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INTRODUCTION 

This special issue of Bio-based and Applied Economics “Economic and 
policy analysis of technology uptake for the smart management of agricul-
tural systems” stems from the growing diffusion of innovative digital tech-
nologies as strategic solutions for the development of the agricultural sector. 

Agriculture is undergoing a profound transformation thanks to the inte-
gration of new technologies (Vishnoi and Goel, 2024; Aijaz et al., 2025), with 
a view to the sustainable development of the sector (Norman and MacDon-
ald, 2004; Nica et al., 2025). The combined economic and environmental 
benefits of technology adoption in agriculture are widely recognized in the 
literature (Giorgio et al., 2024; Papadopoulos et al., 2025). To illustrate, tech-
nologies in agriculture help address current interconnected challenges related 
to productivity, cost reduction, agri-food safety, natural resource conserva-
tion, animal welfare, worker safety, and, more generally, the achievement of 
sustainable development goals (Castillo-Díaz et al., 2025; Finger, 2023; Basso 
and Antle, 2020; Musa and Basir, 2022; Sridhar et al., 2023). In this context, 
technological innovations have enabled significant improvement of various 
agricultural processes through the introduction of different tools, such as the 
Internet of Things (IoT), sensors, robotics, drones, blockchain, and artificial 
intelligence (Sharma and Shivandu, 2024). As discussed by Arraigada and 
Mac Clay (2025), these tools can either complement traditional technologies 
(e.g., IoT sensors connected to conventional irrigation systems) or substitute 
them (e.g., spraying drones replacing a traditional sprayer).

The diffusion of innovative digital tools in agriculture is growing 
(Shang et al., 2021), but their take up still varies significantly across coun-
tries, farm types, and production systems (Eastwood et al., 2019; Rose and 
Chilvers, 2018; Shepherd et al., 2020). This uneven pattern highlights the 
need to understand the mechanisms underlying the adoption of these tech-
nologies and suggests that digital transformation in agriculture is not just 

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://www.fupress.com/bae
https://doi.org/10.36253/bae-19112
https://doi.org/10.36253/bae-19112
https://orcid.org/0000-0001-9622-1067
https://orcid.org/0000-0002-5241-1587
https://orcid.org/0000-0001-9503-2977


4

Bio-based and Applied Economics 14(4): 3-7, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-19112 

Giulia Maesano, Davide Menozzi2, Davide Viaggi

about technology, but also depends on social structures, 
institutions, and interactions between networks and 
governance systems (Roberts et al., 2017; Jia, 2021), as 
well as farmers’ personal attitudes and traits (Deißler et 
al., 2022). 

This special issue contributes to the ongoing debate 
on how digitalization is reshaping agriculture. Combin-
ing behavioral theories, such as the theory of planned 
behavior (Ajzen, 1991), the technology acceptance mod-
el (Davis, 1989), and the unified theory of technology 
acceptance and use (Venkatesh et al., 2012), with eco-
nomic and policy analyses, the articles examine in detail 
the factors that help or hinder farmers in adopting new 
technologies (Maesano et al., 2025; Cozzi et al., 2025; 
Moussaoui et al., 2025).

PRESENTATION OF THE SPECIAL ISSUE

The articles collected in this special issue aim to 
offer a broad and multifaceted view of the dynamics 
linked to the diffusion of innovative digital technologies 
in the agricultural sector, considering the behavioral, 
economic, and political dimensions that influence the 
intention to adopt them.

Kühnemund and Recke (2025), drawing on the 
Technology Acceptance Model (TAM) framework, 
investigate the determinants that drive German pig 
farmers to introduce AI-based camera systems into 
livestock production. Their findings indicate that per-
ceived ease of use, openness to innovation, and indi-
vidual innovativeness are the main factors influencing 
adoption intention. Concerns about data ownership and 
privacy, however, play a lesser role in driving behavior. 
Overall, the authors argue that farmers place significant 
importance on the reliability and functionality of tech-
nology. However, trust and transparency are essential 
determinants of technology adoption. These findings 
underscore the importance of user-centered design and 
clear communication regarding how intelligent technol-
ogies are implemented in practice.

Cozzi et al. (2025) conduct a study in the Italian 
horticultural sector, to analyze the adoption of water-
smart technologies. Based on data from a survey of 251 
farmers in Italy, using an extended TAM3 framework, 
the authors find that perceived usefulness and social 
norms strongly inf luence adoption intentions. The 
results also show that ease of use is less influential in 
driving intentions. Their analysis highlights how social 
interaction and perceived benefits outweigh usabil-
ity or socioeconomic characteristics in shaping farmers’ 
behavior. From this perspective, the findings suggest 

that participatory and peer-learning environments can 
serve as effective channels to accelerate the diffusion 
of innovation. The findings are consistent with those 
of Sabbagh and Gutierrez (2025) and Kühnemund and 
Recke (2025), both of which emphasize the key role of 
social capital in linking technological potential to actual 
behavioral change.

Sabbagh and Gutierrez (2025) extend the Unified 
Theory of Acceptance and Use of Technology framework 
to analyze the adoption of Agriculture 4.0. The authors 
identify the main determinants of adoption by com-
paring marginal and non-marginal areas. Their find-
ings reveal that facilitating conditions, such as access to 
infrastructure and technical support, and social influ-
ence are the main predictors of adoption. Furthermore, 
according to the study’s findings, perceived performance 
risks have been shown to be barriers to adoption. The 
authors conclude that adoption intentions depend not 
only on individual motivation, but also on social and 
territorial structures that enable knowledge exchange 
and reduce perceived risk. These findings echo previous 
work on the rural digital divide, highlighting the need 
for context-specific policies (Rose and Chilvers, 2018; 
Eastwood et al., 2019).

Timpanaro et al. (2025) contribute to the litera-
ture debate by analyzing the methods of introducing 
digital tools and their effects in Sicilian citrus farming. 
Using a Living Lab approach, the authors demonstrate 
that digital technologies can increase yield per hectare, 
improve profitability, and enhance water efficiency on 
citrus farms. Their findings also indicate that participa-
tory innovation processes promote knowledge exchange 
and collaboration, helping to reduce farmers’ resistance 
to change. The study highlights the need for targeted 
training and institutional support to ensure that digi-
talization is effective and inclusive. This participatory 
perspective resonates with the call for innovation ecosys-
tems that integrate technology into local socioeconomic 
contexts and sustainability goals.

Maesano et al. (2025) examine the factors influenc-
ing Italian consumers’ intentions to purchase organic 
pasta traced using blockchain technology. Extending the 
Theory of Planned Behavior (TPB) framework (Ajzen, 
1991), the authors assess the potential of blockchain in 
preventing and detecting food fraud. Their findings sug-
gest that subjective norms, perceived behavioral control, 
and attitudes toward technology are the main predictors 
of purchase intention, while trust in traditional quality 
certifications plays a limited role. Therefore, consumers 
place greater trust in digital traceability tools than in 
conventional certification systems. However, from a con-
sumer perspective, uncertainty remains about the practi-
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cal benefits of these technologies, highlighting the need 
for a credible and transparent environment in which 
innovation provides clear added value.

Pacciani et al. (2025) evaluate digitalization levels, 
perceived benefits, needs, and barriers on a sample of 
1,248 Italian farms. The results show that monitoring 
systems and connected machinery are the most used 
technologies. In addition, efficiency gains in farm and 
production management, improved operational control, 
and perceived benefits are key drivers of adoption, while 
financial and structural limitations remain significant 
obstacles. The authors call for coordinated policy meas-
ures to support the digital transition, combining advi-
sory services, investment in infrastructure, and human 
capital development. Their conclusions are consistent 
with those of Sabbagh and Gutierrez (2025) and Tim-
panaro et al. (2025), who also emphasize the importance 
of governance coordination, training, and connectivity 
in promoting technology diffusion.

Moussaoui et al. (2025) employ a mixed-methods 
design, combining surveys and in-depth interviews to 
gather stakeholder perspectives on smart agriculture 
technologies and their policy integration. The results of 
the study show a broad agreement on the potential of 
technologies to improve agricultural efficiency, sustain-
ability, and productivity; nonetheless, it also identifies 
persistent barriers, including high upfront costs and lim-
ited technical expertise. The authors highlight the need 
for financial incentives, capacity-building initiatives, and 
stronger infrastructure to encourage adoption. The con-
clusion of this study supports adaptive, multi-level gov-
ernance frameworks that link top-down policy design 
with bottom-up innovation processes to ensure greater 
policy coherence. In line with Pacciani et al. (2025), 
their findings reinforce the view that digital transforma-
tion depends as much on systemic governance reform as 
on technological progress.

Finally, Arraigada and Mac Clay (2025) expands the 
geographical scope with an exploratory study of digi-
tal agriculture (DA) start-ups in Argentina, providing 
comparative insights from the Global South. The paper 
discusses the interactions between the established agri-
cultural input industry and 114 DA start-ups based on 
two technological dimensions: embodied/disembodied 
technologies and complementary/substitutive. Overall, 
the analysis shows that most of the solutions developed 
by Argentine start-ups tend to be complementary to the 
existing technological packages, and this may represent 
an opportunity for dominant firms to strengthen their 
position either by acquiring or investing in early-stage 
start-ups to incorporate those solutions into their own 
technological platforms. 

CROSS-CUTTING INSIGHTS AND 
POLICY IMPLICATIONS

This special issue offers different perspectives on the 
dynamics of technology adoption and the governance of 
digital transformation in agriculture. The evidence con-
firms that technology adoption is not merely a techni-
cal or economic process (though these aspects are very 
important), but it is a socio-institutional transition, that 
depends on mental constructs, social norms, and col-
lective learning mechanisms, and is strongly influenced 
by the external conditions in which innovations are 
embedded. Behavioral models indicate that perceived 
usefulness and social influence are the main determi-
nants of farmers’ acceptance of innovations. Conversely, 
perceived risk, high costs, and institutional uncertainty 
remain the main barriers. 

From a policy perspective, the findings highlight 
that monetary incentives alone will not ensure a success-
ful digital transition unless they are part of coherent and 
flexible governance arrangements that align public and 
private resources, promote interoperability, and leverage 
synergies within the sector (Wolfert et al., 2017; Klerkx et 
al., 2019; Viaggi, 2019). The articles in this special issue 
suggest that effective strategies must combine investment 
with the development of digital infrastructure and educa-
tional programs to build long-term innovation capacity. 
More generally, the integration of behavioral and eco-
nomic policy analysis in these articles demonstrates how 
interdisciplinary science can inform evidence-based solu-
tions to ensure the deployment of smart technologies in 
the context of resilient agri-food systems.
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Abstract. This study explores the factors influencing German pig farmers’ intention 
to use (ITU) AI-based camera systems in livestock farming. This research utilized 
an extended Technology Acceptance Model. Data from 185 farmers were analyzed 
through structural equation modeling, revealing that ease of use (β=0.276), innova-
tion tolerance (β=0.398) and personal innovativeness (β=0.101) notably impact ITU. 
Concerns over data ownership and transparency showed limited effects, and perceived 
job relevance (β=0.355) enhanced acceptance. Expected transparency of AI camera 
systems had strong influence on perceived ease of use (β=0.419). A gradual integra-
tion of the factors showed that perceived usefulness has a strong influence on ITU but 
is superimposed by the factor job relevance in the modelling process. With an R2 of 
0.749, the model has high explanatory and predictive power. These insights underscore 
the importance of user-centric design and transparency in AI technology deployment 
in agriculture. Although the ITU AI camera systems in pig farming depends on its ease 
of use and transparency, it also depends on the personal characteristics.

Keywords: AI, surveillance, precision livestock farming, technology acceptance.

1. INTRODUCTION

Pig farmers face major challenges in the production and processing of 
animals. On the one hand, legal requirements for animal health and animal 
protection in Germany increased (German Federal Ministry of Food and 
Agriculture, 2024), e.g. ban on tail docking and requirements for defined 
husbandry types. On the other hand, pig farmers are faced with societal 
demands for production like animal rights values (Albernaz-Gonçalves et 
al., 2021). For this reason, the integration of artificial intelligence (AI) into 
the processes associated with pig farming is needed to improve modern agri-
culture. Therefore, an increasing number of animal behavior monitoring 
technologies have been developed over the last decade. Many of these solu-
tions focus on the combination of visual recordings and artificial intelligence 
interpretation. In pig farming, these innovations range from live weight 
detection (Wongsriworaphon et al., 2015) and growth (Condotta et al., 
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2018) to behavioral detection (Nasirahmadi et al., 2019) 
and early disease detection (Fernández-Carrión et al., 
2020). As a result, AI technologies can not only increase 
productivity but also improve overall animal welfare 
through early disease detection and prevention.

However, the adoption of AI systems and the use of 
intelligent systems in animal husbandry are less com-
mon than that of other technologies on farms in Ger-
many (Rohleder et al., 2020). The aim of our study is to 
investigate the factors that determine the intention to 
use AI camera systems in pig farming. In the context of 
livestock farming, cluster analyses have identified hetero-
geneity in attitudes toward the agricultural technologies 
used (Schukat & Heise, 2021). In addition, various stud-
ies on the intention to use (ITU) farming technologies 
have reached different conclusions. Michels, Bonke, et 
al. (2020) investigated factors that influence farmers’ use 
of smartphone apps for crop protection. Their analyses 
revealed that performance expectancy and social norms 
were among the determining factors for the ITU. In con-
trast, Mohr and Kühl (2021) investigated the acceptance 
of AI technologies in agriculture in general and reported 
that previous factors have no influence on the intention 
to use them. In their study, for example, the perceived 
ease of use and the expectation of property rights over 
business data were decisive factors influencing the inten-
tion to use. This finding indicates the importance of ana-
lyzing the factors that determine the intended use of spe-
cific technologies and target groups. An established meth-
od for analyzing the usage intentions of potential target 
groups is the technology acceptance model (TAM) from 
Davis (1985). The TAM and various extensions, as well 
as models based on the original model, are precise means 
of determining the factors influencing the intention to 
use and predicting possible utilization (Davis & Granić, 
2024). The model has also been applied to agricultural 
technologies in different studies (Alambaigi & Ahangari, 
2016; Mohr & Kühl, 2021; Thomas et al., 2023). Besides 
intentional models using the TAM there are different 
other models used in the case of agricultural technolo-
gies. For example, the theory of planned behavior (TPB) 
(Ajzen, 1991) have often been used in the context of the 
implementation of new technologies in the rural econ-
omy. Sok et al. (2021) identified several articles in the 
field of animal husbandry that successfully applied to 
the TPB. In German agriculture this method was applied 
in study investigates the adoption of mixed cropping 
(Michels, Bonke, et al., 2020). In addition, a small num-
ber of researchers have examined technologies in agricul-
ture from the perspective of stage-based models (Block et 
al., 2023; Lemken et al., 2017), such as the Transtheoreti-
cal Model of Behavioral Change (TTMC) (Prochaska & 

Velicer, 1997). This concept can be used to predict behav-
ioral change and has its origins in the health sciences. 
Applying the model to adaptation is difficult at this stage 
because similar technologies are not yet available, or are 
limited, and understanding of the potential benefits can 
be very narrow. Despite the variety of approaches aim-
ing to understand the use intentions of potential target 
groups, a TAM-based study is an appropriate choice, 
especially for technologies in the early stages of develop-
ment and with low market penetration (Davis & Granić, 
2024). Findings from TAM and new extensions provide 
valuable insights for potential technology users and help 
developers and policymakers set the right course for the 
adaptation of useful technologies. 

The differentiation of the technology in question, 
especially in the field of AI, is necessary to define the 
research object and draw specific conclusions. In gen-
eral, AI can be difficult to grasp with respect to the 
selected target group and application, as there are differ-
ent perceptions of what AI is and can do. It is therefore 
useful to design research on the acceptance of technolo-
gies according to the object of investigation. Another 
reason to analyze this special issue related to AI tech-
nology is that both camera systems and AI that use 
image data are sensitive cases for potential users (Saheb, 
2023). Since AI-based camera systems are relatively new 
and the use of this technology in the context of Ger-
man livestock farming is low, this study on intention to 
use is essentially a theoretical ex ante model (Pierpaoli 
et al., 2013). Against this background, this study ana-
lyzes the influence of theoretically derived factors on the 
utilization intentions of German pig farmers. In addi-
tion, the research should help technology developers to 
adapt their systems to enable better market integration. 
Insights into the relevant characteristics that influence 
adoption intentions can help to inform farmers about AI 
camera systems in a targeted way. The findings should 
also serve to identify potential barriers to adaptation and 
provide an opportunity for developers and policy makers 
to take these into account. We use an extended technol-
ogy acceptance model, which is explained and justified 
in more detail in the methods section.

2. THEORETICAL FRAMEWORK

This investigation uses the TAM to analyze the 
potential adoption behavior of German pig farmers and 
to explain the intention to use this technology in terms 
of acceptance (Useche et al., 2013). In the context of the 
technology and the potential users (farmers), we expand 
this model to the context of pig farmers and the usage of 
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AI camera surveillance, as shown in the following chap-
ter The TAM is based on two factors, perceived useful-
ness (PU) and perceived ease of use (PEOU), which are 
decisive for the possible acceptance of new technologies 
by potential users (Davis, 1989). The PU indicates the 
degree to which a system improves work performance 
and, according to its founder Davis, is a strong influenc-
ing factor on the use of technology (Davis, 1989). The 
PEOU indicates how difficult or simple potential users 
consider learning and using a system or technology to 
be (Davis, 1989). In the original model, the two factors 
act as explanatory and predictive variables for the inten-
tion to use a new technology. The model in our analysis 
showed a lack of explanatory power which substantiated 
the contextual extension. Figure 1 illustrates the original 
TAM framework.

Contextual model extension

In addition to the PU and the PEOU, many other 
factors affect users’ intention to use new technologies 
(Pierpaoli et al., 2013). With the aim of identifying these 
factors, various extensions of the TAM have been made 
over time and embedded in other concepts to gener-
ate independent models that explain the intention to 
use technologies (Davis & Granić, 2024). In a system-
atic overview, Granić (2024) presented a total of 17 dif-
ferent models that analyze technology adoption at the 
individual level. These include, for example, the extend-
ed unified theory of acceptance and use of technology 
(UTAUT) (Venkatesh et al., 2012) and innovation diffu-
sion theory (IDT) (Rogers, 1975). This resulted in a wide 
range of possible predictors for the intention to use tech-
nologies, whereby different aspects can be categorized in 

relation to the users, technology, tasks and social factors 
(Davis & Granić, 2024). Instead of applying one of the 
existing models to AI-based camera systems, it appears 
that the special nature of the technology and the task, 
as well as the users, make an extension necessary that 
considers these special aspects. In the present research, 
the combination of surveillance technology and the use 
of AI, in particular, plays a decisive role in this type of 
expansion.

A literature search in the Scopus and SpringerLink 
databases during the conception phase of the study led 
to the factors explained below and, finally, to our extend-
ed TAM. As part of the modeling process, we assigned 
the individual constructs to the categories of farmer 
aspects, technological aspects and social aspects.

Farmers’ aspects

Innovation tolerance (IT) is a combination of risk 
attitudes and the expectation of future relevance from 
the user’s perspective. These factors can be well integrat-
ed into a behavioral model such as the TAM (Montes de 
Oca Munguia et al., 2021). It is known from the litera-
ture that risk aversion has a negative effect on technol-
ogy adoption (Abadi Ghadim & Pannell, 1997). Con-
versely, Seibert et al. (2021) showed in their systematic 
literature review the positive effect of the willingness to 
take risks on the intention to use new technologies. A 
decision under uncertainty involves, in the context of 
technology adoption, the derivation of the value of the 
technology in the future. Innovators recognize the val-
ue of the technology and the future benefits that its use 
and rapid adaptation offer. They are convinced that uti-
lization will be important in the future to benefit from 

Figure 1. Results of the basic technology acceptance model based on (Davis, 1989).
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adoption (Rogers, 2003). Those who see high potential 
in new technologies for the future are prepared to use 
the technology now. This study assumes that the combi-
nation of self-perceived risk behavior and the assessment 
of the importance of using technology in the future is 
decisive for the intention to use it.

Personal innovativeness (PI) extends models of 
technology acceptance by considering individual per-
ceptions and beliefs (Agarwal & Prasad, 1998). People 
are described as innovative when they adopt new inno-
vations at an early stage (Rogers & Shiemaker, 1971). A 
study on precision agriculture technologies revealed 
significant correlations between technology acceptance 
and PI as well as a moderating effect on the ITU by 
influencing the PEOU (Aubert et al., 2012). In her study 
on the adoption of virtual reality simulations, Fagan et 
al. (2012) reported a significant interaction between PI 
and PEOU. In the context of AI and agriculture, Mohr 
and Kühl (2021) showed the influence of the PI on the 
PEOU.

Job relevance (JR) describes the extent to which AI-
based camera systems are relevant for daily tasks with 
animals from the user’s perspective. Farmers are more 
likely to use an information system if they perceive 
that the information it conveys is relevant to their job 
(Venkatesh & Davis, 2000). In the context of German 
livestock farmers, the pressure to use technologies to 
improve their jobs is a factor underlying the behavioral 
acceptance of farmers. In addition to the direct influence 
of JR on the intention to use new technologies, (agri-
cultural) studies have highlighted the significant effect 
of this variable on PU (Marangunić & Granić, 2015; 
Michels et al., 2021).

Technological aspects

The expectation of property rights (PRs) over busi-
ness data plays an important role in the development 
of digitalized livestock farming. PR, particularly in the 
context of AI systems and camera technology, is unclear 
from a legal perspective (Härtel, 2020). The acceptance 
of AI-based camera systems is linked to the expectation 
of ownership and the legal certainty of the data cre-
ated and used in this context (Härtel, 2020). Another 
point pertains to the need for AI systems for data-driv-
en learning; for example, camera systems require video 
and images. Currently, it remains unclear who owns the 
original data and the data processed by the AI system. In 
relation to the cultural context, German individuals are 
critical of issues related to data security, especially with 
regard to the use of surveillance technology (Kostka et 
al., 2021; van Heek et al., 2017). A farmer who expects to 

own the data is assumed to be less willing to use an AI-
based camera system.

The perceived risk of data abuse (RI) is a crucial fac-
tor for the intention to use new AI technologies. The use 
of AI and camera technology indicates a type of surveil-
lance. Fundamental changes in the work environment 
and people’s trust in AI often lead to irrational worries 
in German society even at the individual level – a phe-
nomenon that has been called “German angst” (Nickl, 
2014). In their study, Beaudry and Pinsonneault (2010) 
reported that emotions such as anxiety have negative 
effects on the intention to use and PU of technology. 
In terms of surveillance characteristics, the RI has an 
impact on ITU camera technology (Krempel & Beyerer, 
2014). With respect to the combination of AI and sur-
veillance technology (Park & Jones-Jang, 2022), accept-
ance and even PU and PEOU can be negatively influ-
enced. In terms of the adoption of AI technologies in a 
professional context, Dumbach et al. (2021) identified 
data protection as the most challenging barrier with 
respect to AI technology.

With respect to surveillance systems, the expected 
data transparency (TR) of the processed data and the 
operation of the system itself are important factors in the 
acceptance of camera technology (Krempel & Beyerer, 
2014). It is difficult or even impossible to understand all 
aspects of AI systems, even when they are fully transpar-
ent. This situation represents a black box that may hin-
der the development of trust (Dam et al., 2018). Howev-
er, transparency is a major driver of trust, which deter-
mines people’s willingness to accept strategic uncertain-
ty (Poursabzi-Sangdeh et al., 2018; Schmidt et al., 2020; 
Zhao et al., 2019). A study by Wanner et al. (2022) con-
cluded that transparency on AI-based camera systems 
affects the PU and PEOU (Wanner et al., 2022). A trans-
parent system is easier to understand; thus, the PEOU 
and PU increase because people have more knowledge 
about the system.

Social aspects

Perceived social norm (PS) is based on perceived 
social pressures, personal feelings of moral obligation 
and the responsibility to engage in or refuse to engage 
in a specific behavior (Gorsuch & Ortberg, 1983). The 
expectations of behavior created by social pressure influ-
ence the intention and actual decision to behave in a 
certain way (Ajzen, 1991). German consumers assess 
their knowledge about agriculture as rather low (Heinke 
et al., 2017). However, even without sufficient knowledge, 
many consumers have a critical view of livestock pro-
duction (Heinke et al., 2017). In the past, technological 
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development in agriculture has been viewed critically by 
the population (Gupta et al., 2012; Pfeiffer et al., 2021). 
With respect to animal production, the public opinion 
of technological development has been accompanied by 
a negative comparison with natural outdoor husbandry 
(Cardoso et al., 2016; Weinrich et al., 2014). The expect-
ed view of society for AI-based camera systems therefore 
seems relevant, as tasks are transferred from farmers and 
the process of animal husbandry is autonomized. How-
ever, meat consumers have expressed a preference for 
innovation as a solution to potential problems in animal 
husbandry (Schulze et al., 2023). These findings high-
light the ambivalent attitudes of the public.

Table 1 summarizes the factors included in our 
extended TAM.

After the potential explanatory factors were identi-
fied, the individual structures were hypothesized in the 
structural model. Appendix 1 shows the list of individual 
hypotheses. Figure 2 shows the hypothesized effect of 
each factor on the intention of potential users to adopt 
the technology. 

3. STUDY REGION, DATA COLLECTION 
AND SAMPLING

The target population of our investigation was pig 
farmers in Germany, who are decision-makers on their 
farms. The questionnaire was distributed through 
an agricultural panel to recruit participants from all 
federal states of Germany. The members of the panel 
were recruited throughout Germany via Deutscher 
Landwirtschaftsverlag, a specialized publishing house 
for agricultural media, which provides panels for 
various target groups in the German-speaking area.
This approach also ensured that farmers who were 
not involved in the pig industry were not included in 

the data collection. The survey was conducted online 
between January and March 2023. The recruitment 
resulted in a total sample of 185 participants. Our 
sample can be considered a convenience sample, which 
is useful for studies with a pilot character, such as the 
present study on the ex-ante intention to use a tech-
nology (Teddlie & Yu, 2007). The participants were 
contacted via e-mail and initially informed about the 
study project. Before beginning the questionnaire, the 
participants provided informed consent to participate 
in the study. 

The questionnaire (Appendix 2) was divided into 
different parts. The first part of the questionnaire col-
lected sociodemographic and farm-related information. 
After the sociodemographic questions, the participants 
were presented with a description of the AI-based cam-
era systems to provide them with a better understanding 
of the research object. This description was presented 
in text form. In the second part, farmers were asked to 
evaluate several statements pertaining to the extended 
TAM. Appendix 2 shows the different items, including 
the questions and descriptive statistics. The survey was 
administered in German, and the questions were trans-
lated into English for this manuscript; however, they 
were not adapted to the specific cultural context. To 
assess the statements, the questionnaire used a five-point 
Likert scale ranging from 1 = do not agree to 5 = fully 
agree. The questionnaire was pretested by two research-
ers with different groups of farmers to ensure that all the 
questions could be understood and interpreted unilat-
erally. These pretests featured two groups of 15 partici-
pants. After the test, the participants were asked about 
their understanding of the survey and its logic, and 
adjustments were made if they did not understand the 
statements or the sociodemographic questions. In addi-
tion, the intelligibility of the description of the subject 
matter was assessed by the test group.

Table 1. Extended TAM constructs.

Category Factor Source

Farmers aspects

Innovation tolerance (IT) Own creation based on (Rogers, 2003; Seibert et al., 
2021)

Personal innovativeness (PI) (Agarwal & Prasad, 1998; Aubert et al., 2012; Mohr & 
Kühl, 2021)

Job relevance (JR) (Rose et al., 2016; Venkatesh & Davis, 2000)

Technological Aspects
Expectancy of property rights over business data (PR) Own creation based on (Tiwari & Tiwari, 2020; van Heek 

et al., 2017)
Perceived risk of data abuse (RI) (Krempel & Beyerer, 2014)
Expected data transparency (TR) (Krempel & Beyerer, 2014; Wanner et al., 2022)

Social aspects Perceived social norm (PS) (Ajzen, 1991; Gorsuch & Ortberg, 1983; Heinke et al., 
2017; Mohr & Kühl, 2021; Schulze et al., 2023)
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4. STATISTICAL ANALYSIS: STRUCTURAL 
EQUATION MODELING

Structural equation modeling (SEM) is used to mod-
el and estimate the relationships among multiple inde-
pendent and dependent variables concurrently (Hair et 
al., 2021a). This method is particularly useful when the 
concepts under consideration are unobservable and are 
measured indirectly through multiple indicators. This 
research uses the latest approach developed by Hair et 
al. (2021a) with the assistance of the R package SEMinR 
(Hair et al., 2022). In SEM, path models are used to rep-
resent the relationships among constructs or latent varia-
bles. Latent variables cannot usually be measured direct-
ly and are therefore created by indicators or manifest 
variables. The path model visualizes the relationships 
among all the constructs and depicts the hypotheses that 
relate the variables via these paths (Hair et al., 2021a). 
A partial least squares (PLS) path model consists of two 
elements. The first element is the structural model, also 

known as the inner model, which links the constructs. 
The inner model also represents the hypothesized rela-
tionship between the constructs. Second, the path mod-
el contains a measurement model or outer model. This 
model represents the relationships between the con-
structs and the individual indicators.

Figure 3 shows the exemplary inner and outer 
models for the latent JR in the context of this investiga-
tion. The inner model is shown in the center of the fig-
ure. The relationships among the elliptical constructs 
or latent variables are represented by the connecting 
arrows. The outer model on the left is a formatively 
measured construct captured by the indicators (JR1, 
JR2, and JR3). The outer model on the right shows a 
reflectively measured construct, in this case, the depend-
ent variable ITU. In addition to the indicators used to 
measure the construct, the error terms for the manifest 
variables are recorded. These error terms represent the 
unexplained variance when the path model is estimated. 

Figure 2. Expanded TAM based on Davis (1989).
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However, this description applies only to the manifest 
variables. In contrast, the formative variables, in which 
context the relationship leads from the indicator to the 
construct, have no error terms (Sarstedt et al., 2016).

Minimum sample planning

In general, PLS-SEM is applicable if the sample con-
tains ten times as many participants as independent vari-
ables (Thompson et al., 1995). However, concerns have 
been expressed about the simple application of this “ten 
times” rule in the case of complex structural models. 
An alternative procedure is represented by the inverse 
square root method (Kock & Hadaya, 2018), which is 
used to calculate the probability that the path coefficient 
and its standard error are greater than the critical value 
for a predetermined significance level (Hair et al., 2021a). 
Therefore, the minimum sample size (Kock & Hadaya, 
2018) is obtained by the following equation, where pmin is 
the value of the path coefficient with the minimal mag-
nitude in the PLS path model. With a significance level 
of 5%, nmin > (2.486/pmin)2. Since this method is only 
suitable for ex post analysis, pmin deviates from the value 
reported in previous studies featuring a similar number 
of independent variables (Michels, Fecke, et al., 2020; 
Mohr & Kühl, 2021). Therefore, a pmin value of 0.185, 
which indicates a sample size of 180 respondents at a sig-
nificance level of 0.05, was estimated in this study.

Statistical requirement verification

The results of the PLS-SEM are evaluated via a two-
step process. First, the outer models are analyzed before 
the structural model (inner model) is evaluated. The 
decision to measure constructs reflectively or formatively 
is based on their conceptual nature and causal relation-

ships. Reflective constructs (PU, ITU, and PI) have highly 
intercorrelated indicators that reflect the underlying vari-
able, with a focus on internal consistency. Formative con-
structs (PEOU, JR, TR, RI, IT, PS, and PRs) are defined 
by unique, essential indicators that collectively form the 
construct. The removal of any indicator from formative 
constructs would significantly alter its meaning, ensuring 
that all critical dimensions are considered. The analysis of 
the reflective model reveals that the quality criteria of the 
indicators are satisfied. The indicator reliability (loadings 
≥ 0.7), convergence validity (average variance extracted 
(AVE) ≥ 0.5) and internal consistency (rhoA ≥ 0.6) are 
satisfactory (see Appendix 3) and indicate that the vari-
ables of the constructs are appropriate for further analysis 
(Hair et al., 2021b). In addition, the analysis of the heter-
otrait‒monotrait ratio shows that all values of the reflec-
tive factors are below the cutoff value (HTMT < 0.9) and 
are therefore suitable for the analysis (Hair et al., 2021b) 
(see Appendix 4). The variance inflation factors (VIFs) of 
the formative variables are less than five, indicating that 
no critical levels of multicollinearity are observed. The 
weights (≥ 0.1) and loadings (> 0.5) are satisfactory and 
significant (Hair et al., 2021b) (see Appendix 5). Vari-
ables of the formative constructs that did not meet these 
values were excluded from further analysis. Variables may 
be included in the analysis if they do not meet the above 
requirements in part, but the t-statistics indicate that they 
are significant. The variables listed in Appendix 5 contrib-
ute to the determination of the formative constructs.

Explanatory power analysis

The structural model represents the hypothesized 
relationships among different constructs. Since the VIF 
indicates a value lower than five, no multicollinear-
ity exists with respect to the variables. Some research-
ers have reported problems with multicollinearity with 

Figure 3. Structural equation model (Hair et al., 2022).
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respect to values ranging between three and five (Becker 
et al., 2015). This criterion is also satisfied for all but one 
variable, which slightly exceeds three. The model qual-
ity regarding multicollinearity is satisfactory. To deter-
mine the explanatory power of the model, the R2 of the 
endogenous constructs is examined (Shmueli & Koppius, 
2011). To assess statistical significance, the bootstrapping 
approach with 10,000 subsamples was employed, as rec-
ommended by Streukens and Leroi-Werelds (2016). The 
aim of PLS-SEM is to maximize the R2 value, and values 
of 0.75, 0.50 and 0.25 indicate substantial, moderate and 
low levels, respectively (Hair et al., 2011). The R2 in our 
analysis is 0.749, which indicates high explanatory power 
with regard to the adoption of AI-based camera systems 
in animal agriculture.

Predictive power analysis

With respect to the analysis of predictive power, 
however, R2 serves only conditionally (Hair & Sarstedt, 
2021). The PLSpredict method (Shmueli et al., 2016) was 
used to test the predictive power; accordingly, the model 
was divided into training samples and holdout samples 
to evaluate the predictive performance of the model (set.

seed 123). The root-mean-square error (RMSE) of each 
indicator of the dependent construct of the structural 
model was subsequently compared with the RMSE of 
a naive linear regression model (LM) as a benchmark. 
One quality criterion is that all indicators should have a 
lower RMSE in the structural model than in the LM, in 
which case the model is reliable and has high predictive 
power (Shmueli et al., 2019). A majority or equal num-
ber of lower indicators have moderate predictive power, 
whereas a minority of lower indicators have weak predic-
tive power (Shmueli et al., 2019). The test in this analy-
sis (Appendix 6) indicates high predictive power with 
regard to the dependent indicator of the intention to use. 
Figure 4 shows the full SEM and the influence of the 
indicators after the prerequisite test.

5. RESULTS

Table 2 shows an overview of the descriptive sta-
tistics in comparison with the German average. In our 
sample, farms have a greater number of animals than 
the German average in each category. The majority of 
farmers are aged between 35 and 54 (53.1%) and are thus 
comparable with German farmers (Federal Ministry of 

Figure 4. Results of SEM. Legend: Variables that influence the object of investigation are shown in bold.
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Food and Agriculture, 2023). In terms of gender, the dis-
tribution of the sample is different from the average dis-
tribution among German farmers, with one-third of the 
farmers being female. For our sample, we targeted deci-
sion-makers on farms, such as owners or directors. The 
majority (>99%) of our sample identified themselves as 
decision-makers on their farms. In this context, the dis-
tribution of gender is representative with respect to deci-
sion-makers on farms (Statistisches Bundesamt, 2023). 
The participants are more highly educated and younger 
than the average farmer is.

The analysis shows that seven out of sixteen 
hypotheses are supported. We obtain empirical evidence 
for H2a (β =.276, f2 = .152), H3 (β =.398, f2 = .213), H6a 
(β = .101, f2 = .035), and H7a (β = .355, f2 = .116), indi-
cating that these constructs are relevant antecedents 
for the intention to use AI-based camera systems in pig 
farming. The results for PU and PEOU support H6b 
(β = .237, f2 = .083), H7b (β =.833, f2 = 2.037), and H9c 
(β = .419, f2 = .187). Table 3 shows the tested hypoth-
eses, path coefficients, effect size f2 and t statistics of the 
model. The path coefficients indicate the direct relation-
ships among the hypothesized constructs in SEM and 
can be understood as standardized beta coefficients 
(Hair et al., 2022). In general, the higher the path coef-
ficient is, the greater the relevance of the relationship 
between the construct and the dependent variable. The 
analyses revealed that innovation tolerance has the 
greatest influence on the ITU of all the integrated fac-
tors. The F² value in SEM measures the effect size of an 
exogenous construct on the explained variance (R²) of 
an endogenous construct.

In order to analyze the reliability of the model, a 
stepwise extension of the original model was performed. 
The extension showed that both the quality of the mod-
el and the influence of the variables changed as a result 
of the extension. The extension of the classical model 
showed that the additional factors increased the level 
of elucidation. The influence on the variance is mainly 
driven by the factors JR, IT and PI. RI shows no addi-
tional explanatory contribution. Other factors such as 
PS, PR and TR have a rather marginal explanatory pow-
er for ITU. Figure 5 shows the evolution of the variance 
explained (R2) by the gradual inclusion of the factors. 

The path coefficients were also analysed in the con-
text of stepwise extension. JR, IT and PEOU remain the 
most important influencing factors after the expansion. 
The change in the other path coefficients is marginal 
in the course of extension. An exception is PU, which is 
outweighed by JR after extension and loses importance 
as a result of further enlargements.  Table 4 shows the 
results in detail.

6. DISCUSSION

The primary objective of this study was to elucidate 
the factors influencing the intention to use AI-based 

Table 2. Sample description.

N=185
German 
average

%

Sex, N (%)
Female
Male
Other

17 (9.2)
166 (89.7)

2 (1.1)

11.25a

88.75a

/
Age [years], mean (range) 43.5 (20-72) 53b

Vocational education, N (%)
No formal agricultural degree
Vocational or technical school
University degree

6.4
49.3
44.3

33.2a

57.5a

9.2a

Number of fattening pigs, mean (range) 1282.4 (0-8000) /
Number of sows, mean (range) 138.0 (0-3000) /
Number of rearing piglets, mean (range) 663.5 (0-16000) /
Number of acres [hectares], mean (range) 135.0 (0-5000) /
a Statistisches Bundesamt (2023).
b German Farmers Association (2022).

Table 3. Results of SEM (estimated path co and statistical evalua-
tion measures).

Hypothesis Path 
coefficient

Effect 
size f²

95%CI
t-Statistics

LL UL

H1 PU → ITU 0.010 0.000 -0.146 0.123 0.138
H2a PEOU → ITU 0.276 0.152 0.150 0.387 2.339
H2b PEOU → PU 0.08 0.016 -0.008 0.186 1.594
H3 IT → ITU 0.398 0.213 0.241 0.518 5.632
H4 PS→ ITU -0.046 0.005 -0.160 0.035 -0.909
H5 PR → ITU -0.110 0.032 -0.168 0.048 -2.078
H6a PI → ITU 0.101 0.035 0.020 0.193 2.339
H6b PI → PEOU 0.237 0.083 0.077 0.404 2.781
H7a JR → ITU 0.355 0.116 0.209 0.517 4.477
H7b JR → PU 0.833 2.037 0.756 0.889 24.563
H8a RI → ITU 0.004 0.000 -0.074 0.080 0.105
H8b RI → PU 0.035 0.004 -0.036 0.106 0.977
H8c RI → PEOU -0.196 0.038 -0.381 0.003 -2.001
H9a TR → ITU 0.008 0.000 -0.117 0.067 0.153
H9b TR → PU 0.017 0.001 -0.063 0.106 0.409
H9c TR → PEOU 0.419 0.187 0.233 0.595 4.432

Legend: ITU: Intention to use; IT: Innovation tolerance; JR: Job 
relevance; PEOU: Perceived ease of use; PI: Personal innovative-
ness; PR: Property rights over business data; PS: Perceived social 
norm; PU: Perceived usefulness; RI: Perceived risk of data abuse; 
TR: Transparency.
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camera systems in German pig farming. Even though 
our data did not support all the hypotheses, the results 
showed that user aspects concerning the farmer himself 
and the perceived ease of use are decisive for the inten-
tion to use AI-based camera systems in pig farming. 
Research on acceptance has been conducted to investi-
gate various technologies within the context of agricul-
ture. Our results are discussed in light of previous find-
ings on technology acceptance in agriculture.

The analyses initially revealed that PEOU [H2a] 
is one of the most influential factors in the adoption of 
AI-based camera systems in German pig farming. Pre-
vious research confirms these findings. Mohr and Kühl 
(2021) reported that the PEOU and PI, among other fac-
tors, influence the acceptance of artificial intelligence 
among farmers in general. Other agriculture studies 
have confirmed this finding with respect to ease of use 

and acceptance (Michels et al., 2021). The transferabil-
ity of the results to different agricultural sectors is rein-
forced by a study related to precision livestock farming, 
which revealed that visualization and PEOU influence 
the acceptance of a system (van Hertem et al., 2017).

In our study, innovation tolerance [H3] had the 
greatest impact on the intention to use AI-based camera 
systems in pig farming. The interpretation of the results 
of IT can be assigned to the person himself or herself, 
which incorporates a self-image consisting of risk affin-
ity and the estimation of the future importance of this 
technology. This finding is in consistent with the litera-
ture, which states that risk aversion (Abadi Ghadim & 
Pannell, 1997) or the willingness to take risks (Seibert et 
al., 2021) determines the intention to use a new technol-
ogy. This construct also supports the assumption that 
a positive view of the importance of the technology in 
the future is decisive for the intention to use it (Rogers, 
2003). Although the empirical results show a dominant 
contribution of IT2, while IT1 exhibits a low weight and 
loading. This suggests that the construct is essentially 
driven by the specific item on AI-related attitudes, and 
the general trait-based indicator contributes minimally. 
Future research should consider refining the indicators 
to ensure a more balanced and representative operation-
alization of the construct.

In this study, the influence of personal innovative-
ness [H6a] on the intention to use AI-based camera sys-
tems was demonstrated. This construct has a statistically 
significant positive influence on the acceptance of AI-
based camera systems in our sample, indicating that the 
intention to use increases with increasing innovativeness. 
Although the influence of this construct on the depend-
ent latent variable is low, it can still explain acceptance to 
some extent. Previous studies from Agarwal and Prasad 

Figure 5. Development of R2 across model extensions. Legend: ITU: 
Intention to use; IT: Innovation tolerance; JR: Job relevance; PEOU: 
Perceived ease of use; PI: Personal innovativeness; PR: Property 
rights over business data; PS: Perceived social norm; PU: Perceived 
usefulness; RI: Perceived risk of data abuse; TR: Transparency.

Table 4. Development of path coefficients.

Number models

PU→ ITU PEOU → 
ITU JR→ ITU PI → ITU RI → ITU IT→ITU PS → ITU PR → ITU TR → ITU

Original TAM model 0.507 0.383 - - - - - - -
2 (+ JR) 0.073 0.308 0.557 - - - - - -
3 (+ PI) 0.057 0.289 0.543 0.111 - - - - -
4 (+ RI) 0.057 0.290 0.545 0.111 0.005 - - - -
5 (+ IT) -0.006 0.236 0.361 0.098 0.029 0.374 - - -
6 (+ PS) -0.005 0.242 0.365 0.095 0.027 0.400 -0.057 - -
7 (+ PR) 0.009 0.252 0.358 0.097 0.027 0.418 -0.041 -0.083 -
8 (+ TR) 0.010 0.276 0.355 0.101 0.004 0.398 -0.046 -0.110 0.008

Legend: ITU: Intention to use; IT: Innovation tolerance; JR: Job relevance; PEOU: Perceived ease of use; PI: Personal innovativeness; PR: 
Property rights over business data; PS: Perceived social norm; PU: Perceived usefulness; RI: Perceived risk of data abuse; TR: Transparency.
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(1998) and Aubert et al. (2012) have identified PI as an 
influencing variable. This construct serves to identify ear-
ly adopters as agents of innovation and should be consid-
ered an important factor in implementation processes in 
agriculture. This finding contradicts the results reported 
by Mohr and Kühl (2021), who found only an indirect 
influence of PI on acceptance. This indirect influence 
[H6b] was also supported by our data. Notably, in the 
case of the cited study, AI was considered in general, and 
the measurement of PI was made more difficult by a gen-
eralization of the subject of the study.

The statistical analysis of the survey results revealed 
another construct that has a statistically significant 
influence on the ITU: the perceived relevance of the 
technology for the farming profession [H7a]. The influ-
ence of JR on acceptance and adoption in the context 
of agricultural technologies was also demonstrated by 
Michels et al. (2021). The authors analyzed the accept-
ance of drone technology and demonstrated that JR has 
the greatest influence on the ITU. In conclusion, for 
practice and the development of new AI-based monitor-
ing systems, it is important to communicate precisely the 
benefits for everyday working life.

Although the statistical measurements were not sta-
tistically satisfactory overall, this study demonstrated 
that expectations of data ownership have an effect on the 
intention to use [H5]. In contrast to other studies, our 
approach assumed a negative effect of stronger expecta-
tions regarding data rights. According to the variables 
PR2 and PR4 within the final construct and PR1 out-
side of the construct, the importance of data ownership 
to farmers determines their intention to use AI-based 
camera systems. An undefined ownership structure of 
the data is assumed to lead to rejection of the technol-
ogy. Previous studies have also shown that in the context 
of German citizens and electronic data, German Angst 
plays a central role in the adoption, acceptance, and 
design of institutions (Akkaya et al., 2012).

Other constructs (e.g., PU, TR and RI) did not influ-
ence the intention to use AI-based camera systems in 
this sample. This finding contradict the conclusions 
of Krempel and Beyerer (2014), whose research on sur-
veillance cameras showed that the transparency of the 
data processed was one of the most important factors 
regarding acceptance. This difference may be due to 
the type of AI surveillance. Furthermore, low perceived 
transparency as a barrier may have an important influ-
ence on farmers’ intention to use risk management tools 
(Giampietri et al., 2020). While PU [H1] is a crucial 
factor according to many studies on the acceptance of 
technology in agriculture (Michels, Fecke, et al., 2020; 
Michels et al., 2021), it is not relevant in our statistical 

model or in studies on the acceptance of AI in general 
(Mohr & Kühl, 2021). On the one hand, this difference 
may be because the PU can be accepted or rejected inde-
pendently of the ITU. Thus, a rejection of the intention 
to use is not synonymous with the system’s lack of actual 
usefulness. On the other hand, the rejection of AI-based 
camera systems despite a perceived high or very high 
benefit is due to other factors, such as a lack of PEOU. 
This finding was not only supported by the full SEM, 
but also by the stepwise inclusion of the factors and the 
resulting development of the path coefficients. It can be 
concluded that PU has an influence on the original mod-
el, but that is outweighed by, among other things, the 
introduction of JR. On the one hand, this effect could 
derive by the fact that both variables measure similar 
characteristics in the occupational context. On the other 
hand, there are indications in our model that there is a 
stronger relationship between JR and ITU in the adap-
tation of technologies by the decision makers, as appar-
ently the relevant professional context is more important 
than the actual usefulness.

An additional consideration in the context of mod-
elling and hypothesis generation is the differentiated 
role of individual factors, whether as direct determi-
nants, potential mediators, or moderators within the 
model structure. In the present model, it may be hypoth-
esized that PI exerts a moderating influence on ITU, 
as it reflects, at least in part, trait-like characteristics of 
the respondents. While the conceptual phase of theory-
driven hypothesis development did not provide sufficient 
justification for including such a moderation effect, theo-
retical reflections combined with the empirical findings 
of this study suggest that future analyses should explic-
itly consider this possibility.

