the amount of information is 
the same in the two Phases. With the limitations of a two-dimensional diagram, Figure 
1 illustrates the issue. In Phase I, total cost is a linear function of the decision variables 
while in Phase II total cost is a nonlinear function of the same variables. Hence, the cali-
brating optimal solution, x*, is the same in the two Phases. 

In the context of this paper, Phase I model is stated as a LS specification of relations 
(15) through (22). This model results in a unique Least-Squares solution of deviations 
h and u and, therefore, of the decision variables x̂, ŷ . The Phase II model that estimates 

Figure 1. Phase I and Phase II estimates of decision variables x and input shadow prices y.
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simultaneously the cost function parameters and the optimal decision variables is stated 
as the LS specification in Phase I combined with constraints (28) through (31) (where the 
“ ⋅̂ ” symbol is removed from the decision variables). The original information is identical 
in the two models and, therefore, the LS methodology guarantees the unique and identical 
solution for the two sets of estimates. 

8. Phase III PMP Model – Calibrating Models

With the parameter estimates of the cost function, f̂n , ĝn ,Q̂,Ĝ , derived from either 
Phase II model (27)-(31) or model (36)-(44), it is possible to set up a calibrating equilib-
rium model to be used for policy analysis. Such a model takes on the following economic 
equilibrium specification

minCSC=y´zp+x´zd=0 (45)

subject to 

( ′f̂ x)ĝ + ĝ( ′x Q̂x) / 2 + ( ′f̂ x)[Δ(y−1/2 ′) Ĝy1/2 ]+ z p = b +Vû  (46)

 f̂( ′ĝ y)+ ( ′ĝ y)Q̂x + f̂[(y1/2 ′) Ĝy1/2 ]= E( p)+ ẑd  (47)

with x≥0,y≥0,zp≥0,zd≥0. The objective function represents the complementary slackness 
conditions (CSC) of constraints (46) and (47) with an optimal value of zero. The varia-
bles zp and zd are surplus variables of the primal and the dual constraints, respectively. 
The solution of model (45)-(47) calibrates precisely the solution obtained from the Phase 
I model (15)-(22), that is, x̂LS = x̂CSC  and ŷLS = ŷCSC . This remarkable result is due simply 
to the fact that all the information of the Phase I model has been transferred to the cost 
function. Note that the matrix of fixed technical coefficients A does not appear in either 
constraint (46) or (47). The calibrating model, then, can be used to trace the production 
and revenue response to changes in the expected output prices, subsidies and the supply 
of limiting inputs in a more flexible technical framework. 

An alternative calibrating equilibrium model is suitable for dealing with a crucial 
aspect of a risky policy scenario. Wealth is the anchoring measure of risk preference of 
an economic agent. As illustrated above, wealth is composed of accumulated income 
(or exogenous income) and net revenue derived from the current production cycle as in 
 [w + (E( p)− c ′) x]  where w  measures the amount of exogenous income. Agricultural poli-
cies in many countries deal with subsidies to farmers for cultivating (or not cultivating) 
crops. These subsidies may or may not be coupled to the level of crop production. Subsi-
dies that are decoupled from the crop production decisions of farmers constitute exoge-
nous income and end up in the term of wealth that becomes an important target of policy 
makers. The w  term, then, must appear in the calibrating model to allow the representa-
tion of decoupled subsidies as in the following specification

minCSC=y´zp+x´zd=0 (48)
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subject to

( ′f̂ x)ĝ + ĝ( ′x Q̂x) / 2 + ( ′f̂ x)[Δ(y−1/2 )Ĝy1/2 ]+ z p = b +Vû  (49)

 

c + 1
θ̂

[w + (E( !p)− c ′) x](1−θ̂ )[ ′A y +Wĥ]

                 + γ̂
θ̂

[w + (E( !p)− c ′) x](1−θ̂ )( ′x Σ px)(γ̂ /2−1)Σ px = E( !p)+ zd
 (50)

with x≥0,y≥0,zp≥0,zd≥0. Also the solution of model (48)-(50) calibrates precisely the solu-
tion obtained from the Phase I model (15)-(22), that is, x̂LS = x̂CSC  and ŷLS = ŷCSC .