Besides the findings of our model applying an 
extended TAM, other approaches should be used to 
investigate the ITU of AI camera systems. For exam-
ple, the TPB could be an appropriate model for further 
research. In the case of animal husbandry and the moni-
toring of health and welfare parameters, TPB constructs 
would help to identify voluntary action by farmers in 
technology adaptation. An investigation of TPB factors 
would help to provide important insights for the devel-
opment of systems and recommendations for policy, par-
ticularly in the highly regulated area of agriculture and 
AI. Especially in a policy context where voluntarism is 
the preferred option for adaptation over regulation. 

Apart from the analysis of behavioral factors fur-
ther research on the technology itself is also needed. It 
is equally important to know which economic and tech-
nology-specific factors, in addition to behavioral factors, 
moderate the potential adaptation. For new technolo-
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gies with a specific field of application, Sok and Hoestra 
(2023) used the subject of electrified tractors to show 
that uncertainty about the economic benefits and cost-
effectiveness were the most important factors for the 
decision of the farmers surveyed. An examination of the 
economic and technology-specific factors using random 
utility theory would provide further clarification on the 
possible adoption or rejection of AI camera systems and 
help companies and policymakers to create the necessary 
framework conditions for market integration. Since anal-
yses of non-behavioral factors (e.g. age, education, farm 
size) have shown little influence on the adaptation of AI 
camera systems in pig farming (Kühnemund & Recke, 
2024), consideration of the TPB and economic factors 
could help to explain the variance in the intention to use. 

Our study is limited by the notion that the results 
must be understood considering the specific types of 
animal farmers. Therefore, these results are only par-
tially applicable to other forms of livestock production. 
Especially in the case of highly integrated value chains 
that focus on the interests of the integrator, other fac-
tors could lead to acceptance or rejection, which were 
not considered in this study. The results must also be 
viewed in consideration of the convenience sample and 
do not constitute a representative analysis of the object 
of investigation. Therefor the findings are not general-
izable to the overall population of German pig farm-
ers.  For further studies a representative sampling strat-
egy should be applied in order to investigate models 
like TPB or random utility theory. Although Germany 
is one of the largest pig-producing countries in Europe 
and even worldwide, the results cannot be applied uni-
formly at the international level. Cultural idiosyncrasies, 
the strongly male-dominated agricultural sector and the 
formal institutions involved in handling the data in this 
context are only some of the reasons why the results can-
not be fully generalized to a European or global context. 
It is possible that the survey procedure (online survey) 
causes selection bias because the survey invitation only 
reached people who were on the mailing list and may 
also have addressed those who are interested in technol-
ogy. Despite these limitations, this study provides impor-
tant findings for future research on and the development 
of AI-based camera systems. This study is characterized 
by a sample that corresponds to the characteristics of 
German pig farmers. Furthermore, the necessary sample 
size was achieved, increasing the robustness of the anal-
ysis. The model showed satisfactory performance, which 
emphasizes the significance of the results.

Knowledge of development and the factors that pro-
mote successful implementation are essential for practi-
tioners as well as for policy and regulatory decision-mak-

ers. A technology is useful only if it is used by the target 
group. Future research should focus on user-friendly 
interfaces. In terms of simplicity, it is also important to 
ensure low-barrier access to the technology and to create 
an infrastructure that makes these systems easy to use 
for all farmers. In addition, it is conceivable that the tar-
get group and potential users could be reached through 
farmers who have already had experience with the sys-
tem. In addition, the legal component should be explored 
by investigating the influence of such institutions. The 
results show that developers should focus on the benefits 
and application to the farmer’s job. The economic rele-
vance of AI-based camera systems, as well as their poten-
tial to generate added value at specific stages of the live-
stock production process, should be more explicitly iden-
tified and communicated. Their implementation could 
offer targeted solutions to current challenges, such as the 
early detection and prevention of tail biting in undocked 
pigs or the reduction of labor-intensive, legally mandated 
animal observation tasks that currently lack direct eco-
nomic return. In addition, attention should be paid to 
ease of use to ensure successful market integration. The 
analysis also suggests that AI camera systems should be 
further developed in collaboration with tech-savvy farm-
ers to address their enthusiasm for innovation. Incorpo-
rating this technology into an intelligent housing system 
could lead to successful integration with other solutions 
such as housing climate and feeding. Policy makers 
should create the basis for such compatibility in order to 
increase the uptake of technologies. In addition to clear 
frameworks for transparency and legal certainty of data, 
policymakers and educational institutions should inte-
grate educational programs into the training of farmers 
to facilitate the use of new AI technologies. This can lead 
to future farmers being more open to innovation.

7. CONCLUSION

In summary, the perceived ease of use, innovation 
tolerance, job relevance, and personal innovativeness 
emerged as influential constructs that shape the intention 
to use AI-based camera systems in pig farming. Under-
standing the behavior-based acceptance of AI technolo-
gies is crucial, and the factors identified in this study can 
guide the development of AI-based camera systems that 
are embraced by farmers and offer tangible benefits. In 
this sample, the general acceptance of an AI-based cam-
era system was high; to support real adoption, the iden-
tified influencing factors should be considered. Evidence 
synthesis showed that influential constructs depend on 
the sample composition and the research object
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APPENDIX 1: HYPOTHESES

H1: The perceived usefulness of AI-based camera systems 
in pig livestock farming has a positive effect on the inten-
tion to use AI-based camera systems in pig livestock farm-
ing.
H2a: The perceived ease of use of AI-based camera sys-
tems in pig livestock farming has a positive effect on the 
intention to use AI-based camera systems in pig livestock 
farming.
H2b: The perceived ease of use of AI-based camera sys-
tems in pig livestock farming has a positive effect on the 
perceived usefulness of AI-based camera systems in pig 
livestock farming.
H3: Innovation tolerance has a positive effect on the 
intention to use AI-based camera systems in pig livestock 
farming.
H4: Perceived social norms have a positive effect on the 
intention to use AI-based camera systems in pig livestock 
farming.
H5: The expectation of property rights over business data 
has a negative effect on the intention to use AI-based cam-
era systems in pig livestock farming.
H6a: The personal innovativeness of farmers has a posi-
tive effect on their intentions to use AI-based camera sys-
tems in pig livestock farming.
H6b: The personal innovativeness of farmers has a posi-
tive effect on the perceived ease of use of AI-based camera 
systems in pig livestock farming.
H7a: Job relevance has a positive effect on the intention to 
use AI-based camera systems in pig livestock farming.
H7b: Job relevance has a positive effect on the perceived 
usefulness of AI-based camera systems in pig livestock 
farming.
H8a: The perceived risk of data abuse has a negative effect 
on the intention to use AI-based camera systems in pig 
livestock farming.
H8b: The perceived risk of data abuse has a negative 
effect on the perceived usefulness of AI-based camera sys-
tems in pig livestock farming.
H8c: The perceived risk of data abuse has a negative effect 
on the perceived ease of use of AI-based camera systems 
in pig livestock farming.
H9a: Expected data transparency has a positive effect on 
the intention to use AI-based camera systems in pig live-
stock farming.
H9b: Expected data transparency has a positive effect on 
the perceived usefulness of AI-based camera systems in 
pig livestock farming.
H9c: Expected data transparency has a positive effect on 
the perceived ease of use of AI-based camera systems in 
pig livestock farming.
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APPENDIX 2: ITEMS AND DESCRIPTIVE STATISTICS

Factor name Factor description Mean SD

To what extent do you agree with the following statements? I think that…
ITU1 … I will additionally observe my animals using cameras. 3.65 1.22
ITU2 … I will use cameras in my business in the future. 3.49 1.25
ITU3 … I would use cameras on my farm. 3.65 1.22

To what extent do you agree with the following statements? I think that the use of AI-based camera systems…
PU1 … allows me to do work in the barn more quickly than before. 2.98 1.23
PU2 … facilitates the work of all employees on my farm. 3.05 1.24
PU3 … increases the productivity of my business. 3.20 1.16
PU4 … reduces my overall workload on the farm. 3.05 1.19
PU5 … gives me more flexibility in terms of my operating processes. 3.23 1.15

To what extent do you agree with the following statements? For me, …
PEOU1 …operating AI cameras to observe animals is easy to learn. 3.79 0.95
PEOU2 … videos from animal observation cameras are easy to evaluate. 3.25 1.07

PEOU3 … working with cameras to observe animals in the barn is possible without technical 
problems. 3.13 1.09

PEOU4 (R) … it is difficult to operate AI cameras and evaluate videos. 3.67 1.11

To what extent do you agree with the following statements? I think that…
JR1 … the use of AI cameras can be relevant to my work. 3.54 1.15
JR2 … the use of AI cameras can have a high degree of relevance for my operations. 3.06 1.17
JR3 … AI cameras are suitable for my business. 3.16 1.15

To what extent do you agree with the following statements? I think that…

TR1 … I am well informed about what data are captured by a camera-based image processing 
system. 2.92 1.15

TR2 … I am well informed about how such a system processes data. 2.76 1.17

To what extent do you agree with the following statements? I think that…
RI1 … I could be disadvantaged by errors in the collection or processing of data by the system. 3.10 1.10
RI2 … (image) data could be misused. 3.62 1.23

To what extent do you agree with the following statements?
IT1 I consider myself to be a risk taker. 3.24 0.93
IT2 I think it will be important in the future to use AI cameras for animal observation. 3.25 1.19

To what extent do you agree with the following statements?
PI1 I enjoy being around people who are trying out new technologies.	 4.03 0.84
PI2 I am very curious about how new agricultural technologies work. 4.07 0.91
PI3 I like to try out new agricultural technologies. 3.84 0.92
PI4 I often determine information about new technologies. 4.10 0.82

To what extent do you agree with the following statements?
PS1 The German population has a positive view of modern technology in agriculture.	 2.61 0.99
PS2 Policy-makers support modern agriculture. 1.84 0.90

PS3 I think that the use of AI camera monitoring in barns is consistent with society’s 
expectations of agriculture. 3.09 1.13

To what extent do you agree with the following statements?
PR1 Corporate data belongs to the farmers. 4.78 0.55
PR2 Stronger regulation for data security reduces the competitiveness of German farmers. 2.40 1.10
PR3 The government should create a data platform for sharing agricultural data. 2.09 1.07
PR4 As long as I receive large benefits from it, I do not care if companies use operational data. 2.11 1.21
PR5 The data flow of visual material should be controlled by farmers. 4.40 1.12

Legend: ITU: Intention to use; IT: Innovation tolerance; JR: Job relevance; PEOU: Perceived ease of use; PI: Personal innovativeness; PR: 
Property rights over business data; PS: Perceived social norm; PU: Perceived usefulness; RI: Perceived risk of data abuse; TR: Transparency.
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APPENDIX 3: REFLECTIVE CONSTRUCTS

Reflective 
measurement 

models
Indicator name Indicator reliability

Loadings
Convergent  
validity AVE

Internal consistency 
rhoA rhoC Cronbach’s Alpha

Intention to use 
AI-based camera 
systems

ITU1 0.942
0.898 0.944 0.964 0.943ITU2 0.955

ITU3 0.946

Perceived 
usefulness

PU1 0.847

0.722 0.907 0.928 0.903
PU2 0.825
PU3 0.876
PU4 0.865
PU5 0.835

Personal 
innovativeness

PI1 0.871
0.729 0.827 0.90 0.815PI2 0.856

PI3 0.834

Legend: ITU: Intention to use; PI: Personal innovativeness; PU: Perceived usefulness.

APPENDIX 4: HETEROTRAIT–MONOTRAIT

Perceived usefulness Personal innovativeness Intention to use

Perceived usefulness . . .
Personal innovativeness 0.366 . .
Intention to use 0.742 0.443 .

APPENDIX 5: FORMATIVE CONSTRUCTS

Formative measurement models Indicator name VIF Weight Loadings

Perceived ease of use

PEOU1 1.723 0.380 0.776
PEOU2 1.753 0.482 0.849
PEOU3 1.467 0.446 0.809
PEOU4 1.342 -0.199 0.329

Job relevance
JR1 2.943 0.407 0.920
JR2 2.317 0.185 0.817
JR3 2.327 0.509 0.931

Perceived risk of data abuse RI1 1.169 0.941 0.992

Innovation tolerance
IT1 1.045 0.079 0.283
IT2 1.045 0.981 0.997

Perceived social norm PS3 1.057 0.979 0.997

Property rights
PR2 1.360 0.559 0.797
PR4 1.151 0.379 0.629

Transparency
TR1 1.196 0.481 0.766
TR2 1.196 0.703 0.898

Legend: IT: Innovation tolerance; JR: Job relevance; PEOU: Perceived ease of use; PR: Property rights over business data; PS: Perceived 
social norm; RI: Perceived risk of data abuse; TR: Transparency.
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APPENDIX 6: PREDICTIVE POWER

ITU1 ITU2 ITU3

RMSE (PLS) 0.733 0.741 0.768
RMSE (LM) 0.761 0.773 0.829
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Abstract. The adoption of digital technologies in agriculture is essential for enhanc-
ing sustainability, productivity, and resource efficiency. This study investigates the fac-
tors influencing Italian horticultural farmers’ adoption of innovative water-smart agri-
cultural technologies using an extended Technology Acceptance Model (TAM3). The 
research employs a structured survey conducted with 251 Italian farmers, analysing 
their perceptions of technology usefulness, ease of use, social norms, and sustainabil-
ity outcomes. Structural equation modelling (SEM) confirms that perceived useful-
ness significantly influences adoption intentions, while perceived ease of use plays a 
limited role. Social norms and sustainability-related benefits also emerge as critical 
determinants. Results also indicate the impact of farm size and workforce on adoption 
behaviour. These findings highlight the need for targeted policies, training programs, 
and financial incentives to overcome adoption barriers. The study provides insights 
for policymakers, technology developers, and agricultural stakeholders to foster digital 
innovation in the horticultural sector, contributing to sustainable water management 
practices.

Keywords:	 digital agriculture, farmer adoption, Technology Acceptance Model 
(TAM), horticultural sector, water-smart sustainable farming.

HIGHLIGHTS

–	 A structured survey conducted with 251 Italian horticultural farmers
–	 The extended TAM3 explains 18% of the variance in the behaviour (the 

adoption of water-smart technologies), and 65% of the variance in inten-
tion

–	 Behavioural intention is a significant predictor of the behaviour 
–	 Perceived usefulness and social norms have a significant effect on adop-

tion intention
–	 Perceived ease of use has no influence on adoption intentions
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1. INTRODUCTION

The agricultural sector is facing many unprecedented 
challenges. These include the need to develop sustain-
able resource management strategies to meet the growing 
demand for food and to reduce the environmental impact 
of agri-food production (Kapsdorferová, 2024). Given the 
increasing pressure on agricultural systems, in particu-
lar on natural resources, it is crucial to identify effective 
measures to mitigate these negative impacts in line with 
the European Green Deal and the United Nations 2030 
Agenda (Montanarella and Panagos, 2021). In this con-
text, the application of digital technologies and the devel-
opment of smart solutions have emerged as key strategies 
to improve efficiency, productivity and sustainability in 
the agri-food sector (Yigezu et al., 2018). Among the vari-
ous forms of agricultural innovation, practices related to 
irrigation are of particular importance today (Asadi et 
al., 2020). Water scarcity and drought are now consid-
ered a global problem of paramount importance, that is 
likely to be exacerbated by climate change, which is one 
of the greatest environmental, social and economic chal-
lenges facing the entire planet (Ermolieva et al., 2022; 
Ungureanu et al., 2020). Water-smart agricultural prac-
tices can be helpful in two ways: from an environmental 
perspective, they can reduce pressure on water resources, 
improve water use efficiency and reduce water waste. 
From an economic perspective, these solutions can lead 
to cost savings and productivity increases and contrib-
ute to overall profitability by maximizing crop yields per 
amount of water used (Gemtou et al., 2024). The use of 
specific innovations, such as soil moisture sensors, auto-
matic irrigation systems and predictive models has the 
potential to address major challenges such as water scar-
city and the impact of climate variability (Adeyemi et al., 
2017), as well as energy savings (Patle et al., 2019). How-
ever, one of the biggest challenges facing smallholder 
agriculture is the low uptake of innovative technological 
solutions, which has led to relatively low technology pen-
etration in the sector (Senyolo et al., 2018). In this con-
text, it is crucial to gain insights into farmers’ behaviour, 
their willingness to adopt smart solutions and potential 
strategies to facilitate wider adoption of water technolo-
gies in the agricultural sector (Gemtou et al., 2024). 

It is evident that despite the general focus on a fair 
transition from agricultural practices to digital technolo-
gies, the diffusion and adoption of smart technologies 
remains uneven and is influenced by a complex inter-
play of individual, technological and contextual factors 
(Shang et al., 2021). Previous studies have shown that 
there are significant differences in adoption rates among 
farmers (Paustian and Theuvsen, 2017). 

Farmers’ decision-making processes, which are 
shaped by perceptions of benefits, ease of use and exter-
nal pressures, are key to understanding the adoption 
landscape (Cimino et al., 2024; Schulze Schwering et al., 
2022). Given the limited technological penetration of the 
agricultural sector and the potential benefits of digital 
technologies, it is crucial to investigate the factors influ-
encing the adoption of smart technologies (Gemtou et 
al., 2024). 

While previous research has investigated adop-
tion patterns among farmers, it has often focused on 
large-scale farming operations or specific regions with 
advanced technological infrastructures (Paustian and 
Theuvsen, 2017). Additionally, studies have highlighted 
barriers such as limited digital literacy, financial con-
straints, and a lack of institutional support for small and 
medium-sized farms (Senyolo et al., 2018; Shang et al., 
2021). Despite this growing body of work, several gaps 
in the literature remain. First, little research has focused 
on the adoption of water-smart technologies in the hor-
ticultural sector, which plays a crucial role in agricultural 
sustainability. Most studies on precision agriculture have 
examined large-scale cereal farming, neglecting horti-
cultural systems where irrigation efficiency is a key fac-
tor (Adeyemi et al., 2017). Second, while research has 
investigated the impact of farm size and socio-demo-
graphic characteristics on technology adoption, the role 
of sustainability considerations and social norms remains 
underexplored. Previous studies have suggested that per-
ceived usefulness and perceived ease of use drive adop-
tion, but the extent to which sustainability motivations 
influence farmers’ decisions is not well understood (Gem-
tou et al., 2024). Finally, existing literature has rarely 
examined the adoption of digital technologies in Italian 
agriculture, a sector characterized by fragmented land 
ownership, diverse regional farming practices and differ-
ent levels of technological readiness (Baldoni et al., 2018).

This study aims to address these gaps by analys-
ing the factors influencing Italian farmers in the adop-
tion of digital technologies for better water management 
and the barriers they face, with a focus on horticultural 
crops. Horticulture has been considered for some rea-
sons: first, because of the importance of this sector in 
the Italian agricultural system; secondly, for the rele-
vance of the irrigation in this cropping system (Patle et 
al., 2019); third because of the relevance of smart preci-
sion in horticulture (Adeyemi et al., 2017). The technolo-
gies studied relate to smart water management through 
a three-stage technology complexity: the first (basic) 
stage is represented by the introduction of soil moisture 
sensors, which proceeds to a system that combines sen-
sors with an automatic irrigation system, and in the last 
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stage the sensors are connected to an automated system, 
which in turn is connected to and dialogs with predic-
tive models1. Understanding how these farmers per-
ceive and adopt water-efficient innovations is crucial to 
develop targeted policies, design effective incentives, and 
promote sustainable agricultural practices. The results of 
this work can provide valuable insights to policymakers, 
technology providers, and other stakeholders (e.g., coop-
eratives, producers’ associations, etc.) seeking to promote 
sustainable and efficient agricultural practises through 
innovation. 

2. LITERATURE REVIEW AND 
THEORETICAL BACKGROUND 

As the existing literature shows, the process of 
adopting new technologies is inherently complex and 
dynamic (Montes de Oca Munguia et al., 2021). In par-
ticular, the decision-making process is influenced by 
various factors that affect the rate of technology adop-
tion by farmers (Gemtou et al., 2024; Osrof et al., 2023). 
Although the existing literature has explored the mecha-
nisms of innovation diffusion, there does not seem to be 
a unified set of theories or models that could explain the 
phenomenon. Some authors have highlighted the speci-
ficity of theories in modelling different aspects of the 
technology adoption process (Dissanayake et al., 2022; 
Osrof et al., 2023), while others have expressed doubts 
about the generalist ability of theories to represent differ-
ent technologies and practices (Montes de Oca Munguia 
et al., 2021). Indeed, there is still confusion about the 
methods of analysis and the choice of explanatory vari-
ables that should be used to model the adoption process 
(de Oca Munguia and Llewellyn, 2020). To illustrate, 
Shang et al. (2021) argue that the mechanisms of adop-
tion and diffusion of digital agricultural technologies 
need to be understood at both the farm level and the 
system level. They also suggest that the focus in deter-
mining technology diffusion should be on system inter-
actions in combination with individual characteristics. 
Given the evidence presented in the literature, it can be 
assumed that the categories of individual, technologi-
cal, social and economic factors influencing technology 
adoption can describe the entire decision-making pro-
cess (Dissanayake et al., 2022). There is a clear lack of 

1 Specifically, automatic irrigation systems are connected to sensors that 
monitor soil moisture and activate valves wirelessly; instead, predictive 
modelling integrates the first two solutions (soil moisture sensors and 
automatic irrigation systems) into predictive models that merge real-
time data with historical data, analyse it, and make autonomous irriga-
tion decisions thanks to water delivery schedules that optimize dosing 
based on specific crop requirements and environmental conditions.

convergence and consistency in the results regarding the 
impact and statistical significance of the individual fac-
tors assessed in the adoption models (de Oca Munguia 
and Llewellyn, 2020). This discrepancy can be attribut-
ed to the fact that most adoption studies do not include 
variables on technologies or practices. It is recognized 
that the use of multiple paradigms in modelling technol-
ogy adoption and diffusion can increase the explanatory 
power of the models. However, it is important to con-
sider the factors and their interactions in a way that is 
consistent with the objectives and context of the study 
within a specific food system (Dentoni et al., 2023). 

In the present work we applied the Technology 
Acceptance Model (TAM) (Davis, 1989) for measur-
ing the intention of Italian farmers to adopt innovative 
smart technologies. According to this paradigm, two 
dispositions towards a new technology (perceived use-
fulness and ease of use) determine a person’s attitude 
towards using that technology and influence their desire 
to use it. Perceived usefulness is the extent to which a 
person believes that job performance can be enhanced 
by using the new technology, whereas perceived ease of 
use is the extent to which a person believes that using 
the new technology is effortless. Some extensions of the 
original TAM conceptualization have been proposed, 
such as the TAM3 version (Venkatesh and Bala, 2008). 
The TAM3 extension introduces new constructs and 
determinants that affect the core variable perceived 
ease of use and proposes new relationships between 
the constructs. The factors influencing perceived ease 
of use in the TAM3 version are computer self-efficacy, 
perception of external control, computer anxiety, com-
puter playfulness, perceived enjoyment, and objective 
usability, whereas perceived usefulness is affected by 
subjective norm, image, relevance to work, output qual-
ity and demonstrability of results. Other innovations 
introduced by this extension include: (i) the correlation 
between perceived ease of use and perceived usefulness, 
(ii) the correlation between perceived ease of use and 
intention, and (iii) the concept of anxiety. The latter fac-
tor, which expresses the degree of emotional fear, appre-
hension, nervousness, or stress experienced when inter-
acting with a new technology, is supposed to negatively 
affect the perceived ease of use. The more anxiety a per-
son feels, the less likely they are to perceive the technol-
ogy as easy to use. 

Some minor adjustments were made to the original 
TAM3 version by Venkatesh and Bala (2008) to bet-
ter suit the purpose and context of the analysis. First, 
all constructs were considered in the context-specific 
environment, i.e. the adoption of new water-smart agri-
cultural technologies by Italian horticultural farms. 
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Moreover, some aspects were evaluated as very impor-
tant and emerged explicitly from the exploratory phase 
with the participants, such as technology self-efficacy 
and quality of outcomes. Other characteristics, such 
as (computer) playfulness or perceived enjoyment, that 
are characteristic of the original conceptualization of 
the TAM3 model in relation to information technolo-
gies, do not apply to the context of the current research 
and were therefore excluded from the model design. 
Then, some variables were found to be significant when 
considering sustainability issues (Gemtou et al., 2024). 
Consequently, a category based on with the Sustainabil-
ity Assessment of Food and Agriculture Systems (SAFA) 
(FAO, 2014) was included in the model. More specifi-
cally, the themes inspired by the FAO-indicators were (i) 
the reduced water-used thanks to the optimization of the 
irrigation system, (ii) the improved skills the employees 
and the holder/farmer need to reach to use the technol-
ogy, and (iii) new employees recruited thanks to their 
technological skills. Therefore, we tested the following 
main hypotheses on the factors influencing the adoption 
of new water-smart agricultural technologies by Italian 
horticultural farms (Figure 1):

H1: perceived usefulness is positively affected by output 
quality (H1a), by sustainability outcomes measured by 
SAFA indicators (H1b), and by subjective norms (H1c);
H2: perceived ease of use is positively affected by technol-
ogy self-efficacy (H2a), and is negatively affected by anxi-
ety (H2b);
H3: perceived ease of use has a positive impact on farm-
ers’ intention to adopt new technologies (H3a), and is pos-
itively affecting the perceived usefulness of new technolo-
gies (H3b);
H4: perceived usefulness has a positive impact on farmers’ 
intention to adopt new technologies;
H5: subjective norms have a positive impact on farmers’ 
intention to adopt new technologies; 
H6: the farmers’ intention to adopt new technologies is 
positively affecting the behaviour, i.e. the new technology 
adoption.

Moreover, individual factors, such as socio-demo-
graphic and organizational factors, which determine the 
natural and structural conditions of the farm, have been 
found to correlate with farmers’ decisions. In particular, 
farmers’ education level, gender, age, technology litera-
cy, were among the individual drivers more frequently 
included in studies investigating the smart farming tech-
nologies adoption (Osrof et al., 2023). Farm size, mostly 

Figure 1. Model testing the factors affecting the adoption of water-smart agricultural new technologies by Italian horticulture farms. 
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expressed in total acreage farmland, is a prominent fac-
tor among the organizational ones, since larger farm size 
is consistently seen as pivotal for achieving economies of 
scale when adopting smart farming technologies. Farm 
income is another key element, as farmers with a higher 
income are more willing to invest in new technologies 
(Osrof et al., 2023). Farm location is also a notable bar-
rier within this theme, showing mixed effects in past 
studies. Some research indicates that it might negatively 
affects farmers’ motivation to adopt smart technology, 
particularly if farms face unfavourable climate conditions 
or soil quality (Paxton et al., 2011). In Italy, farms in the 
northern regions are generally more competitive, due to 
larger farm sizes, advanced mechanisation, and stronger 
market integration. In contrast, farms located in central 
and southern regions often face structural constraints, 
including smaller farms and lower productivity (Baldoni 
et al., 2018). Other studies emphasize the importance of 
social factors and access to information for the adopting 
of innovative smart technologies (Blasch et al., 2022). In 
this context, being a member of a farmers’ associations or 
a producer organizations (POs), where knowledge trans-
fer is one of the main objectives, might facilitate adoption. 
Therefore, we controlled the main endogenous variables 
of the model, i.e. perceived usefulness, perceived ease of 
use, adoption intention and behaviour, with individual 
factors, namely farmers’ age, education level and years of 
experience in the agricultural sector, and organizational 
ones, including farm size, farm location (expressed by the 
latitude of the province where the farm is located), num-
ber of employees, membership in a cooperative or a pro-
ducer organization, and farm turnover (Figure 1). 

3. DATA AND METHOD

3.1. Data collection

The data collection consisted in two phases: first we 
conducted a preliminary exploratory phase with qualita-
tive, unstructured interviews. The aim of the exploratory 
interviews was to identify relevant aspects to be included 
in the final model and to highlight those that could be 
omitted. In this way, relevant points such as the quality 
of results and self-efficacy were included in the final sur-
veys. The questions focused on previous experience with 
smart technologies, skills in using them, public finan-
cial support for the adoption of technical solutions and 
the farm structure, as well as farmers’ previous personal 
background. In the second phase, we conducted a survey 
among a sample of Italian horticultural farms. After an 
initial pilot phase (n=21 interviews) to test the question-
naire, the main study was conducted in the period from 

October to November 2024 by an international market 
research company using the CATI (Computer Assisted 
Telephone Interview) method. The survey lasted approx-
imately 30 minutes. The total defined sample consisted 
of 251 Italian farmers. 

The sample includes farmers who grow tomatoes 
(50% in northern Italy and 50% in the south), and those 
who grow fresh vegetables, such as carrots, peppers, egg-
plants, lettuce, etc., spread across northern, central and 
southern Italy (30%, 17%, and 53%, respectively). 

The geographical breakdown was chosen to be rep-
resentative of the horticultural farms according to the 
Italian National Institute of Statistics (ISTAT). The cov-
erage of different administrative regions throughout Italy 
ensures a comprehensive understanding of cultivation 
practices across the country and also illustrates the dif-
ferent technological levels. 

3.2. Measures

Together with the socio-demographic information 
and the descriptive indicators, the questionnaire was 
designed to test the model hypotheses. Overall, it includ-
ed 14 constructs, with a total of 45 items. The constructs 
included in the final model (Figure 1) were aimed to 
understand the drivers for the adoption of innovative 
water-smart agricultural technologies by Italian horticul-
tural farms. All TAM3 items were measured on a 7-point 
scale (from ‘strongly disagree’ to ‘strongly agree’) (see 
Annex Table A1). 

Subjective norm, i.e. the perceived social pressure to 
adopt the new technology, was assessed by three items 
(e.g., “Many producers I know have already adopted this 
innovation”). We measured the perceived usefulness 
with four items (e.g., “This innovation could improve 
my productivity”). Output quality, i.e. the perception of 
the quality of the technology in performing the task, was 
measured by four items (e.g., “Using this technology will 
improve the quality of my products”), whereas SAFA-
based aspects (i.e. the sustainability-related outcomes 
of the new technology adoption) were assessed by four 
items (e.g., “By using this innovation, I could help reduce 
water consumption”). We used two items for assessing 
the perceived ease of use (e.g., “This technology should 
be easy to use”). Technology self-efficacy, i.e. the belief in 
how well someone can perform actions to achieve per-
formance outcomes, was measured by three items (e.g., 
“I would use this innovation easily if I had technical 
support”), whereas anxiety was assessed by three items 
(e.g., “New technologies make me feel uncomfortable”). 
We used three items to assess behavioural intention (e.g., 
“I intend to use this technology in the near future”). 
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The study focused on the three levels of water-smart 
technologies described above: Level 1) – soil moisture 
sensors, Level 2) – a system combining sensors with an 
automatic irrigation system, and Level 3) – sensors con-
nected to an automated system, which in turn is con-
nected to and interacts with predictive models. If a 
farmer indicated they have adopted a certain level of the 
technology, the items were framed for the next level. For 
instance, if a respondent have already adopted soil mois-
ture sensors, we asked about the intention to adopt the 
sensors connected to an automated system. If no adop-
tion was reported, we asked about their intention to 
adopt soil moisture sensors (Level 1), whereas when they 
reported the highest level of adoption, we asked about 
the intention to adopt more advanced predictive models. 
Therefore, the behaviour was assessed with a single item, 
ranging from 1 to 4, considering the different adoption 
levels (1=no technology; 2=Level 1; 3=Level 2; 4=Level 3). 

3.3. Data analysis

We performed the statistical analysis using SPSS 
v.29.0 and AMOS v.29.0 statistical software (IBM Corpo-
ration, Armonk, NY, USA). Means, standard deviations, 
median and interquartile range (IQR) were calculated 
for each questionnaire item and its related construct. 
Structural equation modelling (SEM) was used to test 
hypotheses H1–H6 and the theoretical framework in 
Figure 1. SEM allows models to be specified with both 
latent (e.g., perceived usefulness) and observed variables 
(e.g., farmer’s age) (Kline, 2016). Specifically, we have 
considered two models: in Model 1 we included only the 
variables of the extended-TAM3 model (i.e. behaviour, 
behavioural intention, subjective norm, perceived useful-
ness, perceived ease of use, output quality, SAFA, tech-
nology self-efficacy and anxiety). Then, we controlled for 
the effects of individual factors (i.e., farmers’ age, educa-
tional level, and years of experience in the agricultural 
sector) and organizational factors (i.e., farm size, farm 
location, number of employees, membership in a coop-
erative or a producer organization, and farm turnover) 
on the endogenous variables (i.e., perceived usefulness, 
perceived ease of use, behavioural intention, and behav-
iour) by adding them step by step to Model 1. We then 
run Model 2 by adding to Model 1 the significant effects 
of the individual and organizational factors previously 
found. Convergent validity of the model variables was 
assessed using average variance extracted (AVE), Cron-
bach’s α coefficient, and composite reliability (CR). Dis-
criminant validity was tested by comparing the square 
root of the AVE of each construct with the inter-con-
struct correlation (Bagozzi and Yi, 2012). The goodness-

of-fit of the models was assessed using the χ2 and their 
degrees of freedom (df), the Tucker-Lewis Index (TLI), 
the comparative fit index (CFI), the root mean square 
error of approximation (RMSEA) with a 90% confidence 
interval, and the standardised root mean square residual 
(SRMR) (Kline, 2016). The coefficient of determination 
(R2) was used to measure the explained variance of the 
endogenous variables. We applied the Maximum Likeli-
hood estimation routine (Byrne, 2010).

4. RESULTS

4.1. Descriptive statistics

The overall sample consisted of 251 respondents 
who were responsible for farm’s decisions (78% always, 
14% often, and 8% sometimes). Most respondents were 
male (92%), had completed upper secondary education 
(53%), had an average age of 53 years, and a median of 
30 years of experience in the agricultural sector (Table 
1). Most farms were located in southern Italy and on the 
islands (51.4), had a median utilised agricultural area 
(UAA) of 15 ha, employed less than 10 people (68%), 
with a median turnover of €200.000. The most frequent-
ly cultivated vegetables were tomatoes, both for fresh 
consumption (44%) and for the processing industry 
(41%), followed by peppers (16%) and zucchinis (11%).

Most of the sampled farmers had not yet adopted 
any of the proposed technologies (n=175, 69.7%). Those 
who have deployed any of these technologies relied on 
Level 1 (i.e. soil moisture sensors, n=43, 17.1%), and a 
few were already using automated irrigation systems 
(Level 2) or predictive models (Level 3), accounting for 
6.4% (n=16) and 6.8% (n=17) respectively (Table 1). In 
light of these findings, it is important to understand the 
motivation for the adoption of new technologies and the 
factors that hamper their introduction.

Overall, the results in Table 2 show a moderately 
positive perceived usefulness of water-smart agricultur-
al new technologies (mean score: 4.81), which means in 
particular that farmers moderately agree that by using 
this technology they could reduce water consumption 
and improve productivity. The results also show a mod-
erately positive perceived ease of use (4.69) and output 
quality (4.59). Furthermore, important others had no 
significant influence (3.63), and there was relatively low 
anxiety about applying new technologies (3.16). The 
results indicated a positive evaluation of the sustainabil-
ity aspects related to the new technology (e.g., reduced 
water consumption, enhanced technical skills, etc., mean 
score: 5.03), as well as positive technology self-efficacy 
(5.12). In particular, respondents stated that they would 
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use this innovation easily if they had technical support. 
Furthermore, consumers exhibited a moderately positive 
intention to adopt innovative water-smart agricultural 
technologies (4.58).

4.2. Drivers of digital innovation

Table 2 shows the descriptive statistics of the latent 
and observable variables, as well as the tests conducted 
on the constructs. The factor loadings of the variable 
items (λ) exceeded 0.50, the Cronbach’s α and CR values 
were above 0.70, and the AVE values exceeded 0.50; these 
results, with the only exception of perceived ease of use, 
demonstrated strong reliability, as well as convergent and 
discriminant validity of all factors in the measurement 
model. Discriminant validity was further confirmed by 
verifying that the square root of the AVE for each con-

struct, as shown in Table 3, was greater than the correla-
tions between the constructs (Bagozzi and Yi, 2012). 

Model 1 showed a good fit with the collected data: χ2 
(df) = 461.975 (280), CFI = 0.950, RMSEA = 0.051 (90%CI 
0.043 – 0.059), TLI = 0.942 and SRMR = 0.054. The stand-
ardized path coefficients and their significance levels are 
shown in Table 4, whereas the unstandardized coefficients 
and standard errors are shown in the Appendix Table A2.

Overall, the model shows R2 values of 0.65 for the 
intention and 0.16 for the behaviour in adopting a new 
water-smart technology. This means that, respectively, 
65.1% of the variance in intention and 16.4% of the vari-
ance in behaviour can be explained by the tested vari-
ables. The results suggest that the intention to adopt an 
innovative water-smart technology significantly influenc-
es the actual behaviour (i.e., the adoption of the technol-
ogy itself), as postulated by H6 (p<0.001). Behavioural 

Table 1. Description of the sample: farm characteristics and socio-demographic data of farmers (n=251).

Variables
Sample

N %

Age of the respondent 
Age (years, mean and SD) 52.8 (11.9)
Gender
Male 231 92.0
Female 20 8.0
Others or prefer not to answer 0 0.0
Educational level
Primary 8 3.2
Secondary lower 57 22.7
Secondary higher 132 52.6
Tertiary 54 21.5
Geographical area of the farm
North-West 28 11.2
North-East 66 26.3
Center 28 11.2
South and Islands 129 51.4
Farm size
UAA (ha, median and IQR) 15.0 (4.0-60.0)
Farms by UAA classes
< 2 ha 20 8.0
2 – 4.99 ha 47 18.7
5 – 19.99 ha 69 27.5
20 – 49.99 ha 45 17.9
> 50 ha 70 27.9

Variables
Sample

N %

Most cultivated vegetables 
Tomato (for fresh consumption) 110 43.8
Tomato (for the processed industry) 104 41.4
Peppers 40 15.9
Zucchinis 27 10.8
Eggplants 13 5.2
Lettuce 13 5.2
Potatoes 12 4.8
Melons 9 3.6
Cauliflowers 8 3.2
Enterprise n. employee category
Micro (1-9 employees) 171 68.1
Small (10-49) 64 25.5
Medium 1 (50-99) 12 4.8
Medium 2 (100-249) 4 1.6
Large (≥250) 0 0.0
Farm’s turnover
Turnover (.000 euro, median and IQR) 200 (90-650)
Farmer’s years of experience in agriculture
Years of experience (median and IQR) 30 (20-40)
Levels of water-smart technologies a

No technological innovation 175 69.7
Level 1 43 17.1
Level 2 16 6.4
Level 3 17 6.8

Notes: Data are presented as the mean (SD) for continuous variables for which the hypothesis of normal distribution cannot be rejected at 
p<0.05, as median (IQR) otherwise, or as number (%) for nominal variables. SD = Standard Deviation. IQR = Interquartile Range. UAA 
= Utilised Agricultural Area. a Levels of water-smart technologies: Level 1) – soil moisture sensors, Level 2) – a system combining sensors 
with an automatic irrigation system, and Level 3) – sensors connected to an automated system, which in turn is connected to and interacts 
with predictive models. 
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intention, in turn, is positively influenced by perceived 
usefulness with p<0.001, which is one of the two core 
variables of the TAM3 (H4 accepted). 

Perceived ease of use does not significantly affect the 
intention to adopt technologies, therefore not supporting 
H3a; however, it positively affects perceived usefulness 
of new technologies with p<0.05, confirming H3b. H5 is 
also supported since subjective norm has a positive effect 
on the intention to adopt a technology (p<0.001), show-
ing that perceived social pressure has an influence on the 

farmers’ motivation to adopt a new technology. The con-
struct of anxiety shows a negative effect on the perceived 
ease of use (p<0.05), a property that is stimulating and 
that could open up new ways of designing and conceptu-
alizing modern technologies. Perceived ease of use, on the 
other hand, is positively influenced by the self-efficacy of 
the technology, with p<0.001. In turn, perceived useful-
ness is influenced by the quality of the output (i.e., the 
perceived quality of the effects achieved by using the tech-
nology, p<0.001) and by the SAFA-based items (p<0.05). 

Table 2. Mean values (standard deviation, SD) and median values (interquartile range, IQR) of single items and constructs, factor loadings 
(λ), composite reliability (CR), average variance extracted (AVE) and Cronbach’s α of the sample (n=251).

Mean (SD) Median (IQR) λ CR AVE α

Perceived Usefulness 4.81 (1.06) 5.00 (4.25-5.25) 0.84 0.56 0.84
PU1 4.80 (1.25) 5.00 (4.00-5.00) 0.78
PU2 4.61 (1.34) 5.00 (4.00-5.00) 0.75
PU3 4.86 (1.20) 5.00 (4.00-5.00) 0.79
PU4 4.95 (1.37) 5.00 (4.00-6.00) 0.67
Perceived Ease of Use 4.69 (0.92) 4.50 (4.00-5.00) 0.61 0.45 0.61
PEU1 4.98 (1.06) 5.00 (4.00-5.00) 0.59
PEU2 4.40 (1.10) 5.00 (3.00-5.00) 0.75
Output Quality 4.59 (0.98) 4.75 (4.00-5.00) 0.83 0.56 0.84
OQ1 4.57 (1.15) 5.00 (4.00-5.00) 0.70
OQ2 4.52 (1.25) 5.00 (4.00-5.00) 0.78
OQ3 4.80 (1.16) 5.00 (4.00-5.00) 0.85
OQ4 4.48 (1.20) 5.00 (4.00-5.00) 0.64
SAFA 5.03 (1.00) 5.00 (4.67-5.67) 0.78 0.55 0.79
SAFA1 5.12 (1.21) 5.00 (5.00-6.00) 0.68
SAFA2 4.87 (1.17) 5.00 (4.00-5.00) 0.72
SAFA3 5.10 (1.20) 5.00 (5.00-6.00) 0.81
Anxiety 3.16 (1.18) 3.00 (2.67-3.67) 0.85 0.66 0.85
ANX1 3.28 (1.33) 3.00 (3.00-4.00) 0.74
ANX2 3.10 (1.33) 3.00 (2.00-3.00) 0.88
ANX3 3.10 (1.37) 3.00 (2.00-3.00) 0.81
Technology Self-Efficacy 5.12 (1.11) 5.00 (4.67-6.00) 0.92 0.80 0.92
TSE1 5.07 (1.22) 5.00 (5.00-6.00) 0.87
TSE2 5.20 (1.18) 5.00 (5.00-6.00) 0.93
TSE3 5.08 (1.18) 5.00 (5.00-6.00) 0.88
Subjective Norms 3.63 (1.09) 3.67 (3.00-4.33) 0.76 0.53 0.74
SN1 3.84 (1.31) 4.00 (3.00-5.00) 0.84
SN2 3.52 (1.41) 3.00 (3.00-5.00) 0.51
SN3 3.53 (1.31) 3.00 (3.00-5.00) 0.78
Behavioural Intention 4.58 (1.35) 4.67 (4.00-5.33) 0.91 0.77 0.91
BI1 4.41 (1.51) 5.00 (4.00-5.00) 0.93
BI2 4.54 (1.47) 5.00 (4.00-5.00) 0.89
BI3 4.80 (1.41) 5.00 (4.00-6.00) 0.80
Behaviour a 1.50 (0.89) 1.00 (1.00-2.00)

Note: All items were measured on a 7-point scale (from ‘strongly disagree’ to ‘strongly agree’). a Behaviour was assessed with a single item, 
ranging from 1 to 4, considering the different adoption levels (1=No technological innovation; 2=Level 1; 3=Level 2; 4=Level 3).
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When controlling for individual and organiza-
tional factors we have found that, among all observed 
items, only the average farm size (expressed in hectares 

of utilised agricultural area, UAA) and the number of 
employees have an effect on the endogenous variables. 
In particular, the number of employees positively influ-

Table 3. Spearman’s rank-order correlations (ρ) between the constructs including the squared root of the AVE of each construct (reported 
in bold on the main diagonal).

PU PEU OQ SAFA ANX TSE SN BI BEH

PU 0.75 0.31*** 0.63*** 0.52*** -0.28*** 0.40*** 0.36*** 0.57*** 0.36***

PEU 0.67 0.24*** 0.31*** -0.17** 0.34*** 0.14* 0.28*** 0.15*

OQ 0.75 0.46*** -0.21*** 0.34*** 0.43*** 0.60*** 0.35***

SAFA 0.74 -0.23*** 0.63*** 0.16* 0.39*** 0.19**

ANX 0.81 0.16** -0.15* -0.29*** 0.17**

TSE 0.89 n.s. 0.39*** n.s.
SN 0.73 0.44*** 0.36***

BI 0.88 0.40***

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; OQ = Output Quality; SAFA = Sustainability Assessment of Food and 
Agriculture Systems; ANX = Anxiety; TSE = Technology Self-Efficacy; SN = subjective norms; BI = Behavioural Intentions; BEH = behav-
iour; Sign.: *** p<0.001, ** p<0.01, * p<0.01, n.s. = not significant.

Table 4. TAM3-extended model: coefficient of determination (R2), standardised coefficients (β), p-values, and research hypotheses (n=251). 

Model 1 Model 2

R2 β p Hypotheses R2 β p Hypotheses

PU 0.791 0.811
PEU → PU 0.133 0.044 H3b accepted 0.118 0.068 H3b accepted
OQ → PU 0.658 <0.001 H1a accepted 0.693 <0.001 H1a accepted
SAFA → PU 0.199 0.027 H1b accepted 0.172 0.052 H1b accepted
SN → PU 0.045 0.512 H1c rejected 0.033 0.627 H1c rejected
EMP → PU 0.157 <0.001
PEU 0.305 0.302
TSE → PEU 0.487 <0.001 H2a accepted 0.488 <0.001 H2a accepted
ANX → PEU -0.169 0.041 H2b accepted -0.161 0.051 H2b accepted
BI 0.651 0.653
PU → BI 0.601 <0.001 H4 accepted 0.616 <0.001 H4 accepted
PEU → BI 0.069 0.295 H3a rejected 0.056 0.380 H3a rejected
SN → BI 0.278 <0.001 H5 accepted 0.261 <0.001 H5 accepted
UAA → BI 0.081 0.068
BEH 0.164 0.178
BI → BEH 0.404 <0.001 H6 accepted 0.376 <0.001 H6 accepted
UAA → BEH 0.158 0.006
Model fit indices
χ2 (df ) 461.975 (280) 510.533 (328)
CFI 0.950 0.950
TLI 0.942 0.943
RMSEA (90% C.I.) 0.051 (0.043 – 0.059) 0.047 (0.039 – 0.055)
SRMR 0.054 0.062

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; OQ = Output Quality; SAFA = Sustainability Assessment of Food and 
Agriculture Systems; ANX = Anxiety; TSE = Technology Self-Efficacy; SN = subjective norms; BI = Behavioural Intentions; EMP = number 
of employees; UAA = average farm size (Utilised agricultural area); BEH = Behaviour. 
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ences respondents’ perceived usefulness (p<0.001), indi-
cating that decision-makers in larger farms, in terms 
of workforce, find the innovative technology capable 
of enhancing farm performance. In turn, the average 
farm size in UAA positively influences the behaviour 
(p<0.001) and behavioural intentions (p<0.10). In other 
words, respondents working in larger farms are more 
willing to adopt the new technologies, or have already 
adopted them. Overall, the Model 2 shows good fit with 
the data (χ2 (df) = 510.533 (328), CFI = 0.950, RMSEA 
= 0.047 (90%CI 0.039 – 0.055), TLI = 0.943 and SRMR 
= 0.062) while also improving the explained variance of 
behaviour, up to 17.8%. The overall path and the tested 
hypotheses are confirmed, albeit with some of them 
showing slightly lower significance levels (Table 4).

5. DISCUSSION

Our study found that approximately 70% of the 
farmers interviewed did not adopt any of the proposed 
digital technologies. This finding confirms the limited 
adoption of innovative water-smart solutions in the Ital-
ian horticultural sector, highlighting the need to thor-
oughly understand the barriers and the factors that 
could promote such adoption. Therefore, the results of 
this study represent an important step toward achieving 
this goal. The applied extended-TAM3 model consistent-
ly explains around 18% of the variance in the behaviour 
(the adoption of water-smart technologies), and 65% of 
the variance in individuals’ intention to adopt the new 
digital technologies. We confirm that behavioural inten-
tion is a significant predictor of the behaviour, indicating 
that farmers motivation in adopting the innovative tech-
nologies affect the actual adoption. The applied model 
further assumes that the effect of other variables (e.g., 
self-efficacy) on behavioural intention is mediated by 
perceived usefulness and perceived ease of use. The find-
ings are consistent with previous literature, particularly 
in relation to the importance of perceived usefulness 
(Davis, 1989; Venkatesh and Davis, 2000). Perceived use-
fulness was found to be a strong determinant of farmers’ 
intention to adopt new water-smart technologies, high-
lighting its role in shaping the adoption behaviour. Oth-
er studies conducted using TAM demonstrate that per-
ceived usefulness is a central aspect for technology adop-
tion, provided that it do not cause a significant increase 
in the production costs (Pierpaoli et al., 2013). This sup-
ports the findings of Paustian and Theuvsen (2017) and 
Shang et al. (2021), who emphasize the importance of 
clear and tangible benefits for adoption of technologies 
in agriculture. 

However, our results differ from the TAM3 model 
with respect to the role of perceived ease of use, which 
has no influence on adoption intentions. While TAM3 
suggests that perceived ease of use is an important deter-
minant (Venkatesh and Bala, 2008), the limited impact 
observed can be attributed to contextual factors, such 
as the different levels of digital literacy and prior expe-
rience with technology among Italian farmers. The not 
significant effect of this factor was also found in another 
studies (for a review, see Osrof et al., 2023). In another 
study carried out in the Italian fruit and grapevine sec-
tor, perceived ease of use was found to be insignificant 
when adopting variable rate irrigation (Canavari et al., 
2021). Schulze Schwering et al. (2022) also found that 
perceived ease of use may become less important when 
end users rely more on external support or community 
recommendations, as social norms take precedence. 

Social norms were another important factor that 
positively influenced adoption intentions in our study, 
which is consistent with the findings of Senyolo et al. 
(2018). The role of perceived social pressure in motivat-
ing farmers suggests that fostering a culture of innova-
tion and demonstrating success among peers may be 
critical to increasing adoption rates. Furthermore, our 
findings echo the observations of Dissanayake et al. 
(2022) that contextual and cultural factors play a signifi-
cant role in shaping individuals’ intention to adopt inno-
vative technologies. 

By demonstrating that sustainability-related factors, 
such as improved water management and workforce skills, 
influence perceived usefulness, our study confirms the 
potential of sustainability considerations to improve tech-
nology uptake. This result is in line with the research find-
ings of Montes de Oca Munguia et al. (2021), who advo-
cate the inclusion of sustainability goals in the technology 
adoption framework. This last point is thought-provoking 
when it comes to examining the role of farmers and their 
commitment to sustainability, as well as their awareness of 
the use of smart devices to promote more sustainable prac-
tices. In the face of climate change and the pressure that 
agriculture is putting on environmental resources, only 
the direct and committed involvement of farmers can pro-
mote a more conscious and widespread use of smart tech-
nologies with the aim of reaping their benefits (Menozzi 
et al., 2015). Furthermore, linking sustainability aspects 
to the concept of usefulness could also promote higher 
acceptance and adoption rate, which underpins the posi-
tive impact for farmers in terms of profitability. This is also 
confirmed by the correlation indices between the SAFA-
inspired construct and the technology self-efficacy and 
output quality constructs, that are both high and signifi-
cant, 0.74 and 0.70 respectively. 
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Technology self-efficacy strongly affects perceived 
ease of use, indicating that individuals who are more 
confident in their ability to use the technology are more 
likely to perceive it as an easy task. In other studies, per-
ceived behavioural control has been found to predict 
intentions to adopt agricultural sustainability schemes 
(Menozzi et al., 2015). On the other hand, our results 
also suggest barriers to adoption, including lack of digi-
tal skills and limited access to information, which is 
consistent with the observations of other studies (Osrof 
et al., 2023; Sabbagh and Gutierrez, 2023; Yigezu et al., 
2018). To address these barriers, targeted training pro-
grams and policies are needed to lower the entry thresh-
old for farmers, especially for farmers in resource-poor 
regions. Interestingly, the negative correlation between 
anxiety and perceived ease of use highlights the impor-
tance of developing technologies that minimize cognitive 
and operational barriers. In our study, we controlled the 
endogenous variables of the model (i.e., perceived use-
fulness, perceived ease of use, intention to adopt, and 
behaviour) with individual and organizational factors. 
Only farm size and number of employees had a signifi-
cant effect on these variables, while the other constructs 
showed no significant effect. Another review revealed 
that several of these factors showed inconsistencies 
across multiple studies (Osrof et al., 2023). For instance, 
the insignificance effect of farmers’ level of education on 
decision-making could be explained by the possibility 
that highly educated farmers might opt for careers out-
side farming (Michels et al., 2020) or show interest in 
basic technology features that do not require extensive 
education (Wachenheim et al., 2021). Similarly, although 
numerous studies have found that older farmers are less 
motivated to adopt smart technologies on their farms, 
Osrof et al. (2023) identified a large number studies with 
inconsistent results, where age did not affect farmers’ 
adoption decisions. For example, age did not influence 
farmers’ intention to use smart technologies such as yield 
monitors with GPS (García-Jiménez et al., 2022). Farm 
location is also a notable barrier that might hamper the 
adoption of smart technologies, in particular if farms face 
unfavourable conditions such as climate, rainfall, or poor 
soil quality (Osrof et al., 2023; Paxton et al., 2011). How-
ever, in our case farm location did not significantly affect 
the endogenous variables, as other factors associated with 
this variable (e.g., farm size) likely masked this effect. 

On the contrary, our study indicated that larger 
farms, in terms of UAA acreage, are more likely to be 
motivated to adopt the innovative water-smart technolo-
gies or have already adopted them. This finding con-
firms that larger farm size is consistently seen as pivotal 
for achieving economies of scale when adopting smart 

technologies that entail high investments and initial 
costs (Osrof et al., 2023). 

The significant effect of the number of employees 
on the perceived benefit indicates that farms with a large 
workforce are more likely to believe that the use of water-
saving technologies will improve their performance. This 
result can be interpreted in different ways. On the one 
hand, it could indicate that the use of these technologies 
could reduce the need for farm labour and thus reduce 
labour costs. On the other hand, it could indicate that 
these technologies are perceived to improve the knowl-
edge and technical skills of employees and thus increase 
the productivity of the workforce. This second interpreta-
tion seems more consistent with the positive effect of the 
SAFA-based construct on perceived usefulness.

In summary, this study enriches the understanding 
of technology adoption in agriculture by confirming the 
relevance of the key TAM3 constructs and also high-
lighting context-specific variations. By addressing the 
identified barriers and harnessing the drivers of adop-
tion, policy makers, technology developers and stake-
holders can promote greater technology adoption and 
thus contribute to more sustainable and efficient agricul-
tural practices.

6. CONCLUSION

The integration of digital technologies in the Italian 
horticultural sector is a multifaceted challenge influenced 
by a variety of individual, technological, social and con-
textual factors. This study shows that individual inten-
tion is an important determinant of the actual adoption 
of innovative water-saving technologies and highlights 
the crucial role of farmer motivation in decision-making. 
Perceived usefulness of these technologies has a signifi-
cant effect on adoption intention, while perceived ease of 
use requires further investigation due to its limited rel-
evance in the current context. Social norms were identi-
fied as an important determinant of farmers’ intentions, 
highlighting the importance of community influence and 
external support in promoting the adoption of digital 
technologies. To close the observed adoption gap, target-
ed interventions should be developed to address barriers 
such as digital literacy, infrastructure and accessibility of 
technology. Furthermore, the regional and culture-spe-
cific nuances observed in this study should be taken into 
account when developing customised strategies. 

The results highlight important policy and business 
implications, suggesting that government agencies, agri-
cultural cooperatives, and technology developers should 
emphasize the economic and environmental benefits 
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of digital irrigation technologies. Encouraging farmer 
networks and knowledge-sharing initiatives could also 
accelerate adoption. By addressing these research gaps, 
this study contributes to both the academic literature 
and practical policy making. It provides a refined theo-
retical model to understand technology adoption in 
small- and medium-sized farms and offers practical 
insights to promote sustainable and efficient water man-
agement in agriculture. Further exploration of constructs 
that have negative correlates, such as anxiety, could lead 
to more user-centred technology design that reduces 
barriers to technology adoption and improves usability.

Some limitations of this study should be mentioned. 
The study reflects not only a specific context, such as the 
horticultural sector, but also national characteristics, 
which can vary greatly from country to country due to 
different regulatory and incentive frameworks, cultural 
practises and, most importantly, technological infra-
structures. Nevertheless, the sample is not representative 
of Italian farmers. This must be taken into account when 
interpreting the results and deriving consequences for 
corporate management. An extension of the sample and 
a repetition of the study in other countries could there-
fore be interesting to test the validity of all the hypoth-
eses put forward in the original theory. Second, we 
did not consider prospective behaviour, i.e., we did not 
measure actual behaviour in the future (i.e., future adop-
tion of the innovative technologies), but only current 
behaviour. Although this approach is quite common in 
similar studies, it might have limited the compatibility of 
behaviour with its antecedents (McEachan et al., 2011). 
Moreover, this study used self-report measures about 
the behaviour which may be subject to response biases. 
However, the CATI method can help with complex or 
sensitive questions by allowing the interviewer to clarify 
questions and guide the respondent, thus reducing mis-
interpretation and encouraging more accurate responses 
(Dillman et al., 2014).

Despite these limitations, this study is, to our knowl-
edge, one of the first aimed at investigating the relative 
importance of behavioural precursors in explaining the 
intention to adopt innovative water-smart technologies 
in Italian horticultural farms.
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APPENDICES 

Table A1. Constructs and Items.

Codes Items

Perceived Usefulness 
PU1 This innovation would make my work easier
PU2 This technology would make my work faster
PU3 This innovation could improve my productivity

PU4 By using this technology, I could reduce water 
consumption in my company
Perceived Ease of Use

PEU1 This technology should be easy to use
PEU2 Using this technology will not require much effort

Output Quality

OQ1 I expect that the results of using this technology will be 
excellent

OQ2 Using this technology will improve the quality of my 
products

OQ3 By using this system, I would increase the efficiency of my 
work

OQ4 By using this innovation, I would increase the quantity of 
product in the field
SAFA

SAFA1 By using this innovation, I could help reduce water 
consumption

SAFA2
With the introduction of this technology, employees could 
receive training and enhance their knowledge and technical 
skills

SAFA3 By introducing this innovation, I could receive training and 
improve my technical skills
Anxiety

ANX1 I get nervous when working with new technologies
ANX2 New technologies make me feel uncomfortable
ANX3 I am afraid of applying new technologies

Technology Self-Efficacy

TSE1 I would use this technology easily if someone showed me 
how to use it

TSE2 I would use this innovation easily if I had technical support

TSE3 I would use this innovation easily if I were familiar with 
the system
Subjective Norms

SN1 People whose opinions matter to me think that I should 
use this technology

SN2 Many producers I know have already adopted this 
innovation

SN3 My customers think that I should use this technology
Behavioural Intention

BI1 I will definitely use this technology in the near future
BI2 I intend to use this technology in the near future

BI3 If there were no significant barriers, I would use this system 
in the near future

Note: All items were measured on a 7-point scale (from ‘strongly 
disagree’ to ‘strongly agree’).
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Table A2. TAM3-extended model: unstandardized beta coefficients 
and standard errors (S.E.) (n=251). 

Model 1 Model 2

Beta S.E. Beta S.E.

PU
PEU → PU 0.202* 0.100 0.176# 0.097
OQ → PU 0.796*** 0.136 0.824*** 0.134
SAFA → PU 0.236* 0.106 0.200# 0.103
SN → PU 0.040 0.060 0.028 0.059
EMP → PU 0.249*** 0.068
PEU
TSE → PEU 0.308*** 0.064 0.307*** 0.064
ANX → PEU -0.098* 0.048 -0.093# 0.047
BI 
PU → BI 0.862*** 0.110 0.890*** 0.110
PEU → BI 0.149 0.142 0.121 0.138
SN → BI 0.351*** 0.082 0.324*** 0.080
UAA → BI 0.000# 0.000
BEH
BI → BEH 0.256*** 0.039 0.240*** 0.039
UAA → BEH 0.000** 0.000

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; 
OQ = Output Quality; SAFA = Sustainability Assessment of Food 
and Agriculture Systems; ANX = Anxiety; TSE = Technology Self-
Efficacy; SN = subjective norms; BI = Behavioural Intentions; EMP 
= number of employees; UAA = average farm size (Utilised agri-
cultural area); BEH = Behaviour. Sign.: *** p<0.001, ** p<0.01, ** 
p<0.05, # p < 0.10. 
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Abstract. Agriculture 4.0 enhances efficiency, sustainability, and yields while support-
ing climate change mitigation and adaptation. This study explores the adoption of 
Agriculture 4.0 among 131 durum wheat farmers in Sardinia, focusing on differenc-
es between marginal and non-marginal areas. Using an extended Unified Theory of 
Acceptance and Use of Technology (UTAUT2) framework, which includes perceived 
performance risk, the study identifies key factors influencing adoption. Facilitating 
conditions positively impact the adoption intentions, and perceived performance risk 
has a negative impact. However, performance expectancy, effort expectancy, social 
influence and price value don’t significantly affect adoption intentions. Policy recom-
mendations include financial support, technical advice access, training programs, and 
awareness campaigns to promote adoption. These interventions aim to address barriers 
and foster equitable integration of Agriculture 4.0 technologies across diverse farming 
contexts.

Keywords:	 Agriculture 4.0, technology adoption, marginal areas, non-marginal areas, 
UTAUT2.

1. INTRODUCTION

Marginal areas are territories where farming is challenging due to a con-
fluence of biophysical, socioeconomic, and infrastructural aspects (Ahmadzai 
et al., 2021; Alhajj Ali et al., 2024; Peter et al., 2018; Sallustio et al., 2018). 
These territories face natural and geographic constraints that reduce agricul-
tural competitiveness (Ahmadzai et al., 2022; Csikós & Tóth, 2023; Food & 
Nations, 2017; Jussila et al., 2019; Lal, 2004). On the other hand, non-mar-
ginal areas benefit from better natural resources, more established infrastruc-
ture, and more access to markets, technology, and research and development 
(R&D) (Coxhead et al., 2002; Hidayat et al., 2024; Rondinelli, 1992; Ruddle, 
1991). These areas are often better integrated into regional, national, and 
worldwide agricultural markets, resulting in increased production and eco-
nomic benefits (Hidayat et al., 2024; Jouanjean, 2013; Long et al., 2016). 

Farmers in non-marginal areas are generally more willing to accept new 
technologies due to improved access to credit and extension services, which 
reduce perceived risks and increase the possibility of successful adoption 
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(Pannell et al., 2006; Rogers, 2003; Yigezu et al., 2018).  
Differently,  farmers in marginal areas are more likely 
to be risk-averse and hesitant to adopt new technolo-
gies due to uncertainties about their effectiveness and 
the potential financial risks involved (Girma et al., 2023; 
Marra et al., 2003; Wu et al., 2023). These farmers may 
also lack the technical knowledge and skills required 
to effectively implement and benefit from new tech-
nologies, as well as the necessary support systems for 
ongoing innovation and R&D (Abrol & Ramani, 2014; 
Douthwaite et al., 2001; Klerkx et al., 2019; Scoones et 
al., 2009). Agriculture 4.0 may provide a transforma-
tive opportunity to solve these imbalances. Agriculture 
4.0, an advanced framework that incorporates tech-
nologies such as the Internet of Things (IoT), Artificial 
Intelligence (AI), robotics, precision farming, and big 
data analytics, has the potential to transform farming 
methods in a variety of situations (Abiri et al., 2023; 
Fuentes-Peñailillo et al., 2024; Raj et al., 2021; Stupina 
et al., 2021; Wolfert et al., 2017).  IoT systems enable 
real-time monitoring of soil, crops, and equipment (e.g., 
moisture sensors and smart irrigation) (Osservatori.net, 
2023).  Precision agriculture tools such as GPS-guided 
machinery and variable-rate technology (VRT) opti-
mize the use of inputs like fertilizers, pesticides, and 
water (McCormick, 2023) being tools to achieve more 
sustainable farming systems. Remote sensing technolo-
gies and drones are destinated to crop health analysis 
and yield forecasting (Maffezzoli et al., 2022). Robotics 
and automation through autonomous tractors, harvest-
ers, and weeding robots help reduce labor requirements 
(McCormick, 2023; Osservatori.net, 2023) , while AI and 
machine learning offer predictive analytics and deci-
sion support (Abiri et al., 2023). Additionally, blockchain 
and cloud computing enhance traceability and data 
management, big data analytics support informed fore-
casting and strategic planning (Maffezzoli et al., 2022), 
and mobile applications provide farmers with access to 
weather data, technical assistance, and real-time market 
prices (AgendaDigitale, 2023). Together, these technolo-
gies not only improve efficiency and productivity but 
also reduce environmental impact and enhance climate 
resilience. These advances are intended to maximize 
resource utilization, boost crop yields, and improve over-
all farm management, being extremely advantageous, 
especially in marginal areas (Abiri et al., 2023; Benfica 
et al., 2023; Klerkx et al., 2019; Rose & Chilvers, 2018; 
Saidakhmedovich et al., 2024). However, whereas non-
marginal areas are well-positioned to adopt these tech-
nologies, marginal areas face major barriers (Benfica et 
al., 2023; Klerkx et al., 2019; Mercure et al., 2021; Said-
akhmedovich et al., 2024).  Understanding these con-

straints is critical to ensure that the benefits of Agri-
culture 4.0 are more widely realized, thereby possibly 
bridging the development gap between marginal and 
non-marginal areas (Burland & von Cossel, 2023; Kirk 
& Cradock-Henry, 2022; Sureth et al., 2023). A complex 
interaction of elements such as economic situations, 
information access, social influences, and individual per-
ceptions of risk and benefit impact farmers’ attitudes and 
behaviours regarding new technology adoption (Adrian 
et al., 2005; Brick & Visser, 2015; Rizzo et al., 2024; Sab-
bagh & Gutierrez, 2022, 2023). Previous studies investi-
gated such elements on smart agriculture technologies in 
the Italian context (Caffaro & Cavallo, 2019; Caffaro et 
al., 2020; Caffaro et al., 2019). 

To investigate these dynamics,this research utilized 
the Unified Theory of Acceptance and Use of Technol-
ogy 2 (UTAUT2) model (Venkatesh et al., 2012), which 
provides a comprehensive framework for understanding 
technology adoption (Alghatrifi & Khalid, 2019; Mac-
edo, 2017; Tamilmani et al., 2021). 

 UTAUT2 expands on the original UTAUT model, 
which identifies core factors that inf luence technol-
ogy acceptance and use (Chang, 2012; Venkatesh et al., 
2012). UTAUT2 introduces additional variables such 
as hedonic motivation, price value, and habit that cap-
ture a more comprehensive understanding of consumer 
and user behaviour in different contexts such as mobile 
applications, digital communication, e-health, education-
al tools, banking, agriculture, etc. (An et al., 2016; Arain 
et al., 2019; Arenas Gaitán et al., 2015; Chang, 2012; 
Medeiros et al., 2022; Venkatesh et al., 2012; Widodo 
et al., 2019). As well, UTAUT2 is important in under-
standing technology adoption since it explains both 
short-term and long-term technology use (Diekmann & 
Theuvsen, 2019). Moreover, research has shown that per-
ceived performance risk predicts the intention to adopt 
a new technology (Abikari, 2024; Budhi & Aminah, 
2010; Budhi et al., 2022; Deng et al., 2018; Diekmann 
& Theuvsen, 2019; Hasselwander & Weiss, 2024; Sohn, 
2024). For this reason, we extended the UTAUT2 mod-
el to include the variable of perceived performance risk 
(Featherman & Pavlou, 2003). 

We focus our analysis on durum wheat farmers in 
the Sardinia region, considering both marginal and non-
marginal conditions. Sardinia’s unique agricultural land-
scape, with considerable regional differences, makes it 
an appropriate case study for investigating these dynam-
ics. Some areas of Sardinia suffer severe challenges due 
to low soil quality, water scarcity, and limited infrastruc-
ture (Fraser-Baxter, 2024). Durum wheat, a key crop in 
the region and vital to producing traditional items such 
as pasta and bread, is inseparably linked to Sardin-
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ian history and the local economy (Mefleh et al., 2019; 
Soddu et al., 2013). Furthermore, durum wheat agricul-
ture in Sardinia is particularly sensitive to environmen-
tal conditions, making it a great indicator of the overall 
agricultural issues faced across the region (Mereu, 2010).

Agriculture 4.0 technologies may improve durum 
wheat sowing, monitor soil moisture and nutrient levels 
in real time, and predict crop diseases before they spread 
(Balyan et al., 2024; Güven et al., 2023; Shafi et al., 2019; 
Trivelli et al., 2019). The geographical differences in 
durum wheat yields in Sardinia, caused by different soil 
quality, water availability, and infrastructure, make it a 
suitable case study for investigating farmers’ intentions 
to implement Agriculture 4.0 technologies in marginal 
and non-marginal areas.

This study is pioneering in proposing an expanded 
UTAUT2 model to explore the behavioural factors influ-
encing the adoption of Agriculture 4.0 technologies in 
marginal and non-marginal settings. The implications 
of this study may extend beyond Sardinia, providing sig-
nificant insights into the broader challenges and oppor-
tunities associated with the adoption of agricultural 
technologies. The findings could help shape agricultural 
policies that promote sustainable farming practices and 
economic development in locations with similar agricul-
tural profiles. Moreover, it intends to contribute to the 
global discourse on sustainable agricultural innovation 
by offering a detailed knowledge of the factors that influ-
ence technology adoption, thereby assisting in the tran-
sition to more resilient and efficient farming systems. 
This leads to the central research question: “What are 
the key factors influencing farmers’ behavioural intention 
to adopt Agriculture 4.0 technologies in Sardinia?”

This research aligns with several United Nations 
Sustainable Development Goals (SDGs), specifically 
SDG 2 (Zero Hunger), SDG 9 (Industry, Innovation, and 
Infrastructure), and SDG 12 (Responsible Consumption 
and Production). By investigating the behavioural and 
structural factors that influence the adoption of Agricul-
ture 4.0 technologies, especially in marginal areas, the 
study contributes to the broader agenda of building resil-
ient food systems and fostering inclusive and sustainable 
economic growth in rural areas (SDG 8). Moreover, pro-
moting the use of resource-efficient technologies direct-
ly supports climate action goals (SDG 13) by reducing 
environmental impact and improving adaptation to cli-
mate-related risks. This study contributes to the ongoing 
discussion on farmers’ motivations and aspirations in 
agricultural innovation. As noted by Arata and Menozzi 
(2023), there is a need for multidimensional approaches 
that account for both individual drivers and contextual 
influences on farmer behaviour. While recent contribu-

tions, such as Deißler et al. (2022), have explored the role 
of personality traits in shaping aspirations in smallhold-
er contexts, our work adds to this conversation by focus-
ing on behavioural intentions toward Agriculture 4.0 
use. By drawing on the Theory of Planned Behaviour, 
our approach emphasizes farmers’ perceptions and atti-
tudes as key drivers of decision-making. These are the 
factors that, while distinct from personality traits, are 
similarly influential in shaping future-oriented action. 
This alignment offers a complementary perspective to 
the journal’s growing body of research on aspirations 
and innovation adoption. The paper is structured as fol-
lows: section 2 outlines the theoretical framework and 
hypotheses; section 3 details the methodology, including 
data collection and analysis methods; section 4 presents 
and discusses the results; section 5 provides conclusions, 
and section 6 addresses the study’s limitations.

2. AGRICULTURE 4.0 AND BEHAVIOURAL MODELS 
FOR THE ADOPTION OF NEW TECHNOLOGIES

2.1. Agriculture 4.0 in marginal and non-marginal areas

Agriculture 4.0 represents a transformative shift in 
farming, leveraging advanced technologies such as pre-
cision agriculture, IoT, AI, robotics, and big data ana-
lytics to enhance efficiency, optimize resource use, and 
foster sustainable agricultural practices (Abiri et al., 
2023; Wolfert et al., 2017). These technologies have the 
potential to revolutionize farming in both marginal and 
non-marginal areas, but their adoption and impact vary 
significantly due to differences in infrastructure, access 
to resources, and socioeconomic conditions between the 
two regions (Ahmadzai et al., 2022; Klerkx et al., 2019). 
Non-marginal regions often benefit from stable and 
predictable weather patterns, ensuring that Agriculture 
4.0 technologies  can function optimally (Mana et al., 
2024; Pechlivani et al., 2023). These tools, which include 
IoT sensors that monitor crop health, soil moisture lev-
els, and pest infestations, empower farmers to make 
data-driven decisions that enhance productivity, reduce 
resource consumption, and promote environmental 
sustainability (Fuentes-Peñailillo et al., 2024; Raj et al., 
2021). The availability of advanced farming machinery 
and technologies, such as AI-driven machinery and vari-
able rate technology (VRT), further contributes to higher 
productivity, with less environmental impact (Shafi et 
al., 2019; Van Klompenburg et al., 2020). 

On the other hand, marginal areas face a host of 
challenges that hinder the adoption of Agriculture 4.0 
technologies. Marginal areas are often characterized by 
poor soil quality, limited water resources, geographi-
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cal isolation, and inadequate infrastructure, which 
restrict the applicability of advanced farming technolo-
gies (Ahmadzai et al., 2021; Jacobs et al., 2022). These 
regions are prone to extreme environmental conditions 
such as drought, floods, heat waves, soil erosion and 
water scarcity, making it difficult to implement technolo-
gies like precision irrigation or smart farming systems 
that rely on consistent environmental data (Akter et 
al., 2023; Cogato et al., 2019; Wheaton & Kulshreshtha, 
2017). The absence of digital literacy and technical sup-
port networks in these regions makes it even more chal-
lenging for farmers to adopt new technologies (Dibbern 
et al., 2024; Ruzzante et al., 2021). As a result, farmers 
in these areas often lack the knowledge or resources to 
implement technologies such as IoT sensors, AI-driven 
machinery, and other forms of Agriculture 4.0 (Douth-
waite et al., 2001; Klerkx et al., 2019).

Additionally, the high cost of adopting advanced 
technologies further exacerbates the divide between 
marginal and non-marginal areas. While financial sup-
port mechanisms such as subsidies and loans are more 
readily available in non-marginal areas, farmers in mar-
ginal regions often have limited access to credit and 
financial resources, making it difficult for them to invest 
in expensive technologies like artificial intelligence (AI) 
driven machinery or VRT (Klerkx et al., 2019; Yigezu et 
al., 2018). In marginal areas, where the financial risks of 
farming are already high due to environmental unpre-
dictability, the upfront investment in advanced technolo-
gies can seem discouraging (Hurlbert et al., 2019; Khan 
et al., 2024). Without sufficient financial backing, many 
farmers prioritize short-term survival, limiting their 
ability to make long-term investments in precision farm-
ing tools that could potentially enhance productivity 
(Marra et al., 2003).

Environmental factors, including the vulnerability 
to climate change, further differentiate the two regions 
in terms of Agriculture 4.0 adoption. In non-marginal 
areas, stable climatic conditions, fertile soils, and reli-
able access to water resources make it easier to deploy 
Agriculture 4.0 (Javaid et al., 2022; Solaw, 2011). Tech-
nologies that rely on real-time data on soil moisture and 
weather conditions can significantly enhance water use 
efficiency and boost agricultural productivity (Balyan et 
al., 2024). However, marginal areas face more unpredict-
able environmental factors that challenge Agriculture 
4.0. In these areas, the high variability of environmental 
conditions means that Agriculture 4.0 may not deliver 
accurate or effective results unless adapted specifically to 
local conditions (Jacobs et al., 2022).

Social and cultural factors also influence the adop-
tion of Agriculture 4.0 technologies, with farmers in 

non-marginal areas typically more exposed to modern 
farming practices and educational programs (Ahmed 
& Ahmed, 2023; Nhuong & Truong, 2024). In these 
regions, farmers often have access to extension servic-
es, training programs, and education that promote the 
adoption of innovative technologies (Gardezi & Bron-
son, 2020; Raji et al., 2024; Ruzzante et al., 2021). Their 
more favourable attitudes towards technology adoption 
are often supported by governmental and institutional 
initiatives aimed at integrating new technologies into 
farming practices (Cramb, 2000; Tey & Brindal, 2012). 
In contrast, farmers in marginal areas may be more 
risk-averse, especially when their livelihoods are already 
precarious due to environmental and financial chal-
lenges (Scoones et al., 2009). The limited access to edu-
cation, technical knowledge, and extension services in 
these regions further limits the willingness and ability 
of farmers to adopt new technologies, resulting in slow-
er adoption rates compared to non-marginal areas (De 
Rosa & Chiappini, 2012; Girma et al., 2023; LEAP, 2023; 
Masi et al., 2023; Wu et al., 2023).

The differences in the adoption of Agriculture 4.0 
technologies between marginal and non-marginal areas 
highlight the need for tailored interventions. While non-
marginal areas focus on optimizing technology and fos-
tering innovation, marginal areas require foundational 
efforts to improve basic infrastructure, enhance digi-
tal literacy, and address the specific environmental and 
socioeconomic challenges that hinder technology adop-
tion (Elsawah et al., 2020; Loo et al., 2023; Mazzucato 
& Willetts, 2019). The development of affordable, locally 
tailored technologies and support systems is crucial for 
ensuring that farmers in marginal areas can benefit from 
the transformative potential of Agriculture 4.0, without 
exacerbating existing inequalities (Jacobs et al., 2022; 
Klerkx et al., 2019). 

Agriculture 4.0 technologies present a stark con-
trast between marginal and non-marginal agricultural 
areas due to inherent disparities in natural resources, 
infrastructure, socioeconomic conditions, and access to 
technology (Ahmadzai et al., 2022; Klerkx et al., 2019; 
Saidakhmedovich et al., 2024). Understanding these 
contrasts is critical for developing strategies that ensure 
equitable access to these technologies and bridge the 
development gap.

2.2. The Unified Theory of Acceptance and Use of Technol-
ogy 2 

This study utilizes the UTAUT2 model to explore 
the factors affecting farmers’ intentions to adopt Agri-
culture 4.0 technologies. The UTAUT2 model, intro-
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duced by Venkatesh et al. (2012), expands upon the 
original UTAUT framework by integrating additional 
constructs pertinent to consumer-related contexts. The 
original UTAUT model emerged from synthesizing eight 
theoretical frameworks from various disciplines, focus-
ing on technological change and adoption.: Innovation 
Diffusion Theory IDT (Rogers, 1962); Theory of Rea-
soned Action TRA (Ajzen & Fishbein, 1980); Theory of 
Planned Behaviour TPB (Ajzen, 1991); Social Cogni-
tive Theory SCT (Bandura, 1986); Technology Accept-
ance Model TAM (Davis, 1989); Model of PC Utili-
zation MPCU (Thompson et al., 1991); Motivational 
Model MM (Davis et al., 1992); Combined TAM-TPB 
C-TAM (Taylor & Todd, 1995). The main value of this 
model arises from bringing a historical light on technol-
ogy use by working around a set of constructs; that is, 
concepts that encapsulate what is central to the effects of 
technology use from a user’s intention perspective (Yu, 
2012). The UTAUT model centered on four constructs: 
Performance Expectancy (PE), Effort Expectancy (EE), 
Social Influence (SI), and Facilitating Conditions (FC) 
with moderating demographic inputs: gender, age, level 

of experience, and voluntariness of use (Venkatesh et 
al., 2003). Table 1 illustrates these constructs alongside 
their theoretical origins, showcasing how each is rooted 
in one or more of the eight foundational models. Build-
ing on the theoretical foundation of UTAUT, Venkatesh 
et al. (2012) introduced the UTAUT2 model, a pivotal 
framework that emphasizes the consumer perspective 
by incorporating three key factors: Hedonic Motiva-
tion, Price/Value, and Habit. This enhancement signifi-
cantly boosts the model’s predictive accuracy for esti-
mating user adoption, reaching up to 74% (Venkatesh et 
al., 2016). The UTAUT2 model’s applicability has been 
widely recognized as a robust framework within the 
technology industry. The extensive body of research sup-
porting it underscores its effectiveness in analysing the 
adoption of new technologies, especially in diverse cul-
tural and social contexts (Šumak & Šorgo, 2016). Several 
studies, such as those by Ena and Siewa (2022) Toral et 
al. (2018), have utilized the UTAUT2 model to investi-
gate the factors influencing farmers’ adoption of preci-
sion agriculture technologies.

Table 1. The main constructs of UTAUT and their origins.

Constructs Variables Model contributing to constructs

Performance Expectancy

Perceived usefulness
Technology Acceptance Model (TAM) (Davis, 
1989) 
Combined TAM-TPB (Taylor & Todd, 1995)

Extrinsic motivation Motivational Model MM (Davis et al., 1992)

Job-fit Model of PC Utilization MPCU (Thompson et 
al., 1991)

Relative advantage Innovation Diffusion Theory IDT (Rogers, 1962)
Outcome expectations Social Cognitive Theory SCT (Bandura, 1986)

Effort Expectancy
Perceived ease of use Technology Acceptance Model (TAM) (Davis, 

1989)

Complexity Model of PC Utilization MPCU (Thompson et 
al., 1991)

Social Influence

Subjective norms

Theory of Reasoned Action TRA (Ajzen & 
Fishbein, 1980)
Theory of Planned Behaviour TPB (Ajzen, 1991)
Technology Acceptance Model (TAM) (Davis, 
1989)
Combined TAM-TPB C-TAM (Taylor & Todd, 
1995)

Social factors Model of PC Utilization MPCU (Thompson et 
al., 1991)

Image Innovation Diffusion Theory IDT (Rogers, 1962)

Facilitating Conditions

Perceived behavioural control
Theory of Planned Behaviour TPB (Ajzen, 1991)
Combined TAM-TPB (Taylor & Todd, 1995)

Facilitating conditions Model of PC Utilization MPCU (Thompson et 
al., 1991)

Complexity Innovation Diffusion Theory IDT (Rogers, 1962)
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2.3. Selected variables for the study

This study engages important variables from the 
UTAUT2 (Venkatesh et al., 2012) as well as the variable 
of perceived performance risk (Featherman & Pavlou, 
2003) to cope with the extended research model and bet-
ter understand the factors influencing farmer acceptance 
of Agriculture 4.0 technologies. Each variable indicates a 
distinct feature that may influence a farmer’s willingness 
to adopt Agriculture 4.0 technologies. As a result, the 
variables chosen for this study are presented below.

Firstly, Performance Expectancy (PE) refers to the 
degree to which individuals believe that using technol-
ogy will help them achieve gains in job performance 
(Venkatesh et al., 2012).In the context of Agriculture 4.0, 
this construct captures farmers’ expectations regarding 
the improvement in crop yield, efficiency, and overall 
farm productivity due to the adoption of advanced tech-
nologies. Previous research has seen this variable for its 
influence on the adoption of Agriculture 4.0 (Kolady et 
al., 2021; Paustian & Theuvsen, 2017). Therefore, based 
on this, the following research hypothesis is proposed:

H1: PE directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Secondly, Effort Expectancy (EE) is defined as the 
degree of ease associated with the use of the technol-
ogy (Venkatesh et al., 2012). For farmers, this relates to 
the perceived ease of learning and using Agriculture 4.0 
technologies, including IoT devices, data analytics tools, 
and automated machinery. Previous research has studied 
this variable to understand its influence on Agriculture 
4.0’s adoption (Fragomeli et al., 2024; Giua et al., 2022). 
Hence, we investigate the research hypothesis that:

H2: EE directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Then, Social Influence (SI) refers to the degree to 
which individuals perceive that important others believe 
they should use the new technology (Venkatesh et al., 
2012). In agricultural communities, social influence can 
come from peers, family members, agricultural advi-
sors, and community leaders. In the context of the study, 
it is the degree to which a farmer believes that impor-
tant people support their use of Agriculture 4.0 for their 
daily field tasks. Previous studies have provided empiri-
cal support that evidences the impact of SI on the use 
of a new technology (Moriuchi, 2021). Zhai et al. (2020) 
and Harisudin et al. (2023) have studied this variable to 
examine its influence on the adoption of Agriculture 4.0. 
In this context, our hypothesis is the following:

H3: SI directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Also, Facilitating Conditions (FC) are the degree to 
which an individual believes that an organizational and 
technical infrastructure exists to support the use of the 
technology (Venkatesh et al., 2012). This includes access 
to necessary resources, such as training programs, tech-
nical support and funds. Previous research analysed FC 
from the standpoint of influence on adoption, specifi-
cally, Agriculture 4.0 (Da Silveira et al., 2023; Giua et al., 
2022). Thus, our research hypothesis is formulated as 
follows:

H4: FC directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

In addition, the Price Value (PV) variable has intro-
duced to capture the farmer’s evaluation of whether the 
benefits of adopting Agriculture 4.0 technologies justify 
the costs   (Venkatesh et al., 2012). Previous studies have 
evidenced the effect that price/value has on technol-
ogy adoption, a process that is enhancing in itself, and 
as such, provides a positive feeling and impact on users 
(Moorthy et al., 2019; Palau-Saumell et al., 2019). The 
research hypothesis is formulated as follows:

H5: PV directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Finally, Perceived Performance Risk (PR) refers to 
the potential negative outcomes associated with the use 
of technology, such as financial loss and crop failure. 
This construct, introduced by Featherman and Pavlou 
(2003), is particularly relevant in the agricultural sector 
where adopting new technologies often involves signifi-
cant risks. Understanding PR is crucial as it influences 
farmers’ willingness to adopt innovative agricultural 
technologies like those encompassed in Agriculture 
4.0. Several studies have incorporated PR to predict the 
adoption of Agriculture 4.0 technologies (Cook et al., 
2022; Fragomeli et al., 2024; Kendall et al., 2022). For 
that, the proposed research hypothesis is the following:

H6: PR directly and negatively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

The extended UTAUT2 model, with the addition of 
Perceived Performance Risk, provides a comprehensive 
framework for understanding the adoption of Agricul-
ture 4.0 technologies. The research model is depicted in 
Figure 1. 
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3. METHODS

3.1. Survey Design

The survey’s questionnaire was divided into three 
sections. The first section explained the scenario and 
the research objectives, as well as the definition of Agri-
culture 4.0, its advantages, and the related investments. 
To ensure participants clearly understood the concept 
of Agriculture 4.0, the questionnaire provided a detailed 
definition inspired by the International Association of 
Precision Agriculture. Agriculture 4.0 was described as a 
data-driven farm management strategy where informa-
tion is collected, processed, and analyzed to guide deci-
sions aimed at improving the efficiency of resource use, 
productivity, quality, profitability, and sustainability. The 
definition was accompanied by examples of potential 
benefits, such as reducing resource waste (e.g., more effi-
cient fertilizer and pesticide use), increasing yields and 
improving crop quality, enhancing work conditions and 
efficiency through automation, enabling traceability from 
production to consumer. Furthermore, examples of spe-
cific Agriculture 4.0 tools and their estimated costs were 
provided. This allowed respondents to better relate to 
the technologies under investigation and reflect on their 
potential adoption. A summary is presented in Table 2.

 The second section included questions about the 
farmers’ socio-economic characteristics (Table 3). This 
survey section featured the use of nominal and ordi-
nal scales. The third section contained questions about 
the major constructs included in the UTAUT2 research 
model, which are PE, EE, SI, FC, PV, PR , and BI. Spe-
cifically, PE was measured using four items. These items 

were relative to the respondents’ belief that Agriculture 
4.0 reduces the use of phytosanitary treatments, increas-
es yield, enhances durum wheat’s quality, and is compat-
ible with other technologies that the farmer already uses 
to cultivate durum wheat.  EE was evaluated using three 
items related to respondents’ belief that Agriculture 4.0 
reduces time and workloads and allows for better organ-
ization of work, limiting injuries in the cultivation of 
durum wheat, especially on the most difficult surfaces. 
SI was measured using three items reflecting the useful-
ness of considering the opinion of other farmers regard-
ing the adoption of Agriculture 4.0, the easiness of using 
Agriculture 4.0 if other farmers close to the respond-
ents’ farms utilize it, and the belief of considering the 
adoption of this technology if farmers’ associations will 
actively promote it.  FC was assessed with three items 
related to the belief of having the necessary knowledge 
for the adoption of agriculture 4.0 on durum wheat, 
the belief of having easy access to technical advice in 
using this technology as well, as the reliance that the 
stabilization of a specific measure in the Rural Develop-
ment Program (RDP) in Sardinia Region with a capital 
contribution greater than or equal to 60%  would lead 
respondents to invest in Agriculture 4.0. Furthermore, 
the PV construct was assessed with three items related 
to the belief that Agriculture 4.0 could reduce the cost 
of durum wheat production, obtaining more profits and 
promoting the efficient work of the farmers as well. PR 
was measured with three items regarding the possibility 
that Agriculture 4.0 could generate more problems than 
solutions in managing the farm, tying the farmer as well 
to external consultants and experts, and creating more 
administrative work diverting the farmer from fieldwork. 

Figure 1. The research model.
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The intention to invest in Agriculture 4.0 was measured 
with three items regarding the near future intention of 
adopting this technology. 

Intentions and attitudes cannot be quantified direct-
ly (Straub et al., 2004). However, they can be indirectly 
quantified through observed and measurable indicators 
using scaling approaches (Gefen et al., 2000). To this 
end, a five-point Likert-type scale ranging from “strongly 
disagree” (-2) to “strongly agree” (2) was used to measure 
the participants’ attitudes, beliefs, and opinions about 
the adoption of Agriculture 4.0 (see Table 4 for the mean 
and standard deviation of scores). The structural equa-
tion model (SEM) was used for the analysis of the results 
since it allows testing all the relationships between the 
observed and latent variables simultaneously by com-
bining multiple regression with factor analysis and pro-
vides general adjustment statistics (Iacobucci, 2010). In 
addition, it can consider the measurement error with the 
observed variables (Hair et al., 2006).

3.2. Data collection

An online questionnaire was distributed from 
November 20th, 2023 to February 26th, 2024, to 217 
randomly selected durum wheat farmers in Sardinia, 
Italy, with the help of a farmers’ association, Coldiretti 
Sardinia. The sample was obtained using a convenience 
sampling method facilitated by Coldiretti. It is not statis-
tically representative of the full Sardinian farming popu-
lation but includes a diverse range of farm sizes and con-
ditions. To better understand the participants’ perspec-
tives, we asked whether they believe the land used for 
cultivating durum wheat meets the criteria for marginal 
lands. In the questionnaire, we defined marginal lands, 
according to existing scientific literature (Ahmadzai et 
al., 2022; Csikós & Tóth, 2023; Food & Nations, 2017; 
Jussila et al., 2019; Lal, 2004), , as areas characterized 
by poor soil quality, limited rainfall, extreme tempera-
tures, and inadequate access to transportation and com-

munication networks Respondents who indicated that 
their land fit this description were classified as cultivat-
ing in marginal conditions, while those who did not 
were classified as operating in non-marginal conditions. 
By that, the sample was divided into two groups: farm-
ers located in marginal areas and those in non-marginal 
areas.  Overall, 86 questionnaires were eliminated due 
to incomplete ones and small duration completion (less 
than 4 minutes, i.e., less than half the median duration 
of the interview). 

In Table 3, we present the demographic and socio-
economic characteristics of the participants in mar-
ginal and non-marginal conditions. The majority of 
respondents are male in both non-marginal and mar-
ginal conditions, with a slightly higher percentage of 
females in marginal conditions.  The age distribution is 
quite similar between the two groups, with the major-
ity being between 50-64 years old. This indicates that 
middle-aged farmers form the core demographic in both 
non-marginal and marginal conditions. Education lev-
els are comparable across both conditions, with most 
respondents having a high school diploma or less. Most 
farms are multi-generational family farms, with a slight-
ly higher presence of first-generation farms in marginal 
conditions (a first-generation farm refers to one where 
the current farmer is the first in their family to establish 
or manage a farming business, as opposed to multi-gen-
erational family farms passed down through successive 
generations). There is a notable difference in the likeli-
hood of having a successor between the two conditions. 
Non-marginal farms are more optimistic about having 
successors compared to marginal farms, where a signifi-
cant percentage are unlikely to have successors. This is 
aligned with Lobley et al. (2010) who showed that farm 
succession planning is more prevalent in financially sta-
ble farms, where future prospects are more secure and 
with Kimhi and Nachlieli (2001) who indicated that 
farm profitability and stability significantly influence 
the likelihood of having successors, with marginal farms 
often facing more uncertainty. Moreover, yield levels are 

Table 2. Precision agriculture tools: functionalities and investment estimates.

Technology / Tool Functionality Estimated Cost

4.0 Tractors & Implements Onboard computer, automatic guidance, automated 
spraying/fertilization + €5,000 over traditional machinery

Weather Stations & DSS 
(Decision Support)

Real-time weather and field monitoring, pest/disease alerts, 
irrigation/fertilization advice From €1,500 upwards

Analytics Platforms & Farm 
Apps

Integration of field data from sensors, drones, and 
equipment; decision support €500–€2,500 per year

Drones Aerial imaging, multispectral surveys, application of 
treatments

From €5,000 (excluding pilot license) or €25–
€200/ha if outsourced
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higher in non-marginal conditions, with a notable per-
centage achieving between 2,1-4 tons/ha. Marginal con-
ditions show a greater proportion of farms with yields 
less than 2 tons/ha. This could be due to the fact that 
yield performance is related to farm management prac-
tices and resource availability, which are typically better 
in non-marginal conditions (Fischer et al., 2014) and as 
well the fact that non-marginal lands benefit from better 
soil quality, access to water, and inputs leading to higher 
yields compared to marginal lands (Tilman et al., 2011).

To explore group differences, pairwise t-tests were 
performed to assess differences between marginal and 
non-marginal conditions. To save space, we do not 
report these t-tests. However, all the pairwise t-tests 
were significant at the 5% level of confidence. Thus, the 
constructs showed significant differences between the 
two areas. The analysis of Agriculture 4.0-related items 
(Table 4) reveals notable differences in perceptions 
between non-marginal and marginal farmers. Each con-
struct was calculated by taking the average of all related 
items. Non-marginal farmers consistently report higher 

scores across all UTAUT2 constructs compared to mar-
ginal farmers. They perceive Agriculture 4.0 as more 
beneficial (higher PE and PV), easier to use, and better 
supported socially and institutionally. In contrast, mar-
ginal farmers show greater PR and lower BI to adopt 
these technologies.  

3.3. Modelling analysis framework 

Due to the limited data available, we had to create a 
unified model to offer a comprehensive understanding of 
the factors influencing the adoption intentions of Agri-
culture 4.0 technology. Consequently, we merged data 
from both marginal and non-marginal areas to develop 
a consolidated model that reflects the overall regional 
dynamics.

A confirmatory factor analysis (CFA) was carried out 
using IBM SPSS AMOS version 26 to evaluate the meas-
urement model’s validity, focusing on convergent valid-
ity, discriminant validity, and internal consistency of the 
constructs.

Table 3 Demographic and socio-economic characteristics of the respondents.