9. Empirical Implementation of PMP-MS With Supply Elasticities 

The PMP-MS approach described in previous sections was applied to a sample of N = 
14 representative farms of the Emilia-Romagna region of Italy. There are four crops: sugar 
beets, soft wheat, corn and barley. There is only one limiting input: land. Empirical real-
ity compels a further consideration of the above methodology in order to deal with farm 
samples where not all farms produce all commodities. It turns out that very little must be 
changed for obtaining a calibrating solution in the presence of missing commodity levels, 
their prices and the corresponding technical coefficients. Using the GAMS software, it is 
sufficient to condition the various constraints of Phase I, Phase II and Phase III models 
by the nonzero observations of the output levels. To exemplify, the available farm sample 
displays the following Table 3 of observed crop levels while Table 4 presents the variance-
covariance matrix of the market output prices.

Table 3. Observed output levels, xobs, with non produced commodities.

Farm Sugar Beets Soft Wheat Corn Barley

1 1133.4240 0 341.3693 18.2398
2 3103.7830 841.7445 0 59.8025
3 0 450.7937 881.9748 0
4 3488.3540 821.3934 1493.3320 51.1247
5 959.1102 468.2848 0  28.2406
6 942.2039  801.1288 1283.5910 152.5810
7 1600.7310 0 899.4739  66.9718
8 0 1212.8550 1237.5840 98.0497
9 1050.5370 332.3773 0 63.6696

10 3473.6780 952.5199 774.7402 0
11 0 765.1689 501.9673  59.5366
12 3276.1450 1100.1680 0 177.9740
13 877.0970 380.9171 564.6091  76.2122
14 1430.9460 0 1309.3920 0

Σ Σ
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Other missing information deals with prices and unit accounting costs associated 
with the zero-levels of crops. Furthermore, the technical coefficients of farms not pro-
ducing the observed crops also equal to zero. Hence, we can state that, for n=1,…,N, 
the number of farms, and j=1,…,J, the number of crops, if xnj

obs = 0 , also pnj=0, cnj=0 and 
Anij=0. Furthermore, suppose that only one input, land, is involved in this farm sample. 
Let us assume also that the land price is observed for all farms. The procedure to deal 
with this type of sample data consists in conditioning the relevant constraints on the posi-
tive values of the output levels. In GAMS, this procedure requires a conditional statement 
using the $ sign option.

Table 4. Variance-covariance matrix of the market output prices.

Sugar Beets Soft Wheat Corn Barley

Sugar Beets 0.0024719 -0.0164391 -0.0117184 -0.0121996
Soft Wheat -0.0164391  0.2386034  0.1821288 0.2049011

Corn -0.0117184 0.1821288 0.1530464 0.1610119
Barley -0.0121996 0.2049011 0.1610119 0.1830829

Tables 5 and 6 present the estimated output levels and input prices ( x̂, ŷ ). They also 
exhibit the percent deviation of the solution ( x̂, ŷ ) of model (15)-(22) from the corre-
sponding targets (xobs,yobs). It is of interest to report that the same identical solution was 
obtained in three different ways. All the estimations were performed with the GAMS soft-
ware. The first round of estimates were obtained by solving model (15)-(22) one farm at a 
time. The second round of estimates were obtained by solving model (15)-(22) using the 
entire sample of observations. This means that the objective function was specified as 

minLS = hnWnhn
n=1

N

∑ + unVnun
n=1

N

∑

subject to constraints (16)-(22) specified for each single farm observation. The third 
round of estimates of the optimal decision variables were obtained by solving model (36)-
(44) with the “ ⋅̂ ” symbol removed from the variables. 

Table 7 presents the estimates of the parameters θ and γ of the MS utility function.
The sample is composed of relatively homogeneous farms. Hence, the limited numeri-

cal range of variation of the MS utility parameters is not a surprise. Within that range, 
however, a wide variety of risk preferences is detected. Seven farmers exhibit decreasing 
absolute risk aversion accompanied by increasing relative risk aversion. This result match-
es a statement of Tsiang (1972, p. 357): “…the most commonly observed pattern of behav-
ior toward risk of a risk-averter individual is probably decreasing absolute risk-aversion 
coupled with increasing relative risk-aversion when his wealth increases…” Two farmers 
exhibit increasing absolute risk aversion associated with decreasing relative risk aversion. 
Four farmers exhibit decreasing absolute risk propensity and increasing relative risk pro-
pensity. It should be noted that the negative gamma coefficients of these four farmers are 
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rather small, suggesting that risk neutrality may – probably – be a better risk-preference 
representation of these farmers. The approach does not allow for a statistical testing of this 
conjecture. Finally, one farmer exhibits increasing absolute and relative risk aversion. This 

Table 5. Estimated LS solution, x̂ , and percent deviation from the observed levels, xobs with zero lev-
els for some crops and some farms.