Socio-Economic Variables Category
Non-Marginal Conditions

(N=72)
Marginal Conditions 

(N=59)

Frequency % Frequency  %

Gender
Male 63 87.50 49 83.05
Female 9 12.50 10 16.95

Age
18-49 years 24 33.33 19 32.20
50-64 years 37 51.39 30 50.85
> 65 years 11 15.28 10 16.95

Educational level
Lower than high school diploma 35 48.61 28 47.46
High school diploma 31 43.06 24 40.68
University degree 6 8.33 7 11.86

Characteristics of the farm
Family farm for several generations 62 86.11 49 83.05
First generation family farm 9 12.50 10 16.95
Part of a corporate enterprise 1 1.39 0 0

The probability that the farm 
will have a successor

None 8 11.11 6 10.17
Unlikely 11 15.28 26 44.08
Likely 40 55.56 21 35.59
Very Likely 5 6.94 3 5.08
Certainly 8 11.11 3 5.08

Average yield per hectare of 
the area cultivated with durum 
wheat

< 2 t/ha 5 6.94 8 13.56
2.1 - 3 t/ha 39 54.17 37 62.72
3.1 - 4 t/ha 23 31.95 13 22.03
> 4.1 t/ha 5 6.94 1 1.69

Experience Agriculture 4.0 
techniques

I have no experience with Agriculture 4.0 techniques. 32 44.44 33 55.94
I don’t use these techniques, but I’ve seen them used by 
others and I think I’m somewhat familiar with them. 13 18.06 13 22.03

I use Agriculture 4.0 techniques. 27 37.50 13 22.03
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Convergent validity was assessed by examining the 
reliability of measurement items (factor loadings), the 
composite reliability (CR) of each construct, and the 
average variance extracted (AVE) (Anderson & Gerbing, 
1988). Standardized factor loadings ranged from 0.58 to 

0.96, all exceeding the recommended minimum of 0.50 
(Gefen et al., 2000). The composite reliability values 
were consistently above the threshold of 0.70, indicat-
ing strong internal consistency of the latent constructs 
(Heinzl et al., 2011). Additionally, the AVE values, which 

Table 4. Summary statistics of the Agriculture 4.0 related items and latent components.

Agriculture 4.0 items and latent components Variables

Non-Marginal 
Conditions

(N=72)

Marginal Conditions
(N=59)

Mean(M) StDev(SD) Mean(M) StDev(SD)

Performance Expectancy (I Believe that…) PE 0.93 0.07 0.68 0.09
Agriculture 4.0 would help the cultivation of durum wheat by reducing the use of 
resources such as, for example, fertilizers and phytosanitary treatments.

PE1 1.15 0.09 0.80 0.12

Thanks to Agriculture 4.0, we can increase the yield per hectare of durum wheat. PE2 0.92 0.09 0.54 0.12
 Agriculture 4.0 allows for a better quality of durum wheat production. PE3 0.85 0.09 0.49 0.13
Agriculture 4.0 is compatible with the other technologies I already use to cultivate 
durum wheat.

PE4 0.88 0.09 0.81 0.11

Effort Expectancy (I Believe that …) EE 0.76 0.07 0.58 0.10
Agriculture 4.0 allows us to reduce time and workload in the cultivation of durum 
wheat.

EE1 0.89 0.10 0.66 0.13

Agriculture 4.0 allows for better organization of work in cultivating durum wheat. EE2 0.97 0.08 0.81 0.10
Agriculture 4.0 can limit injuries in the cultivation of durum wheat, especially on 
the most difficult surfaces.

EE3 0.46 0.10 0.22 0.14

Social Influence (I Believe…) SI 0.83 0.06 0.60 0.11
It is useful to consider the opinions of other farmers regarding the adoption of 
Agriculture 4.0 techniques.

SI1 0.92 0.08 0.81 0.13

It would be easier to use Agriculture 4.0 techniques if other farmers close to my 
farm also used it.

SI2 0.69 0.09 0.41 0.13

I would consider adopting Agriculture 4.0 techniques if Farmers’ Associations 
actively promoted their use.

SI3 0.88 0.08 0.58 0.14

Facilitating Conditions (I Believe …) FC 0.76 0.07 0.51 0.11
I have all the necessary knowledge for the adoption of Agriculture 4.0 in the 
cultivation of durum wheat.

FC1 0.26 0.12 -0.03 0.17

The stabilization of a specific measure in the RDP in the Sardinia Region, with 
a capital contribution greater than or equal to 60% for companies that invest in 
Agriculture 4.0, would lead me to invest in these new technologies.

FC2 1.15 0.09 0.83 0.16

Agriculture 4.0 technologies are compatible with those I already use. FC3 0.72 0.10 0.54 0.14
Price Value (Thanks to the use of Agriculture 4.0 …) PV 0.87 0.08 0.75 0.13
A reduction in the cost of durum wheat production can be achieved. PV1 0.89 0.09 0.71 0.15
I could work more efficiently. PV2 0.96 0.08 0.88 0.13
I could obtain a greater profit. PV3 0.75 0.09 0.66 0.14
Perceived Performance Risk (I believe it is likely that the use of Agriculture 4.0 
techniques will …)

PR 0.00 0.10 0.14 0.12

Generate more problems than solutions in managing my farm. PR1 - 0.24 0.12 -0.34 0.16
Tie me to external consultants and experts due to the level of sophistication in 
applying these techniques.

PR2 0.25 0.12 0.46 0.15

Create more administrative work, diverting my business from fieldwork. PR3 0.00 0.12 0.29 0.15
Behavioural Intention BI 0.38 0.11 -0.12 0.14
I will introduce Agriculture 4.0 to durum wheat cultivation in the coming months. BI1 0.35 0.11 -0.15 0.16
In the near future, I plan to use Agriculture 4.0 techniques in growing durum 
wheat.

BI2 0.58 0.11 0.27 0.16

I have already planned to use Agriculture 4.0 techniques on my farm. BI3 0.22 0.12 -0.49 0.16
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measure the proportion of variance explained by the 
latent variables relative to measurement error, ranged 
between 0.50 and 0.70, exceeding the minimum accepta-
ble value of 0.50 (Fornell & Larcker, 1981). These results, 
detailed in Table 5, demonstrate high reliability and 
good convergent validity of the constructs, as they are 
well-correlated with each other within the model.

Discriminant validity was evaluated using the Het-
erotrait-Monotrait ratio (HTMT) (Henseler et al., 2015) 
with coefficients needing to be below 0.90 to confirm 
that the latent variables are distinct. The results, shown 
in Table 6, indicated that all HTMT values were below 
0.90, confirming that the constructs are appropriately 
differentiated.

The overall fit of the measurement model was 
assessed through three key goodness-of-fit indices: the 
chi-square to degrees of freedom ratio (PCMIN/DF), the 
Comparative Fit Index (CFI), and the Standardized Root 
Mean Square Residual (SRMR). According to estab-
lished criteria, the model is considered to fit well if the 
PCMIN/DF ratio is less than 3, the CFI exceeds 0.90, 
and the SRMR is below 0.08 (Hair et al., 2006). The 
results showed PCMIN/DF = 2.330, CFI = 0.921, and 
SRMR = 0.080, indicating that the measurement model 
demonstrates a good fit for the data.

3.4. Structural model assessment

3.4.1. Dataset sample validation 

With the aim of validating the adequacy of samples 
collected, Hoelter’s N critical index was applied with a 
significance level of 0.05, equivalent to 95% confidence 
(Bollen & Liang, 1988; Hoelter, 1983).  The size of the 
sample is131 questionnaires and the Hoelter’s N (0.05) is 
83 which exceeds the commonly cited minimum thresh-
old of 75, indicating an acceptable sample size for model 
fit (Garson, 2015).

3.4.2. Framework model analysis

After performing the overall goodness of fit of the 
research model indicating a good fit to the data (chi-
square to degrees of freedom ratio (PCMIN/DF) of 
2.330, Comparative Fit Index (CFI) of 0.921, Standard-
ized Root Mean Square Residual (SRMR) of 0.080), the 
next step in the analysis involves assessing the explana-
tory power of the model’s dependent variable, meas-
ured as R², which reflects how well the independent 
variables account for variations in the dependent vari-
able. In this study, the R² for behavioural intention was 
found to be 0.49, meaning that 49% of the variability in 
behavioural intention is explained by the independent 
variables in the model (Kapoor & Singh, 2023; Schukat 
& Heise, 2021). The  f² values (the change in R² when 
an exogenous variable is removed from the model) 
range from 0.09 to 0.16, suggesting a small to medium 
effect size (Cohen, 2013) as indicated in Table 7. Fur-
ther analysis involves examining the structural relation-
ships among constructs using the Structural Equation 
Modelling (SEM) approach with the IBM SPSS AMOS 
version 26 software. The results of the path coefficient 
analysis are shown and detailed in  Figure 2 and Table 
8. Findings reveal that FC significantly affects behav-
ioural intention (β=0.625, p-value=0.010), while PR 
negatively impacts behavioural intention (β=-0.315, 

Table 5. Results for the measurement model.

Constructs Items Loading 
Values Cα CR AVE

Performance Expectancy PE1 0.74 0.86 0.87 0.53
PE2 0.85
PE3 0.91
PE4 0.58

Effort Expectancy EE1 0.83 0.79 0.78 0.50
EE2 0.80
EE3 0.62

Social Influence SI1 0.58 0.72 0.75 0.50
SI2 0.63
SI3 0.91

Facilitating Conditions FC1 0.60 0.70 0.69 0.50
FC2 0.84
FC3 0.58

Price Value PV1 0.77 0.87 0.87 0.69
PV2 0.86
PV3 0.86

Perceived Performance Risk PR1 0.60 0.74 0.75 0.50
PR2 0.71
PR3 0.81

Behavioural Intention BI1 0.83 0.89 0.87 0.70
BI2 0.96
BI3 0.88

Table 6. Heterotrait-monotrait ratio (HTMT) results.

BI EE FC PE PR PV SI 

BI 
EE 0.523 
FC 0.834 0.621 
PE 0.632 0.758 0.676 
PR 0.422 0.178 0.357 0.315 
PV 0.684 0.692 0.769 0.647 0.267 
SI 0.579 0.513 0.750 0.554 0.184 0.564 
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p-value=0.010). This suggests that participants who per-
ceive higher performance risks are less likely to invest 
in Agriculture 4.0 technologies. The analysis highlights 
that FC exerts the most substantial influence on the 
intention to adopt these technologies. Conversely, the 
hypotheses related to PE (β=0.056, p-value=0.729), EE 
(β=0.039, p-value=0.792), SI (β=0.097, p-value=0.686), 
and PV (β=0.069, p-value=0.685) were not supported, 
indicating that these factors do not significantly affect 
farmers’ intentions to adopt Agriculture 4.0 technolo-

gies for durum wheat cultivation. It’s worth noting that 
demographic variables such as age, education, and previ-
ous experience were initially considered for inclusion in 
the model. However, upon analysis, none of them were 
statistically significant, and their inclusion resulted in 
a decrease in the model’s goodness of fit. Therefore, to 
maintain the model’s validity and optimal fit, demo-
graphic variables were excluded from the analysis.

4. DISCUSSION AND POLICY RECOMMENDATIONS

4.1. Differences in impact between marginal and non-mar-
ginal areas and their policy implications

As emerged from Table 4, non-marginal farmers 
demonstrated higher performance expectancy, effort 
expectancy, social influence, facilitating conditions, and 
price value compared to marginal farmers. In this con-
text, non-marginal farmers perceived Agriculture 4.0 
technologies as beneficial for resource efficiency, yield 
improvement, reduced effort, and work efficiency. 

Policies and interventions for farmers should aim to 
reinforce their positive behavioural intentions and help 
them scale adoption. Information provision (Hines et al., 
1987; Stern & Dietz, 2002) can focus on showing case 
studies of successful implementation from peer farmers, 
inducing a reduction in resource use, increased yield, 
and efficient work, accompanied by less effort. These 
campaigns could also be amplified to present, in the 
form of infographics or videos, how Agriculture 4.0 can 
contribute to sustainability goals by adopting it. Addi-

Figure 2. Final structural model.

Table 7. F-square results.

Constructs F-square

PE → BI 0.09
EE → BI 0.13
SI → BI 0.09
FC → BI 0.16
PV → BI 0.11
PR → BI 0.10

Table 8. Results.

Hypothesis Β p-value Decision

H1: PE→ BI 0.056 0.729 Unsupported
H2: EE → BI 0.039 0.792 Unsupported
H3: SI → BI 0.097 0.686 Unsupported
H4: FC → BI 0.625* 0.010 Supported
H5: PV →BI 0.069 0.685 Unsupported
H6: PR →BI -0.315* 0.010 Supported

Note: *p-value < 0.05.
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tionally, incentives (van Valkengoed et al., 2022) such as 
stabilizing a specific measure within the regional RDP 
can reward those who adopt these practices. Commit-
ment strategies (Cialdini, 2009) can motivate farmers 
to adopt new technologies because people are driven to 
remain consistent with their actions and beliefs, lead-
ing them to feel obligated to fulfil their promises. Pub-
lic commitments are made to try specific technologies, 
and these pledges can be recognized in public forums 
through certifications or awards. Public recognition 
inspires individuals and sets positive examples in farm-
ing communities, encouraging others to follow suit 
(Cialdini, 2009; Schultz et al., 2007).

In contrast, marginal farmers expressed hesitancy 
and a negative behavioural intention due to higher per-
ceived performance risks related to their concerns about 
being linked to external consultants and lower availability 
of facilitating conditions, especially for technology knowl-
edge and limited access to financial resources. To increase 
knowledge and build technological trust, workshops, and 
training programs can help marginal farmers understand 
how to efficiently utilize Agriculture 4.0 technologies and 
understand their benefits (Kutter et al., 2011; Menozzi et 
al., 2015). Implementing pilot programs could enable mar-
ginal farmers to test these technologies on their farms for 
a limited time without long-term commitments.

Additionally, the government should prioritize pro-
viding subsidies or establishing low-interest loans to 
facilitate access to Agriculture 4.0 technologies. These 
technologies can lead to more efficient resource use and 
reduced environmental impact; outcomes that benefit not 
only farmers but also the broader public through envi-
ronmental protection, rural development, and climate 
change mitigation. Insurance incentive strategies can 
help reduce obstacles and ease fears of financial instabil-
ity by offsetting potential losses during the transition to 
new technologies (Mills, 2007; Wreford et al., 2017). Poli-
cymakers can support marginal farmers by collaborating 
with local institutions and experts to define small, attain-
able goals that gradually build trust and familiarity with 
technology. According to Appelbaum and Hare (1996), 
setting clear and realistic objectives – whether individu-
ally or through collective initiatives – can strengthen 
farmers’ self-efficacy and motivation, ultimately support-
ing more ambitious technological transitions. 

4.2. The Unified UTAUT2 model 

Results of the unified UTAUT2 model supported 
H4 and H6 hypotheses as seen in Table 6, showing that 
facilitating conditions and perceived performance risk 
significantly influence farmers’ intention to adopt Agri-

culture 4.0 technologies on durum wheat within our 
convenience sample. The results showed that facilitat-
ing conditions significantly impacted farmers’ intentions 
to use Agriculture 4.0 technologies. Our findings align 
with Fragomeli et al. (2024), who emphasize that prac-
tical and financial support from government initiatives 
significantly influences the adoption of Agriculture 4.0. 
This support often includes subsidies, training and edu-
cational programs, and technical assistance, which help 
farmers overcome barriers to adopting new technologies. 
For instance, government-funded training sessions can 
provide information to improve farmers’ understanding 
of how to use Agriculture 4.0 technologies based on IoT 
devices and data analytics platforms, making it easier 
for them to integrate these technologies into their opera-
tions. As well, creating educational programs explaining 
the challenges in traditional farming practices and the 
environmental and economic benefits of Agriculture 4.0 
can also positively induce the adoption of Agriculture 
4.0.  Araújo et al. (2021) highlight that having access to 
essential technological infrastructure such as IoT sensors 
and data analytics tools is critical for successful imple-
mentation. When farmers have the necessary resources, 
infrastructure, and knowledge, they are more likely to 
adopt and utilize Agriculture 4.0 technologies effectively. 

Perceived performance risk had a negative and sig-
nificant impact on the intention to adopt Agriculture 4.0 
technologies. Perceived performance risk encompasses 
concerns about the reliability and effectiveness of new 
technologies. Benos et al. (2022) found that if farmers 
are uncertain about whether Agriculture 4.0 will deliver 
the promised benefits or if they fear potential operation-
al failures or being linked to external consultants, they 
may be hesitant to adopt these technologies. This con-
cern can stem from previous experiences with technol-
ogy failures or from insufficient evidence demonstrating 
the technology’s effectiveness. Abikari (2024) further 
supports this by showing that perceived risks, including 
those related to technology performance, are crucial in 
adoption decisions. Duong et al. (2019) also highlight 
that uncertainties about new technologies’ effectiveness 
can significantly impact farmers’ willingness to adopt 
them. To mitigate these concerns and build trust, not 
only clear demonstrations, pilot projects, and empirical 
evidence of technology benefits should be emphasized 
but also providing financial incentives, such as subsidies 
for purchasing Agriculture 4.0 technologies or micro-
loans (Fragomeli et al., 2024; Osorio et al., 2024). It is 
important to note that financial incentives and public 
subsidies may strongly influence farmers’ awareness and 
perceived value of Agriculture 4.0 technologies. Menozzi 
et al. (2015) indicates that many Italian farmers are pri-
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marily driven by economic benefits. This pattern could 
affect how farmers evaluate the usefulness and feasibility 
of adopting such technologies, especially if some options 
are more frequently promoted through subsidy programs 
or public campaigns. Additionally, media coverage and 
institutional promotions often emphasize the availability 
of tax credits or financial contributions for specific Agri-
culture 4.0 technologies (Confagricoltura, 2024; ESG360, 
2023), which may shape farmer awareness and preferenc-
es toward subsidized solutions.

Contrary to expectations, performance expectancy 
did not significantly influence the intention to use Agri-
culture 4.0 technologies. Although performance expec-
tancy scores were relatively positive in both marginal 
(0.68) and non-marginal areas (0.96), this construct did 
not significantly influence behavioural intention in our 
model. This finding contrasts with Im et al. (2008) and 
Araújo et al. (2021), who found that when farmers per-
ceive significant improvements in their operations due 
to new technologies, they are more inclined to adopt 
them. A possible explanation for our results could be 
that, while farmers acknowledge the potential benefits 
of Agriculture 4.0, these benefits alone are not sufficient 
to drive adoption. This may be due to overriding con-
cerns such as performance risk, limited infrastructure 
and experience with digital tools, which may weaken the 
link between perceived performance and the intention 
to adopt, especially in marginal areas. Another possible 
explanation for our result could be that the perceived 
benefits of Agriculture 4.0 technologies might not align 
with the specific needs of farmers in Sardinia. If farmers 
do not clearly see how these technologies will enhance 
their productivity or efficiency, their intention to adopt 
may not be strongly influenced by performance expec-
tancy (Kutter et al., 2011; Menozzi et al., 2015). 

Effort expectancy also did not impact on the inten-
tion to adopt Agriculture 4.0 technologies. This result 
differs from findings by Fragomeli et al. (2024) and Abi-
kari (2024), who suggested that technologies perceived as 
user-friendly and requiring minimal additional effort are 
more likely to be adopted. Our findings are consistent 
with Araújo et al. (2021), which noted that difficulties  
in integrating Agriculture 4.0 technologies with exist-
ing systems can act as barriers to adoption. If the tech-
nologies are perceived as challenging to integrate, farm-
ers may be discouraged from using them despite their 
potential benefits. This suggests that high expectancy, or 
the perception of increased effort and complexity, could 
negatively impact adoption intentions.

Social influence did not significantly affect the inten-
tion to adopt Agriculture 4.0 technologies. This find-
ing is consistent with Li et al. (2024) which found that 

societal norms and peer pressure do not always posi-
tively impact the intention to use Agriculture 4.0 tech-
nologies. Farmers may resist adopting new technologies 
due to scepticism from their community or a preference 
for traditional methods. Yap and Al-Mutairi (2024) also 
highlight that negative social perceptions within certain 
farming communities can hinder technology acceptance. 
If the broader community holds negative views about 
Agriculture 4.0 technologies, individual farmers may 
be less inclined to adopt them, even if they recognize 
potential benefits.

Price value did not significantly influence the inten-
tion to adopt Agriculture 4.0 technologies such as 4.0 
tractors, weather stations and DSS, analytics platforms, 
farm applications and drones. This result contrasts 
with findings by Araújo et al. (2021) and Fragomeli et 
al. (2024) who highlighted that farmers often justify 
the initial investment in Agriculture 4.0 technologies 
through anticipated long-term economic returns, such 
as increased crop yields and improved resource manage-
ment. The lack of significant impact in our study might 
suggest that other factors, such as perceived risks or the 
complexity of technology, overshadow price considera-
tions in the adoption decision-making process.

Overall, the extended UTAUT2 framework provides 
a solid foundation for understanding how facilitating 
conditions and perceived performance risk inf luence 
Sardinian wheat farmers’ intentions to adopt Agriculture 
4.0 technologies. Designing a supportive choice architec-
ture (Thaler & Sunstein, 2008) can simplify the adoption 
process. Ensuring easy access to Agriculture 4.0 tech-
nologies can reduce  difficulties.  This comprehensive 
approach, combining education, financial support, social 
recognition, and accessibility, addresses the barriers to 
adoption while enhancing farmers’ readiness to embrace 
Agriculture 4.0 technologies. 

5. CONCLUSIONS 

The study highlighted notable differences in adop-
tion intentions between marginal and non-marginal 
farmers of durum wheat in Sardinia, driven by dispari-
ties in facilitating conditions, perceived benefits, and 
social influence. Non-marginal farmers demonstrated 
greater readiness and positive intentions toward Agri-
culture 4.0 technologies, while marginal farmers faced 
barriers such as limited resources and higher perceived 
risks although they had positive performance expec-
tancy, effort expectancy, social inf luence, facilitating 
conditions and price value. Combining data from both 
groups provided a holistic understanding of regional 
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adoption dynamics showing that facilitating conditions 
and perceived performance risk significantly affect the 
intention to adopt Agriculture 4.0 technologies. Facili-
tating conditions were found to have a positive and sub-
stantial impact, highlighting the critical role of support 
mechanisms such as financial aid, technical training, 
and access to technological infrastructure in promoting 
the adoption of these advanced technologies. In contrast, 
perceived performance risk negatively influenced adop-
tion intentions, reflecting farmers’ concerns about the 
reliability and effectiveness of new technologies.

Several targeted interventions are recommended to 
enhance the adoption of Agriculture 4.0 technologies. It 
is essential to focus on providing easy access to techni-
cal advice and educational programs through regional 
extension services. This approach will enable farmers 
to effectively utilize Agriculture 4.0 technologies and 
reduce barriers to adoption. Establishing accessible plat-
forms for technical support will ensure that farmers are 
well informed about the benefits and functionalities of 
these technologies.

Furthermore, improving the educational qualifica-
tions of technicians working in regional extension ser-
vices is necessary to address the knowledge gap related 
to Agriculture 4.0 technologies. This aligns with the 
findings of Caffaro and Cavallo (2019) that lower levels 
of education were linked to higher perceptions of eco-
nomic barriers, which in turn were negatively corre-
lated with the adoption of smart farming technologies. 
Universities and educational institutions should develop 
specialized courses or master’s programs focused on 
these technologies to equip technicians with the skills 
and knowledge required to support farmers and facilitate 
successful implementation.

Overall, by concentrating on enhancing facilitating 
conditions and addressing perceived performance risks, 
stakeholders can create a more supportive environment 
for the adoption of Agriculture 4.0 technologies. These 
interventions will help overcome existing barriers, pro-
mote the integration of innovative solutions in durum 
wheat farming, and ultimately improve productivity and 
sustainability within the agricultural sector.

6. LIMITATIONS

While this study provides valuable insights into 
adopting Agriculture 4.0 technologies in durum wheat 
farming, it is important to acknowledge several limita-
tions. The study is constrained by its geographical focus 
on Sardinia, which may limit the generalizability of 
the findings to other regions with different agricultural 

contexts or technological infrastructures. Additionally, 
using a convenience sampling method further limits the 
representativeness of the findings. Therefore, the results 
can be generalised to the wider farming population in 
Sardinia. Additionally, the study relies on self-reported 
data from farmers, which may introduce biases related 
to respondents’ perceptions or reporting accuracy. The 
adoption intentions assessed are also based on subjec-
tive assessments, which might not fully capture actual 
technology usage or long-term adoption outcomes. Fur-
thermore, the research does not account for all possi-
ble variables influencing technology adoption, such as 
economic fluctuations or policy changes, which could 
impact the relevance of the findings over time. As high-
lighted by Menozzi et al. (2015), economic incentives 
often outweigh environmental concerns in Italian agri-
cultural decision-making. Therefore, farmers may have 
expressed more favourable opinions toward technologies 
with known funding opportunities, possibly biasing the 
intention data. Future studies could attempt to control 
for this effect by comparing knowledge of subsidized vs 
non-subsidized solutions. Also, future research could 
benefit from a broader geographical scope, longitudinal 
studies, and a more comprehensive analysis of external 
factors to enhance the understanding of Agriculture 4.0 
adoption across diverse agricultural settings.

DISCLAIMER

The data supporting this study’s findings are avail-
able as a supplementary file to this paper.

ACKNOWLEDGMENTS

The authors would like to express their sincere grati-
tude to Luca Saba, Director General of Coldiretti Sarde-
gna, and Engineer Giovanni Sechi for their valuable 
support in facilitating the administration of the ques-
tionnaires. Their availability, professionalism, and deep 
knowledge of the local context were instrumental in 
ensuring the successful completion of the study.

FUNDING:

This study was carried out within the Agritech 
National Research Center and received funding from the 
European Union Next-GenerationEU (Piano Nazion-
ale di Ripresa e Resilienza (PNRR) – Missione 4 Com-
ponente 2, Investimento 1.4 – D.D. 1032 17/06/2022, 



60

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

Maria Sabbagh, Luciano Gutierrez

CN00000022). This manuscript reflects only the authors’ 
views and opinions, neither the European Union nor the 
European Commission can be considered responsible for 
them.””

REFERENCES

Abikari, M. (2024). Emotions, perceived risk and inten-
tions to adopt emerging e-banking technology 
amongst educated young consumers. International 
Journal of Bank Marketing. 

Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., 
& Abdul-Hamid, H. (2023). Application of digital 
technologies for ensuring agricultural productivity. 
Heliyon. 

Abrol, D., & Ramani, S. (2014). Pro-poor innovation 
making, knowledge production, and technology imple-
mentation for rural areas. Cambridge University 
Press. 

Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). 
Producers’ perceptions and attitudes toward preci-
sion agriculture technologies. Computers and elec-
tronics in agriculture, 48(3), 256-271. 

AgendaDigitale. (2023). Agricoltura 4.0 in Italia: a che 
punto siamo? Retrieved 20 March 2024 from https://
www.agendadigitale.eu/industry-4-0/agricoltura-
4-0-in-italia-a-che-punto-siamo/

Ahmadzai, H., Tutundjian, S., Dale, D., Brathwaite, R., 
Lidderr, P., Selvaraju, R., Malhotra, A., Boerger, V., 
& Elouafi, I. (2022). Marginal lands: potential for 
agricultural development, food security and poverty 
reduction. 

Ahmadzai, H., Tutundjian, S., & Elouafi, I. (2021). Poli-
cies for sustainable agriculture and livelihood in mar-
ginal lands: a review. Sustainability, 13(16), 8692. 

Ahmed, H., & Ahmed, M. (2023). Influencing factors on 
adoption of modern agricultural technology in devel-
oping economy countries. Developing Country Stud-
ies, 13(2), 1-15. 

Ajzen, I. (1991). The theory of planned behavior. Organi-
zational behavior and human decision processes, 
50(2), 179-211. 

Akter, A., Mwalupaso, G. E., Wang, S., Jahan, M. S., & 
Geng, X . (2023). Towards climate action at farm-
level: Distinguishing complements and substitutes 
among climate-smart agricultural practices (CSAPs) 
in flood prone areas. Climate Risk Management, 40, 
100491. 

Alghatrifi, I., & Khalid, H. (2019). A systematic review 
of UTAUT and UTAUT2 as a baseline framework of 
information system research in adopting new tech-

nology: a case study of IPV6 adoption. 2019 6th 
International Conference on Research and Innova-
tion in Information Systems (ICRIIS), 

Alhajj Ali, S., Tallou, A., Vivaldi, G. A., Camposeo, S., 
Ferrara, G., & Sanesi, G. (2024). Revitalization 
Potential of Marginal Areas for Sustainable Rural 
Development in the Puglia Region, Southern Italy: 
Part I: A Review. Agronomy, 14(3), 431. https://www.
mdpi.com/2073-4395/14/3/431 

An, L., Han, Y., & Tong, L. (2016). Study on the factors 
of online shopping intention for fresh agricultural 
products based on UTAUT2. The 2nd Information 
technology and mechatronics engineering conference 
(ITOEC 2016), 

Anderson, J. C., & Gerbing, D. W. (1988). Structural 
equation modeling in practice: A review and recom-
mended two-step approach. Psychological bulletin, 
103(3), 411. 

Appelbaum, S. H., & Hare, A. (1996). Self‐efficacy as 
a mediator of goal setting and performance: some 
human resource applications. Journal of Managerial 
Psychology, 11(3), 33-47. 

Arain, A. A., Hussain, Z., Rizvi, W. H., & Vighio, M. S. 
(2019). Extending UTAUT2 toward acceptance of 
mobile learning in the context of higher education. 
Universal Access in the Information Society, 18, 659-
673. 

Arata, L., & Menozzi, D. (2023). Farmers’ motivations 
and behaviour regarding the adoption of more sus-
tainable agricultural practices and activities. Bio-
based and Applied Economics, 12(1), 3-4. 

Araújo, S. O., Peres, R. S., Barata, J., Lidon, F., & Ramal-
ho, J. C. (2021). Characterising the agriculture 4.0 
landscape – emerging trends, challenges and oppor-
tunities. Agronomy, 11(4), 667. 

Arenas Gaitán, J., Peral Peral, B., & Ramón Jerónimo, M. 
(2015). Elderly and internet banking: An application 
of UTAUT2. Journal of Internet Banking and Com-
merce, 20 (1), 1-23. 

Balyan, S., Jangir, H., Tripathi, S. N., Tripathi, A., Jhang, 
T., & Pandey, P. (2024). Seeding a Sustainable Future: 
Navigating the Digital Horizon of Smart Agriculture. 
Sustainability, 16(2), 475. 

Bandura, A. (1986). Social foundations of thought and 
action. Englewood Cliffs, NJ, 1986(23-28). 

Benfica, R., Chambers, J., Koo, J., Nin-Pratt, A., Falck-
Zepeda, J., Stads, G.-J., & Arndt, C. (2023). Food sys-
tem innovations and digital technologies to Foster 
productivity growth and rural transformation. Science 
and innovations for food systems transformation, 421. 

Benos, L., Makaritis, N., & Kolorizos, V. (2022). From 
precision agriculture to Agriculture 4.0: integrating 

https://www.agendadigitale.eu/industry-4-0/agricoltura-4-0-in-italia-a-che-punto-siamo/
https://www.agendadigitale.eu/industry-4-0/agricoltura-4-0-in-italia-a-che-punto-siamo/
https://www.agendadigitale.eu/industry-4-0/agricoltura-4-0-in-italia-a-che-punto-siamo/
https://www.mdpi.com/2073-4395/14/3/431
https://www.mdpi.com/2073-4395/14/3/431


61Farmers’ intention to use Agriculture 4.0 in marginal and non-marginal conditions

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

ICT in farming. In Information and Communication 
Technologies for Agriculture – Theme III: Decision 
(pp. 79-93). Springer. 

Bollen, K. A., & Liang, J. (1988). Some properties of Hoe-
lter’s CN. Sociological Methods & Research, 16(4), 
492-503. 

Brick, K., & Visser, M. (2015). Risk preferences, technol-
ogy adoption and insurance uptake: A framed exper-
iment. In Journal of Economic Behavior & Organiza-
tion (Vol. 118, pp. 383-396).

Budhi, G., & Aminah, M. (2010). Swasembada kedelai: 
antara harapan dan kenyataan. Forum Penelitian 
Agro Ekonomi. https://epublikasi.pertanian.go.id/
berkala/fae/article/view/1848 

Budhi, H., Santosa, T., & Setiyawati, S. (2022). Effect 
Of Perceived Risk on The Intention to Use Internet 
Banking by Implementing the Technology Accept-
ance Model. International Journal of Economics and 
Business Issues, 1(1), 61-71. 

Burland, A., & von Cossel, M. (2023). Towards Manag-
ing Biodiversity of European Marginal Agricultural 
Land for Biodiversity-Friendly Biomass Production. 
Agronomy, 13(6), 1651. 

Caffaro, F., & Cavallo, E. (2019). The effects of individual 
variables, farming system characteristics and per-
ceived barriers on actual use of smart farming tech-
nologies: Evidence from the Piedmont region, north-
western Italy. Agriculture, 9(5), 111. 

Caffaro, F., Cremasco, M. M., Roccato, M., & Cavallo, E. 
(2020). Drivers of farmers’ intention to adopt techno-
logical innovations in Italy: The role of information 
sources, perceived usefulness, and perceived ease of 
use. Journal of rural studies, 76, 264-271. 

Caffaro, F., Roccato, M., Micheletti Cremasco, M., & 
Cavallo, E. (2019). An ergonomic approach to sus-
tainable development: The role of information envi-
ronment and social‐psychological variables in the 
adoption of agri‐environmental innovations. Sustain-
able Development, 27(6), 1049-1062. 

Chang, A. (2012). UTAUT and UTAUT 2: A review and 
agenda for future research. The Winners, 13(2), 10-114. 

Cialdini, R. B. (2009). Influence: Science and practice 
(Vol. 4). Pearson education Boston. 

Cogato, A., Meggio, F., De Antoni Migliorati, M., & 
Marinello, F. (2019). Extreme weather events in agri-
culture: A systematic review. Sustainability, 11(9), 
2547. 

Cohen, J. (2013). Statistical power analysis for the behav-
ioral sciences. routledge. 

Confagricoltura. (2024). Agricoltura 4.0: il credito 
d’imposta per investimenti nel 2024. Confagricoltura 
Rovigo. Retrieved 27 March 2024 from https://www.

confagricolturaro.it/confagricoltura-informa/fiscale/
redditi-imposte-e-tasse/agricoltura-40-il-credito-dim-
posta-per-investimenti-nel-2024/

Cook, S., Jackson, E. L., Fisher, M. J., Baker, D., & Die-
peveen, D. (2022). Embedding digital agriculture 
into sustainable Australian food systems: pathways 
and pitfalls to value creation. International Journal of 
Agricultural Sustainability, 20(3), 346-367. 

Coxhead, I., Shively, G., & Shuai, X . (2002). Develop-
ment policies, resource constraints, and agricultural 
expansion on the Philippine land frontier. Environ-
ment and Development Economics, 7(2), 341-363. 

Cramb, R. A. (2000). Processes influencing the successful 
adoption of new technologies by smallholders. 

Csikós, N., & Tóth, G. (2023). Concepts of agricultural 
marginal lands and their utilisation: A review. Agri-
cultural systems, 204, 103560. 

Da Silveira, F., Da Silva, S. L. C., Machado, F. M., Barbe-
do, J. G. A., & Amaral, F. G. (2023). Farmers’ percep-
tion of the barriers that hinder the implementation of 
agriculture 4.0. Agricultural systems, 208, 103656. 

Davis, F. D. (1989). Perceived usefulness, perceived ease 
of use, and user acceptance of information technol-
ogy. MIS quarterly, 319-340. 

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). 
Extrinsic and intrinsic motivation to use computers 
in the workplace 1. In Journal of applied social psy-
chology (Vol. 22, pp. 1111-1132).

De Rosa, M., & Chiappini, S. (2012). The adoption of 
agricultural extension policies in the Italian farms. 

Deißler, L., Mausch, K., Karanja, A., McMullin, S., & 
Grote, U. (2022). A complex web of interactions: Per-
sonality traits and aspirations in the context of small-
holder agriculture. Bio-based and Applied Economics 
Journal, 12(1), 53-67. 

Deng, Z., Hong, Z., Ren, C., Zhang, W., & Xiang, F. 
(2018). What predicts patients’ adoption intention 
toward mHealth services in China: empirical study. 
JMIR mHealth and uHealth, 6(8), e9316. 

Dibbern, T., Romani, L. A. S., & Massruhá, S. M. F. S. 
(2024). Main drivers and barriers to the adoption of 
Digital Agriculture technologies. Smart Agricultural 
Technology, 8, 100459. 

Diekmann, M., & Theuvsen, L. (2019). Non-participants 
interest in CSA–Insights from Germany. Journal of 
rural studies, 69, 1-10. 

Douthwaite, B., Keatinge, J., & Park, J. (2001). Why 
promising technologies fail: the neglected role of 
user innovation during adoption. Research policy, 
30(5), 819-836. 

Duong, T. T., Brewer, T., Luck, J., & Zander, K. (2019). A 
global review of farmers’ perceptions of agricultural 

https://epublikasi.pertanian.go.id/berkala/fae/article/view/1848
https://epublikasi.pertanian.go.id/berkala/fae/article/view/1848
https://www.confagricolturaro.it/confagricoltura-informa/fiscale/redditi-imposte-e-tasse/agricoltura-40-il-credito-dimposta-per-investimenti-nel-2024/
https://www.confagricolturaro.it/confagricoltura-informa/fiscale/redditi-imposte-e-tasse/agricoltura-40-il-credito-dimposta-per-investimenti-nel-2024/
https://www.confagricolturaro.it/confagricoltura-informa/fiscale/redditi-imposte-e-tasse/agricoltura-40-il-credito-dimposta-per-investimenti-nel-2024/
https://www.confagricolturaro.it/confagricoltura-informa/fiscale/redditi-imposte-e-tasse/agricoltura-40-il-credito-dimposta-per-investimenti-nel-2024/


62

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

Maria Sabbagh, Luciano Gutierrez

risks and risk management strategies. Agriculture, 
9(1), 10. 

Elsawah, S., Filatova, T., Jakeman, A. J., Kettner, A. J., 
Zellner, M. L., Athanasiadis, I. N., Hamilton, S. H., 
Axtell, R. L., Brown, D. G., & Gilligan, J. M. (2020). 
Eight grand challenges in socio-environmental sys-
tems modeling. Socio-Environmental Systems Model-
ling, 2, 16226. 

Ena, G. W. W., & Siewa, A. L. S. (2022). Factors Influ-
encing the Behavioural Intention for Smart Farming 
in Sarawak, Malaysia. Journal of Agribusiness, 9(1), 
37-56. 

ESG360. (2023). Agricoltura 4.0: cos’è, incentivi e tecnolo-
gie abilitanti. Retrieved 30 March 2024 from https://
www.esg360.it/agrifood/agricoltura-4-0-cose-incenti-
vi-e-tecnologie-abilitanti/

Featherman, M. S., & Pavlou, P. A. (2003). Predicting 
e-services adoption: a perceived risk facets perspec-
tive. In International journal of human-computer 
studies (Vol. 59, pp. 451-474).

Fischer, E. M., Sedláček, J., Hawkins, E., & Knutti, R. 
(2014). Models agree on forced response pattern of 
precipitation and temperature extremes. Geophysical 
Research Letters, 41(23), 8554-8562. 

Food, & Nations, A. O. o. t. U. (2017). The future of food 
and agriculture: Trends and challenges. Fao. 

Fornell, C., & Larcker, D. F. (1981). Evaluating structural 
equation models with unobservable variables and 
measurement error. In Journal of marketing research 
(Vol. 18, pp. 39-50).

Fragomeli, R., Annunziata, A., & Punzo, G. (2024). Pro-
moting the Transition towards Agriculture 4.0: A Sys-
tematic Literature Review on Drivers and Barriers. 
Sustainability, 16(6), 2425. 

Fraser-Baxter, S. (2024). Climate change key driver of 
extreme drought in water scarce Sicily and Sardinia. 
https://coilink.org/20.500.12592/1yrjrxf

Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. 
(2024). Transformative technologies in digital agri-
culture: Leveraging Internet of Things, remote sens-
ing, and artificial intelligence for smart crop man-
agement. Journal of Sensor and Actuator Networks, 
13(4), 39. 

Gardezi, M., & Bronson, K. (2020). Examining the social 
and biophysical determinants of US Midwestern corn 
farmers’ adoption of precision agriculture. Precision 
Agriculture, 21(3), 549-568. 

Garson, G. (2015). Structural Equation Modeling (blue 
book series). In: Asheboro: Statistical Associates Pub-
lishing.

Gefen, D., Straub, D., & Boudreau, M.-C. (2000). Struc-
tural equation modeling and regression: Guidelines 

for research practice. Communications of the associa-
tion for information systems, 4(1), 7. 

Girma, Y., Kuma, B., & Bedemo, A. (2023). Risk aversion 
and perception of farmers about endogenous risks: 
An empirical study for maize producers in Awi Zone, 
Amhara Region of Ethiopia. Journal of risk and 
financial management, 16(2), 87. 

Giua, C., Materia, V. C., & Camanzi, L. (2022). Smart 
farming technologies adoption: Which factors play a 
role in the digital transition? Technology in Society, 
68, 101869. 

Güven, B., Baz, İ., Kocaoğlu, B., Toprak, E., Erol Barka-
na, D., & Soğutmaz Özdemir, B. (2023). Smart farm-
ing technologies for sustainable agriculture: From 
food to energy. In A sustainable green future: Perspec-
tives on energy, economy, industry, cities and environ-
ment (pp. 481-506). Springer. 

Multivariate data analysis 6th Edition, New Jersey: Pren-
tice Hall (2006). 

Harisudin, M., Riptanti, E. W., Setyowati, N., & Khomah, 
I. (2023). Determinants of the Internet of Things 
adoption by millennial farmers. AIMS Agriculture & 
Food, 8(2). 

Hasselwander, M., & Weiss, D. (2024). Super App Adop-
tion Intention Based on Utaut2 with Perceived Risk. 
Available at SSRN 4784554. 

Heinzl, A., Buxmann, P., Wendt, O., & Weitzel, T. (2011). 
Theory-guided modeling and empiricism in information 
systems research. Springer Science & Business Media. 

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new 
criterion for assessing discriminant validity in vari-
ance-based structural equation modeling. Journal of 
the academy of marketing science, 43, 115-135.

Hidayat, B. A., Supartoyo, Y. H., Setiawan, S., Ragimun, 
R., & Salim, Z. (2024). Government infrastructure 
investment stimulation through booming natural 
resources: Evidence from a lower-middle-income 
country. PloS one, 19(5), e0301710. 

Hines, J. M., Hungerford, H. R., & Tomera, A. N. (1987). 
Analysis and synthesis of research on responsible 
environmental behavior: A meta-analysis. The Jour-
nal of environmental education, 18(2), 1-8. 

Hoelter, J. W. (1983). The analysis of covariance struc-
tures: Goodness-of-fit indices. Sociological Methods 
& Research, 11(3), 325-344. 

Hurlbert, M., Krishnaswamy, J., Johnson, F. X ., Rod-
ríguez-Morales, J. E., & Zommers, Z. (2019). Risk 
management and decision making in relation to sus-
tainable development. 

Iacobucci, D. (2010). Structural equations modeling: Fit 
indices, sample size, and advanced topics. In Journal 
of consumer psychology (Vol. 20, pp. 90-98).

https://www.esg360.it/agrifood/agricoltura-4-0-cose-incentivi-e-tecnologie-abilitanti/
https://www.esg360.it/agrifood/agricoltura-4-0-cose-incentivi-e-tecnologie-abilitanti/
https://www.esg360.it/agrifood/agricoltura-4-0-cose-incentivi-e-tecnologie-abilitanti/
https://coilink.org/20.500.12592/1yrjrxf


63Farmers’ intention to use Agriculture 4.0 in marginal and non-marginal conditions

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

Im, I., Kim, Y., & Han, H.-J. (2008). The effects of per-
ceived risk and technology type on users’ acceptance 
of technologies. Information & management, 45, 1-9.

Jacobs, C., Van Minnen, J., Junttila, V., Pirttioja, N., 
Smets, B., & Bonte, K. (2022). Climate Change 
Impacts on Biomass Production:(national Case Stud-
ies). European Topic Centre on Climate change 
adaptation and LULUCF (ETC-CA). 

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). 
Enhancing smart farming through the applications of 
Agriculture 4.0 technologies. International Journal of 
Intelligent Networks, 3, 150-164. 

Jouanjean, M.-A. (2013). Targeting infrastructure devel-
opment to foster agricultural trade and market inte-
gration in developing countries: an analytical review. 
London: Overseas Development Institute, 1-26. 

Jussila, H., Leimgruber, W., & Majoral, R. (2019). Percep-
tions of marginality: Theoretical issues and regional 
perceptions of marginality in geographical space. 
Routledge. 

Kapoor, M., & Singh, H. (2023). Information Needs and 
Dissemination Among Farmers: A Step Towards Sus-
tainability. International Management Review, 19, 
71-199. 

Kendall, H., Clark, B., Li, W., Jin, S., Jones, G. D., Chen, 
J., Taylor, J., Li, Z., & Frewer, L. J. (2022). Precision 
agriculture technology adoption: a qualitative study 
of small-scale commercial “family farms” located in 
the North China Plain. Precision Agriculture, 1-33. 

Khan, F. U., Nouman, M., Negrut, L., Abban, J., Cismas, 
L. M., & Siddiqi, M. F. (2024). Constraints to agri-
cultural finance in underdeveloped and developing 
countries: a systematic literature review. International 
Journal of Agricultural Sustainability, 22(1), 2329388. 

Kimhi, A., & Nachlieli, N. (2001). Intergenerational suc-
cession on Israeli family farms. Journal of Agricultur-
al Economics, 52(2), 42-58. 

Kirk, N. A., & Cradock-Henry, N. A. (2022). Land Man-
agement Change as Adaptation to Climate and Other 
Stressors: A Systematic Review of Decision Contexts 
Using Values-Rules-Knowledge. Land, 11(6), 791. htt-
ps://www.mdpi.com/2073-445X/11/6/791 

Klerkx, L., Jakku, E., & Labarthe, P. (2019). A review of 
social science on digital agriculture, smart farming 
and agriculture 4.0: New contributions and a future 
research agenda. NJAS-Wageningen journal of life sci-
ences, 90, 100315. 

Kolady, D. E., Van der Sluis, E., Uddin, M. M., & Deutz, 
A. P. (2021). Determinants of adoption and adoption 
intensity of precision agriculture technologies: evi-
dence from South Dakota. Precision Agriculture, 22, 
689-710. 

Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). 
The role of communication and co-operation in the 
adoption of precision farming. Precision Agriculture, 
12, 2-17. 

Lal, R. (2004). Soil carbon sequestration impacts on 
global climate change and food security. Science, 
304(5677), 1623-1627. 

LEAP. (2023). Educational poverty in Italy - Our First 
LEAP Policy Brief. Laboratory for Effective Anti-pov-
erty Policies (LEAP), Bocconi University. Retrieved 4 
April 2024 from https://leap.unibocconi.eu/newsev-
ents/educational-poverty-italy-our-first-leap-policy-
brief

Li, L., Min, X., Guo, J., & Wu, F. (2024). The influence 
mechanism analysis on the farmers’ intention to 
adopt Internet of Things based on UTAUT-TOE 
model. Scientific reports, 14(1), 15016. 

Lobley, M., Baker, J. R., & Whitehead, I. (2010). Farm 
succession and retirement: some international com-
parisons. Journal of Agriculture, Food Systems, and 
Community Development, 1(1), 49-64. 

Long, T. B., Blok, V., & Coninx, I. (2016). Barriers to the 
adoption and diffusion of technological innovations 
for climate-smart agriculture in Europe: evidence 
from the Netherlands, France, Switzerland and Italy. 
Journal of Cleaner Production, 112, 9-21. 

Loo, M. K., Ramachandran, S., & Raja Yusof, R. N. 
(2023). Unleashing the potential: Enhancing technol-
ogy adoption and innovation for micro, small and 
medium-sized enterprises (MSMEs). Cogent Eco-
nomics & Finance, 11(2), 2267748. 

Macedo, I. M. (2017). Predicting the acceptance and use 
of information and communication technology by 
older adults: An empirical examination of the revised 
UTAUT2. Computers in Human Behavior, 75, 935-
948. 

Maffezzoli, F., Ardolino, M., Bacchetti, A., Perona, M., & 
Renga, F. (2022). Agriculture 4.0: A systematic litera-
ture review on the paradigm, technologies and ben-
efits. Futures, 142, 102998. 

Mana, A., Allouhi, A., Hamrani, A., Rahman, S., el 
Jamaoui, I., & Jayachandran, K. (2024). Sustain-
able AI-Based Production Agriculture: Exploring AI 
Applications and Implications in Agricultural Prac-
tices. Smart Agricultural Technology, 100416. 

Marra, M., Pannell, D. J., & Ghadim, A. A. (2003). The 
economics of risk, uncertainty and learning in the 
adoption of new agricultural technologies: where are 
we on the learning curve? In Agricultural Systems 
(Vol. 75, pp. 215-234).

Masi, M., Di Pasquale, J., Vecchio, Y., & Capitanio, F. 
(2023). Precision farming: Barriers of variable rate 

https://www.mdpi.com/2073-445X/11/6/791
https://www.mdpi.com/2073-445X/11/6/791
https://leap.unibocconi.eu/newsevents/educational-poverty-italy-our-first-leap-policy-brief
https://leap.unibocconi.eu/newsevents/educational-poverty-italy-our-first-leap-policy-brief
https://leap.unibocconi.eu/newsevents/educational-poverty-italy-our-first-leap-policy-brief


64

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

Maria Sabbagh, Luciano Gutierrez

technology adoption in Italy. Land, 12(5), 1084. 
Mazzucato, M., & Willetts, D. (2019). A mission-oriented 

UK industrial strategy. 
McCormick. (2023). Agricoltura 4.0: quali sono strumen-

ti e vantaggi. McCormick Trattori (Argo Tractors 
S.p.A.). Retrieved 22 March 2024 from https://www.
mccormick.it/agricoltura-4-0-quali-sono-strumenti-e-
vantaggi/

Medeiros, M., Ozturk, A., Hancer, M., Weinland, J., & 
Okumus, B. (2022). Understanding travel track-
ing mobile application usage: An integration of self 
determination theory and UTAUT2. Tourism Man-
agement Perspectives, 42, 100949. 

Mefleh, M., Conte, P., Fadda, C., Giunta, F., Piga, A., 
Hassoun, G., & Motzo, R. (2019). From ancient to 
old and modern durum wheat varieties: Interaction 
among cultivar traits, management, and technologi-
cal quality. Journal of the Science of Food and Agri-
culture, 99(5), 2059-2067. 

Menozzi, D., Fioravanzi, M., & Donati, M. (2015). Farm-
er’s motivation to adopt sustainable agricultural prac-
tices. Bio-based and Applied Economics, 4(2), 125-
147. 

Mercure, J.-F., Sharpe, S., Vinuales, J. E., Ives, M., Grubb, 
M., Lam, A., Drummond, P., Pollitt, H., Knobloch, F., 
& Nijsse, F. J. (2021). Risk-opportunity analysis for 
transformative policy design and appraisal. Global 
Environmental Change, 70, 102359. 

Mereu, V. (2010). Climate change impact on durum 
wheat in Sardinia. 

Mills, E. (2007). Synergisms between climate change 
mitigation and adaptation: an insurance perspec-
tive. Mitigation and Adaptation Strategies for Global 
Change, 12, 809-842. 

Moorthy, K., Chun T’ing, L., Ming, K. S., Ping, C. C., 
Ping, L. Y., Joe, L. Q., & Jie, W. Y. (2019). Behavioral 
intention to adopt digital library by the undergradu-
ates. International Information & Library Review, 
51(2), 128-144. 

Moriuchi, E. (2021). An empirical study on anthropo-
morphism and engagement with disembodied AIs 
and consumers’ re‐use behavior. Psychology & Mar-
keting, 38(1), 21-42. 

Nhuong, B. H., & Truong, D. D. (2024). Factors affecting 
the adoption of high technology in vegetable produc-
tion in Hanoi, Vietnam. Frontiers in Sustainable Food 
Systems, 8, 1345598. 

Osorio, C. P., Leucci, F., & Porrini, D. (2024). Analyzing 
the relationship between agricultural AI adoption 
and government-subsidized insurance. Agriculture, 
14(10), 1804. 

Osservatori.net, O. D. I. (2023). Agricoltura 4.0: cos’è, 

vantaggi, tecnologie. Osservatori.net. Retrieved 24 
March 2024 from https://blog.osservatori.net/agri-
coltura-4-0-cose-vantaggi-tecnologie

Palau-Saumell, R., Forgas-Coll, S., Sánchez-García, J., 
& Robres, E. (2019). User acceptance of mobile 
apps for restaurants: An expanded and extended 
UTAUT-2. Sustainability, 11(4), 1210. 

Pannell, D. J., Marshall, G. R., Barr, N., Curtis, A., Van-
clay, F., & Wilkinson, R. (2006). Understanding and 
promoting adoption of conservation practices by 
rural landholders. Australian journal of experimental 
agriculture, 46(11), 1407-1424. 

Paustian, M., & Theuvsen, L. (2017). Adoption of preci-
sion agriculture technologies by German crop farm-
ers. Precision Agriculture, 18, 701-716. 

Pechlivani, E. M., Gkogkos, G., Giakoumoglou, N., Had-
jigeorgiou, I., & Tzovaras, D. (2023). Towards Sus-
tainable Farming: A Robust Decision Support Sys-
tem’s Architecture for Agriculture 4.0. 2023 24th 
International Conference on Digital Signal Process-
ing (DSP), 

Peter, B. G., Messina, J. P., & Snapp, S. S. (2018). A mul-
tiscalar approach to mapping marginal agricultural 
land: smallholder agriculture in Malawi. Annals of 
the American Association of Geographers, 108(4), 
989-1005. 

Raj, M., Gupta, S., Chamola, V., Elhence, A., Garg, T., 
Atiquzzaman, M., & Niyato, D. (2021). A survey on 
the role of Internet of Things for adopting and pro-
moting Agriculture 4.0. Journal of Network and Com-
puter Applications, 187, 103107. 

Raji, E., Ijomah, T. I., & Eyieyien, O. G. (2024). Improv-
ing agricultural practices and productivity through 
extension services and innovative training programs. 
International Journal of Applied Research in Social 
Sciences, 6(7), 1297-1309. 

Rizzo, G., Migliore, G., Schifani, G., & Vecchio, R. 
(2024). Key factors influencing farmers’ adoption 
of sustainable innovations: a systematic literature 
review and research agenda. Organic Agriculture, 
14(1), 57-84. 

Rogers, E. (2003). Diffusion of Innovations fifth Ed Free 
Press. New York. Rezvani, Z., Jansson. J. & Bodin. 

Rogers, E. M. (1962). Diffusion of innovations. In (Third 
Edit ed.): New York, Free Press of Glencoe [1962].

Rondinelli, D. A. (1992). Location analysis and regional 
development: summing up and moving on. Interna-
tional Regional Science Review, 15(3), 325-340. 

Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broad-
ening responsible innovation in an era of smart 
farming. Frontiers in Sustainable Food Systems, 2, 87. 

Ruddle, K. (1991). Integrated farming systems and future 

https://www.mccormick.it/agricoltura-4-0-quali-sono-strumenti-e-vantaggi/
https://www.mccormick.it/agricoltura-4-0-quali-sono-strumenti-e-vantaggi/
https://www.mccormick.it/agricoltura-4-0-quali-sono-strumenti-e-vantaggi/
http://Osservatori.net
https://blog.osservatori.net/agricoltura-4-0-cose-vantaggi-tecnologie
https://blog.osservatori.net/agricoltura-4-0-cose-vantaggi-tecnologie


65Farmers’ intention to use Agriculture 4.0 in marginal and non-marginal conditions

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

directions for Asian farming systems research and 
extension. Journal of the Asian Farming Systems Asso-
ciation, 1(1), 91-99. 

Ruzzante, S., Labarta, R., & Bilton, A. (2021). Adoption 
of agricultural technology in the developing world: A 
meta-analysis of the empirical literature. World devel-
opment, 146, 105599. 

Sabbagh, M., & Gutierrez, L. (2022). Micro-irrigation 
technology adoption in the Bekaa Valley of Lebanon: 
A behavioural model. Sustainability, 14(13), 7685. 

Sabbagh, M., & Gutierrez, L. (2023). Farmers’ acceptance 
of a micro-irrigation system: A focus group study. 
Bio-based and Applied Economics. 

Saidakhmedovich, G. S., Uralovich, M. D., Saidakhme-
dovich, G. S., & Tishabayevna, R. M. (2024). Appli-
cation of Digital Technologies for Ensuring Agricul-
tural Productivity. British Journal of Global Ecology 
and Sustainable Development, 25, 6-20. 

Sallustio, L., Pettenella, D., Merlini, P., Romano, R., Sal-
vati, L., Marchetti, M., & Corona, P. (2018). Assess-
ing the economic marginality of agricultural lands in 
Italy to support land use planning. Land Use Policy, 
76, 526-534. 

Schukat, S., & Heise, H. (2021). Towards an understand-
ing of the behavioral intentions and actual use of 
smart products among German farmers. Sustainabil-
ity, 13(12), 6666. 

Schultz, P. W., Nolan, J. M., Cialdini, R. B., Goldstein, 
N. J., & Griskevicius, V. (2007). The construc-
tive, destructive, and reconstructive power of social 
norms. Psychological science, 18(5), 429-434. 

Scoones, I., Thompson, J., & Cambers, J. (2009). Farmer 
first revisited: Innovation for agricultural research and 
development. Practical Action Pub. 

Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zai-
di, S. A. R., & Iqbal, N. (2019). Precision agriculture 
techniques and practices: From considerations to 
applications. Sensors, 19(17), 3796. 

Soddu, A., Deidda, R., Marrocu, M., Meloni, R., Pani-
coni, C., Ludwig, R., Sodde, M., Mascaro, G., & 
Perra, E. (2013). Climate variability and durum 
wheat adaptation using the AquaCrop model in 
southern Sardinia. Procedia Environmental Sciences, 
19, 830-835. 

Sohn, S. (2024). Consumer perceived risk of using 
autonomous retail technology. Journal of Business 
Research, 171, 114389. 

Solaw, F. (2011). The state of the world’s land and water 
resources for food and agriculture. Rome, Italy. 

Stern, P. C., & Dietz, T. (2002). New tools for environmen-
tal protection: Education, information, and voluntary 
measures. National Academies Press. 

Straub, D., Boudreau, M.-C., & Gefen, D. (2004). Valida-
tion guidelines for IS positivist research. Communica-
tions of the association for information systems, 13, 24.

Stupina, A., Rozhkova, A., Olentsova, J., & Rozhkov, S. 
(2021). Digital technologies as a tool for improving 
the efficiency of the agricultural sector. IOP Confer-
ence Series: Earth and Environmental Science, 

Šumak, B., & Šorgo, A. (2016). The acceptance and use 
of interactive whiteboards among teachers: Differ-
ences in UTAUT determinants between pre-and 
post-adopters. Computers in Human Behavior, 64, 
602-620. 

Sureth, M., Kalkuhl, M., Edenhofer, O., & Rockström, J. 
(2023). A welfare economic approach to planetary 
boundaries. Jahrbücher für Nationalökonomie und 
Statistik, 243(5), 477-542. 

Tamilmani, K., Rana, N. P., Wamba, S. F., & Dwivedi, R. 
(2021). The extended Unified Theory of Acceptance 
and Use of Technology (UTAUT2): A systematic lit-
erature review and theory evaluation. International 
journal of information management, 57, 102269. 

Taylor, S., & Todd, P. (1995). Assessing IT usage: The role 
of prior experience. In MIS quarterly (pp. 561-570).

Tey, Y. S., & Brindal, M. (2012). Factors influencing the 
adoption of precision agricultural technologies: a 
review for policy implications. Precision Agriculture, 
13, 713-730. 

Thaler, R ., & Sunstein, C. (2008). Nudge: Improv-
ing decisions about health, wealth and happiness. 
Amsterdam Law Forum; HeinOnline: Online, 

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). 
Personal computing: Toward a conceptual model of 
utilization. MIS quarterly, 125-143. 

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). 
Global food demand and the sustainable intensifica-
tion of agriculture. Proceedings of the National Acad-
emy of Sciences, 108(50), 20260-20264. 

Toral, S., Martínez-Torres, M., & Gonzalez-Rodriguez, 
M. (2018). Identification of the unique attributes of 
tourist destinations from online reviews. Journal of 
Travel Research, 57(7), 908-919. 

Trivelli, L., Apicella, A., Chiarello, F., Rana, R., Fantoni, 
G., & Tarabella, A. (2019). From precision agricul-
ture to Industry 4.0: Unveiling technological con-
nections in the agrifood sector. British food journal, 
121(8), 1730-1743. 

Van Klompenburg, T., Kassahun, A., & Catal, C. (2020). 
Crop yield prediction using machine learning: A sys-
tematic literature review. Computers and electronics 
in agriculture, 177, 105709. 

van Valkengoed, A. M., Abrahamse, W., & Steg, L. (2022). 
To select effective interventions for pro-environmen-



66

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229 

Maria Sabbagh, Luciano Gutierrez

tal behaviour change, we need to consider determi-
nants of behaviour. Nature human behaviour, 6(11), 
1482-1492. 

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. 
(2003). User acceptance of information technology: 
Toward a unified view. In MIS quarterly (pp. 425-
478).

Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consum-
er acceptance and use of information technology: 
extending the unified theory of acceptance and use 
of technology. MIS quarterly, 157-178. 

Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified the-
ory of acceptance and use of technology: A synthe-
sis and the road ahead. Journal of the association for 
Information Systems, 17(5), 328-376. 

Wheaton, E., & Kulshreshtha, S. (2017). Environmen-
tal sustainability of agriculture stressed by changing 
extremes of drought and excess moisture: A concep-
tual review. Sustainability, 9(6), 970. 

Widodo, M., Irawan, M. I., & Sukmono, R. A. (2019). 
Extending UTAUT2 to explore digital wallet adop-
tion in Indonesia. 2019 International Conference 
on Information and Communications Technology 
(ICOIACT), 

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). 
Big data in smart farming–a review. Agricultural Sys-
tems, 153, 69-80. 

Wreford, A., Ignaciuk, A., & Gruère, G. (2017). Over-
coming barriers to the adoption of climate-friendly 
practices in agriculture. 

Wu, H.-X., Yan, S., Yu, L.-S., & Yan, G. (2023). Uncertain-
ty aversion and farmers’ innovative seed adoption: 
Evidence from a field experiment in rural China. 
Journal of Integrative Agriculture, 22(6), 1928-1944. 

Yap, C. K., & Al-Mutairi, K. A. (2024). A Conceptual 
Model Relationship between Industry 4.0 – Food-
Agriculture Nexus and Agroecosystem: A Literature 
Review and Knowledge Gaps. Foods, 13(1), 150. 

Yigezu, Y. A., Mugera, A., El-Shater, T., Aw-Hassan, A., 
Piggin, C., Haddad, A., Khalil, Y., & Loss, S. (2018). 
Enhancing adoption of agricultural technologies 
requiring high initial investment among smallhold-
ers. Technological Forecasting and Social Change, 134, 
199-206. 

Yu, C.-S. (2012). Factors affecting individuals to adopt 
mobile banking: Empirical evidence from the 
UTAUT model. Journal of electronic commerce 
research, 13(2), 104. 

Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. 
(2020). Decision support systems for agriculture 4.0: 
Survey and challenges. Computers and electronics in 
agriculture, 170, 105256. 



© 2025 Author(s). Open access article published, except where otherwise noted, by Firenze University Press under CC-BY-4.0 License 
for content and CC0 1.0 Universal for metadata.
Firenze University Press | www.fupress.com/bae

Bio-based and Applied Economics
BAE

Bio-based and Applied Economics 14(4): 67-84, 2025 | ISSN: 2280-6180 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17357 

Citation: Timpanaro, G., Cascone, G., 
& Foti, V. T. (2025). Enabling technologies 
in citrus farming: A living lab approach 
to agroecology and sustainable water 
resource management. Bio-based and 
Applied Economics 14(4): 67-84. doi: 
10.36253/bae-17357 

Received: February 25, 2025
Accepted: July 9, 2025
Published: 2025-12-30

Data Availability Statement: All rel-
evant data are within the paper and its 
Supporting Information files.

Competing Interests: The Author(s) 
declare(s) no conflict of interest.

Guest editors: Giulia Maesano, 
Davide Menozzi, Davide Viaggi

ORCID
GT: 0000-0002-0119-2644 
GC: 0009-0007-4681-9432 
VTF: 0000-0002-6659-752X

Enabling technologies in citrus farming: 
A living lab approach to agroecology and 
sustainable water resource management

Giuseppe Timpanaro, Giulio Cascone*, Vera Teresa Foti

Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
*Corresponding author. E-mail: giulio.cascone@phd.unict.it

Abstract. This study examines the role of enabling technologies in the agroecologi-
cal transition, focusing on sustainable water management in citrus farming through 
the participatory approach of a Living Lab in the Inner Area of Calatino in Sicily. The 
analysis is based on a comparison of two citrus farms: one equipped with advanced 
digital tools (sensors, decision support systems, and real-time monitoring), and one 
with a traditional management approach. Through the joint application of economic 
analysis, Monte Carlo simulation and sensitivity analysis, it was possible to estimate 
the effects of technology adoption. Findings reveal that enabling technologies reduce 
water consumption by 33%, increase yield per hectare by 16%, and boost net profit by 
25% (+€2,780/ha), enhancing resource efficiency and lowering operational costs. Addi-
tionally, the Living Lab facilitated knowledge transfer, fostered collaboration, and miti-
gated resistance to innovation, highlighting the need for targeted training and institu-
tional support to promote broader adoption. These results provide valuable insights for 
policymakers and stakeholders, demonstrating how digital solutions can drive sustain-
ability, economic viability, and resilience in agriculture, but also for farmers, providing 
operational tools to improve farm efficiency and profitability.

Keywords: agroecology, enabling technologies, living lab, water management, citrus 
farming.

1. INTRODUCTION

In recent decades, agroecology has become a key strategy to tackle sus-
tainability challenges in agriculture. It combines ecological, economic, and 
social principles to address problems like soil degradation, biodiversity loss, 
climate change, and economic inequality This paradigm not only protects 
the environment but also offers economic advantages by fostering local mar-
kets, short supply chains, and more equitable and resilient food systems (Van 
der Ploeg et al., 2019; D’Annolfo et al., 2017; Poux and Aubert, 2018).

Agroecology successfully integrates environmental sustainability with 
agricultural productivity through practices that enhance soil fertility, pro-
mote crop diversification, and reduce reliance on chemical inputs. Studies 
have demonstrated that agroecological systems can achieve yields comparable 
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to those of conventional agriculture while delivering sig-
nificant benefits in terms of lower environmental impact 
and increased resilience to climate change (D’Annolfo 
et al., 2017; Poux and Aubert, 2018). Moreover, adopt-
ing agroecological practices improves the quality of food 
produced, contributing to human health and the well-
being of farming communities (Belliggiano and Conti, 
2019).

Other studies have highlighted how agroecological 
systems can generate economic benefits for farmers by 
reducing dependence on external inputs and increas-
ing long-term profitability (Van der Ploeg et al., 2019; 
D’Annolfo et al., 2017). However, the agroecological 
transition requires adequate support from public poli-
cies, including instruments that promote the adoption 
of agroecological practices and facilitate market access 
for small-scale producers (Gava et al., 2022; Schiller et 
al., 2020). Agroecology not only promotes more sustain-
able and resilient farming practices but also represents a 
comprehensive approach to agri-food governance, foster-
ing farmers’ autonomy, food sovereignty, and social jus-
tice (Van der Ploeg et al., 2019).

A key factor in accelerating the agroecological tran-
sition is the integration of Key Enabling Technologies 
(KETs), such as digital tools, Internet of Things (IoT) sen-
sors, artificial intelligence, and precision agriculture sys-
tems, which optimize resource management and reduce 
waste (Chollet et al., 2023; Bellon-Maurel et al., 2022). 
These technologies provide real-time data on soil and crop 
status, boosting efficiency and reducing environmental 
impact (Fischetti et al., 2025; Ewert et al., 2023). By adapt-
ing practices to local conditions, KETs offer agroecology a 
practical path to greater sustainability (Ewert et al., 2023).

However, the integration of KETs into agroecology 
has sparked debate within the agroecological commu-
nity, dividing the sector into two opposing perspectives. 
Traditionalists argue that agroecology should preserve 
traditional practices and local knowledge, avoiding reli-
ance on technological tools that could disrupt the eco-
logical and social balance of agricultural systems. Mod-
ernizers see innovation as an opportunity to improve 
sustainability and efficiency. They support the respon-
sible integration of new technologies to make farming 
models more resilient (Bertoglio et al., 2021; Menozzi et 
al., 2015; Arata and Menozzi, 2023).

Despite these concerns, the synergy between agro-
ecology and enabling technologies offers significant 
potential for sustainable development, particularly in 
inner areas. These territories can benefit from agro-
ecological innovation to revitalize agricultural activ-
ity and enhance local natural resources (Gava et al., 
2025; Verharen et al., 2021). Moreover, inner areas offer 

unique opportunities for agroecological innovation 
due to the presence of traditional farming systems and 
the availability of high-quality natural resources (Ver-
haren et al., 2021). The integration of modern technolo-
gies into agroecological production systems – through 
decision-support tools, knowledge-sharing platforms, 
and mobile applications for farm management (Espelt 
et al., 2019; Emeana, 2021) –  represents a concrete 
opportunity to facilitate the transition to more sustain-
able models. These tools can help reduce barriers to the 
adoption of agroecological practices and strengthen 
producers’ competitiveness in the market (Maurel and 
Huyghe, 2017).

In this context, Living Labs emerge as essential tools 
for promoting an integrated system that combines tech-
nology and agroecology. These participatory innova-
tion spaces engage farmers, researchers, policymakers, 
and other agri-food system stakeholders, fostering the 
experimentation of innovative solutions and facilitat-
ing knowledge transfer at the local level (Larbaigt et al., 
2024; Berghez et al., 2019; Giampietri et al., 2020; Ouat-
tara et al., 2024). Living Labs serve as a bridge between 
scientific research and agricultural practice, allowing 
technologies to be tailored to specific territorial needs, 
thereby improving farmers’ acceptance of new practices 
and enhancing the effectiveness of transition strategies 
(Giagnocavo et al., 2022; Belliggiano and Conti, 2019).

A concrete example of such integration is the experi-
mental initiative focused on citrus farming in the inner 
area known as the “Calatino,” aimed at demonstrating 
its economic feasibility. This territory encompasses nine 
municipalities in central-eastern Sicily (Caltagirone, 
Grammichele, Licodia Eubea, Mazzarrone, Mineo, Mira-
bella Imbaccari, San Cono, San Michele di Ganzaria, 
and Vizzini) all within the Metropolitan City of Catania. 
The area represents 1.6% of the regional population and 
spans approximately one thousand square kilometres.

In this Living Lab a range of integrated systems have 
been installed, incorporating weather stations, sensors, 
and decision-support systems, with the aim of optimis-
ing water usage. This initiative is expected to enhance 
resource use efficiency, while concurrently improving the 
resilience and economic viability of the production sys-
tem (Fischetti et al., 2025; Ewert et al., 2023; Rocchi et 
al., 2024). 

Citrus farming was selected for this study because it 
represents one of the most relevant agricultural sectors 
in Sicily, with more than 30% of national citrus produc-
tion, and oranges covering more than 60% of the total 
supply (Scuderi et al., 2022). While remaining a leading 
global player, Italy has lost leadership in the last decade 
due to structural criticalities in strategic areas such as 
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Sicily (Rapisarda et al., 2015), which nevertheless main-
tains 55 % of the national area dedicated to citrus (about 
61 000 ha) (Istat, 2022). 

The research was based on the hypothesis that 
adopting an integrated system (weather station, sensors, 
and decision-support system) enables a more sustainable 
management of water resources, reducing waste (water 
consumption) and environmental costs while positively 
impacting operational costs, revenues, and farm eco-
nomic efficiency.

Therefore, the following research questions were for-
mulated:

Q1. How can the integration of enabling technologies 
accelerate the agroecological transition in inner areas?
Q2. What are farmers’ perceptions and resistances regard-
ing the adoption of digital tools and precision agriculture 
systems in the agroecological context?
Q3. What economic and environmental impacts result 
from combining agroecological practices with innovative 
technologies, particularly in the citrus sector?
Q4. To what extent do Living Labs facilitate the creation 
of an integrated system that merges technology and agro-
ecology, fostering sustainability in inner areas?

2. MATERIALS AND METHODS

2.1. Study Area

The Inner Area of Calatino covers approximately 
982 km² and includes nine municipalities in the prov-
ince of Catania: Caltagirone, Grammichele, Licodia 
Eubea, Mazzarrone, Mineo, Mirabella Imbaccari, San 
Cono, San Michele di Ganzaria, and Vizzini. The area 
has a population of approximately 70,606 inhabitants. It 

is characterized by an economy strongly linked to agri-
culture, with a significant presence of farms and special-
ized crops, as well as artisanal activities primarily relat-
ed to ceramics and small-scale industry.

The utilized agricultural area (UAA) of the Inner 
Area of Calatino amounts to 56,330 hectares, of which 
approximately 4% is allocated to organic farming. 
Organic production is particularly concentrated in the 
municipalities of San Cono (11%) and Vizzini (9.9%). 
Overall, the Calatino region hosts 279 organic farms, 
primarily cultivating citrus fruits, vineyards, olive 
groves, and herbaceous crops, representing a growing 
sector.

One of the most representative sectors in terms of 
income and employment in Calatino is citrus produc-
tion, particularly concentrated in the municipality of 
Mineo, which hosts vast plantations dedicated to the cul-
tivation of oranges and mandarins (Table 1).

Additionally, other municipalities in the area, such 
as Caltagirone and Vizzini, also feature extensive citrus 
orchards, although integrated with other agricultural 
productions. Mazzarrone is renowned for its PGI table 
grapes, while San Cono stands out for its PDO prickly 
pear (Figure 1).

Local agriculture is characterized by a combina-
tion of herbaceous crops (cereals, legumes, forages) and 
tree crops (vineyards, olive groves, citrus orchards, and 
fruit trees), with a huge portion of the area dedicated to 
organic or transitioning farming methods.

The University of Catania has launched a Living Lab 
with the aim of fostering the transition towards sustain-
ability and a circular economy. The initiative involves 
farmers, local institutions, environmental organisa-
tions and consumers, and is focused on establishing the 
Calatino Bio-district. Among the various crops present, 

Table 1. Agricultural land and crops in the Calatino region.

Municipality Area (km²) Farms
Utilised 

agricultural area 
(ha)

Citrus groves 
(ha) Vineyards (ha) Olive groves 

(ha)
Herbaceous 
crops (ha)

Caltagirone 383.37 2,368 20,437 615 892 1,469 10,659
Grammichele 32.07 511 1,698 480 21 176 665
Licodia Eubea 112.45 823 6,132 68 956 342 2,660
Mazzarrone 34.78 352 1,905 17 865 160 375
Mineo 245.27 1,859 15,423 3,000 30 952 5,573
Mirabella Imbaccari 15.3 214 990 4 9 117 419
San Cono 6.63 100 278 1 4 33 58
San Michele di Ganzaria 25.81 217 904 4 45 139 535
Vizzini 126.75 463 8,563 170 48 296 4,080
Total Calatino 982 6,907 56,330 4,359 2,870 3,684 25,024

Source: Elaboration on ISTAT data, 2022.
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citrus cultivation was chosen as the focal crop for the 
Living Lab project because of its significant economic 
weight in the Calatino area and its sensitivity to water 
resource management issues. Citrus fruits represent one 
of the main sources of local agricultural income and 
require particularly efficient water management, making 
them an ideal case for experimenting with innovative 
strategies in line with agroecological principles. 

The primary objectives are to promote:
–	 the transition to organic farming and organic certifica-

tion to enhance the competitiveness of local products;
–	 the adoption of sustainable agricultural practices, 

such as crop rotations, organic fertilizers, and inte-
grated pest management, in line with agroecological 
principles;

–	 short supply chains, through local markets and the 
creation of a food hub for the distribution and val-
orization of organic products;

–	 social inclusion and cooperation among producers, 
processors, and distributors.

Through these strategies, the Bio-district aims to 
enhance the environmental sustainability of local agri-
culture and promote economic development based on 
circularity and biodiversity, positioning Calatino as a 
model for agroecological transition in Sicily.

2.2. Study design

The Calatino Living Lab serves as a participatory plat-
form where farmers, researchers, technical experts, and 
institutional representatives collaborate to facilitate the 
agroecological transition of the region. This large-scale 
transition is often hindered by regulatory constraints, eco-
nomic challenges, and technological limitations (Toffo-
lini et al., 2021; Beaudoin et al., 2022; Potters et al., 2022; 
Yousefi and Ewert, 2023; Timpanaro et al., 2024; Gardezi 
et al., 2024). In Sicily, the recent regional legislation on 
agroecology (Regional Law No. 21 of 29/07/2021, “Pro-
visions on Agroecology, Biodiversity Protection, Sicilian 

Figure 1. Production characteristics of the study area (our elaboration).
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Agricultural Products, and Technological Innovation in 
Agriculture”) establishes strict criteria for farms, highlight-
ing the need for an in-depth analysis of its practical impli-
cations and potential areas for improvement.

The methodological approach adopted is summa-
rized in Figure 2. The establishment of a collaborative 
ecosystem is imperative for the co-design of innovative 
solutions for sustainable water resource management, 
agroecology, and the adoption of enabling technologies 
by farmers, institutions, researchers, businesses, and con-
sumers. A preliminary study involved the identification 
of key stakeholders and the definition of local challeng-
es. This was followed by structuring the Living Lab as a 
participatory platform for research and experimentation. 
Stakeholders were selected using a targeted approach, 
favoring organic or in-conversion farmers operating in 
the citrus sector who expressed interest in adopting agro-
ecological practices and innovative technologies. Institu-
tional representatives, technicians and local associations 
with a key role in promoting agricultural sustainabil-
ity in the Calatino area were also involved. Stakeholder 
engagement was achieved through preliminary meetings, 
thematic focus groups, interactive workshops, and dem-
onstration visits to pilot farms, with invitations dissemi-
nated via email, social media, and local networks. 

Although this targeted selection ensured the active 
participation of motivated and competent actors, it is 
important to recognise that it may have introduced a 
certain degree of bias into the selection. Specifically, the 
inclusion of stakeholders already inclined towards inno-
vation and sustainability may limit the generalisability of 
the results to broader agricultural populations that may be 
more hesitant or resistant to adopting digital technologies.

The first step of the Living Lab was an in-depth 
analysis of regional regulations to understand the crite-
ria for recognizing agroecological farms and the poten-
tial barriers to their adoption. Through participatory 
discussions among stakeholders several critical issues 
were identified, including:
–	 high initial requirements, such as the obligation to 

allocate 20% of farmed land to native varieties and to 
replant 20% of the area with indigenous tree species;

–	 management difficulties, due to the requirement for 
complex environmental certifications and the high 
costs of compliance;

–	 limited technological support, as no incentives are 
provided for adopting innovative tools that could 
facilitate the agroecological transition;

–	 commercial constraints, including the obligation to 
sell 20% of production in local markets, a require-
ment that could disadvantage farms located in more 
remote areas.

The stakeholder discussions within the Living Lab 
also highlighted a shared need to leverage technological 
innovations to support farms in resource management, 
improve production efficiency, and ensure economic sus-
tainability. A key concern among stakeholders was water 
resource management, one of the main challenges for 
Sicilian agriculture. Multiple focus groups were organ-
ized to explore issues such as:
–	 how can water management be improved in agroe-

cological farms?
–	 which technologies can promote water conservation 

without compromising productivity?
–	 what strategies can be adopted to make irrigation 

more efficient and less dependent on intensive water 
use?
The focus groups revealed that many organic farms 

lack advanced tools for water monitoring, relying instead 
on empirical practices that often lead to waste or water 
shortages.

Based on the discussions and emerging needs, two 
organic citrus farms in the Calatino region were selected 
as pilot cases to assess the impact of enabling technolo-
gies applied to irrigation management (one implement-
ing Key Enabling Technologies and the other without 
KETs). These farms align with the agroecological prin-
ciples defined by FAO (2018) and were equipped with 
(Table 2):
–	 weather stations for real-time monitoring of temper-

ature, humidity, and precipitation;
–	 soil sensors to measure moisture levels and optimize 

irrigation;

Figure 2. Methodological framework adopted in the Calatino Liv-
ing Lab.
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–	 Decision Support Systems (DSS) based on climatic 
and agronomic data to enhance resource management.
The choice of these technologies was guided directly 

by the critical issues identified during the focus groups. 
Soil sensors and weather sheds allow accurate monitor-
ing of environmental parameters, enabling more efficient 
irrigation management tailored to actual crop needs. 
The DSS system provides farmers with decision support 
based on objective data, reducing uncertainty in irriga-
tion planning and helping to limit water wastage. Table 
2 summarizes the comparison between the principles 
of agroecology (FAO, 2018), the corresponding enabling 
technologies, and their practical application in tradi-
tional agroecology, precision agriculture, and the two 
pilot farms within the Living Lab. The structure of the 
table allows for a direct comparison of how different 
approaches integrate technology to address agroecologi-
cal goals. Reading across each row, one can observe the 
progressive transition from traditional practices to pre-

cision and digitally-supported agroecological farming. 
Each principle – such as biodiversity, resource efficiency 
or co-creation of knowledge – is linked to specific digital 
tools (e.g. soil sensors, DSS platforms) and correspond-
ing practices observed in the field. For example, while 
the traditional approach relies on experience-based deci-
sions, the digitised farm uses real-time data to manage 
irrigation and nutrient input more precisely. This align-
ment between agroecological objectives and enabling 
technologies illustrates how innovation can improve sus-
tainability and productivity without compromising eco-
logical integrity.

2.3. Elaboration method

The comparison between citrus farming with and 
without innovative technologies was based on the analy-
sis of total costs and net benefits for each system, includ-

Table 2. Comparison between Agroecology, Precision Agriculture and the two pilot citrus farms for experimentation within the Calatino 
Living Lab.

FAO principles Enabling technologies Agroecology Precision agriculture Farm with 
technologies

Farm without 
technologies

1. Diversity GIS (Geographic 
Information Systems) Biodiversity mapping Irrigation and 

fertilization zoning
Mapping cover crops 
and water retention

Traditional cultivation 
without mapping

2. Synergy Big Data Local agroecological 
planning

Optimization of 
production efficiency

Weather and soil 
data analysis for crop 
synergy

Experience-based 
management and 
traditional rotations

3. Efficiency IoT (Internet of 
Things)

Sensors for water 
conservation

Automated irrigation 
and fertilization

Targeted irrigation 
sensors and DSS for 
water management

Scheduled irrigation 
without monitoring

4. Resilience Drones Monitoring of natural 
resources

Detection of 
infestations and 
targeted irrigation

Decision-support 
system for mitigating 
water and climate 
stress

Reactive response to 
climate change without 
predictive tools

5. Recycling Sensors Natural measurement 
of soil nutrients

Advanced soil and 
crop monitoring

Nutrient monitoring to 
reduce chemical inputs

Fertilizers and 
compost application 
based on experience

6. Knowledge Sharing Big Data and digital 
platforms

Shared access to 
environmental and 
agricultural data

AI-driven process 
optimization

Software for 
comparison between 
agroecological farms

Limited knowledge 
exchange within local 
cooperatives

7. Human and Social 
Values

Mobile applications for 
farmers

Digital training for 
social inclusion

Agricultural workforce 
automation

Decision-making 
support based on 
digital data

Dependence on 
personal experience 
and manual labor

8. Food Traditions Blockchain for 
traceability

Protection of local 
production

Monitoring of 
production chains

Traceability of farm 
sustainability

Traditional sales 
without digital 
certification

9. Responsible 
Governance Open data and GIS

Active participation 
in agricultural 
management.

Automated data 
collection for 
agricultural policies

Use of platforms for 
farm monitoring

Participation limited to 
local cooperatives

10. Circular Economy
IoT and AI for 
agricultural waste 
management

Recycling and 
reuse of agricultural 
by-products

Waste reduction 
through optimization

Crop residue 
recovery and reuse of 
wastewater

Traditional disposal 
without optimization
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ing water savings, production yield, and profitability 
increase, as extensively explored in the literature (Alston, 
2010; Pardey et al., 2010; Lubell et al., 2011; Alston et al., 
2021; Medici et al., 2021; Jamil et al., 2021).

The baseline assumptions for the comparison are 
reported in Table 3. The analyzed parameters highlight 
the potential impact of digital innovations on irrigation, 
climate monitoring, decision-making processes, water-
use efficiency, management costs, and agronomic yield.

As for the total costs (C) for each agricultural sys-
tem, these are calculated as the sum of the costs of water, 
fertiliser, labour, cover crops and technology (for the 
innovative system only), as shown in Table 4.

The additional benefit of farming with innovative 
technologies over conventional farming is given by:

Expanding

where:
(Pt - Pc) * p = represents the increase in profitability due 
to increased production. 
(Wt - Wc) * Cw = represents the water savings in terms of 
costs.
Ct + Ccc are the additional costs for the adoption of tech-
nologies and cover crops.

If:
B>0 → adoption of the technologies is cost effective.
B<0 → the additional costs outweigh the benefits, mak-

ing the transition uneconomic without incentives.
B 0 → Profitability is similar in the two models, but 

there may be indirect environmental benefits.

The economic evaluation was completed with a sen-
sitivity analysis, hypothesising alternative scenarios on a 
possible rent for the KETs plant and equipment (neces-
sary to have up-to-date and enhanced decision support 
systems with links to meteorological databases), and 
with a Monte Carlo modelling to focus the analysis on 
the other variables (water consumption, operating costs, 
production) that present uncertainty and that most 
influence the difference in profit between the two pilot 
companies.

Monte Carlo modelling assumes that:

At the end of N iterations we estimate 
–	 the average profit for each company

 and 

–	 the average difference

–	 the distribution (and dispersion) of ∆Π, which 
makes it possible to assess the probability that the 
technology will lead to a higher profit.
The final Monte Carlo model used was as follows:

where each uncertain parameter is sampled from a spec-
ified distribution. Repeating this calculation for many 

Table 3. Comparison parameters adopted in the evaluation of KETs in citrus fruit growing.

Aspect Farm with technology Farm without technology

Irrigation Uses precise data (soil moisture, weather forecasts) to 
optimize water requirements

Irrigation based on experience and traditional fixed 
irrigation cycles (not optimized)

Climate monitoring Weather station and sensors provide real-time data on 
temperature, wind, and rainfall Based on visual observations and generic weather forecasts

Decision-making User-friendly application suggests irrigation timing and 
quantity Subjective decisions based on intuition and experience

Water efficiency Greater water control with reduced waste High risk of water excess or deficit, leading to higher-than-
necessary consumption

Management costs Initial investment in technology, but lower variable costs 
(e.g., energy for irrigation) Constant costs due to inefficient resource use

Agronomic yield Optimized water requirements and reduced plant stress, 
leading to higher productivity

Yield affected by irrigation mismanagement or unexpected 
climatic conditions

Source: Our elaboration.
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iterations yields the profit difference distribution, which 
provides a comprehensive assessment of the economic 
sensitivity to the adoption of the innovative technology.

3. RESULTS

3.1. Living Lab approach and case study characteristics

The two citrus farms analyzed were identified as pilot 
sites within the Living Lab of the Calatino Inner Area, a 
collaborative ecosystem aimed at testing and validating 
innovative solutions for regenerative citrus farming and 
sustainable water resource management. The objective is to 
develop scalable strategies for other farms seeking to inte-
grate regenerative practices with technological innovations.

The selection of the farms (Table 5) was based on:
–	 Representation of the citrus sector within the region 

and the study area.
–	 Diversity in management practices, as one farm 

adopted enabling technologies, while the other relied 
on a traditional agroecological approach.

–	 Entrepreneurs’ willingness to engage in the co-
experimentation and training process.
The two pilot farms are in Mineo (Catania province) 

and share the same production identity (5 hectares of 
blood oranges, organic certification, and a commitment 
to regenerative agriculture). Their differing agricultural 
management approaches make them suitable case stud-
ies for assessing the impact of enabling technologies 
compared to a system based solely on traditional agro-
nomic experience.

The farm utilizing innovative technology has inte-
grated sensors, a decision support system (DSS), and 
advanced soil analysis to optimize irrigation and plant 
nutrition. The goal is to achieve more efficient water use, 
a more targeted nutrient management strategy, and con-

tinuous pest monitoring, thereby reducing input usage 
and maximizing productivity.

The farm without innovative technology follows a 
more traditional approach, with manually scheduled 
irrigation and fertilization based on the farmer’s experi-
ence. While it employs cover crops and organic farming 
strategies, it lacks tools for real-time monitoring of soil 
and water conditions, which can result in less precise 
management and higher resource consumption.

The intersection of three key elements – organic 
farming (a low-impact agricultural management model 
aligned with agroecological principles, aiming for bal-
anced and resilient production systems while reducing 
dependency on external inputs), regenerative agriculture 
(cover crops contribute to reducing erosion, improv-
ing water retention, and increasing soil organic matter, 
fostering a healthier and more productive ecosystem in 
the long term), and enabling technologies (agroecology 
does not exclude technology but leverages it to enhance 
sustainable resource management) – is represented by 
agroecology. This guiding principle unites the two pilot 
farms of the Living Lab in the Calatino.

This integrated approach improves the sustainability, 
productivity, and resilience of agricultural systems, turn-
ing environmental and economic challenges into oppor-
tunities for innovation (Niggli, 2015; Gascuel-Odoux et 
al., 2022; Bless et al., 2023; Domínguez et al., 2024).

3.2. Issues related to the management of irrigation resources

The discussion among stakeholders on the water 
emergency in citrus farming has highlighted how it is 
the result of a combination of climatic, institutional and 
economic factors that negatively affect production and 
farm sustainability. Figure 3 represents a visualization 
of the relationships between the main factors character-

Table 4. Data determination methodology for evaluating the cost-effectiveness of adopting KETs technology for water savings.

Variables Farm with Technology Farm without Technology

Total costs (C)

Total revenue (R)

Net profit ( )

The variables considered were the following: A = Cultivated area (ha); Pc = Production per hectare in agriculture without innovative water-
saving technologies (t/ha); Pt = Production per hectare in agriculture with innovative water-saving technologies (t/ha); p = Sales price 
per tonne (€/t); Wc = Water consumption per hectare in agriculture without innovative water-saving technologies (m³/ha); Wt = Water 
consumption per hectare in agriculture with innovative water saving technologies (m³/ha); Cw = Water cost per m³ (€/m³); Cf = Fertiliser 
cost per hectare (€/ha); Cp = Pesticide cost per hectare (€/ha); Ct = Technology cost (installation + maintenance per hectare) (€/ha); Ccc = 
Cover crop cost per hectare (€/ha); Ce = Energy cost per hectare (€/ha); Cother = Other costs (€/ha).
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izing this crisis, as they emerged during the focus group. 
The structure was elaborated using MAXQDA software, 
through the exploration of co-occurrences between 
thematic codes applied to text segments. The figure is 
organized hierarchically, starting from the main cause 
(climate change) at the top, branching downward into its 
effects on water availability and plant health, and further 
into institutional and economic consequences. Arrows 
represent causal links, while mitigation strategies are 
shown as side branches connected to the specific prob-
lems they address. No color coding was used; the struc-
ture is entirely based on logical connections and the-
matic clusters. This approach made it possible to clearly 
highlight the connections between climatic, institutional 
and economic variables, as well as the mitigation strate-
gies adopted by citrus growers and sector experts.

The central element of the water crisis, as emerged 
from the discussion, is climate change, which manifests 
through alterations in rainfall patterns. This results in 
two opposing but equally damaging situations: water scar-
city, caused by reduced precipitation and rising tempera-
tures that intensify evaporation and increase plant water 
demand, or water excess, with sudden and intense rainfall 
leading to floods, water stagnation, and root damage.

These issues are compounded by institutional ineffi-
ciency, which worsens water resource management. The 
lack of maintenance of watercourses, poor planning in 
water distribution, and the bureaucratic rigidity of rec-
lamation consortia make it difficult for citrus growers to 
access water when they need it most. Additionally, the 
absence of a consumption-based pricing system leads to 
waste and inefficient resource use.

To address the water crisis, citrus growers have adopt-
ed various technological and agronomic solutions. These 
include innovations in irrigation, such as surface and sub-
surface micro-irrigation systems to reduce water waste, or 
the use of regulated deficit irrigation systems to optimize 

water use according to plant growth stages. Farmers have 
also experimented with alternative water resources, such 
as treated wastewater, through phytoremediation process-
es, to reduce dependence on conventional water sources. 
A common strategy is the selection of rootstocks resistant 
to water stress, as well as the use of raised beds to improve 
drainage and controlled cover cropping.

According to stakeholders, a coordinated territorial 
approach involving public institutions, reclamation con-
sortia, and producer organizations is lacking. Addition-
ally, a revision of irrigation tariffs based on actual con-
sumption could encourage more responsible water use, 
while increased digitalization in water resource manage-
ment (sensors, weather stations) could enable more pre-
cise irrigation planning. 

Table 5. Structural characteristics of the pilot sites.

Information Farm with technology Farm without technology

Localization Mineo Mineo
UAU, ha 5 5
Production address Blood orange Blood orange
Organic certification Yes Yes
Regenerative agriculture Cover crops + advanced water management Cover crops with traditional management
Water use Sensor monitoring + DSS Manually programmed irrigation
Nutrient management Soil analysis + targeted fertilisation Experience-based fertilisation
Pest control Biological strategies + data monitoring Biological strategies without monitoring
Market Selling to local supply chains and quality markets Selling to local supply chains and quality markets

Source: Our elaboration.

Figure 3. Cause-effect relationships in irrigation water management 
issues in citrus farming
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These results highlight not only the complexity of 
the water crisis, but also the proactive role of farmers 
in experimenting with feasible solutions. The issues and 
strategies discussed in this section have been translated 
into the visual structure shown in Figure 3, which helps 
to summarise the entire problem-solving framework in a 
single view. This makes the figure particularly useful for 
better understanding where to intervene and how to sup-
port adaptation efforts more effectively.

3.3. Cost-effectiveness assessment of KETs deployment

The calculations clearly show the positive impact 
of KET adoption on farm management, with benefits 
reflected in water efficiency, operating costs, productivity 
and overall profitability.

Table 6 shows that the adoption of enabling technol-
ogies results in a significant improvement in farm man-
agement, with water consumption reduced by 33% and 
a consequent annual saving of 420 €/ha, without penal-
izing productivity. This implies greater sustainability in 
resource use and reduced production costs.

The cost of energy for water withdrawal is reduced 
by 31%, confirming how energy efficiency is an addition-
al economic benefit of technological innovation.

Productivity increases by 6 tons/ha (+16%), trans-
lating into a revenue increase of €2,400/ha. This result 
underscores how technological adoption not only 
improves efficiency, but also directly contributes to 
strengthening the company’s competitiveness.

At the same time, there is a reduction in the use of 
fertilizers (-15%) and a drastic decrease in pesticides 

(-71%), reflecting the improvement in agronomic man-
agement and less dependence on external inputs, with 
clear economic and environmental benefits.

Despite an initial investment of €500/ha, the inno-
vative company achieves a net profit of €14,000/ha, com-
pared to €11,220/ha for the traditional company, with a 
25% increase in profitability (+€2,780/ha) (Table 7). This 
highlights how the economic benefits far outweigh the 
costs of technology adoption.

3.4. Sensitivity analysis

Considering three scenarios based on complete 
enabling technologies to be acquired by annual sub-
scription, a sensitivity analysis can also be developed 
(Table 8):
–	 200 €/ha/year → Basic Package (sensors + basic soft-

ware);
–	 400 €/ha/year → Intermediate (sensors + advanced 

DSS + local weather)

Table 6. Parameters for comparing citrus fruit farms with and without KETs.

Parameter Farm with technology Farm without technology Difference %

Annual water consumption (m³/
ha) 2,800 4,200 -33%

Average cost of water (€/m³) 0.3 0.3 0%
Water saving (€/ha) 420 € 0 € ---
Water saving (%) 33% 0 ---
Production per hectare (t/ha) 44 38 16%
Sale price (€/t) 400 € 400 € 0%
Revenues per hectare (€/ha) 17,600 € 15,200 € 16%
Cost cover crops (€/ha) 250 € 250 € ---
Fertiliser costs (€/ha) 720 € 850 € -15%
Pesticide cost (€/ha) 40 € 140 € -71%
Energy cost for irrigation (€/ha) 520 € 750 € -31%
Technology investment (€/ha) 500 € 0 € ---
Other cost 1,570€ 1,990€ -21%
Total cost (€/ha) 3,600 € 3,980 € -10%

Source: Our elaboration.