Farm
Optimal Decisions x̂ Percent deviation from xobs

Sugar Beets Soft Wheat Corn Barley Sugar Beets Soft Wheat Corn Barley

1 1133.851 0 341.622 18.156 0.0377 0 0.0741 -0.4587
2 3104.392 861.829 0 52.923 0.0196 0.0098 0 0.2021
3 0 450.794 881.975 0 0 -0.0000 0.0000 0
4 3488.400 821.340 1493.477 51.165 0.0013 -0.0065 0.0097 0.0791
5 959.234 468.140 0 28.308 0.0129 -0.0310 0 0.2399
6 942.488 801.394 1283.947 152.923 0.0301 0.0331 0.0278 0.2238
7 1601.381 0 899.724 67.104 0.0406 0 0.0278 0.1975
8 0 1213.157 1237.937 98.080 0 0.0249 0.0285 0.0307
9 1051.373 332.592 0 63.767 0.0796 0.0645 0 0.1528

10 3474.183 952.606 774.966 0 0.0145 0.0085 0.0291 0
11 0 765.267 502.186 59.659 0 0.0128 0.0436 0.2052
12 3276.657 1100.245 0 178.324 0.0156 0.0070 0 0.1964
13 877.324 380.970 564.926 76.467 0.0258 0.0138 0.0561 0.3347
14 1431.231 0 1309.653 0 0.0199 0 0.0199 0

Table 6. Deviation of ŷ  from yobs.

Farm Observed Land Prices  
yobs

Estimated Land Prices  
ŷ Percent Deviation

1 4.42 4.4213 0.0287
2 4.38 4.3810 0.0219
3 6.98 6.9800 0.0000
4 5.73 5.7302 0.0036
5 4.40 4.3995 -0.0111
6 1.86 1.8609 0.0458
7 3.65 3.6517 0.0454
8 3.36 3.3609 0.0266
9 2.75 2.7521 0.0780

10 4.28 4.2807 0.0158
11 3.28 3.2810 0.0318
12 1.93 1.9305 0.0281
13 2.32 2.3213 0.0579
14 4.03 4.0308 0.0199
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empirical result is a clear illustration of the flexible structure of risk preferences as stated 
by the theoretical analysis. The corresponding meaning of the various acronyms is derived 
from Table 1 and Table 2.

The estimated parameters of the cost function are reported in Tables 8 and 9. In 
this numerical example, the G matrix contains only one parameter whose value is Gi,i=-
11.39904.

Regional, exogenous own-price supply elasticities were available in the magnitude of 
0.6 for sugar beets, 0.5 for soft wheat, 0.7 for corn and 0.4 for barley. The endogenous 
own-price elasticities of all farms were aggregated to be consistent with the regional exog-
enous elasticities according to relation (44). Table 10 presents the farms’ own-price supply 
elasticities used in the aggregation relation.

10. Conclusion

This paper accomplished several objectives. First, it extended the treatment of risk 
in a mathematical programming framework to include any combination of risk prefer-
ences represented by absolute risk aversion (or absolute risk propensity) and relative risk 
aversion (or relative risk propensity). Second, it modified the traditional PMP approach 
to deal with calibration constraints regarding observed output levels and observed input 
prices by eliminating the user-determined perturbation parameter. The combination of 
these two approaches provides suitable models for agricultural policy analysis that take 
into consideration farmers’ risk preferences associated with the randomness of output 
prices. Third, this paper integrated the use of exogenous supply elasticities observed for, 
say, an entire region with the endogenous elasticities derived from the supply functions 
of the sample farms. This objective is achieved by specifying a complete and flexible total 
cost function that fulfills all the theoretical requirements. Fourth, it resolves in a positive 

Table 7. Estimates of θ and γ.

Farm Parameter θ Parameter γ Risk Preference

1 1.0131215 1.1397862 DARA, IRRA
2 1.0050568 1.0766995 DARA, IRRA
3 1.1313873 1.2841485 DARA, IRRA
4 0.9836798 0.9273945 IARA, DRRA
5 0.9578977 -0.1867746 DARP, IRRP
6 0.9645178 -0.1465580 DARP, IRRP
7 1.0183502 1.1310367 DARA, IRRA
8 1.0562629 1.1969911 DARA, IRRA
9 1.0277583 1.1992494 DARA, IRRA

10 1.0043433 1.0570120 DARA, IRRA
11 0.9503372 -0.1567640 DARP, IRRP
12 0.9986044 1.0263446 IARA, IRRA
13 0.9577406 -0.1663556 DARP, IRRP
14 0.9797649 0.8443536 IARA, DRRA
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way the dispute debated in the PMP literature whether Phase I calibrating estimates are 
consistent with Phase II estimates. Fifth, a calibrating model resulting from the PMP-MS 
framework described here allows for the analysis of policy scenarios dealing with farm 
subsidies that are decoupled from the current crop production. Consider the parameter 

Table 8. Intercepts f̂  and ĝ  of the marginal cost and input demand functions.