Table 7. Comparison of economic benefits and adoption conveni-
ence between citrus farms with and without KETs.

Parameter Farm with 
technology

Farm without 
technology Difference %

Revenues R (€/ha) 17,600 € 15,200 € 16%
Total costs C (€/ha) 3,600 € 3,980 € -10%
Net profit Π (€/ha) 14,000 € 11,220 € 25%
Change in benefits (ΔB) +2,780

Source: Our elaboration.
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–	 600 €/ha/year → Advanced (sensors + advanced DSS 
+ weather integrated with weather databases such as 
SIAS, ISPRA, SwissMetNet, etc.). 
Sensitivity analysis on the different levels of tech-

nology subscription shows that even with a higher fee 
(600 €/ha/year), the positive margin remains substantial 
(+2,180 €/ha compared to the farm without technology). 
The intermediate package (400 €/ha/year) emerges as 
the one most balanced between investment and econom-
ic benefit, suggesting a sustainable option for maximiz-
ing farm profitability.

To assess how net profit (€/ha) responds to key eco-
nomic drivers, a Monte Carlo simulation was conducted. 
The goal was to compare the farm adopting innovative 
technology with the one that does not, highlighting how 
variations in certain parameters can either amplify or 
reduce the benefits derived from technology adoption.

The model assumed that the product’s selling price 
(400 €/t) and non-specific fixed costs (e.g., general 
expenses, logistics) remain constant, while variations 
in production and costs influenced by technology were 
analyzed. Analysis considered water costs, expenses for 
cover crops, fertilizers, pesticides, irrigation energy, 
and, for the technology-adopting farm, the technologi-
cal investment.

The Monte Carlo simulation involves repeated itera-
tions, where in each cycle, random values are drawn for 
each parameter according to predefined distributions. In 
this study, uniform distributions around baseline values 
were assumed. In particular, the unit cost of water was 
varied between 0.3 and 0.5 €/m³, while water consump-
tion for the technological farm ranged between 2,520 
and 3,080 m³/ha, and for the non-technological farm, 
between 3,780 and 4,620 m³/ha. Similarly, production 
per hectare and operating costs were defined within spe-
cific intervals to reflect real-world variability and simu-
late a wide range of scenarios.

Table 9 shows that, on average, the farm adopt-
ing technology achieves a net profit of approximately 
14,000 €/ha, while the non-technological farm reaches 
around 11,220 €/ha, resulting in an average difference 
of +2,780 €/ha. These results indicate a significant aver-

age economic benefit from adopting innovative technol-
ogy. The standard deviations, 1,200 €/ha and 1,400 €/
ha respectively, highlight considerable variability. This 
suggests that while the average benefit is positive, in 
some scenarios, the advantage may be lower or even 
more pronounced.

The economic advantage is primarily driven by 
savings in operational costs. The technology enables 
a substantial reduction in water consumption, leading 
to lower water expenses, and decreases costs associated 
with fertilizers and pesticides, due to more efficient and 
sustainable farming practices. These savings, combined 
with a potential increase in yield per hectare, contribute 
to a higher net profit.

The simulation also highlights the model’s sensitiv-
ity to various parameters. For instance, an increase in 
the unit cost of water shifts total costs to higher values, 
making water savings even more critical. Similarly, vari-
ations in yield per hectare directly affect revenue and, 
consequently, net profit. The ability to adjust multiple 
parameters simultaneously helps identify key drivers of 
economic success and potential sources of risk.

The Monte Carlo simulation comparing farms 
with and without innovative technology demonstrates 
that adopting technology leads to a significant average 
increase in net profit per hectare. These findings provide 
essential support for strategic decision-making in a com-
petitive and dynamic environment, where operational 
efficiency and innovation are crucial for success.

Table 8. Profit sensitivity with technology rent.

Rental scenario Annual cost per hectare 
(€) Net new profit (€/ha) Difference vs. farm 

without technology (€)
Convenience compared to the 

traditional model

Rent 200 €/ha/year 200.00 € 13,800.00 2,580.00 Very affordable
Rent 400 €/ha/year 400.00 € 13,600.00 2,380.00 Still profitable
Rent 600 €/ha/year 600.00 € 13,400.00 2,180.00 Advantageous but low margin

Source: Our elaboration.

Table 9. Monte Carlo simulation results.

Statistics
Farm with 
technology  

(€/ha)

Farm without 
technology  

(€/ha)

Difference 
(Tech - 

NonTech, €/ha)

Average profit 14.000 € 11.220 € 2.780 €
Standard deviation 1.200 € 1.400 € 1.300 €
Minimum Profit 11.000 € 8.500 € 2.500 €
Maximum profit 17.000 € 15.500 € 3.500 €
Median 14.100 € 11.300 € 2.800 €

Source: Our elaboration.
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4. DISCUSSION

The analysis conducted within the Living Lab of the 
Calatino inner area has enabled an exploration of the 
impact of enabling technologies on the agroecological 
transition in inner areas, highlighting economic, envi-
ronmental, and organizational benefits. Starting from 
the research questions, the findings clearly show that the 
integration of enabling technologies enhances the effi-
ciency of resource management, particularly in terms of 
water and nutrient use, helping to improve productivity 
and keep costs down. These findings align with those 
reported by Bellon-Maurel et al. (2022) and Maurel and 
Huyghe (2017), who highlight how digital tools contrib-
ute to resource optimization and improved sustainability 
in agricultural systems. Furthermore, Ajena et al. (2022) 
emphasize that digitalization can break down traditional 
barriers fostering innovation in rural sectors, particular-
ly in inner areas where challenges are more pronounced. 
Therefore, the integration of technology accelerates the 
agroecological transition by providing farmers with real-
time data and decision-making tools that enhance preci-
sion and sustainability in farm management. Regarding 
the second research question, the comparison between 
the two pilot farms revealed a significant gap in farm-
ers’ perceptions. The farm that adopted the innovative 
technology reported tangible benefits, such as reduced 
operational costs and improved productivity. In con-
trast, the farm following a traditional approach relied 
on well-established methods and expressed skepticism 
toward digital tools. This resistance stems from a per-
ception of greater reliability associated with traditional 
methods, combined with limited familiarity with inno-
vative technologies and concerns about high initial costs 
and a steep learning curve. These aspects are consist-
ent with the findings of Anderson and Maughan (2021) 
and Schiller et al. (2020), who describe the existing gap 
between innovation and tradition in agriculture. Litera-
ture suggests that the lack of specific training and insti-
tutional support represents a major barrier to the adop-
tion of digital technologies (Timpanaro et al., 2023).

In this context, Living Labs serve as co-experimen-
tation and training spaces that facilitate knowledge 
transfer and help overcome initial resistance (Scuderi 
et al., 2023). Active participation and dialogue among 
farmers, researchers, and technical experts contrib-
ute to demystifying new technologies and highlight-
ing their potential in sustainable resource management. 
Living labs show that they can function as catalysts for 
change, fostering an agroecological transition that is not 
only technologically advanced, but also socially inclusive 
(Cascone et al., 2024; Beaudoin et al., 2022).

The third research question led to a deeper analy-
sis and reflection on the economic outcomes through 
Monte Carlo simulation. From an economic perspec-
tive, the farm integrating enabling technologies achieves 
higher per-hectare revenues due to increased produc-
tion and more efficient cost management. These findings 
align with the studies of Alston (2010) and Pardey et al. 
(2010), which emphasize how agricultural innovation 
can generate substantial economic benefits.

From an environmental perspective, the adop-
tion of innovative technologies promotes more sustain-
able resource management and a reduction in chemical 
input use. The decrease in water consumption and pes-
ticide application, for example, contributes to minimiz-
ing environmental impact and fostering more regenera-
tive agricultural practices. These results are consistent 
with the evidence provided by Domínguez et al. (2024) 
and D’Annolfo et al. (2017), who highlight the potential 
of combining agroecological practices with technologi-
cal innovation to promote sustainable and resilient agri-
culture. Thus, the integration of technologies not only 
enhances economic efficiency but also represents a suc-
cessful approach to reducing environmental impact by 
encouraging a more responsible use of resources.

Finally regarding Q4, the Living Lab model imple-
mented in the Calatino context has proven to be an effec-
tive environment for the co-creation and experimentation 
of innovative solutions. The two pilot farms, despite shar-
ing the same production identity and organic certifica-
tion, differ in their management approach: one integrates 
enabling technologies, while the other follows a tradi-
tional method. This strategic choice has highlighted how 
the presence of digital technologies is not contradictory 
to agroecological principles but rather enhances their 
effectiveness, improving the sustainable management of 
resources and the resilience of the production system.

Living Labs play a crucial role in bridging the gap 
between technological innovation and traditional agri-
cultural practices. They provide a space where farmers, 
researchers, technologists, and institutional stakeholders 
can experiment, exchange experiences, and validate solu-
tions in real time (Scuderi et al., 2024). In our case, the 
adoption of digital tools has improved irrigation monitor-
ing and management, leading to more efficient water use 
and lower operational costs. These results, combined with 
the integration of regenerative practices such as the use of 
cover crops and targeted nutrient management, contribute 
to creating an integrated system that addresses the envi-
ronmental and economic challenges of inner areas. More-
over, the active participation of farmers in Living Labs 
fosters a bottom-up approach that stimulates responsible 
innovation and the dissemination of best practices. 
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For example, during one of the demonstration ses-
sions, an organic farmer had the opportunity to test a 
low-cost soil moisture monitoring system, immediately 
noting its usefulness in reducing water waste. This kind 
of direct experience helped turn initial prejudice into 
interest and openness. In another case, a young farmer 
who initially showed skepticism toward the use of digi-
tal data for crop management changed his perspective 
after sharing his needs with a group of experts within 
the Living Lab and receiving support in interpreting 
the data collected. The opportunity to learn by doing, 
in a nonjudgmental and co-creation-oriented context, 
proved essential to reduce cognitive barriers and build 
confidence toward innovation. Recent studies (Gascuel-
Odoux et al., 2022; Potters et al., 2022) also highlight 
how collaboration and the engagement of local actors are 
essential for achieving effective and sustainable agroeco-
logical transitions. 

A critical issue that deserves attention concerns the 
economic implications related to the costs of adopting 
enabling technologies, especially in vulnerable rural set-
tings. While these technologies can generate efficiency 
and reduced operating costs, they often entail significant 
upfront investments, the need for technical maintenance, 
and increasing dependence on external suppliers. This 
can lead to an imbalance in bargaining power between 
farms, which are often small or medium-sized, and tech-
nology providers, which operate according to industrial 
and centralized market logics.

In the absence of adequate support and regulatory 
measures, this imbalance can produce regressive effects: 
farms with greater economic capacity will be able to 
access technologies more easily and take competitive 
advantage of them, while the more fragile realities risk 
being excluded from the innovation process (Bissadu et 
al., 2025). 

For this reason, it is crucial to accompany technol-
ogy adoption with targeted policy strategies capable of 
ensuring affordability, technical training, systems inter-
operability and open innovation models. Living Labs, 
represent a possible lever to rebalance power dynamics 
through co-design and direct involvement of farmers 
in technology selection and testing processes. To effec-
tively address these power imbalances and promote a 
more inclusive adoption of enabling technologies, sev-
eral targeted policy actions should be considered. Such 
measures can help rebalance contractual relationships 
between farmers and technology providers, in line with 
the principles of responsible innovation (Bellon-Maurel 
et al., 2022; Beaudoin et al., 2022; Gava et al., 2025).

First, public incentives for technology adoption 
should be conditional on the use of open standards and 

interoperable systems to avoid technological lock-in, as 
discussed by Ditzler and Driessen (2022) and Clapp and 
Ruder (2020). This approach strengthens farmers’ autono-
my and prevents dependence on proprietary technologies 
controlled by a few large suppliers (Bissadu et al., 2025).

Second, it is essential to promote the creation of 
farmer-led cooperatives or technology consortia to 
strengthen collective bargaining power in the purchase 
and negotiation of technology services. This is in line 
with recommendations to strengthen agricultural inno-
vation systems (Potters et al., 2022) and enable bottom-
up governance models (Gava et al., 2025).

Thirdly, the creation of public platforms dedicated 
to the collective procurement of technologies, supported 
by technical advisory services and independent consult-
ants, can further protect farmers from unfavourable con-
tractual conditions. The provision of advisory vouchers 
for access to third-party technical expertise would com-
plement this strategy.

Furthermore, regulatory frameworks should explicit-
ly recognise farmers’ ownership of agricultural data gen-
erated by digital systems, ensuring that technology pro-
viders cannot appropriate or monetise such data without 
informed consent (Clapp and Ruder, 2020; Bellon-Mau-
rel et al., 2022).

Living Labs themselves can be institutionalised as 
territorial “technology brokers”, acting as independent 
intermediaries to ensure equitable access to innovation 
and promote co-created solutions tailored to local needs 
(Beaudoin et al., 2022; Gardezi et al., 2024). This mod-
el of participatory innovation is in line with the agro-
ecological governance structures advocated by Gascuel-
Odoux et al. (2022), which support equitable access to 
technological innovation in rural areas.

By adopting these integrated strategies, policymak-
ers can help reduce asymmetries in bargaining power, 
protect the interests of smallholder farmers, and pro-
mote an inclusive, resilient, and participatory agroeco-
logical transition.

In summary, our research findings indicate that:
–	 The integration of enabling technologies accelerates 

the agroecological transition by improving resource 
management and increasing profitability.

–	 Farmers’ perceptions are influenced by direct expe-
rience and the support provided by Living Labs, 
which help overcome resistance to innovation.

–	 The combination of agroecological practices and 
innovative technologies generates positive eco-
nomic and environmental impacts, as evidenced by 
increased productivity and reduced operational costs.

–	 Living Labs play a key role in facilitating the inte-
gration of technology and agroecology, fostering the 
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creation of integrated and sustainable systems in 
inner areas.
These findings not only confirm the existing litera-

ture but also provide an operational framework to guide 
strategic decisions in complex agricultural contexts, 
where sustainability and innovation need go hand in 
hand. The integrated and participatory approach promot-
ed by Living Labs thus emerges as an effective response 
to current and future challenges, helping to transform 
environmental and economic challenges into opportuni-
ties for innovation and sustainable development.

5. CONCLUSIONS

The study conducted within the Living Lab of the 
Calatino Inner Area highlights how the integration of 
enabling technologies can play a crucial role in acceler-
ating the agroecological transition in rural areas. The 
results, derived from a comparative analysis of two pilot 
citrus farms – one adopting advanced digital tools and 
the other maintaining a traditional approach – demon-
strate economic, environmental, and managerial ben-
efits, confirming the transformative potential of such 
innovations.

The farm that integrated sensors, decision support 
systems (DSS), and other digital technologies achieved 
significant operational efficiency, including a 33% reduc-
tion in water consumption and a 16% increase in yield 
per hectare, leading to a 25% improvement in profitabili-
ty. These findings not only underscore the importance of 
more precise resource management but also confirm that 
the adoption of enabling technologies can enhance envi-
ronmental sustainability by reducing chemical inputs 
and improving irrigation efficiency. The study also high-
lights some critical issues and concrete challenges to be 
addressed. Among these, the affordability of technologies 
is a major obstacle, especially for small companies with 
limited liquidity. Similarly, the technical complexity of 
the systems and the costs associated with maintenance, 
software updates and staff training may limit widespread 
adoption. Furthermore, the scalability of the tested solu-
tions remains to be verified in different contexts due to 
soil and climate conditions, farm size and crop type.

However, this study has some limitations. First, the 
small number of cases analyzed may limit the general-
izability of the results. Given the diversity of agronomic 
and socio-economic contexts, further large-scale studies 
are needed to confirm the replicability of the observed 
benefits. Additionally, while the methodology integrates 
an in-depth economic analysis and a Monte Carlo simu-
lation, it could be enriched by further long-term meas-

urements to assess the economic and environmental sus-
tainability of these technologies over time.

Another limitation concerns the analysis of farmers’ 
perceptions. While the comparison between the innova-
tive and traditional groups highlighted resistance and 
scepticism toward digital tools, a more extensive qualita-
tive investigation – such as in-depth interviews or focus 
groups with a broader sample of producers – could pro-
vide further insights into the dynamics of adoption and 
the training needs required to support the transition.

Based on these considerations, several future 
research directions emerge. Expanding the Living Lab 
model to other rural areas in Sicily and different agri-
cultural sectors could help determine whether enabling 
technologies can generate similar benefits in different 
contexts. Future studies could implement comparative 
pilot projects in different production systems, such as 
viticulture or olive growing, and monitor key indicators 
like water use efficiency, yield performance, and farmer 
adoption rates over at least three growing seasons.

 Further research could also explore the long-term 
impact of adopting digital tools, analyzing, for exam-
ple, how economic and environmental benefits evolve 
over multiple production cycles and under changing 
climatic and market conditions. Longitudinal studies 
should be conducted, integrating detailed farm account-
ing records, soil and water monitoring data, and farmer 
surveys, to track both economic returns and resource 
use efficiency over a 5–10 year horizon. Another key 
area of interest involves the development of training 
programs and institutional support mechanisms to 
facilitate the dissemination of these technologies among 
farmers. Future initiatives should design modular, prac-
tice-oriented training programs focused on digital lit-
eracy, irrigation management, and precision agriculture 
tools, targeting different farmer profiles (smallholders, 
young farmers, cooperatives), possibly through partner-
ships with vocational training institutes and local coop-
eratives. Collaborations with universities and research 
centers to design dedicated training programs could 
help overcome learning curve challenges and promote 
greater adoption of digital systems.

Finally, the study highlights the importance of tar-
geted policy actions to mitigate power asymmetries 
between farmers and technology providers. By introduc-
ing conditional incentives, promoting collective procure-
ment mechanisms, supporting open innovation models, 
and formalising the role of Living Labs as technology 
intermediaries, policymakers can help ensure that the 
digital transformation in agriculture promotes autono-
my, inclusiveness, and long-term sustainability (Clapp 
and Ruder, 2020; Bellon-Maurel et al., 2022; Gava et al., 



81Enabling technologies in citrus farming: A living lab approach to agroecology and sustainable water resource management

Bio-based and Applied Economics 14(4): 67-84, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17357 

2025). These measures are essential to enable a fair and 
balanced agroecological transition, particularly in vul-
nerable rural contexts.

This study demonstrates that the integration of ena-
bling technologies, supported by a participatory model 
such as the Living Lab, represents a fundamental driver 
in accelerating the agroecological transition in rural 
areas. Despite certain limitations, the findings provide a 
strong scientific and operational contribution, suggesting 
that the combination of digital innovation and agroeco-
logical practices can not only enhance economic efficien-
cy and environmental sustainability but also foster cul-
tural and organizational change toward a more resilient 
and inclusive agricultural system. Future research and 
targeted policy interventions will be essential to facili-
tate the broader adoption of these models and contribute 
decisively to the transformation of the agri-food system.
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Abstract. The increasing complexity of global food supply chains has heightened 
consumer concerns about food safety, quality and authenticity, and triggered a grow-
ing demand for transparency-enhancing technologies such as blockchain. This study 
examines the factors influencing consumers’ intention to purchase organic pasta with 
blockchain-based traceability using an extended Theory of Planned Behaviour (TPB) 
framework. In addition to the traditional TPB constructs, the study incorporates trust 
in quality certifications and attitudes towards blockchain technology to provide a com-
prehensive analysis of decision-making processes. The data was collected via an online 
survey of 190 Italian respondents and analysed using Partial Least Squares Structural 
Equation Modelling (PLS-SEM). The results show that subjective norms, perceived 
behavioural control and attitudes towards technology significantly influence purchase 
intentions, while trust in quality certifications and attitudes towards the traceability of 
blockchain do not significantly influence purchase intention.. These findings suggest 
that while blockchain technology is recognised for its potential to improve transparen-
cy, its practical benefits are not yet fully understood or appreciated by consumers. This 
study contributes to the literature on consumer behaviour in the agri-food sector and 
provides practical insights for policy makers and marketers to promote blockchain-
based traceability systems.

Keywords:	 consumer purchase intention, theory of planned behaviour (TPB), organic 
pasta, blockchain-based traceability, food fraud, technology.

1. INTRODUCTION

In the food sector, issues such as traceability and food safety have 
become central to the supply chain, with producers increasingly prioritising 
these aspects over other objectives (Alshehri, 2023). This shift goes hand in 
hand with an emerging paradigm shift in consumer demand. Consumers 
are now showing an increasing preference for products that are perceived 
as safer (Mahsun et al., 2023). This is evidenced by the fact that more and 
more consumers are expressing concerns about food safety and quality and, 
therefore, favour foods whose labels provide clear and accurate information 
about product characteristics (Lewis & Grebitus, 2016; Sadílek, 2019; Moru-
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zzo et al. 2020; Kaczorowska et al. 2021). The European 
Parliament and the Council have also established qual-
ity certification for organic agri-food products through 
Regulation (EU) No 2018/848. According to this Regu-
lation, organic products have been developed to respond 
to a specific market where consumers demand products 
whose production respects the environment and animal 
welfare, preserves biodiversity and contributes to rural 
development (Sampalean, et al., 2021). However, con-
sumers cannot verify credence attributes and must there-
fore rely on the reliability of the manufacturer’s or retail-
er’s claims (Plasek and Temesi 2019). Credence attributes 
refer to product characteristics that consumers cannot 
directly verify before purchase and must rely on external 
assurances to assess their validity (Plasek and Temesi, 
2019; Lassoued and Hobbs, 2015). In the context of food 
products, these attributes include factors such as organic 
certification, geographical origin, sustainability claims, 
and production methods (Fernqvist and Ekelund, 2014)

The credibility of these parties also depends on con-
sumer trust in the food system, including the regulatory 
authorities responsible for ensuring food safety and com-
pliance with food labelling regulations (Fernqvist and Eke-
lund 2014; Lassoued and Hobbs 2015; Meijer et al. 2021). 

Trust is a multi-layered concept that is shaped by 
several factors, including the geographical and temporal 
distance between the parties involved, cultural norms, 
the institutional environment and historical events that 
influence perceptions of food safety and quality (Berg, 
2004). Currently, consumer trust in the food system is 
uncertain, particularly in relation to transparency and 
authenticity (Frewer, 2017; Wu et al., 2021; Menon et 
al., 2021) and more generally in relation to perceptions 
of food safety (Macready et al., 2020; Meijer et al., 2021). 
The main cause of this trend is the inherent complexity 
of the food supply chain, which involves a multitude of 
parties and processes (Hassoun et al., 2020; Reitano et 
al., 2024) and can lead to food safety issues (Meijer et al., 
2021). This decline in consumer confidence has signifi-
cant consequences, such as the limited effectiveness of 
certifications and consequently a decrease in potential 
demand for products with credible attributes, such as 
origin, production process characteristics and product 
properties (Marozzo et al., 2022). From a public inter-
est perspective, low trust has negative implications for 
sustainable development and public health policies that 
rely on traditional forms of certification to inform con-
sumers about the nutritional and ethical value of prod-
ucts Kjærnes, 2006; Sapp et al, 2009; Hobbs and God-
dard, 2015; Kaiser and Algers, 2017). Considering the 
above-mentioned characteristics of the agri-food produc-
tion system, it is essential to develop a coherent manage-

ment system adapted to its specific needs (Gardeazabal 
et al., 2023). In response to the prevailing concerns in 
the agri-food sector, a number of technological inno-
vations have emerged to improve and strengthen food 
traceability. Among these, blockchain technology (BCT) 
has attracted much attention (Reitano et al., 2024). The 
emergence of cryptocurrencies has led to the populari-
sation of BCT, which can be defined as a decentralised 
and immutable register of information (Gupta and Sad-
oghi, 2019; Krzyzanowski, Guerra & Boys, 2022). In 
such a system, all subjects in the chain can access the 
recorded information at any time, but without the pos-
sibility to change a record (Tian, 2017; Zhao et al., 2019; 
Wünsche and Fernqvist, 2022). This function is suitable 
for meeting the specific requirements of the food indus-
try and creating a reliable system for tracking the path 
of a food product from production to consumption. This 
will make it easier to ensure food safety (Saurabh & Dey, 
2021; Mónica Martínez-Castañeda & Fejoo, 2023) and 
has the potential to combat problems such as label tam-
pering, counterfeiting of designations of origin and the 
introduction of substandard products (Ayan et al., 2022; 
Serra-Majem et al., 2020).

In the food sector, BCT seems to be a promis-
ing solution that could enable more transparency (see 
Javaid et al., 2021; Aldrighetti et al., 2021; Singh & 
Sharma, 2022; Vern et al., 2024). It is already being used 
to record all transactions between actors involved in 
the supply chain to ensure the transparency and trace-
ability of products (see Kamilaris et al., 2019; Galvez et 
al., 2018). However, despite its potential, a fundamen-
tal factor is the understanding of the benefits attributed 
by consumers, as emphasised by Feng and colleagues 
(2020). Indeed, the widespread adoption of this technol-
ogy depends on consumer perception and acceptance 
(Albertsen et al., 2020). As Singh et al. (2023) argue, the 
success of any technological innovation in the food sec-
tor is inextricably linked to consumer acceptance. In the 
consumer market, there is a growing willingness among 
consumers to adopt innovative technologies that facili-
tate access to comprehensive data on supply chain opera-
tions (Cozzio et al., 2023). In line with this premise, a 
study by Osei et al. (2021) hypothesises that consum-
ers will adopt BCT technology if it can demonstrably 
improve food safety and quality. 

Numerous studies have shown that BCTs have a pos-
itive impact on consumer purchasing decisions (Sander 
et al., 2018; Violino et al., 2019; Polenzani et al., 2020; 
Lin et al., 2022). However, other authors have pointed 
to a discrepancy between consumer perception and the 
actual value attributed to technology-specific informa-
tion confirming that food has been traced with BCTs 
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(Shew et al., 2022). Liu et al. (2023) investigated the rela-
tionship between consumer trust in the agri-food system 
and certification and showed a positive influence of high 
levels of trust on preferences for products with traceabil-
ity and the use of BCTs. The influence of BCTs on pur-
chasing decisions, especially for certified food has a sig-
nificant impact on demand and thus contributes to the 
success of BCT-based systems. The comprehensive trace-
ability information that this technology provides along 
the entire food supply chain represents significant added 
value for consumers.

Contini et al. (2023) have shown that BCT pro-
motes a positive attitude towards consumer preferences 
and perceptions, thus increasing trust in the system due 
to satisfaction with the perceived quality of the certi-
fied products. As Mazzù et al. (2021) note, BCT-based 
traceability also requires the involvement of certification 
and regulatory bodies in the supply chain system. This 
helps to increase consumer confidence in the reliability 
of the information provided, while facilitating access to 
comprehensive food information, including declarations 
from food supply chain actors, such as organic certifica-
tion, chemicals used and agricultural practises. Although 
the technological potential of BCT has been demonstrat-
ed in previous studies (Kamilaris et al., 2019; Galvez et 
al., 2018), there is still little research on consumer per-
ceptions and intentions. In particular, there is a need to 
investigate how consumers evaluate BCT-enabled trace-
ability in combination with established constructs such 
as trust, attitudes and perceived ease of use. In recent 
literature, theoretical frameworks such as the Theory 
of Planned Behaviour (TPB) have been used to analyse 
consumer intentions to adopt blockchain in food sys-
tems. The studies by Dionysis et al. (2022) and Lin et al. 
(2021), for example, highlighted the importance of sub-
jective norms and perceived behavioural control. How-
ever, the results regarding attitudes towards BCT were 
inconclusive. Contini et al. (2023) emphasised the poten-
tial of BCT to increase trust, but their results show a dis-
crepancy between consumer trust in traditional certifica-
tions and the added value of blockchain traceability.

To fill this gap, this study investigates which factors 
influence consumers’ intention to buy organic pasta with 
blockchain-based traceability. 

We conducted an online questionnaire with a sam-
ple of 190 Italian respondents to investigate their behav-
iour towards organic pasta, as it already plays an impor-
tant role in several practical applications of BCT. Using 
the extended TPB model, we were able to identify the 
factors that influence consumption. Constructs such as 
attitude, subjective norms and perceived behavioural 
control were complemented by trust in quality certifica-

tions and attitudes towards technology to increase the 
predictive power of the model. Partial Least Squares 
Structural Equation Modelling (PLS-SEM) was used to 
analyse the relationships between the constructs and val-
idate the research hypotheses.

2. THEORETICAL FRAMEWORK AND 
RESEARCH HYPOTHESES DEVELOPMENT

The Theory of Planned Behaviour (TPB) is a theo-
retical model from the field of psychology with par-
ticular significance for predicting and changing human 
behaviour, especially in connection with the use of 
technology (Ajzen, 2020; Fleiß et al., 2024; Cudjoe et 
al., 2023). The TPB postulated by Ajzen (1980) is based 
on the assumption that individual behaviour depends 
on three basic elements: the individual’s attitude, sub-
jective norms or social pressure and perceived behav-
ioural control. The TPB has been used in the consumer 
decision-making literature in a variety of contexts (Lin, 
2007), including in the context of food choice, where it 
has been used to identify the motivational factors under-
lying the choice of one product over another (Nardi et 
al., 2019;  Sogari et al., 2024) and to predict consum-
ers’ behaviour and intentions towards organic products 
(Armitage and Conner, 2001). The TPB is based on the 
idea that a person’s behaviour depends on their intention 
to perform that behaviour. Behavioural intention is the 
result of the interaction of three factors:
1)	 Attitude (ATT): represents a person’s inclination 

to perform a certain action. It is a person’s opinion 
or judgement about adopting or performing a par-
ticular behaviour based on their values, beliefs and 
previous experiences with that behaviour. A posi-
tive attitude leads to a greater likelihood of behaving 
consistently with one’s intention. 

2)	 Subjective norms (SN): refers to the influence of 
other people’s thoughts and attitudes towards a par-
ticular behaviour. In other words, it is the social 
pressure to perform or avoid a certain action, which 
may result from the expectations, encouragement or 
opinions of others. 

3)	 Perceived Behavioural Control (PBC): refers to the 
perception of a person’s ability to perform an action 
or the perception of the difficulty or ease of a par-
ticular behaviour depending on certain factors.
Several studies have investigated consumers’ inten-

tion to buy products tracked with a blockchain-based 
system. In the study by Dionysis et al. (2022), the factors 
influencing the purchase intentions of coffee consum-
ers considering coffee products that can be tracked with 
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a blockchain-based tracking system are analysed using 
the TPB model. The original TPB model was extended 
to include additional constructs such as trust, past habits 
and environmental protection. The study contributes to 
the literature by providing insights into the factors that 
influence consumers’ purchase intentions and shows that 
attitude towards coffee that is traceable with a block-
chain-based traceability system, subjective norm and 
perceived behavioural control are positively associated 
with purchase intention. The study by Lin et al. (2021) 
also utilised the TPB to investigate the factors influenc-
ing Chinese consumers’ intentions towards blockchain 
food traceability technology to ensure the food safety 
and quality of Chinese organic food. The study proposed 
an integrated conceptual framework combining two 
established theoretical models: the TPB and the infor-
mational success model (ISS). The study found that atti-
tude and perceived behavioural control significantly and 
positively influence intention to use blockchain adop-
tion, while subjective norms are positively but not signif-
icantly correlated with intention to use. 

The work of Menozzi et al. (2015) analyses consumer 
attitudes and behaviour towards traceable food to explain 
the intention to buy traceable food using TPB. The 
results show that the predictive power of the TPB mod-
el increases significantly when new variables are added: 
habits, trust, past behaviours and socio-demographic var-
iables. The results show that attitudes and trust influence 
the purchase intention for traceable food products. 

Prisco et al. (2022) present an integrated approach 
that combines the TAM (Technology Acceptance Model) 
and the TPB (Theory of Planned Behaviour) and adds 
as benefits the additional factors “efficiency and safety”, 
“reduced costs” and “quality of customer service” per-
ceived by companies adopting blockchain technology. 
The results show that attitude and perceived behavioural 
control are the most important predictors of intention 
to adopt blockchain, while perception of benefits is the 
most important predictor of attitude. In addition, subjec-
tive norms were found to have a positive effect on behav-
ioural intention, while the effect of perceived ease of use 
on attitude was not significant. 

In their study, Liu et al. (2023) explored the asso-
ciation between consumer trust in agricultural and food 
systems and the impact of certifications. Their results 
showed a positive correlation between high consumer 
trust and a preference for products with certificates of 
origin and the use of BCTs. The influence of BCTs on 
consumer purchasing decisions, especially for certified 
food, is an important factor influencing demand and 
thus the success of BCT-based systems. When investi-
gating the relationship between trust in the food system 

and certifications, it was found that a high level of trust 
positively inf luences preferences for PDO and BCTs, 
while it has a less pronounced effect on preferences for 
organic certifications (Contini et al., 2023). The absence 
of a notable interaction between the degree of trust in 
the food system and the preference for organic certifi-
cation can be attributed to the finding that such a pref-
erence does not rely on the degree of trust in the food 
system in general. Rather, it is determined by the align-
ment of values among the various actors involved in the 
organic supply chain (Thorsøe, 2015). This trust is rein-
forced by consumer satisfaction with the quality of the 
products (Ladwein and Romero, 2021) and is linked to 
the organic certification logo (Janssen and Hamm, 2012). 

Based on the analysis of previous literature, the 
TPB (Ajzen, 1991) was chosen as the conceptual model 
for this study. However, this study aims to improve the 
predictive power of the TPB. In addition to the origi-
nal items of the TPB, such as attitude, subjective norms 
and perceived behavioural control, additional constructs 
are introduced: trust in quality certification and atti-
tude towards technology. Based on the above literature 
and theory, the following hypotheses are formulated. To 
avoid verbosity, the indicators in the table are presented 
in capital letters. See Table 1 for details.

3. DATA AND METHOD

3.1. Data collection

The data collection tool consists of an online ques-
tionnaire developed on the Qualtrics platform to explore 
consumer intentions regarding organic pasta tracked 
through an innovative traceability system. The design of 
the questionnaire is based on the TPB presented in the 
previous section. The TPB approach effectively identi-
fies factors influencing decision-making and perceived 
risk, making it suitable for the focus of this study on 
traceable products. The questionnaire aims to capture 
the determinants influencing consumer preferences and 
behaviour by incorporating the key TPB constructs. The 
questionnaire was divided into several sections, each 
designed to collect specific information related to the 
objectives of the study.

1) Introduction: This section provided a general 
overview of the study and ensured that participants kept 
their responses confidential.

2) TPB constructs: This section explored partici-
pants’ intentions and the key dimensions of the TPB 
model: attitude, subjective norms and perceived behav-
ioural control.
–	 The intention construct captures the likelihood 
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that consumers will consider purchasing pasta with 
blockchain traceability once it is available.

–	 The subjective norms construct measures the influ-
ence of social factors, including family, academia, 
media, and retail, on consumers’ decision to pur-
chase pasta with blockchain traceability.

–	 The construct of perceived behavioural control 
assesses consumers’ perceptions of the ease or dif-
ficulty of accessing and using products with block-
chain traceability. This includes finding such prod-
ucts in shops and using the relevant technology, 
which is critical to understanding potential barriers 
to adoption.

–	 The attitudinal construct captures consumer per-
ceptions of the benefits associated with using block-
chain technology for food traceability and focuses 
on aspects such as safety, transparency, authenticity 
and production standards.
The design of these questions was guided by previ-

ous research such as Dang & Tran (2020), Dionysis et al. 
(2022) and Menozzi et al. (2015) to ensure that all key 
variables were comprehensively addressed. A 5-point 
Likert scale was used, ranging from ‘strongly disagree’ 
to ‘strongly agree’,” so that participants could express a 
nuanced opinion on each statement.

3) Consumer Trust in Quality Certification: Trust in 
quality certification is an important factor that influenc-
es consumers’ confidence in the safety and authenticity 
of products. This construct assesses the extent to which 
consumers trust the quality certification information 
provided by companies. This block focused on assessing 
trust in organic food producers and sellers, drawing on 
the work of Li et al. (2023).

4) Attitudes towards technology: The questions in 
this section were organised based on the Technology 
Readiness Index (TRI), a scale validated by Parasuraman 
(2000). This index measures consumer attitudes toward 
technology in four dimensions: Optimism (OPT), Inno-
vativeness (INN), Discomfort (DIS), and Insecurity 
(INS). By including these dimensions, the survey was 
able to assess how technological readiness influences 
consumer acceptance of traceable systems. Respondents 

rated their level of agreement on a 5-point scale, which 
allowed for an in-depth analysis of their comfort and 
adaptability to new technological applications.

5) Socio-demographic questions: In the last section, 
demographic information such as age, gender, education 
level and income were collected.

The scales for the TPB constructs and the Technol-
ogy Readiness Index were adopted from previous studies 
to ensure their validity and reliability. The use of estab-
lished scales in the study ensured that the constructs 
measured accurately reflected the concepts they were 
intended to assess.

The online questionnaire was administered to a 
sample of Italian respondents to gain insight into the 
factors that influence consumer behaviour. The survey 
was distributed online via the most popular social net-
working platforms (WhatsApp, Instagram and Face-
book) to maximise reach and engagement. These plat-
forms facilitated efficient data collection across all 
social networks and allowed for broader geographic and 
demographic representation. The survey was available 
on social media platforms from 30 October 2023 to 28 
February 2024. During this period, participants were 
able to complete the questionnaire at their leisure. A 
total of 251 responses were collected, of which 190 were 
completed.  A widely used procedure for estimating the 
minimum sample size in PLS-SEMs is the “tenfold rule” 
(Hair et al., 2011), which assumes that the sample size 
should be greater than 10 times the maximum number 
of inner or outer model terms that point to a latent vari-
able in the model. PLS-SEM is advantageous as it does 
not impose strict assumptions about data distribution 
and can provide reliable results even when working with 
limited sample sizes by maximizing explained variance 
and minimizing estimation bias (Russo & Stol, 2021).

A combination of a random and snowball system 
was used to recruit participants. This approach was cho-
sen for its practicality, as it enabled the efficient collec-
tion of responses from easily accessible individuals and 
facilitated the expansion of the research area and access 
to larger social networks. The random sample initially 
enabled rapid distribution of the survey, with the ques-

Table 1. Hypotheses and paths

Hypotheses Path

H1: Subjective norms positively affects the intention to purchase pasta traced with blockchain technology (SN) SN→INT
H2: Perceived behavioral control positively affects the intention to purchase pasta traced with blockchain technology (PBC) PBC→INT
H3: Attitude towards traceability positively affects the intention to purchase pasta traced with blockch2ain technology (ATT) ATT→INT
H4: Trust in quality certifications positively affects the intention to purchase pasta traced with blockchain technology (TQC) TQC→INT
H5: Attitude towards technology positively affects the intention to purchase pasta traced with blockchain technology (TEC) TEC→INT
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tionnaire accessible and fillable online and a particular 
focus on social media users.

3.2. Data analysis

The data analysis was conducted using the softwere 
Stata 18.5. Structural equation modelling (SEM) was 
used to examine the extended theoretical framework and 
test the hypotheses. SEM combines various multivariate 
analysis methods that facilitate the investigation of mul-
tiple interactions between several latent variables (Berki-
Kiss & Menrad, 2022). It is widely used in the social sci-
ences, especially in the field of psychology. In this study, 
the partial least squares (PLS) structural equation model 
(SEM) was utilised. PLS-SEM is a statistical tool that 
has gained popularity among researchers who use it to 
analyse empirical data and evaluate different relation-
ships simultaneously (Hair et al., 2019). The applications 
of covariance-based SEM (CB-SEM) and partial least 
squares SEM (PLSSEM) are complementary, rather than 
competitive (Marcoulides & Saunders, 2006). PLS-SEM 
is more effective than CB-SEM for analysing complex 
cause-effect relationships between multiple latent vari-

ables (Sarstedt et al., 2016). In addition, PLS-SEM pro-
vides reliable results even with relatively small sample 
sizes compared to covariance-based SEM. Furthermore, 
Hair et al. (2011) suggested that PLS-SEM is the optimal 
approach when research aims to identify causal relation-
ships with unidentified potential variables that influence 
individuals’ multidimensional behaviour and intentions. 
The process consists of two steps. These include the 
structural model (inner model) and the measurement 
model (outer model). The structural model evaluates the 
development of theories and hypotheses, while the reli-
ability and validity of the constructs are evaluated using 
the measurement model (Russo & Stol, 2021).

4. RESULTS

Table 3 contains the most important socio-demo-
graphic indicators. In the study sample, men (41%) and 
women (48%) were almost equally distributed. The larg-
est age groups were 30-39 (33%) and 40-49 (29%), fol-
lowed by those over 60 (22%). The youngest group com-
prised only 16% of participants. It is noteworthy that 
there were no people between the ages of 50 and 59.

Table 2. Latent variables and items in detail.

Variable Items

Intention  (INT)
1. When blockchain-traceable pasta becomes available, I intend to buy it
2. When blockchain-traceable pasta becomes available, I will look for it and consider buying it
3. When blockchain-traceable pasta is available, I am inclined to buy it

Subjective Norms (SN)

1. I would buy pasta tracked via blockchain technology because my partner, family and friends approve it
2. I would buy pasta tracked via blockchain technology because scientists are in favour
3. I would buy pasta tracked via blockchain technology because the media (TV radio, social media) is in 
favour
4. I would buy pasta tracked via blockchain technology because the food manufacturers and supermarkets 
promote it

Perceived Behavioural Control 
(PBC)

1. I feel able to find blockchain-tracked food products in shops easily
2. I think it is easy to use apps or online tools to verify food traceability via blockchain
3. I think it is easy for me to follow the food production chain thanks to blockchain

Attitude toward BCT (ATT)

1. With the use of blockchain, organic pasta traceability information is more secure
2. The origin of organic pasta tracked with blockchain traceability is always transparent
3. Organic pasta information with blockchain traceability is more authentic
4. Organic pasta with blockchain traceability will meet higher production standards

Trust toward Quality 
Certifications (TQC)

1. Companies always comply with quality certification regulations
2. Companies provide consumers with transparent information on quality certification
3. Quality-certified product information is always truthful

Attitude toward Technology 
(TEC)

1. I am optimistic about the innovative impact of technology
2. I feel at ease to become familiar with technology
3. I believe that the adoption of technology can generate a significant improvement in transaction and 
information security
4. I find innovative technology to be mentally stimulating
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The survey participants have a high level of educa-
tion: the vast majority (84%) have a university or post-
graduate degree. Only a small percentage (14%) have a 
high school diploma, and even fewer (2%) have complet-
ed middle school. None of the respondents reported hav-
ing completed primary school. Most respondents (46%) 
were white-collar workers, followed by those working in 
businesses and public institutions (31%). A smaller pro-
portion (16%) were unemployed and only 7% were stu-
dents. In terms of income, the majority of participants 
(60%) reported an income of between €0 and €26,000. 
A smaller percentage (21%) earned more than 26,001 
euros. Interestingly, 18% of participants stated that they 
had no income.

The measurement model was assessed on the basis 
of convergent and discriminant validity. Convergent 
validity refers specifically to the extent to which the indi-
cators of the variables accurately indicate and measure 
them and to which other measures of the same vari-
ables correlate appropriately (Bani-Khalid et al., 2022). 

To determine the convergent validity of the measure-
ment model, we assessed the loadings of the indicators, 
the average variance extracted (AVE) and the composite 
reliability (CR) as well as Cronbach’s alpha. According to 
the literature, the values for Cronbach’s alpha and com-
posite reliability (CR), average variance extracted (AVE) 
and the loadings of the indicators must be higher than 
0.70, 0.70, 0.5 and 0.70, respectively (Khan et al., 2023; 
Lin et al., 2021; Rubel et al., 2021). Accordingly, the load-
ings of the indicators were examined at in the first stage. 
As shown in Table 4 in the final measurement model, all 
indicator loadings exceed the threshold of 0.70. It means 
that the construct explains over half of the variance of 
the indicator. Therefore, acceptable item reliability is 
provided. Moreover, Cronbach’s alpha and composite 
reliability are typically used to evaluate internal consist-
ency reliability (Hair et al., 2019). As Table 4 shows all 
composite reliability and Cronbach α values are higher 
than 0.70, as it suggests that the elements of the same 
latent variable are similar. 

The total mean of the squared loadings of the items 
associated with the construct is represented by the Aver-
age Variance Extracted (AVE) (Russo & Stol, 2021)  was 
used to evaluate convergent validity. The Table 4 dis-
plays that theaverage variance extracted (AVE) from 
each latent variable is higher than 0.5. it means that the 
construct explains more than half of the variance of its 
items. In summary, Table 4 demonstrates that the stand-
ardized loadings, Cronbach’s alpha, CR, AVE are all 
higher than the values recommended by the literature. 
Therefore, convergent validity was confirmed based on 
the results.

Discriminant validity shows the extent to which 
the items represent the target construct and whether a 
latent variable measures a separate construct (Russo & 
Stol, 2021). In this study discriminant validity assessed 
with the Heterotrait-monotrait ratio of the correlations 
(HTMT). The Heterotrait-Monotrait ratio of correla-
tions (HTMT) is defined as the average of the corre-
lations between items measuring different constructs 
(heterotrait correlations) relative to the geometric 
mean of the average correlations for items measuring 
the same construct (monotrait correlations)  (Hair et 
al., 2019).  The result of Table 5  illustrates that all 
Heterotrait-monotrait ratio of correlations (HTMT) 
are below the threshold value of 0.90recommended by 
(Hair et al., 2019), which confirms the sufficient dis-
criminant validity of the individual constructs. It can 
therefore be concluded that the measurement model 
fulfils the required criteria for validity and reliabil-
ity (reliability as well as convergent and discriminant 
validity).

Table 3. Socio-demographic characteristics

Detail of respondents Percentage 
(%)

Gender

Male 41
Female 48
Other genders 6
Prefer not to answer 5

Age 

19-29 16
30-39 33
40-49 29
50-59 0
Over 60 22

Education 

Elementary school 0
Middle school 2
High school 14
College degree 31
Post-degree (master, PhD.) 53

Occupation

Enterprise and public institution 31
Employee 46
Not employed 7
Unemployed 4
Retired 5
Student 7

Income level  
(Euro / month)

0 € 18
From 0 to 10.000 € 33
From 10.001 to 26.000€ 27
From 26.001 to 55.000€ 7
From 55.001 to 75.000€ 4
From 75.001 to 120.000€ 2
>120.000€ 8
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We evaluate the structural model in terms of vari-
ance explained (R2), effect size (f2), predictive relevance 
(Q2), path coefficient (β), and hypotheses testing. The 
structural model is employed for the purpose of investi-
gating the impact of exogenous variables on endogenous 
variables. The results of the hypotheses developed are 
shown in Table 6. The adjusted R2 of 0.58 indicates that 
subjective norms, perceived behavioural control, and 
attitudes toward technology explain a substantial por-
tion of the variance in consumers’ intentions to purchase 
traced pasta using blockchain technology.

Effect size (f2) was calculated to measure the mag-
nitude of the significant effects. As Cohen (1988) sug-
gested, in the structural model, f2 values of 0.02 indicate 
small effects. 0.15 indicates medium effects, and 0.35 
indicates large effects (Bani-Khalid et al., 2022). Table 5 
shows that Subjective Norms have a medium effect size, 
and Perceived Behavioural Control and Attitude toward 
Technology have a small effect size.

In this step, the Q2 value is calculated to evaluate 
the PLS path model’s predictive accuracy. The approach 
relies on the blindfolding technique that eliminates indi-
vidual points from the data matrix. These omitted points 
are then imputed using the mean, followed by estimating 
the model parameters. Thus, the Q² does not exclusively 
represent out-of-sample prediction; it reflects a combi-
nation of out-of-sample predictive ability and in-sample 

explanatory power. The blindfold procedure predicts the 
missing data points for each variable using these esti-
mated parameters as inputs. Small discrepancies between 
the original and predicted values result in a higher Q2 
value, indicating higher prediction accuracy (Hair et al., 
2019). Based on the result of Table 6, the Q2 value for the 
endogenous latent construct is greater than zero. 

The conclusions were drawn based on p-values (see 
Table 6), which led to the decision to accept or reject the 
hypotheses taken in the study.  

To answer H1: “Subjective norms positively affects 
the intention to purchase pasta traced with blockchain 
technology”, the results show that SN have a statistically 
significant positive effect on the INT to purchase block-
chain-traceable products. Therefore, the H1 is accepted. 
The coefficient of 0.403 indicates that social influence 
plays a significant role in shaping consumer behaviour. 

To answer hypothesis H2 “perceived behavioural 
control positively affects the intention to purchase pasta 
traced with blockchain technology”, it was also found to 
have a positive and significant effect on intention. How-
ever, the effect size (0.032) was smaller than that of SN. 
Thus, H2 is accepted. 

In response to H3 “Attitude towards traceability 
positively affects the intention to purchase pasta traced 
with blockchain technology”, contrary to expectations, 
ATT did not significantly affect intention. The very low 

Table 4. Reliability and validity tests.

Latent Construct Items Standardized 
loadings Cronbach’s alpha CR AVE

Intention (INT)
INT1 0.898

0.834 0.901 0.753INT2 0.932
INT3 0.764

Subjective Norms (SN)

SN1 0.873

0.869 0.910 0.717
SN2 0.858
SN3 0.814
SN4 0.840

Perceived Behavioural Control (PBC)
PBC1 0.783

0.814 0.890 0.731PBC2 0.892
PBC3 0.885

Attitude toward BCT (ATT)

ATT1 0.882

0.893 0.926 0.757
ATT2 0.841
ATT3 0.900
ATT4 0.856

Trust toward Quality Certifications (TQC)
TQC1 0.908

0.904 0.940 0.839TQC2 0.929
TQC3 0.911

Attitudes toward Technology (TEC)
TEC1 0.916

0.916 0.947 0.856TEC2 0.929
TEC3 0.930
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coefficient and the high p-value (0.969) indicate that the 
attitude towards blockchain-traceable products does not 
directly influence the purchase intention in this context. 
Therefore, H3 is rejected. 

Hypothesis H4, “Trust in quality certifications posi-
tively affects the intention to purchase pasta traced with 
blockchain technology”, was not supported, as indicated 
by the non-significant coefficient (0.006) and high p-val-
ue (0.913). 

To answer H5 “Attitude towards technology posi-
tively affects the intention to purchase pasta traced with 
blockchain technology”, TEC has a significant and posi-
tive influence on purchase intention with a coefficient of 
0.306. Therefore, the H5 is accepted. 

5. DISCUSSION

This study provides empirical evidence on the 
determinants influencing consumers’ intention to pur-
chase blockchain-enriched products, with a focus on 
pasta.  The results highlight important factors influenc-
ing consumer behaviour and offer practical implications 
for marketers and policy makers seeking to promote the 
adoption of blockchain technology in the food indus-
try. These include subjective norms, perceived behavio-
ral control, and attitudes toward technology, which sig-
nificantly influenced consumers’ purchase intentions for 
blockchain-traceable organic pasta. The results confirm 

that technology readiness is an important determinant 
of consumers’ willingness to purchase pasta with block-
chain-based traceability. Result indicates that consumers 
who have a positive attitude towards technological inno-
vation are more likely to have the intention to purchase 
blockchain-traceable products. This is consistent with 
the Technology Readiness Index (TRI), which postulates 
that optimism and familiarity with technology can facili-
tate the adoption of new technological solutions (Par-
asuraman, 2000). The significance of this relationship 
suggests that fostering a positive attitude towards the 
benefits of technology, such as increased transparency 
and safety in the food supply chain, may encourage con-
sumers to adopt products that utilise blockchain trace-
ability. This emphasises the importance of education and 
technological awareness in marketing strategies. This 
result is consistent with the findings of Lin et al. (2021), 
who also found a positive correlation between consum-
ers’ technology readiness and their willingness to pur-
chase technology-enabled products. The positive impact 
of TEC suggests that individuals with an optimistic atti-
tude towards the benefits and simplicity of technological 
products are more willing to accept products that incor-
porate blockchain for traceability. This finding empha-
sises the importance of technological awareness and 
educational initiatives. Concrete examples of educational 
initiatives include awareness campaigns to educate the 
public on how blockchain improves food traceability and 
safety; interactive digital tools, such as mobile apps or 
QR codes on packaging, that allow consumers to access 
transparent supply chain data; and workshops and 
online courses aimed at consumers and food profession-
als to improve understanding and trust in blockchain-
based certifications.

This result provides a valuable opportunity for com-
panies to develop marketing campaigns that emphasise 
the transparency, security and innovation of blockchain 
technology. In this way, companies can gain consumer 
trust and encourage adoption. For example, educating 
consumers about how blockchain technology guarantees 
authenticity and traceability could appeal to technologi-

Table 5. Results of the discriminant validity - Heterotrait-monotrait 
ratio of correlations (HTMT).

INT SN PBC ATT TQC TEC

INT
SN 0.782
PBC 0.762 0.680
ATT 0.690 0.695 0.856
TQC 0.404 0.494 0.487 0.389
TEC 0.730 0.563 0.798 0.772 0.270

Table 6. Result of the hypothesis testing.

Hypothesis No. Relationship Coefficient p-Value Decision R2_a Q2 F2

H1 SN -> INT 0.403 0.000*** confirmed

0.582

0.439 0.216
H2 PBC -> INT 0.187 0.017** confirmed 0.032
H3 ATT-> INT 0.003 0.969 unconfirmed 0.000
H4 TQC -> INT 0.006 0.913 unconfirmed 0.000
H5 TEC -> INT 0.306 0.000*** confirmed 0.099

Note: ** p < 0.05, *** p < 0.01.
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cally people who value innovation and transparency in 
their food.

The study found that ATT does not have a sig-
nificant impact on purchase intent. This result may be 
explained by the specificity of blockchain technology, 
where consumers may not fully understand or prioritise 
the benefits even if they have a positive attitude towards 
it. Alternatively, external factors such as lack of trust 
could also have a stronger influence on purchasing deci-
sions, thus obscuring the effect of attitude. This result 
is in line with the findings of previous studies by Dang 
& Tran (2020) and Prisco et al. (2022), which found 
that general attitudes towards a product do not always 
translate into purchase behaviour, especially in contexts 
where consumers do not fully understand or appreciate 
the perceived benefits. However, this finding contradicts 
the results of Dionysis et al. (2022), who postulated that 
a positive attitude towards traceability and transparen-
cy in the food industry is a good predictor of purchase 
intention. The divergence in results may be attributed 
to contextual differences or the presence of features of 
blockchain technology that consumers have not yet fully 
understood. Even if consumers are in favour of the con-
cept of traceability, this does not necessarily mean that 
they are motivated to buy pasta with blockchain trace-
ability. This suggests a disconnect between attitudes and 
actions, with consumer attitudes not always translating 
into actual purchasing behaviour. Further research could 
explore how this gap can be bridged by linking block-
chain traceability to more directly perceived benefits 
such as food safety, quality assurance and environmental 
sustainability.

PBC was identified as an important predictor of pur-
chase intention, suggesting that consumers who believe 
they have the ability and resources to identify and uti-
lise blockchain-traceable pasta products are significantly 
more likely to express a purchase intention. This result 
is consistent with the TPB framework, which states that 
consumers who feel able to find and use blockchain 
traceable products are more likely to have the intention 
to purchase them. This finding emphasises the impor-
tance of ease of access and use for technology-driven 
innovations such as blockchain. Improving the level of 
control perceived by consumers through intuitive appli-
cations and clearer information can increase the likeli-
hood of adoption. Moreover, the finding is consistent 
with the results of studies by Lin et al. (2021), Dang & 
Tran (2020), Dionysis et al. (2022) and Prisco et al. 
(2022), which have shown that PBC plays a central role 
in influencing consumer intentions, especially in the 
context of new technology adoption. The significant role 
of PBC suggests that ease of access and use are key fac-

tors for consumers. If consumers perceive blockchain-
traceable pasta as easily accessible and verifiable, they 
are more likely to express interest in purchasing it. 
Therefore, companies should prioritise the development 
of user-friendly and accessible blockchain-based tracea-
bility solutions. One possible solution is the development 
of straightforward applications or digital resources that 
allow consumers to effortlessly verify the traceability 
of products, improving their perceived control over the 
purchasing process. Despite the inconsistency of SN as a 
predictor in different studies, the results of this research 
context show its importance. This result is consistent 
with the theory of planned behaviour, which postulates 
that the approval and support of significant others, e.g. 
family, friends and social networks, can strongly influ-
ence a person’s behavioural intentions (Ajzen, 1991). 

This suggests that opinions, recommendations and 
social pressure from peers, family, media and credible 
authorities are critical to consumers’ intention to pur-
chase pasta with blockchain traceability. This finding 
contradicts the discrepancies observed in other studies, 
but highlights an important aspect of social influence 
on consumer behaviour. The importance of subjective 
norms in this study suggests that social acceptance and 
approval can be effective in driving the adoption of prod-
ucts with blockchain traceability. Incorporating social 
evidence, such as endorsements from influencers, experts, 
and food industry leaders, into marketing strategies 
could effectively generate consumer interest. In addition, 
the implementation of educational initiatives that spread 
knowledge about the benefits of blockchain technology, 
supported by authoritative figures such as scientists and 
food safety professionals, could help to reinforce societal 
expectations of purchasing such products.

Finally, the hypothesis that trust in quality certi-
fications directly inf luences consumers’ intention to 
buy products with blockchain traceability was not con-
firmed. This result indicates that trust in existing qual-
ity certifications does not necessarily lead to a higher 
purchase intention for blockchain-traceable products. 
One possible explanation for this is that while consum-
ers trust conventional quality certifications, they do not 
perceive traceability via blockchain as directly linked 
to these traditional certifications or do not see it as an 
added value. The lack of significant results could also be 
due to a knowledge gap or a lack of perceived relevance 
between quality certifications and blockchain technol-
ogy. This result is in line with the result reported by 
Contini et al. (2023). They also found that trust in tra-
ditional quality certifications is not necessarily trans-
ferable to new technological applications. This can be 
attributed to the fact that there is no recognisable link in 
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consumers’ minds between blockchain traceability and 
existing quality measures. The lack of emphasis on the 
role of trust suggests that consumers may not perceive 
blockchain technology as a natural extension of existing 
quality certification systems. An alternative explanation 
is that respondents may have a high level of trust in tra-
ditional certifications, but do not perceive the value of 
blockchain technology as being enhanced by them. This 
emphasises the need for clear communication about how 
blockchain can complement and enhance quality certi-
fication by providing additional layers of transparency 
and authenticity beyond traditional systems.

6. CONCLUSION 

This study provides new insights into the factors 
that influence consumers’ intention to buy blockchain-
labelled pasta. The study highlights that while attitudes 
towards the technology positively influence consumer 
purchase intentions, general attitudes towards products 
with blockchain traceability and trust in existing quality 
certifications were not found to be significant predictors. 
This suggests that successful marketing strategies should 
focus on educating consumers about the benefits of 
blockchain, simplifying the user experience, and lever-
aging social influences to drive adoption of blockchain-
based traceability.

These findings have important implications for both 
policy makers and producers in the agri-food sector. For 
policy makers, the study suggests that blockchain tech-
nology can be an important tool to combat food fraud 
and ensure food safety and quality. There is therefore 
a need for supportive policies and regulations that pro-
mote the adoption and implementation of blockchain 
throughout the food supply chain. Governments can 
incentivize blockchain adoption to improve trust in food 
certifications through targeted policies and financial 
support. First, governments could launch consumer edu-
cation initiatives, such as awareness campaigns and digi-
tal tools, to improve public understanding of how block-
chain enhances food safety and authenticity. Finally, reg-
ulators could develop clear and enforceable standards for 
blockchain traceability, ensuring that certified products 
meet high standards of transparency and accountability.

For producers, the results of this study can help 
develop effective marketing and communication strate-
gies to promote products with blockchain traceability. 
By emphasising benefits such as authenticity, traceability 
and sustainability, producers can gain consumer trust 
and increase the appeal of products with blockchain 
traceability. 

While blockchain can potentially increase trust in 
existing quality signals, the challenge is to effectively 
communicate its benefits to consumers. By recognising 
the importance of social norms, attitudes towards tech-
nology and perceived behavioural control, stakeholders 
can promote transparency, accountability and sustain-
ability in the agri-food industry, creating a more efficient 
and competitive environment. 

Although we acknowledge the limitation of our sam-
ple size, the use of PLS-SEM ensures the robustness of 
our results, as this method is suitable for studies with 
relatively small samples (Hair et al., 2011; Sarstedt et al., 
2016). This method allows us to work with small sample 
sizes, maximize explained variance, and minimize esti-
mation bias (Russo & Stol, 2002). Moreover, the combi-
nation of snowball and random sampling is effective for 
data collection, it is important to recognise the inherent 
limitations of these techniques. First and foremost, there 
is the possibility of selection bias in non-probability 
sampling. For future studies, it would be beneficial to 
consider the use of random sampling to minimise bias.
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Abstract. This study aims to examine the current state of awareness regarding Agri-
culture 4.0 (A4.0) among Italian agricultural enterprises and to analyse variations in 
adoption levels, expressed needs, perceived benefits, challenges and barriers to digitali-
sation. Drawing on data from a descriptive survey conducted among Italian farms in 
2024, this study presents findings from 1,248 respondents. The results indicate varying 
levels of adoption of A4.0 solutions, with monitoring systems and connected vehicles 
being the most widely implemented. The primary drivers for A4.0 adoption include 
farm management, operational control, and the enhancement of production efficien-
cy, all of which are associated with significant perceived benefits. However, challenges 
such as limited interoperability and skill shortages hinder A4.0 implementation, while 
financial and structural constraints remain major barriers for farms seeking to transi-
tion to A4.0. This study offers valuable insights to inform policymakers, industry stake-
holders, and researchers in fostering a more effective and inclusive digital transforma-
tion in the Italian agricultural sector.

Keywords:	 Agriculture 4.0, smart farming, digital agriculture, survey.

1. INTRODUCTION

Agriculture 4.0, also known as “digital agriculture”, “smart farming” or 
“smart agriculture”, is defined as the integration of advanced digital technol-
ogies – such as the Internet of Things (IoT), robotics, Artificial Intelligence 
(AI), and Big Data analytics - into the agricultural sector (Fragomeli et al., 
2024). This concept is grounded in the broader framework of Industry 4.0, 
which is responsible for the transformation of manufacturing processes (Da 
Silveira et al., 2021). Agriculture 4.0 (hereby A4.0) represents a significant 
departure from both traditional and precision agriculture by leveraging auto-
mated, interconnected, and data-driven systems (Sharma et al., 2022).
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The transition to digitalised agricultural systems 
is increasingly considered as pivotal for addressing the 
global challenges facing society today. Rapid population 
growth, urbanization, industrialization, loss of arable 
land, freshwater scarcity, and environmental degradation 
have escalated concerns regarding food security (Abbasi 
et al., 2022). To meet the rising global demand for food, 
agricultural practitioners must enhance productivity 
while minimising pressure on natural resources such as 
water, land, and energy (Sharma et al., 2022).

This highlights the urgent need for efficient, data-
driven agricultural practices that optimise resource 
usage and improve productivity (Fragomeli et al., 2024). 
Moreover, agriculture is both a major contributor to 
greenhouse gas emissions and a sector vulnerable to the 
impacts of climate change (Sott et al., 2020). Integrating 
digital technologies offers the potential to mitigate the 
environmental footprint of agricultural practices while 
bolstering farmers’ resilience to climate change (Bal-
asundram et al., 2023).

Technologies such as robotics, smart irrigation and 
IoT sensors can promote more sustainable agricultural 
practices by reducing emissions, optimising resource 
use, and enabling real-time monitoring of crop condi-
tions (Assimakopoulos et al., 2024). The environmental 
benefits of A4.0 are closely tied to economic advantages, 
as digital solutions improve operational productivity, 
reduce resource waste, and generate cost savings (Zul 
Azlan et al., 2024). Additionally, from a social perspec-
tive, the digitalisation of agriculture empowers farmers 
by providing better decision-making tools and improv-
ing working conditions (Zhai et al., 2020).

According to Papadopoulos et al. (2024), for 
instance, recording and mapping technologies, com-
bined with guidance and controlled traffic farming tech-
nologies, could lead to reductions of up to 80% in fer-
tiliser use. Furthermore, VRT (Variable Rate Technolo-
gies) could achieve a 60% decrease in fertiliser consump-
tion and an 80% reduction in pesticide use, while also 
potentially boosting yields by 62%. Additionally, robotic 
systems and smart machines could reduce labour by 
97% and diesel consumption by 50%.

Thus, A4.0 represents a transformative approach that 
addresses environmental, economic, and social chal-
lenges, contributing to the development of more sustain-
able and resilient agricultural systems (Maffezzoli et al., 
2022b). 

Despite the promising role that A4.0 solutions 
could play in mitigating sustainability challenges while 
improving productivity, their uptake remains limited 
and fragmented (Osrof et al., 2023). Literature relates the 
uneven adoption rate to different factors. 

Recent empirical contributions confirm that farm-
ers’ intentions to adopt new solutions go beyond purely 
economic considerations and are shaped by a combina-
tion of personal attitudes and perceived obstacles. For 
instance, Giampietri et al. (2020) emphasize the role of 
farmers’ trust, experience and knowledge in the adop-
tion of risk management practices, highlighting the 
importance of transparency about costs and benefits in 
adoption incentivization. Menozzi et al. (2015) highlight 
the relevance of farmers’ attitudes and perceived control 
in adopting sustainable farming practices, stressing the 
need for better communication and collaboration within 
the agricultural supply chain to increase A4.0 adoption.

Meanwhile, data from farm-level surveys show 
how age, gender, education and farm size remain sig-
nificant influencing factors for choices regarding, for 
example, climate change adaptation strategies (Ony-
enekwe et al., 2023).

Despite the ongoing discussions in the literature 
regarding the factors that favour or hinder the spread of 
A4.0, the influence of specific contexts, as countries and 
types of farms and farmers, remains a compelling area 
of investigation (Fragomeli et al., 2024; Da Silveira et al., 
2023). Therefore, the authors emphasise the need for a 
country-specific investigation on: i) farmers’ awareness 
of A4.0; ii) the main challenges and barriers in the adop-
tion as well as iii) the sustainability benefits perceived. 
We believe that building a comprehensive knowledge 
around the gap between A4.0 technologies, their prom-
ised technical advantages and the actual implementation 
along with the feasibility of realising the related sustain-
ability benefits, is fundamental to inform key decision 
makers (e.g., policy makers). This knowledge can help in 
shaping proper strategies which place farmers and their 
context-specific needs at the centre.

To this end, a survey was conducted targeting Ital-
ian farms to assess the current level of digitalisation in 
the agricultural sector, with a specific focus on the key 
dimensions influencing the adoption and implementation 
of A4.0 solutions. The following research questions were 
formulated to explore the state-of-the-art of A4.0 in Italy:
-	 RQ1: What is the level of adoption and awareness of 

A4.0 solutions in Italy?
-	 RQ2: What are the primary factors driving agricul-

tural enterprises to adopt A4.0 solutions?
-	 RQ3: To what extent have the achieved benefits 

aligned with the expressed needs?
-	 RQ4: What are the most significant hindering fac-

tors to farmers’ adoption of A4.0 solutions?
This study reveals that, while A4.0 awareness is high, 

adoption is uneven, with greater uptake of A4.0 solu-
tions such as monitoring systems and connected vehi-
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cles. Adoption is mainly driven by improvements in farm 
management rather than operational efficiency.

Benefits generally meet or exceed expectations, par-
ticularly in optimizing technical inputs and water use, 
which yield both economic and environmental gains. 
Social sustainability effects remain debated, with some 
evidence of labor market benefits, though concerns per-
sist over potential job displacement.

Despite the benefits, adoption is hindered by chal-
lenges such as interoperability, lack of skills, uncertain 
return on investments and limited technical support. 
Financial and structural barriers - especially for small 
farms - and poor connectivity in remote areas further 
constrain A4.0 uptake. This study recommends target-
ed policy support, training, and agrifood supply chains 
stakeholder collaboration to overcome these barriers and 
accelerate digital transformation in Italian agriculture.

The remainder of the paper outlines as follows: the 
first section develops a review of the existing literature 
on main A4.0 solutions and applications along with the 
factors connected to their spread, section 2 presents a 
literature review covering the evolution of technologies 
in agriculture, the main driving technologies and their 
applications, challenges and benefits. Section 3 explains 
the methodology adopted, while results are described 
in section 4. Finally, sections 5 and 6 discuss the main 
results and draw conclusions from the authors’ work.

2. LITERATURE REVIEW

2.1. The evolution of agricultural technologies

Over the years, agriculture has evolved through dis-
tinct technological phases, progressing from Agriculture 
1.0 to Agriculture 4.0 (Zhai et al., 2020). Traditional agri-
culture, Agriculture 1.0, relied heavily on manual labour 
and animal power. The transition to Agriculture 2.0 began 
in the 19th century with the introduction of mechanised 
farming and steam engines, which significantly increased 
the efficiency of agricultural activities. This second phase 
was also characterised by an extensive use of chemical fer-
tilizers and pesticides, leading to environmental degrada-
tion and resource overexploitation. In the 20th century, 
Agriculture 3.0 emerged, leveraging advancements in com-
puting and electronics to automate processes and enhance 
precision, also reducing dependency on chemicals. Today, 
A4.0 marks the era of smart farming, integrating digital 
technologies to create highly interconnected and data-driv-
en agricultural systems (Fragomeli et al., 2024).

These innovations enable farmers to make real-
time, data-informed decisions, improving productivity, 
sustainability, and resource efficiency while minimising 

environmental impact. Several terms are used to denote 
A4.0, such as “digital agriculture”, “smart farming” and 
“smart agriculture” (Albiero et al., 2020).      

As outlined by Sponchioni et al. (2019) and Maffez-
zoli et al. (2022b), Agriculture 4.0 can be defined as the 
evolution of precision farming, realised through the auto-
mated collection, integration, and analysis of data from 
the field, equipment sensors, and other third-party sourc-
es. While precision farming serves as a management sys-
tem that aims at optimising crop production inputs at the 
field level (Bongiovanni and Lowenberg-Deboer, 2004; 
Pierce and Nowak, 1999; Gebbers and Adamchuk, 2010), 
A4.0, facilitated by the smart and digital technologies 
inherent in Industry 4.0, transforms previously isolated 
data silos into actionable knowledge, supporting farm-
ers in decision-making both within their enterprises and 
across the broader agrifood supply chain. This shift from 
traditional to digital systems ultimately aims to enhance 
cost efficiency and profitability, fostering the transition to 
more sustainable agricultural systems from an economic, 
environmental and social perspective.

Recent advancements in A4.0 are marked by emerging 
trends that are shaping the future of farming, with a par-
ticular focus on enhancing efficiency, sustainability, and 
resilience. A key forthcoming development is the transi-
tion toward Agriculture 5.0, which extends the founda-
tions of A4.0 by incorporating human-centric, sustainable, 
and resilient principles derived from Industry 5.0 (Abbasi 
et al., 2022). This shift refines the collaboration between 
humans and machines, aiming to improve efficiency while 
reducing environmental impact through circular economy 
strategies (Fragomeli et al., 2024). Alongside this evolu-
tion, digital twin technology has gained prominence as a 
tool for optimising agricultural operations (Peladarinos et 
al., 2023; Escribà-Gelonch et al., 2024), creating real-time 
virtual replicas of farms that enable monitoring, predic-
tive analytics, and improved system integration (Polymeni 
et al., 2023). By simulating real-world agricultural pro-
cesses, digital twins can support decision-making in areas 
such as crop growth, soil composition, and climate adapt-
ability (Peladarinos et al., 2023). At the same time, the 
increasing challenges posed by climate change have accel-
erated the adoption of climate-smart agricultural (CSA) 
practices, which focus on building resilience against envi-
ronmental concerns, reducing greenhouse gas emissions, 
and ensuring long-term food security through adaptive 
resource management (Balasundram et al., 2023).

2.2. Key technologies and applications

There are various ways to categorize the key tech-
nologies driving A4.0, as different literature studies high-
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light several aspects of innovation in the field. Internet 
of Things (IoT) enables the connection of agricultural 
devices and machinery, allowing real-time monitoring 
and automation of farm operations (Assimakopoulos et 
al., 2024; Abbasi et al., 2022). Sensors and wireless sen-
sor networks collect critical data on soil conditions, 
weather, and crop health, supporting precision farm-
ing (Ahmed et al., 2024). Artificial Intelligence (AI) and 
Machine Learning process large datasets to optimise 
resource use, detect plant diseases, and predict yields, 
making farming more data-driven and efficient (Ahmed 
et al., 2024; Balyan et al., 2024). AI-driven systems are 
increasingly capable of autonomous decision-making, 
on-farm reinforcement learning, and real-time adapta-
tion, significantly transforming how decisions are made 
at the farm level (Khanna et al., 2024). Robotics and 
automation include autonomous machines and drones 
that assist in tasks such as planting, harvesting, and 
spraying, reducing labour dependency and increasing 
precision (Ahmed et al., 2024; Balyan et al., 2024). Data 
analytics and Big Data play a crucial role in processing 
vast amounts of information collected from farms, offer-
ing insights for better decision-making (Abbasi et al., 
2022). Cloud and edge computing ensure that agricul-
tural data is processed efficiently and securely, reducing 
latency and enabling real-time responses in smart farm-
ing systems (Abbasi et al., 2022). Blockchain technology 
enhances transparency and traceability in the agricultur-
al supply chain by securely recording transactions and 
ensuring data integrity (Ahmed et al., 2024). 

While the technologies discussed above form the 
foundations of A4.0, they are not typically deployed in 
isolation. Instead, they are combined into integrated 
digital solutions, translating technological capabilities 
into practical tools for farming and therefore addressing 
different agricultural needs. Such integrated solutions 
include Decision Support Systems (DSS) (Araujo et al., 
2021), monitoring systems (Dayıoğlu and Turker, 2021), 
mapping solutions (Karunathilake et al., 2023), Variable 
Rate Technologies (VRT) (Dayıoğlu and Turker, 2021), 
connected vehicles (Karunathilake et al., 2023), telem-
etry systems (Papadopoulos et al., 2024), robotics and 
drones (Araujo et al., 2021). These solutions are further 
described in the methodology section, where their iden-
tification, based on a review of scientific and grey litera-
ture, forms a key step of the survey design. Investigating 
adoption at the solution level, rather than at the level of 
individual technologies, better reflects how farmers actu-
ally implement digital tools in practice.

As with key technologies and solutions, the applica-
tions of A4.0 have been categorised in different ways, 
reflecting the broad range of domains in which digital 

technologies can support agricultural practices. Water 
and irrigation management involves smart irrigation sys-
tems, IoT-based sensors, and climate monitoring tools 
to optimise water use, ensuring efficient irrigation and 
drought adaptation (Ahmed et al., 2024; Javaid et al., 
2022). Soil and crop health monitoring utilizes remote 
sensing, drones, and AI-driven diagnostics to assess soil 
fertility, detect diseases, and manage agrochemical and 
fertilizer use with precision (Yousaf et al., 2023). Predic-
tive analytics for climate adaptation and yield forecast-
ing apply Machine Learning and Big Data analytics to 
anticipate weather patterns, pest outbreaks, and crop pro-
ductivity, helping farmers make data-driven decisions to 
mitigate risks (Kumar Kasera et al., 2024). Autonomous 
machinery and robotics enhance efficiency by using auto-
mated tractors, drones, and harvesting robots to perform 
tasks such as soil preparation, planting, and harvesting 
with minimal human intervention (Oliveira et al., 2021). 
Controlled-environment agriculture includes green-
house cultivation, hydroponics, and aquaponics, which 
optimise growing conditions and reduce dependency on 
natural weather cycles, ensuring year-round food produc-
tion (Maffezzoli et al., 2022b). Livestock monitoring and 
regulation employs wearable sensors, automated feeding 
systems, and AI-based health tracking to improve animal 
welfare, optimise breeding, and prevent diseases (Ahmed 
et al., 2024). Finally, supply chain optimisation focuses 
on product tracking, storage management, and food 
processing, incorporating blockchain and automation to 
enhance traceability, reduce waste, and streamline logis-
tics from farm to consumer (Kumar Kasera et al., 2024).

To summarise, these technological solutions, 
applied in a diverse range of domains, can result in a 
set of improvements for farmers. Such improvements, 
later investigated through a survey, encompass differ-
ent dimensions. A4.0 solutions can support farmers with 
improved forecasting capabilities and improved farm 
management and control; support planning and sched-
uling activities, while also facilitating and streamlining 
workforce processes; optimise the use of technical inputs 
(water, pesticides, fertilizers), enhance efficiency and 
reduce losses due to pests and diseases. Finally, through 
monitoring and measurement, they enable increased 
awareness on farm operations and improve the quality of 
agricultural products. 

All these enhancements can lead to substantial eco-
nomic, environmental and social benefits.

2.3.Sustainability benefits

A4.0 yields significant economic, social, and envi-
ronmental benefits, thereby fostering a profound trans-
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formation of the agricultural sector. Economically, it 
enhances resource use efficiency by optimising the 
application of water, fertilizers, and pesticides, reducing 
waste, and increasing agricultural yields. This leads to 
greater profitability for farmers and more cost-effective 
farming practices (Zul Azlan et al., 2023; Abbasi et al., 
2022). Additionally, the automation and digitalisation of 
farm operations, such as harvesting, sowing, and irriga-
tion, result in time and cost savings, improving opera-
tional efficiency (Pradel et al., 2022). The introduction 
of predictive models and real-time data analysis can 
help farmers forecast adverse conditions like disease 
outbreaks or extreme weather, thereby improving the 
resilience of agricultural systems and ensuring produc-
tion even in challenging circumstances (Zul Azlan et 
al., 2023). From an environmental standpoint, smart 
farming practices significantly reduce agriculture’s eco-
logical footprint. Precision agriculture technologies, 
AI-driven crop monitoring, and automated machinery 
facilitate the efficient use of resources, leading to reduced 
fuel consumption, lower greenhouse gas emissions, and 
improved water conservation (Cambra Baseca et al., 
2019). Moreover, the deployment of technologies such as 
drones and IoT-based environmental monitoring systems 
supports soil health management, optimises nutrient use 
efficiency, and strengthens climate resilience (Abbasi 
et al., 2022). By minimising waste and promoting envi-
ronmentally responsible practices, A4.0 emerges as a 
key driver of sustainable agricultural development (Zul 
Azlan et al., 2023).

From a social perspective, A4.0 plays a crucial role 
in enhancing the well-being of rural communities, agri-
cultural workers, and consumers. By promoting more 
efficient and sustainable farming practices, A4.0 strength-
ens food security, mitigates food shortages, and reduces 
waste (Jin et al., 2020). Furthermore, the integration of 
advanced technologies equips farmers with improved 
decision-making tools, contributing to higher living 
standards by lowering labour costs and enhancing work-
ing conditions (Da Silveira et al., 2021). Additionally, A4.0 
enhances product quality and traceability, ensuring food 
safety and addressing consumer concerns (Zul Azlan et 
al., 2023). The integration of advanced digital monitor-
ing technologies can in fact support the verification of 
environmental and social standards along the food sup-
ply chain (Meemken et al., 2024). These systems not only 
strengthen sustainability management but also offer new 
avenues for accountability and trust in food systems. 
However, they further raise important questions about 
equity and data access, which merit further attention 
as digital monitoring expands (Meemken et al., 2024). 
Despite such promising social benefits, scholars have also 

drawn attention to the danger of overly optimist nar-
ratives that see these innovations as universal solutions. 
Klerkx et al. (2020) emphasize the need to account for 
the social and ethical implications of A4.0 transitions, 
particularly in terms of labor displacement, rural depop-
ulation, power concentration, and the marginalization of 
alternative, potentially more accessible technologies.

In fact, while A4.0 promises numerous benefits, its 
impacts are not unilaterally positive. Muhl et al. (2022) 
stress how digital agriculture may reinforce existing 
inequalities and that social issues like food insecurity, 
often driven by broader social injustices, will not be 
solved by technological development alone. The sustain-
ability debate thus calls for an inclusive and responsi-
ble approach to the use and development of these tech-
nologies, ensuring accessibility across different contexts 
(Muhl et al., 2022).

2.4. Challenges and barriers

The adoption of A4.0 technologies is hindered by a 
range of significant challenges and barriers, as highlighted 
by (Assimakopoulos et al., 2024, Da Silveira et al., 2021; 
Da Silveira et al., 2023; Fragomeli et al., 2024). An inter-
esting classification of challenges is provided by Lezoche 
et al. (2020), where a distinction is made between organi-
zational, social and technological challenges. Among 
organization challenges, one of the most frequently asso-
ciated with A4.0 adoption is the high cost connected to 
the technology adoption, including the initial investment 
required for the implementation of the components, the 
ongoing maintenance costs, and the cost of skilled labour 
(Da Silveira et al., 2023). These financial challenges are 
particularly burdensome for small-scale farms, which 
often lack the necessary capital or access to financing 
options to invest in such innovations (Assimakopoulos et 
al., 2024). Additionally, from a more social perspective, 
the complexity of modern agricultural technologies and 
the advanced skills required for their operation present 
further obstacles (Fragomeli et al., 2024). These barriers 
are not unique to the Italian context; similar challenges 
have been widely observed in other regions, particu-
larly among smallholder farmers. For instance, Mhlanga 
et al. (2023) highlight the digital transformation obsta-
cles in African agriculture, where factors such as limited 
infrastructure, insufficient digital literacy, lack of fund-
ing mechanisms, and farmer resistance significantly con-
strain adoption. In general, farmers with limited techno-
logical proficiency - especially older individuals or those 
with lower levels of formal education - may struggle to 
integrate digital tools into their daily operations (Assima-
kopoulos et al., 2024). It can be stated that, beyond costs, 
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adoption is shaped by a complex interaction of operator 
characteristics (such as age, education, and digital skills), 
farm-level attributes (including size, income, and speciali-
zation), and the perceived attributes of the technologies 
themselves – such as their trialability, ease of integration, 
and perceived utility (Khanna et al., 2024).

From an organizational perspective, uncertain regu-
latory aspects and complex legal frameworks often hin-
der adoption (Lezoche et al., 2020), highlighting the role 
of manufacturers and governmental bodies as critical in 
mitigating these challenges. 

Looking at technological challenges, a further bar-
rier is often recognized in inadequate infrastructures, 
particularly in rural areas, where poor internet connec-
tivity and restricted access to technical support networks 
hinder the full utilization of digital technologies (Da 
Silveira et al., 2023; Fragomeli et al., 2024). Moreover, 
farmers already managing extensive daily responsibilities 
may perceive these new technologies as overly time-con-
suming or complex, together with concerns about lack 
of interoperability and issues about data security and 
privacy (Lezoche et al., 2020).  Moreover, many farmers 
report a lack of accessible training programs, technical 
guidance, and support services, which prevents them 
from fully understanding and implementing digital tools 
(Da Silveira et al., 2023).

These financial, educational, infrastructural, and 
institutional barriers underscore the multifaceted 
challenges associated with adopting A4.0 technolo-
gies. Addressing these issues through targeted policies, 
improved infrastructure, and comprehensive training 
initiatives is essential for promoting widespread and 
equitable adoption of digital farming solutions.

3. RESEARCH METHODOLOGY

The primary objective of this research is to assess 
the current state of digitalisation within the Italian agri-
cultural sector, with a specific focus on different key 
dimensions that shape the adoption and implementation 
of A4.0 technologies. To evaluate the state-of-the-art of 
A4.0 in Italy, the following research questions have been 
formulated:
–	 RQ1: What is the level of adoption and awareness of 

A4.0 solutions in Italy?
–	 RQ2: What are the primary factors driving agricul-

tural enterprises to adopt A4.0 solutions?
–	 RQ3: To what extent have the achieved benefits 

aligned with the expressed needs?
–	 RQ4: What are the most significant hindering fac-

tors to farmers’ adoption of A4.0 solutions?

To address these research questions, the study exam-
ines the following dimensions:

Adoption and awareness of A4.0 solutions: assessing 
the extent to which identified A4.0 solutions have been 
implemented across the sector and the level of awareness 
that Italian farms have regarding these technologies.

Drivers of digitalisation: identifying the factors moti-
vating farms to explore and implement the proposed 
A4.0 solutions, highlighting key needs and expectations.

Benefits achieved: evaluating the advantages 
achieved through the adoption of A4.0 solutions with 
regards to the specific needs expressed.

Challenges encountered by farmers adopting A4.0 
technologies: examining obstacles that farms encoun-
tered during the adoption and implementation process 
of A4.0 solutions.

Inhibiting factors for non-adopting farmers: investi-
gating the underlying reasons for the hesitation or ina-
bility of non-user farmers to adopt A4.0 solutions.

The last two categories are drawn from the literature 
on “challenges and barriers”, which typically does not 
distinguish between adopters and non-adopters. How-
ever, based on the authors’ experience and discussions 
with farmers and technology providers, this distinction 
was deemed necessary to better ref lect the obstacles 
faced by Italian agricultural enterprises in uptaking and 
using A4.0 solutions.

To address these objectives systematically, the 
research followed a structured methodology comprising 
the following steps:

Sample development. The research referenced      
data from the 7th General Census of Agriculture of the 
Italian National Institute of Statistics (ISTAT)1 to iden-
tify a representative sample of Italian agricultural enter-
prises. The sampling framework accounted for criti-
cal variables, including farm size, production type, and 
geographic distribution, ensuring a diverse and com-
prehensive representation of the Italian agricultural sec-
tor. The sample was drawn from three perspectives: (1) 
geographic distribution: Italian farms were grouped in 
four main regions to capture macro-regional variations 
in farms geographical distribution (Table 1). (2) Primary 
crop production: Italian farms have been classified based 
on their primary agricultural products, determined by 
the proportion of Utilised Agricultural Area (UAA) allo-
cated to specific cultivations (Table 2). (3) Farm size: 
Italian farms have been categorised according to their 
UAA size, allowing for an analysis of adoption patterns 
by operational scale (Table 3). A proportionate stratified 
random sampling approach was employed, whereby the 

1 https://www.istat.it/statistiche-per-temi/censimenti/agricoltura/7-cen-
simento-generale/ 

https://www.istat.it/statistiche-per-temi/censimenti/agricoltura/7-censimento-generale/
https://www.istat.it/statistiche-per-temi/censimenti/agricoltura/7-censimento-generale/
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total population, as defined by ISTAT, was divided into 
mutually exclusive strata. Each stratum was sampled in 
proportion to its representation within the overall popu-
lation. Within each stratum, participants were selected 
using a random sampling method.

Identification of a set of A4.0 solutions. A tailored 
set of A4.0 solutions was developed in alignment with 
the operational characteristics of the agricultural sec-
tor based on an analysis of scientific and grey literature 
on this topic (Araújo et al., 2021; Dayıoğlu and Turker, 
2021; Karunathilake et al., 2023; Papadopoulos et al., 
2024). This set comprises the following A4.0 solutions:

DSS – Decision Support Systems, that assist farm-
ers in decision-making by optimising management and 
agronomic choices based on field data, environmental, 
weather and soil data, and information provided by the 
farmer. These systems can directly provide both man-
agement and agronomic advice to the users.

Monitoring systems, enabling the monitoring, often 
remotely and automatically, of environmental conditions 
or other parameters related to crops.

Mapping solutions, allowing the mapping of soil 
and crops, providing spatial variability in soil, crop, and 
hydrological characteristics, among others. These spa-
tialised datasets can be used for various purposes such 
as variable rate input applications, agronomic decision-
making support, and operational management.

Variable Rate Technology (VRT) solutions that enable 
field operations and the distribution of inputs based on 
the spatial variability detected in the field and the needs 
of the soil and crop systems.

Connected vehicles, i.e. digitally connected machin-
ery that is equipped with integrated digital technologies, 
such as assisted driving, precision navigation systems, 
and auto-steering systems.

Telemetry systems and solutions for vehicle and 
equipment monitoring, that can locate, monitor and pro-
vide assisted control of agricultural machinery, including 
auto-steering systems and telematic solutions for fleet 
monitoring, predictive maintenance, and machinery effi-
ciency improvement.

Robotics, i.e. solutions involving autonomous 
machinery capable of movement, decision-making, and 
performing specific tasks and crop operations with little 
or no operator intervention.

Drones, i.e. solutions and services involving the use 
of drones for mapping crops and land through cameras 
and sensors, monitoring crop health, and applying prod-
ucts or biological control agents.

For the purpose of this research, Farm Management 
Information Systems (FMIS) have been excluded from 
the analysis, as they are classified as enabling technolo-

gies rather than core components of the A4.0 paradigm. 
As Industry 4.0 evolves and digital technologies con-
tinue to expand and mature into practical solutions for 
farmers, it becomes crucial to distinguish between core 
components of the paradigm and enabling technologies. 
While enabling technologies play a vital role in support-
ing A4.0, they are considered complementary rather than 
fundamental elements of the paradigm itself.      

Survey design and implementation. An online survey 
was developed and distributed targeting farms identified 
through the sampling framework. The online format was 
chosen for its cost-efficiency, ease of administration, and 
ability to minimise errors associated with manual data 
collection, as also reported by van Selm and Jankowski 
(2006) and Maffezzoli et al. (2022a).

This survey consisted of seven sections: 
1.	 General information, collecting foundational and 

demographic details about the respondent and their 
agricultural enterprise.

2.	 A4.0 awareness and implementation, assessing the 
level of familiarity and the extent of adoption of the 
proposed set of A4.0 solutions.

3.	 Needs, benefits, and challenges, exploring the specif-
ic needs driving the adoption of A4.0 solutions, the 
benefits achieved, and the challenges encountered 
during their implementation.

4.	 Data management capabilities, evaluating the farms’ 
ability to collect, store, analyse, and utilize data 
effectively to inform decision-making processes.

5.	 Digital skills, assessing the competences and level of 
expertise of farm operators in relation to A4.0 solu-
tions.

6.	 Investments, reviewing past investments, current 
expenditures, and anticipated future investments in 
A4.0 solutions.

7.	 Inhibiting factors, identifying the barriers and con-
straints preventing or limiting the adoption of A4.0 
solutions.
The full set of questions included in each section of 

the survey is provided in Appendix A, located at the end 
of this manuscript.

Data collection. Data collection was conducted from 
September 2024 to December 2024. The process yielded 
a total of 1,248 valid responses, providing a robust data-
set for detailed analysis. Tables 1, 2 and 3 report the 
sample of responses collected according to the critical 
sampling variables and table 4 provides a summary of 
the main descriptive statistics on collected data.

The tables presented below highlight a discrepancy 
between the sample distribution and that of the overall 
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population, resulting in an overrepresentation of farms 
located in Northern Italy and an underrepresentation 
of those in the South and Islands. This imbalance may 

introduce a geographical bias into the analysis. Moreo-
ver, the average Utilised Agricultural Area (UAA) of the 
sampled farms, amounting to 22 hectares, is notably 
higher than the national average of 11.1 hectares report-
ed by ISTAT2, indicating a sample skewed toward more 
structured and capital-intensive farming operations. The 
sample also includes a disproportionately large share of 
vineyard farms, a sector typically associated with higher 
profitability and investment capacity, which may further 
influence the study’s results.

However, these deviations do not necessarily com-
promise the validity of the findings. The research pri-
marily aims to investigate the adoption and perceived 
benefits of A4.0 solutions, an area where more structured 
and technologically advanced farms are expected to play 
a pioneering role (Giua, 2022). Consequently, focusing 

2 https://www.istat.it/it/files/2022/06/censimento_agricoltura_gismondi.pdf

Table 1. Total population and sample size and their distribution 
across Italian regions (number of farms).

 Pop. size 
distr.

Pop. size 
distr. (%)

Sample size 
distr.

Sample size 
distr. (%)

North-west 113,972   10% 304 24%
North-east 187,429   16% 319 26%
Centre 179,230   16% 328 26%
South and Islands 652,392   58% 297 24%
Total 1,133,023   100% 1,248 100%

Table 2. Total population and sample size and their distribution 
across primary crop productions (UAA - Utilised Agricultural Area).

 Pop. size 
distr.

Pop. size 
distr. (%)

Sample size 
distr.

Sample
size distr. 

(%)

Cereal crops 3,054,288 34% 31,923 19%
Vineyards 742,926 8% 92,693 56%
Fruit crops 444,805 5% 7,310 4%
Fodder crops 2,564,217 28% 3,469 2%
Olive cultivation 1,114,593 12% 4,723 3%
Vegetable crops 445,966 5% 4,490 3%
Legumes 85,007 1% 132 0.1%
Citrus fruits 149,863 2% 21,353 13%
Industrial plants 477,091 5% 562 0.3%
Total 9,078,756 100% 166,655 100%

Table 3. Total population and sample size and their distribution 
across farms’ size (number of farms).

Pop. size 
distr.

Pop. size 
distr. (%)

Sample 
size distr.

Sample 
size distr. 

(%)

0 hectares 12,499 1% 23 1%
Up to 0.99 hectares 228,481  20% 19 2%
From 1 to 1.99 hectares 209,662 18% 61 5%
From 2 to 2.99 hectares 128,381 11% 55 4%
From 3 to 4.99 hectares 147,320 13% 123 10%
From 5 to 9.99 hectares 160,133 14% 209 17%
From 10 to 19.99 hectares 109,545 10% 262 21%
From 20 to 29.99 hectares 45,118 4% 104 8%
From 30 to 49.99 hectares 41,167 4% 109 9%
From 50 to 99.99 hectares 32,487 3% 120 10%
From 100 onwards 18,230 2% 163 13%
Total 1,133,023 100% 1,248   100%

Table 4. Summary of main descriptive statistics of collected data.

Unit Mean Median Std Min Max

Farm size Ha 22.21 38.50 1,718.21 0 40,000
Farm annual 
turnover EUR

Less than €50,000 share 0.35
Between €50,000 
and €250,000 share 0.38

Between €250,000 
and €500,000 share 0.12

Between €500,000 
and €1,000,000 share 0.06

Over €1,000,000 share 0.09
Employees
in farm no. 3.69 11.75 6.60 0 950

A4.0 solutions 
adopted in farm no. 2.68 4.00 1.65 0 8

Total amount spent 
on A4.0 solutions 
by farm

EUR

Less than €5,000 share 0.23
Between €5,000 
and €15,000 share 0.17

Between €15,000 
and €30,000 share 0.13

Between €30,000 
and €50,000 share 0.09

Between €50,000 
and €75,000 share 0.08

Between €75,000 
and €100,000 share 0.07

More than 
€100,000 share 0.23

https://www.istat.it/it/files/2022/06/censimento_agricoltura_gismondi.pdf
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on more innovative and capitalised enterprises allows for 
a more detailed understanding of current trends, chal-
lenges, and potential impacts, which can serve as a refer-
ence point for the broader agricultural sector as it transi-
tions toward digitalisation.

Prior to presenting the results of the survey data 
analysis, the authors provide a table outlining the key 
descriptive statistics of the collected dataset.

The descriptive statistics in the table above highlight 
that farm size distribution is skewed. This asymmetry is 
commonly observed across many countries, as both very 
large and very small farms coexist, often with signifi-
cantly different spending capacities, as also noted by the 
OECD (Bokusheva and Kimura, 2016).

4. RESULTS

4.1. A4.0 awareness and adoption level

The initial findings of this analysis focus on the cur-
rent levels of adoption of A4.0 solutions among survey 
respondents. A summary of these results is presented in 
Figure 1. To assess awareness of A4.0 solutions, a four-
point scale was employed, ranging from low to high 
familiarity, following the approach outlined by Maffez-
zoli et al (2022a). This scale effectively distinguishes var-
ying levels of awareness and facilitates cross-tabulation, 
allowing for the identification of patterns across differ-
ent respondent groups. The four levels of awareness are 
defined as follows: (a) Unknown, representing a com-

plete lack of familiarity, indicating no awareness of the 
existence of the proposed solution; (b) Known, denoting 
limited familiarity and implying that the respondent has 
heard of the solution, but possesses only a superficial 
understanding; (c) Used in the past, not anymore, indi-
cating theoretical familiarity and suggesting that the 
respondent has a solid understanding of the solution 
despite no longer using it; and (d) In use, representing 
practical familiarity, meaning the respondent not only 
knows about the solution, but also employs it.