Farm
f̂ ĝ ′f̂ x̂ ′ĝ ŷ

Sugar Beets Soft Wheat Corn Barley

1 0.00949 0 0.00666 -0.00320 0.00465 12.923 0.02055
2 0.00364 0.03154 0 -0.06940 0.00149 34.378 0.00654
3 0 -0.00290 0.00374 0 0.00129 1.965 0.00901
4 0.00734 -0.00284 0.00902 -0.06489 0.00132 33.448 0.00756
5 -0.00307 0.02349 0 -0.05730 0.00202 6.426 0.00888
6 -0.02082 0.08018 0.08193 0.26459 0.00658 190.289 0.01224
7 0.00473 0 0.02687 0.05681 0.00271 35.568 0.00992
8 0 0.08121 -0.00668 -0.05092 0.00220 85.254 0.00738
9 0.00408 0.04408 0 0.07081 0.00610 23.462 0.01679

10 0.00905 0.03772 -0.02931 0 0.00164 44.673 0.00703
11 0 0.08005 -0.04152 -0.05365 0.00300 37.213 0.00985
12 0.00395 0.11439 0 0.06448 0.00329 150.291 0.00635
13 0.00041 0.05078 0.03585 0.19131 0.00950 54.584 0.02205
14 -0.00159 0 0.03287 0 0.00192 40.770 0.00773

Table 9. Estimated matrices Q̂  and D̂ .

Matrix Q̂

Sugar Beets Soft Wheat Corn Barley

Sugar Beets 0.0408842 -0.0269584 -0.0084418 -0.0405819
Soft Wheat -0.0269584 0.8509183 -0.1850005 -0.5925655

Corn -0.0084418 -0.1850005  0.3698877 -0.0130721
Barley -0.0405819 -0.5925655 -0.0130721  7.7008830

Matrix D̂

Sugar Beets Soft Wheat Corn Barley

Sugar Beets 0.0408842
Soft Wheat 0.8331423

Corn 0.324558
Barley 7.1182454
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w  in the measure of wealth that may represent exogenous income subsidy. With a Freund 
approach to risk based upon a constant absolute risk aversion utility function, the wealth 
parameter disappears from the programming model. On the contrary, one version of the 
calibrating equilibrium model presented in this paper allows for the analysis of decoupled 
farm subsidies that are more frequently the target of policy makers. This general model 
has been tested on different farm samples with satisfactory results including a data sample 
where not all farms produce all the commodities.
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Appendix

The function V(μ,σ)=μθ-σγ is concave in μ and σ when the corresponding Hessian 
matrix is negative definite. This event occurs when θ<1 and γ>1. When the mean and 
standard deviation of wealth, μ and σ, are expressed in terms of decision variables, x, μ(x) 
and σ(x), the resulting function assumes a flexible structure whose concavity depends on 
different values of parameters θ and γ. This appendix illustrates the possible shapes of 
the MS utility function (as a function of decision variables) by means of simple graphs 
and the associated upper contour sets that are conditional upon the magnitude of the θ 
and γ parameters. The value of θ and γ are chosen to reflect the estimates of Table 7. The 
MS utility function is simplified to show two decision variables, x1 and x2. The expected 
prices are chosen as  E( !p1) = 4  and  E( !p2 ) = 6  with standard deviation σp1=0.5, σp2=0.7 and 
σp1p2=0.1. With these stipulations, all the figures’ functional forms and the upper contour 
sets exhibit the following specification 

 

V[µ(x),σ (x)] = µ(x)θ −σ (x)γ = [E( !p1)x1 + E( !p2 )x2 ]θ − [σ p1

2 x1
2 +σ p2

2 x2
2 + 2σ p1p2

x1x2 ]γ /2

                                                = [4x1 + 6x2 ]θ − [0.52 x1
2 + 0.72 x2

2 + 0.2x1x2 ]γ /2

In all the figures, the upper contour sets appear to be convex even though the contour 
levels appear rather flat in some figures. The convexity of the upper contour sets is a cru-
cial reason for obtaining an optimal solution. The flatness of the contour levels may make 
it more laborious for the algorithm to converge to an optimal solution. The figures were 
drawn using Mathematica.
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