The data reveal varying levels of adoption and 
awareness of A4.0 solutions. Key findings show that 
approximately 26% of respondents implement monitor-
ing systems and connected vehicles, making these among 
the most widely adopted A4.0 solutions . Meanwhile, 
20% of respondents adopted mapping solutions and 19% 
employed telemetry systems and solutions for vehicle and 
equipment monitoring.

Adoption rates for Decision Support Systems (DSS) 
and Variable Rate Technology (VRT) solutions are nota-
bly lower, at 7% and 6% respectively. Robotics and drones 
show the lowest adoption rate, standing at only 3%, like-
ly due to constraints related to cost, technical expertise, 
or perceived necessity.

Disaggregated data by farm size reveal that only 23% 
of farms with less than 10 hectares of UAA have adopted 
at least one A4.0 solution. Similarly, among farms with 
annual revenues below EUR 50,000, the adoption rate 
stands at 21%. However, adoption increases substan-
tially with scale: 66% of farms with a UAA between 100 
and 199.9 hectares have adopted A4.0 technologies, and 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Robotics

Drones

Variable Rate Technology (VRT) solutions

Decision Support Systems (DSS)

Telemetry systems and solutions
for vehicle and equipment monitoring

Mapping solutions

Connected vehicles

Monitoring systems

In use Used in the past, not anymore Known Unknown

Figure 1. Agriculture 4.0 awareness level. Sample: 1,248 respondents.
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this figure rises to 82% for farms exceeding 200 hec-
tares. A comparable trend is evident with respect to eco-
nomic size, where adoption reaches 74% among farms 
with annual revenues between EUR 500,000 and EUR 
1,000,000, and rises further to 81% for those with rev-
enues above EUR 1,000,000.

In contrast, our findings do not reveal substantial 
differences in A4.0 adoption based on the age or edu-
cation level of farm managers. The only exception is 
among managers over the age of 65, who show a lower 
adoption rate (30%). Similarly, post-graduate degree 
holders are the only educational group exhibiting high-
er-than-average adoption rates (48%).

With regard to agricultural production types, enter-
prises primarily engaged in cereal cultivation report higher 
adoption rates of A4.0 solutions (49%), alongside vineyard 
and fodder farms (both at 43%). The relatively higher A4.0 
adoption among cereal and fodder producers can be attrib-
uted to the extensive nature of these cropping systems, 
which can be particularly well-suited to the application of 
A4.0 solutions in optimizing operations over wide areas. 
Conversely, vineyard enterprises, typically characterized 
by higher revenue margins, tend to possess greater finan-
cial capacity to invest in innovation, thereby facilitating the 
uptake of digital solutions and innovative technologies.

4.2. Needs expressed and benefits perceived from A4.0 
implementation

To comprehensively analyse the key drivers that 
motivated respondents to adopt and implement A4.0 solu-
tions, this study focuses on the specific needs expressed 

by farmers. These needs reflect both strategic and opera-
tional priorities, ranging from farm management and 
control to the optimisation of input consumption. 

Figure 2 reveals a substantial level of awareness 
among respondents regarding the broad and multifaceted 
nature of the A4.0 paradigm. Rather than being perceived 
merely as an extension of precision agriculture - whose 
primary goal is to deploy technological solutions in the 
field to optimise input consumption and reduce costs - 
A4.0 appears to be increasingly recognised as a compre-
hensive framework for enhancing overall farm manage-
ment and control, with positive effects along the overall 
agrifood supply-chain. This paradigm shift suggests that 
farmers view A4.0 not only to refine specific agricultural 
practices, but also as an integral component in fostering a 
more efficient and data-driven agricultural enterprise.

Among the ten most frequently expressed needs 
related to farm management and control, the most 
prominent include enhancing forecasting capabilities 
(41%), particularly in areas such as disease outbreaks, 
crop requirements, plant growth and yield projections, 
improving control and management processes within the 
farm enterprise (38%) with a focus on better decision-
making and operational efficiency, optimising the plan-
ning and scheduling of agricultural activities (32%) and 
increasing awareness of ongoing farm activities and oper-
ations (31%). Similarly, in relation to the optimisation 
of input consumption, respondents identified key areas 
where A4.0 solutions could bring significant improve-
ments, including optimising the use of technical inputs 
such as fertilisers and agrochemicals (28%) and enhanc-
ing the efficiency of machinery and equipment utilisation 
(26%), contributing to both cost reductions and opera-

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Improve the quality of the final agricultural product
Maximize water-usage efficiency

Streamline and optimize worforce processes
Enhance the efficiency of machinery and equipment

Optimize the use of technical inputs
Increase awareness on farm activities and operations

Optimize the planning and scheduling of activities
Reduce losses due to diseases, pests, and infestations

Improve farm control and management processes
Enhance forecasting capabilities

Figure 2. Needs expressed by respondents. Sample: 511 respondents who adopted at least one of the proposed Agriculture 4.0 solutions. 
Respondents could choose a maximum of 5 options.
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tional sustainability. Furthermore, respondents expressed 
the need to streamline and optimise workforce processes 
(26%), ensuring that operators can perform tasks with 
efficiency and effectiveness, and to maximize water-
use efficiency (24%), which is particularly critical in the 
context of recent meteorological events in Italy: in 2024, 
the country experienced heavy rainfall in the northern 
regions, while facing severe droughts in the south3.

Furthermore, respondents reported adopting A4.0 
solutions for additional objectives, including reduc-
ing losses due to diseases, pests, and infestations (35%), 
a critical aspect of maintaining both yield stability and 
crop health, and improving the quality of the final agri-
cultural product (20%) to meet regulatory requirements.

Figure 3 illustrates the perceived benefits derived 
from the adoption of A4.0 solutions, as evaluated in 
relation to the specific needs previously expressed by 
respondents. The findings indicate that, on average, the 
implementation of A4.0 technologies resulted in out-
comes that aligned with initial expectations for most 
adopters (74% on average). Additionally, a subset of 
respondents (8% on average) reported that the benefits 
they experienced exceeded their initial expectations.

These results suggest that most farmers who invest-
ed in A4.0 solutions perceived their adoption as a suc-
cessful means of addressing their agricultural needs, 
with reported benefits generally meeting anticipated 
outcomes. However, a smaller proportion of respond-

3 Agro-meteorological Monitoring INDices (AgroMIND) map 
on Agricultural Drought (SPEI6) (https://wonderful-bush-
09061f403.5.azurestaticapps.net/AgroMIND.html)

ents indicated that the benefits they obtained were either 
below their expectations (14% on average) or entirely 
absent (4% on average), highlighting potential limita-
tions in implementation effectiveness, technology adop-
tion challenges, or contextual constraints that may have 
hindered the full realisation of expected advantages.

Furthermore, the analysis reveals that the perceived 
benefits were more pronounced in activities related to 
the optimisation of input consumption compared to 
those associated with farm management and control. 
Specifically, an average of 11% of respondents reported 
experiencing benefits that exceeded their expectations 
in the domain of input consumption optimisation. In 
contrast, only an average of 4% of respondents indicated 
that benefits surpassed expectations for farm manage-
ment and control activities. This suggests that A4.0 solu-
tions may be particularly effective in enhancing input 
efficiency, resource utilisation, and operational stream-
lining, whereas their impact on broader management 
and control functions may be more variable or depend-
ent on additional contextual factors.

Moreover, Italian farmers who have already adopt-
ed A4.0 solutions exhibit a significantly higher propen-
sity to invest further in these technologies compared to 
non-adopters. Specifically, 20% of current users reported 
their intention to invest more than EUR 50,000 in A4.0 
technologies within the next year, whereas only 3% of 
non-users indicated an equivalent investment plan. Fur-
thermore, 27% of adopters expected to allocate between 
EUR 5,000 and EUR 30,000, compared to just 18% 
among non-adopters. Notably, 55% of non-users were 
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Figure 3. Benefits perceived by respondents. Sample: 511 respondents who adopted at least one of the proposed Agriculture 4.0 solutions.

http://azurestaticapps.net/AgroMIND.html
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unable to estimate their future investments, in contrast 
to only 26% of current users. These findings suggest that 
A4.0 adopters, having already perceived benefits (often 
exceeding expectations) are more inclined to pursue 
further technological advancement and exhibit a clearer 
strategic orientation toward digital transformation.

4.3. A4.0 implementation challenges and factors inhibiting 
A4.0 adoption

This study also aims to assess the challenges 
encountered by respondents who have adopted at least 
one of the proposed A4.0 solutions, as well as the barri-
ers faced by those who either could not or chose not to 
adopt any of these solutions.

Figure 4 presents the challenges encountered by 
farms that have implemented A4.0 solutions. The find-
ings indicate that one of the most significant issues 
– reported by 36% of respondents – is limited or non-
existent interoperability among the adopted solutions. 
Many farmers, indeed, struggle with integrating differ-
ent digital tools within their existing farm management 
systems, leading to inefficiencies and operational diffi-
culties (Khanna et al., 2024).

Following interoperability concerns, other nota-
ble challenges include the lack of appropriate skills to 
effectively utilise A4.0 solutions (30%) and the perceived 
inadequacy of return on investment (26%), suggesting 
that respondents may not see immediate or sufficient 
financial benefits from their A4.0 investments, poten-
tially discouraging further technological adoption. Fur-
thermore, 26% of respondents indicate insufficient or 
unreliable technical assistance, which further limits A4.0 
effectiveness together with operational challenges (20%) 
and inadequate connectivity (16%).

Interestingly, only 6% of respondents reported that 
they did not face any challenges during A4.0 implemen-
tation. This finding suggests that most adopters have 
encountered at least some difficulties in integrating and 
implementing A4.0 solutions, emphasising the need for 
targeted interventions to enhance system compatibility, 
improve user experience and provide better support mech-
anisms for farmers transitioning to digital technologies.

Figure 5 illustrates the key barriers that have pre-
vented farms from adopting A4.0 technologies. One of 
the most frequently cited limitations is farm size, with 
68% of respondents indicating that their farms are too 
small to justify investment in A4.0 solutions. This is not 
surprising, as Table 3 shows that in the Italian context, 
most farms (77%) are small or medium-sized. 

Further constraints concern the possible exploita-
tion of A4.0 solutions, with 59% of respondents believ-
ing that they would not fully exploit these solutions and 
50% stating that their current agricultural technologies 
and management practices adequately meet their busi-
ness needs, thereby reducing the perceived necessity of 
implementing A4.0 solutions.

Financial concerns also play a significant role, as 
45% of respondents believe that the anticipated benefits 
do not justify the required investment, while 41% strug-
gle to see the potential economic advantages of incorpo-
rating digital tools into their operations. Additionally, 
financial constraints further limit adoption, with 38% of 
respondents citing their inability to spread investment 
costs over time and 36% highlighting the difficulty of 
sharing these costs across multiple enterprises. Bureau-
cratic challenges also emerge as a deterrent, as 36% of 
respondents report difficulties in accessing financial 
incentives due to stringent requirements and adminis-
trative burdens, while 22% point to restricted access to 
credit lines as a further impediment.
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Other
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Inadequate or unavailable connectivity
Operational challenges

Insufficient or unreliable technical assistance
Inadequate return on investment

Lack of appropriate skills and expertise
Limited or non-existent interoperability

Figure 4. Challenges encountered by respondents. Sample: 511 respondents who adopted at least one of the proposed Agriculture 4.0 solu-
tions. Respondents could choose more than one option. 
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While digital skills were identified as a notable 
challenge among those who have already adopted A4.0 
solutions, they appear to be a less pressing concern for 
non-adopters: only 25% of respondents cited a lack of 
necessary competencies as a barrier, while an equal pro-
portion stated that their collaborators also lacked the 
required skills. Such discrepancy in how digital skills are 
perceived between adopters and non-adopters reflects an 
experience gap in A4.0 implementation: non-adopters 
seem to not yet acknowledge the digital skills challenge 
because they have not engaged with A4.0 deeply enough, 
whereas adopters have firsthand knowledge of the diffi-
culties and their impact on agricultural activities. Fur-
thermore, 24% of non-adopters indicated that they did 
not know where to access basic information about A4.0 
solutions, underscoring the need for better dissemina-
tion of knowledge and educational resources.

Beyond financial and technical barriers, several 
other factors have contributed to the reluctance to adopt 
A4.0 technologies. A lack of applicability to specific agri-
cultural production areas was cited by 34% of respond-
ents, suggesting that certain farming sectors or opera-
tional models do not align with the capabilities offered 
by the proposed A4.0 solutions. Connectivity issues also 
play a role, with 18% of respondents identifying poor 
internet access as a constraint, particularly where digi-

tal infrastructure may be insufficient. Additionally, con-
cerns related to data security and privacy were reported 
by 15% of respondents, indicating a degree of hesitation 
regarding the management and protection of sensitive 
farm data in digital systems.

These findings highlight the multifaceted nature 
of the barriers impeding A4.0 adoption, encompassing 
economic, technical, infrastructural, and informational 
challenges. Addressing these concerns through targeted 
policies, financial support mechanisms, improved access 
to training, and enhanced digital infrastructure could 
facilitate broader adoption and ensure that a wider range 
of farms can benefit from the efficiencies and advance-
ments offered by A4.0 solutions.

5. DISCUSSION 

This study examines the adoption and aware-
ness levels of Agriculture 4.0 (A4.0) solutions, the driv-
ers inf luencing technological adoption, the benefits 
obtained, as well as the challenges faced by A4.0 users 
and the inhibiting factors expressed by A4.0 non-adop-
ters. A comprehensive understanding of these aspects 
is essential for policymakers, researchers, and industry 
stakeholders to identify obstacles and develop strategies 

0% 20% 40% 60% 80% 100%

Concerns about data privacy and cybersecurity of A4.0

Inability to utilize the solution due to connectivity challenges
Limited access to credit lines

Lack of clarity on where to obtain the necessary information
Insufficient technical or operational expertise

Insufficient skills among operators to implement 4.0 solutions
Solutions not applicable to specific production activities

Incentives hindered by requirements or bureaucracy

Investment viability relies on cost-sharing across enterprises
Investment viability relies on spreading costs over time

Challenges in evaluating the potential investment benefits
Benefits perceived as insufficient to justify the investment

Existing tools considered adequate to meet current needs
Low expected utilization of the solution

Company size deemed too small to justify the investment

Agree Neither agree nor disagree Disagree

Figure 5. Inhibiting factors faced by respondents. Sample: 737 respondents who have not adopted any of the proposed Agriculture 4.0 solu-
tions.
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aimed at facilitating the widespread integration of digital 
technologies in the agricultural sector. Such integration 
holds the potential to enhance productivity, efficiency, 
and sustainability within Italian agriculture.

The findings indicate that while there is widespread 
awareness of A4.0 solutions among Italian farmers, adop-
tion levels vary significantly. These discrepancies are 
closely associated with the structural characteristics of 
farming enterprises, particularly the size of the Utilised 
Agricultural Area (UAA) and the level of annual turno-
ver. Existing literature has consistently highlighted that 
the uptake of digital agricultural technologies is contin-
gent upon several structural and socio-economic factors, 
including farm scale, crop specialization, farmer age, 
and educational background (Giua, 2022). At the nation-
al level, our results corroborate this evidence, demon-
strating that adoption rates tend to increase proportion-
ally with both the physical and economic size of farms. 
This trend is further reflected in specific production 
types - such as cereals, fodder crops, and vineyards - 
where the extensive nature of the former two may neces-
sitate technological support, while the relatively higher 
revenue margins typical of vineyard operations may 
facilitate investment in A4.0 solutions. Certain solutions, 
such as monitoring systems and connected vehicles, 
have achieved higher acceptance, whereas others remain 
unexploited. The primary motivation for adopting A4.0 
solutions is predominantly associated with macro-level 
farm management improvements, including enhanced 
forecasting capabilities and more effective control and 
management processes, rather than in-field operation-
al efficiencies, such as optimising technical inputs and 
increasing machinery and equipment efficiency.

The analyses presented in this manuscript, which 
focus on the Italian agricultural sector, are broadly 
aligned with the findings of international research. For 
instance, as reported by the United States Department 
of Agriculture4, in 2023, 27% of U.S. farms or ranches 
employed A4.0 solutions for crop management. Among 
the most widely adopted A4.0 solutions for crop manage-
ment were automated guidance systems (covering 58% of 
planted acres), yield mapping (44%), Variable Rate Tech-
nology (37%), soil maps (22%) and drones and satellite 
imagery (7%) (United States Government Accountability 
Office, 20245). Similarly, in Germany, a survey conduct-
ed on Bavarian farmers reported that the most widely 
adopted digital tools included weather and pests forecast 
models and apps (38%), digital field records (21%), auto-
mated steering systems (21%), maps from satellite data 

4 https://downloads.usda.librar y.cornell .edu/usda-esmis/files/
h128nd689/4j03fg187/fj237k64f/fmpc0823.pdf
5 https://www.gao.gov/assets/d24105962.pdf

(14%), with an overall adoption rate estimated around 
62% of the sampled agricultural enterprises (Gabriel and 
Gandorfer, 2023).

This study also underscored the benefits of A4.0 
solutions, which were generally perceived as aligning 
with expectations, with some exceeding initial anticipa-
tions. This suggests a largely successful implementation 
among adopters. Notably, the areas where respondents 
reported the greatest benefits surpassing expectations 
were related to the optimisation of technical inputs and 
water management. Consistent with the findings of Zul 
Azlan et al. (2023), Abbasi et al. (2022), and Pradel et al. 
(2022), A4.0 solutions have demonstrated the potential to 
assist farmers in reducing input and water consumption, 
thereby generating both economic advantages through 
cost reduction and environmental benefits. Regarding 
the potential social sustainability benefits, Italian farm-
ers have identified “streamline and optimise workforce 
processes” among the ones more in line with expecta-
tions, with a small share of farmers pointing out that 
A4.0 solutions disappointed their expectations. The 
broader social sustainability implications of this per-
ceived benefit remain debated in literature. Some stud-
ies suggest a positive evolution in the agricultural labour 
market, potentially improving farmers’ livelihoods and 
creating new employment opportunities (e.g., Rotz et al., 
2019). Other contributions, instead, underline the need 
for specific studies on the yet unexplored consequences 
on the agricultural labour market originated from the 
optimisation of farming activities, potentially reduc-
ing the demand for unskilled workers (Rotz et al., 2019; 
Rose et al., 2021). 

Nevertheless, despite the perceived benefits of A4.0 
solutions, their implementation remains constrained by 
several challenges. These include interoperability issues, 
lack of adequate skills, return on investment concerns 
and technical assistance limitations, which hinder cor-
rect A4.0 solutions implementation and their benefits. 
In addition, several financial and structural constraints 
emerge as significant deterrents for non-adopters. 
Among these, the lack of trust in A4.0 solutions appears 
to be the most critical barrier. This skepticism is often 
linked to a perceived low utility of A4.0, a belief that 
existing tools are sufficient to meet current needs, dif-
ficulties in assessing the potential benefits, and the gen-
erally small size of agricultural enterprises - factors that 
collectively slow digital adoption in Italian agriculture. 
Economic and financial obstacles seem to be less rele-
vant: these include doubts about the feasibility of invest-
ments that depend on cost-sharing over time or across 
multiple farms, as well as limited access to incentives - 
often constrained by bureaucratic complexity (Cisilino 

https://downloads.usda.library.cornell.edu/usda-esmis/files/h128nd689/4j03fg187/fj237k64f/fmpc0823.pdf
https://downloads.usda.library.cornell.edu/usda-esmis/files/h128nd689/4j03fg187/fj237k64f/fmpc0823.pdf
https://www.gao.gov/assets/d24105962.pdf
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and Licciardo, 2022). These financial constraints pose a 
fundamental challenge particularly for small and medi-
um-sized farms that may lack the capital required for 
initial investments in A4.0 solutions. This issue is fur-
ther exacerbated by the uncertainty surrounding return 
on investment, making it difficult for farmers to justify 
the adoption of these solutions without clear and meas-
urable long-term economic benefits. In contrast, tech-
nical challenges appear to be less influential: only a 
minority of non-adopters cite inapplicability to specific 
production processes, lack of technical skills, or insuf-
ficient expertise as reasons for avoiding A4.0 solutions. 
Moreover, connectivity issues emerge as a challenge for 
non-adopters, especially in marginal areas and on hills 
across Italian regions, thus limiting the implementation 
of A4.0 solutions, as highlighted by Sozzi et al. (2021). As 
also emphasised by Fragomeli et al. (2024) and Da Silvei-
ra et al. (2023), such obstacles significantly impede the 
broader adoption of A4.0 solutions by limiting both the 
willingness and ability of farmers to integrate these tools 
into their production systems. Furthermore, as high-
lighted by Gonzales-Gemio and Sanz-Martín (2025), the 
inequality in access to A4.0 solutions could hinder the 
adoption of sustainable agricultural practices. Digital 
platforms and monitoring solutions, for instance, have 
the potential to substantially enhance the efficiency of 
carbon farming initiatives and contribute more broadly 
to agricultural sustainability.

These findings are consistent with an analysis pub-
lished by the General Secretariat of the Council of the 
European Union6, which emphasizes that - compared to 
other sectors - the pace of digital adoption in agriculture 
has been slower. This lag is attributed to several interre-
lated factors, including inadequate infrastructure, sub-
stantial upfront investment requirements, a widespread 
lack of digital skills, and the inherent complexity of the 
agricultural sector. The latter includes considerable vari-
ability in climate conditions, soil types, crop systems, 
and farming practices, all of which pose additional chal-
lenges to the effective implementation of A4.0 solutions.

The findings of this study are also aligned with 
emerging academic literature on the barriers to A4.0 
adoption within the Italian agricultural sector. For 
example, Addorisio et al. (2025), based on interviews 
with Italian farmers, underscore the critical role of 
stakeholder cooperation and targeted training initia-
tives in addressing key impediments to adoption. These 
include limited interoperability among A4.0 solutions, 
insufficient digital competencies, and a lack of adequate 
technical support. Similarly, Giorgio et al. (2024) explore 

6 https://www.consilium.europa.eu/media/shxiaxmo/2024_971-art-agri-
culture-11-02-25.pdf

perceived advantages and challenges associated with dig-
italisation in Northern Italy. Reported benefits include 
enhanced environmental sustainability, improved input 
efficiency, reduced labour requirements, and lower oper-
ational costs. However, the study also identifies persis-
tent barriers such as limited digital skills, inadequate 
data management practices and issues with interoper-
ability. These findings suggest that policies should not 
only support equipment acquisition, but also promote 
the development of farmers’ human capital.

Addressing these challenges through targeted policy 
interventions, comprehensive training initiatives, and 
improved system interoperability could substantially 
enhance A4.0 adoption rates, thereby ensuring that a 
broader range of agricultural enterprises benefits from 
the efficiencies and advancements offered by digital 
innovations. Moreover, collaboration among policymak-
ers, technology providers, and industry stakeholders is 
crucial in fostering an ecosystem that supports seamless 
integration, mitigates adoption barriers, and maximizes 
the impact of digital agricultural innovations.

CONCLUSIONS

This study offers valuable empirical insights into the 
current state of Agriculture 4.0 (A4.0) adoption in Italy, 
shedding light on drivers influencing the uptake of A4.0 
solutions, the perceived benefits, the challenges met by 
farmers who adopted A4.0 solutions and the barriers 
that prevented other agricultural enterprises from adopt-
ing A4.0 solutions. By disaggregating results according 
to critical variables related to farms (size, primary crop 
production and geographical localisation), this research 
contributes to a more nuanced understanding of how the 
A4.0 paradigm is taking root within the Italian agricul-
tural sector. These findings provide a strong empirical 
foundation for informing public policy, guiding invest-
ment strategies and designing initiatives that are tailored 
to the needs of diverse farming profiles.

Specifically, the results highlight the importance of 
structural variables such as farm size, crop production 
and turnover in shaping adoption patterns, suggesting 
that public support mechanisms should be differentiated 
accordingly. Small farms, which tend to face greater bar-
riers in terms of investment capacity and technical know-
how, may benefit from targeted subsidies, tax incentives, 
and digital infrastructure improvements, particularly in 
under-served rural regions. Moreover, the limited adop-
tion of certain A4.0 solutions underscores the need for 
broader outreach, technical assistance and knowledge 
transfer mechanisms to ensure that innovation diffuses 

https://www.consilium.europa.eu/media/shxiaxmo/2024_971-art-agriculture-11-02-25.pdf
https://www.consilium.europa.eu/media/shxiaxmo/2024_971-art-agriculture-11-02-25.pdf
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beyond a small subset of more-structured farms. Train-
ing programs should also be adapted to the varying levels 
of digital literacy across the sector, with modular content 
suited to both entry-level and experienced users.

Moreover, by identifying which types of farms might 
be most likely to adopt A4.0 solutions and which barri-
ers inhibit the uptake of digital tools, technology pro-
viders can refine their product design, marketing strat-
egies, and sales services. Companies may, for instance, 
enhance interoperability and user-friendliness to address 
common usability challenges.

A promising avenue for future research would 
involve a comparative analysis of the levels of A4.0 adop-
tion, associated needs, benefits, challenges, and barri-
ers identified in this study with those observed in other 
European countries and beyond.

Another potential research direction could focus on 
examining the impact of A4.0 solutions on economic, 
environmental, and social sustainability to comprehen-
sively assess the costs and benefits of A4.0 implementa-
tion. This analysis could, in turn, contribute to bridging 
the gap between adopting and non-adopting agricultural 
enterprises.

Nonetheless, these contributions should be consid-
ered in light of the following methodological limitations 
arising from the survey administration method and the 
sample distribution compared to the reference popula-
tion. As with all Computer-Assisted Web Interviewing 
(CAWI) methods, this online survey may exclude indi-
viduals without internet access or those less comfortable 
with technology. Additionally, self-selection bias could 
skew the results, as participants are likely to be those 
with an interest in the topic or familiarity with online 
surveys. Consequently, adoption rates of A4.0 solutions 
reported in this study may be overestimated, while the 
perceived benefits and willingness to invest further in 
digital technologies could reflect the attitudes of a small-
er group of more innovation-oriented farmers. Address-
ing these limitations in the future research would 
require efforts to reach less digitally-involved segments 
of the Italian agricultural sector to enhance the external 
validity of the findings.

Moreover, the discrepancy between the sample size 
distribution and the population size distribution leads 
to an overrepresentation of farms in the North and an 
underrepresentation of those in the South and Islands, 
potentially introducing a geographical bias. Further-
more, the average UAA (Utilised Agricultural Area) of 
the sampled farms (22 hectares) is significantly higher 
than the figure reported by ISTAT7 (11.1 hectares), sug-

7 https://www.istat.it/it/files/2022/06/censimento_agricoltura_gismondi.
pdf  

gesting a selection of more structured agricultural enter-
prises. Additionally, the greater representation of the 
vineyard sector, which is characterised by higher-than-
average profitability and greater spending capacity, could 
influence this study’s findings.

This study was carried out within the Agritech 
National Research Center and within the Smart Agri-
Food Observatory - Politecnico di Milano & Univer-
sity of Brescia and received funding from the European 
Union Next-GenerationEU (Piano Nazionale di Ripresa 
e Resilienza (PNRR) – Missione 4 Componente 2, Inves-
timento 1.4 – D.D. 1032 17/06/2022, CN00000022). This 
paper reflects only the authors’ views and opinions, nei-
ther the European Union nor the European Commission 
can be considered responsible for them.
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Abstract. Agricultural practices face growing challenges, including climate change, 
resource constraints, meeting sustainability goals and food security. This study exam-
ines stakeholder perspectives on smart farming technologies and their integration 
into policy frameworks. A mixed-method approach, using triangulation of qualitative 
and quantitative data, combines an online survey (targeting experts from academia, 
industry, and policymaking) distributed through the Agritech project network and 
face-to-face interviews (engaging key stakeholders with in-depth knowledge of agricul-
tural policy and technology implementation). Key findings reveal significant optimism 
about the potential of smart technologies to enhance efficiency, sustainability, and pro-
ductivity in agriculture. However, widespread adoption is hindered by barriers such as 
high initial investment costs and a lack of technical knowledge. The study identifies 
policy gaps and provides actionable recommendations, including financial incentives, 
capacity-building initiatives, and improved infrastructure, to support the integration of 
these technologies. The findings underscore the critical need for adaptive policies that 
align with the evolving landscape of agricultural innovation, ensuring equitable access 
and long-term sustainability.

Keywords:	 Agritech, technology adoption, European agricultural policy, sustainability, 
stakeholders’ perspectives.

1. INTRODUCTION

The global agricultural sector faces increasing challenges in balanc-
ing productivity, sustainability, and environmental responsibility. Climate 
change and resource constraints are putting increasing pressure on agricul-
tural systems, whereas food security remains a multifaceted challenge that 
goes beyond production. Ensuring stable access to affordable, nutritious food 
also depends on market structures, distribution networks, and social inclu-
sion (FAO, 2021). While technological innovation can support more efficient 
and sustainable production, it must be embedded within broader strategies 
that address systemic barriers to food security (FAO, 2021; IPCC, 2023). 
Given the limitations of arable land and the growing demand for sustaina-
ble food production, smart agriculture technologies are gaining recognition 
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as a key driver of transformation. These technologies, 
encompassing sensor-based systems, IoT configurations, 
AI applications, and renewable energy solutions, offer 
advanced tools for precision farming, real-time monitor-
ing, and resource optimization (Basso and Antle, 2020; 
Finger et al., 2019; Knierim et al., 2019). However, their 
adoption remains low and uneven despite their poten-
tial, primarily due to high initial costs, limited technical 
knowledge, and inadequate infrastructure (Akimowicz 
et al., 2021). These barriers are particularly pronounced 
for small and medium-sized farms, which often lack the 
necessary resources and institutional support to imple-
ment such technologies effectively.

Recent research by Menozzi et al. (2023) also high-
lights that farmers’ decisions to engage in sustainability 
practices are shaped not only by economic incentives but 
also by behavioral drivers, such as perceived control and 
peer influence. In the case of digital agriculture, these 
behavioral aspects, especially regarding trust in digi-
tal systems and ease of use, are equally important and 
deserve policy attention.

Complementing this view, Giampietri et al. (2020) 
emphasize the role of trust in intermediaries and insti-
tutional transparency in shaping farmers’ willingness 
to adopt CAP-subsidized risk management tools. While 
their study addresses instruments like insurance and 
mutual funds, our work extends this behavioural fram-
ing to digital agriculture, where trust also involves con-
fidence in data systems and algorithm-based decision-
making. While these behavioral dynamics were not the 
primary focus of our empirical study, they provide a val-
uable conceptual lens through which to interpret stake-
holder concerns around adoption.

A well-structured policy environment is critical in 
facilitating the adoption of smart agriculture technolo-
gies. Policies that support financial incentives, train-
ing programs, and rural infrastructure development 
can significantly enhance accessibility and encourage 
broader implementation among diverse farming opera-
tions (Détang-Dessendre et al., 2018). While existing 
frameworks, such as the Common Agricultural Policy 
(CAP), the Green Deal, and the Farm to Fork Strategy, 
emphasize the role of innovation in agricultural sustain-
ability, they exhibit notable gaps in addressing key adop-
tion barriers. For instance, the CAP’s current funding 
mechanisms primarily benefit large-scale farms with 
greater financial capacity, leaving smallholders with lim-
ited access to grants and subsidies necessary for adopt-
ing high-cost digital technologies (Lovec et al., 2020). 
Additionally, despite the Green Deal and Farm to Fork 
Strategy highlighting the need for sustainable agricul-
ture, they fall short in prioritizing investments in rural 

digital connectivity, an essential component for integrat-
ing smart technology, particularly in remote agricultural 
regions (Ehlers et al., 2022). There is a need for proactive 
and adaptive policy approaches that address both finan-
cial and technical barriers while fostering stakeholder 
collaboration and long-term sustainability.

This study aims to examine stakeholder perspectives 
on the adoption challenges and opportunities of smart 
agriculture technologies and identify policy interven-
tions that can facilitate their broader integration. Using 
a mixed-method approach, the research combines quali-
tative interviews with key stakeholders and a quantita-
tive online survey to gather diverse insights on the pol-
icy landscape, adoption barriers, and potential solutions. 
The analysis applies triangulation between the qualita-
tive and quantitative findings to strengthen the inter-
pretation of results and ensure that policy recommenda-
tions are grounded in multiple sources of evidence. The 
findings contribute to the existing literature by bridging 
the gap between technological advancements and policy 
implementation, providing evidence-based recommenda-
tions to enhance the diffusion of technology in agricul-
ture.

This study is part of the Agritech project, a national 
research initiative funded by the Italian National Recov-
ery and Resilience Plan (PNRR) that brings together 
universities, research institutions, and industry stake-
holders to foster innovation in precision agriculture, AI, 
and sustainable farming. Conducted within Spoke 3, 
which focuses on policy frameworks and governance for 
smart agriculture adoption, this research builds on prior 
project activities that mapped key actors in the innova-
tion ecosystem and developed targeted engagement strat-
egies (AGRITECH, 2023). The stakeholder database, 
created in the framework of the project, enabled the dis-
tribution of our questionnaires through a trusted and 
well-informed network, ensuring policy-relevant insights 
from diverse, experienced participants across academia, 
industry, and policymaking.

The paper first describes the methodological frame-
work, detailing the qualitative and quantitative data 
collection and analysis approaches. It then presents key 
findings, highlighting stakeholder perspectives on the 
benefits and challenges of smart agriculture technolo-
gies. The discussion explores the broader implications 
for policy and practice, focusing on the need for strate-
gic policy interventions to overcome adoption barriers. 
Finally, the study concludes with recommendations for 
future research and actionable policy measures to foster 
a more supportive environment for smart agriculture 
innovation.
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2. METHODOLOGY 

2.1. Overview

To comprehensively assess stakeholder perspectives 
on smart agriculture technologies, this study employed 
a mixed-method approach, integrating qualitative and 
quantitative data collection techniques. This methodo-
logical choice is well-suited for exploring complex issues 
such as technology adoption in agriculture, as it allows 
for in-depth insights from expert stakeholders while 
also capturing broader trends in the sector (Creswell 
& Clark, 2017; Fielke et al., 2020). The combination of 
qualitative interviews and a structured online survey 
aims to strengthen the study’s analytical depth by trian-
gulating stakeholder perceptions across different back-
grounds and levels of expertise.

Given the exploratory aim of this research and consid-
ering the quantitative sample size, the survey quantitative 
data primarily serve to identify general trends and percep-
tions rather than provide statistically robust conclusions. 
This quantitative approach is complemented by the quali-
tative interviews, which offer deeper, context-rich insights. 
By combining both qualitative and quantitative data, we 
follow an established methodological practice known as 
triangulation, enhancing the reliability and validity of our 
findings through cross-verification (Fetters et al., 2013). 

The review of the existing literature revealed that 
previous research has often examined technology adop-
tion in agriculture from either a purely economic or 
behavioral perspective. The focus of this study is to inte-
grate policy dimensions and directly involve stakehold-
ers from multiple sectors, including academia, technol-
ogy providers, policy institutions, and farmers’ associa-
tions. This holistic approach, which explicitly links tech-
nological innovation with policy development, represents 
a novel contribution to the existing body of literature.

The study focused on stakeholders in Italy. While 
Emilia-Romagna, one of Italy’s most technologically 
advanced agricultural regions, was the starting point 
of the stakeholders’ mapping, the survey distribution 
and interviews also involved participants from other 
key agricultural areas such as Puglia, Lombardia, and 
Veneto. This broader geographical engagement allowed 
the research to capture a more representative view of the 
national smart agriculture policy landscape.

Both qualitative and quantitative components of the 
study shared a common core of thematic focus, center-
ing on:
–	 The barriers and drivers of smart agriculture tech-

nology adoption.
–	 The role of existing policies in shaping adoption tra-

jectories.

–	 The perceived needs for policy innovation to facili-
tate broader uptake.
These dimensions were used both to frame the 

design of the survey and interviews and to guide the 
interpretation of findings in the results and discussion 
sections. Rather than formal hypotheses, they function 
as thematic pillars for an exploratory investigation into 
how policy, behavior, and technology interact in the cur-
rent agricultural innovation landscape.

This methodological design aims to ensure a holis-
tic assessment of the policy landscape surrounding smart 
agriculture technologies, while providing valuable insights 
for both academic discourse and policy formulation.

2.2. Qualitative data collection 

The qualitative phase focused on gathering compre-
hensive insights from experts with extensive knowledge 
of smart agriculture technologies and policies. It was 
essential to understanding the barriers and opportuni-
ties surrounding the adoption of these technologies. A 
semi-structured interview format was used to ensure a 
structured approach, allowing for a mix of predefined 
questions and open-ended discussions. This approach 
provided a comprehensive view of stakeholder experi-
ences, enabling the identification of key themes related 
to technology adoption and policy needs.

In-depth qualitative interviews were conducted with 
carefully selected experts in smart agriculture technolo-
gies and policy. These interviews were designed to elicit 
rich, detailed insights from highly experienced individu-
als. Although the final sample comprised five (5) par-
ticipants, The decision to proceed with these interviews 
was taken based on the principle of thematic saturation, 
that is, the point at which no substantially new insights 
emerge from additional interviews (Guest et al., 2006). 
Given the specificity and expertise of our respondents, 
the interviews provided consistent and robust informa-
tion across key themes. This approach aligns with accept-
ed qualitative research standards, where small, purpo-
sively selected samples are typical and appropriate for 
exploratory, expert-based investigations (Creswell, 2013).

The questionnaire was designed based on the Agri-
cultural Knowledge and Innovation System (AKIS) 
framework, which highlights the importance of multi-
actor collaboration in agricultural innovation. It was 
structured into five main sections: (1) the respondent’s 
background and expertise, (2) their perspectives on 
smart agriculture technologies, (3) challenges related to 
adoption, (4) awareness and evaluation of current poli-
cies, and (5) recommendations for improving policy sup-
port. This structured design ensured that responses cov-
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ered both technical and policy-related dimensions, mak-
ing this phase a crucial foundation for the overall study.

Participants were selected through a purposive sam-
pling approach, ensuring that only individuals with sig-
nificant expertise and direct involvement in the field 
were included. The selection process was based on a 
stakeholder mapping exercise carried out earlier in the 
Agritech project. Experts were identified from three key 
groups: public sector representatives involved in agricul-
tural policy, academic researchers specializing in preci-
sion agriculture and rural policy, and industry profes-
sionals working with smart agriculture technologies 
and farmer cooperatives. This targeted selection process 
ensured a diverse yet highly relevant sample, strengthen-
ing the credibility of the findings.

Interviews were carried out face-to-face whenever 
possible, allowing for detailed discussions and clarifica-
tions. In cases where in-person meetings were not feasible, 
remote interviews were held. Five key experts participated 
in this qualitative survey. Thematic and textual analy-
sis was used to process the responses, identifying recur-
ring themes and key insights. The results from this phase 
informed the refinement of the quantitative survey in the 
next stage of data collection, ensuring that the study cap-
tured both broad trends and in-depth perspectives.

2.3. Quantitative data collection

The second data collection phase involved an online 
questionnaire to capture broad stakeholder perspectives 
on smart agriculture technologies, their adoption, per-
ceived benefits, policy awareness, and associated chal-
lenges. This structured survey was designed to comple-
ment the qualitative insights gathered in the first phase 
by providing quantifiable data to identify patterns and 
validate expert opinions. The integration of both qualita-
tive and quantitative methods was an attempt to ensure 
a comprehensive and balanced understanding of the key 
factors influencing the adoption of smart agriculture 
technologies.

The online questionnaire was adapted from the 
qualitative questionnaire, and structured into multiple 
sections, each addressing a critical aspect of technol-
ogy adoption and policy implications. The first section 
focused on general respondent information, including 
their professional background, sector of activity, and geo-
graphic location, allowing for an analysis of how perspec-
tives varied across different stakeholder groups. The sec-
ond section examined familiarity and involvement with 
smart agriculture technologies, prompting respondents 
to indicate their level of knowledge and direct engage-
ment with specific technologies, such as robotics, IoT, AI, 

renewable agri-systems, and spectral technologies. The 
third section examined the perceived contributions of 
these technologies, evaluating opinions on their potential 
to improve agricultural productivity, resource efficiency, 
environmental sustainability, and labor optimization.

A key component of the questionnaire was its focus 
on policy awareness and barriers to adoption. Respond-
ents were asked whether they were aware of existing pol-
icies that support smart agriculture technologies, provid-
ing insights into the effectiveness of current policy com-
munication and identifying gaps where improved dis-
semination of information might be needed. Addition-
ally, the survey investigated major obstacles preventing 
the widespread adoption of these technologies, including 
financial constraints, technical knowledge gaps, regula-
tory barriers, and infrastructure limitations. The final 
section solicited policy recommendations, encouraging 
respondents to suggest changes to existing policies or 
propose new policy instruments that could facilitate the 
integration of smart agriculture technologies into main-
stream agricultural practices.

The questionnaire was strategically distributed 
across multiple channels to ensure a high-quality and 
representative dataset. It was shared within the Agr-
itech project network, reaching academics and research-
ers with expertise in agricultural policy, technology, and 
innovation. It was also circulated among stakeholders 
from the previously established project stakeholders’ net-
work, including policymakers, industry representatives, 
farmers’ associations, and technology developers, poten-
tially reaching over 90 persons. This distribution strat-
egy was designed to maximize diversity in respondent 
backgrounds while maintaining a high level of expertise 
in the responses collected. 

The sampling approach was purposive, targeting 
individuals with direct experience and informed per-
spectives on adopting smart agriculture technologies. 
Rather than aiming for a large random sample, the focus 
was on obtaining high-quality responses from knowl-
edgeable stakeholders whose input could provide valu-
able insights into policy needs and adoption challenges. 
A total of 35 responses were collected, and after apply-
ing validity criteria, 20 responses were retained for final 
analysis. While this sample size may appear modest for a 
quantitative survey, it is consistent with expert-elicitation 
methods in policy and innovation research, where depth 
of knowledge and professional insight are prioritized 
over statistical representativeness (Baker et al., 2013). 

The criteria for inclusion ensured that responses 
were complete, internally consistent, and provided by 
individuals with relevant expertise in the field of smart 
agriculture. Validity was assessed based on complete-
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ness, consistency, and relevance to the research topic. 
Responses that were incomplete, contained inconsisten-
cies, or came from participants with no clear connec-
tion to smart agriculture were excluded. Both the online 
questionnaire and the qualitative interviews were con-
ducted in parallel in the same period of time. 

Rather than claiming statistical generalizability, 
the primary goal of the quantitative data is to highlight 
general patterns, stakeholder perspectives, and areas 
needing policy attention. These quantitative insights are 
therefore exploratory and are critically supported and 
contextualized through the qualitative findings obtained 
from in-depth expert interviews, ensuring that the inter-
pretations are robust and contextually meaningful.

While the sample size of five qualitative interviews 
and 20 valid quantitative responses may appear lim-
ited, it is justified by the methodological rigor applied 
in the selection and analysis processes. The qualitative 
interviews were conducted with carefully selected key 
stakeholders representing different sectors of agricul-
ture, including policy, research, and industry, ensuring 
expert-driven insights. Thematic saturation was reached, 
as no significantly new themes emerged in later inter-
views, suggesting that the core challenges and opportu-
nities had been effectively captured (Baker et al., 2013).

For the quantitative survey, although the response 
count is modest, it reflects targeted participation from 
experienced stakeholders within the Agritech project 
network and a pre-established stakeholder database. The 
respondents’ expertise ensured high-quality, informed 
perspectives, making the findings valuable for under-
standing adoption trends and policy needs. Future 
research could expand the sample size to further validate 
the findings.

2.4. Data analysis

The analysis of the collected data followed a struc-
tured multi-step approach, integrating both qualitative 
and quantitative methodologies to ensure a comprehen-
sive interpretation of stakeholder perspectives on the 
adoption of smart agriculture technology and policy 
needs. Given the mixed-methods nature of the study, dif-
ferent analytical strategies were applied to the qualita-
tive and quantitative datasets to maximize the depth and 
reliability of insights.

The qualitative data obtained from face-to-face inter-
views were manually analyzed using a combination of tex-
tual synthesis and thematic analysis. This approach was 
chosen to extract detailed insights from expert responses 
while maintaining the depth and context of qualitative 
feedback. In particular, thematic analysis involved iden-

tifying recurring patterns in the responses related to 
technology adoption, policy gaps, financial constraints, 
and regulatory needs (Kiger & Varpio, 2020). While the 
analysis was primarily descriptive, it provided structured 
insights into the challenges and opportunities surround-
ing each specific smart technology developed in the Agr-
itech project. The responses were synthesized into key 
themes aligned with the study’s focus, ensuring stakehold-
ers’ perspectives on technology diffusion, policy barriers, 
and suggested interventions were effectively captured.

To ensure a structured interpretation of the quali-
tative data, insights were categorized into two main 
dimensions. The first focused on technology-specific 
insights, where each smart technology of the Agritech 
project, namely: IoT, AI, sensor-based systems, and 
robotics, was examined separately. Responses highlight-
ed perceived benefits, adoption challenges, and policy 
needs unique to each innovation. The second dimen-
sion analyzed the broader policy environment, capturing 
stakeholder views on existing policy frameworks, gaps in 
regulatory support, and recommendations for improving 
policy measures. This approach ensured that the quali-
tative findings were systematically organized, aiming to 
understand stakeholder perspectives.

Given the exploratory purpose and the sample size, 
the quantitative data obtained from the online survey 
were analyzed in XLSTAT using basic descriptive sta-
tistical methods (frequencies, percentages, and cross-
tabulations) to highlight general trends and stakeholder 
perceptions regarding smart technology adoption, rather 
than conducting in-depth statistical tests. Frequency dis-
tributions were used to summarize categorical variables 
such as familiarity with specific technologies, perceived 
benefits, policy awareness, and adoption challenges. 
Cross-tabulations were applied to compare stakeholder 
perspectives across different professional sectors. Addi-
tionally, mean and standard deviation calculations were 
used to analyze responses on Likert-scale questions, 
assessing attitudes toward policy effectiveness, invest-
ment challenges, and knowledge dissemination needs.

The findings from the quantitative analysis provided a 
broad overview of key trends in technology adoption and 
policy perceptions. These insights were cross-referenced 
with the qualitative findings to ensure that the study’s con-
clusions were supported by both in-depth expert opinions 
and a wider range of stakeholder perspectives.

3. RESULTS

The presentation of results follows the dual structure 
of our research design, distinguishing between general 
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(cross-cutting) trends observed across stakeholders from 
the online survey (Section 3.1) and technology-specific 
insights derived from expert qualitative interviews (Sec-
tion 3.2).

3.1. Cross-cutting perspectives on smart technology adop-
tion

3.1.1. Geographic distribution and professional sectors of 
the online survey

The geographic distribution of online respondents 
shows a balanced representation from Italy’s major agri-
cultural regions (figure 1), with the highest representa-
tion from Emilia Romagna (46%), followed by Puglia 
(36%), and smaller contributions from Lombardia and 
Veneto (9% each). This distribution indicates a blend of 
perspectives from key agricultural areas, offering insights 
into potential regional variations in technology adoption 
and policy needs within the smart technologies sector.

In terms of professional sectors, the respondents rep-
resented a broad spectrum within the agricultural and 
smart technologies domains (figure 2). Approximately 
33.33% of participants were involved in agricultural 
technology, including roles related to software develop-
ment and research in precision agriculture. Another 
33.33% came from academic backgrounds, emphasizing 
the importance of research-driven insights in advancing 
smart technologies solutions. Direct farming operations 
accounted for 12% of respondents, ensuring representa-
tion of the practical, on-ground perspective crucial to 
understanding adoption barriers. The remaining partici-
pants were involved in diverse areas, including profession-
al training, technological transfer, manufacturing, and 
viticulture. This multifaceted representation highlights 
the need for cross-sectoral collaboration to create compre-
hensive and inclusive smart technology adoption policies.

The level of involvement with specific smart agricul-
ture technologies varied among online respondents (fig-

ure 3). Sensor-based technologies emerged as the most 
familiar, with 31.82% of respondents indicating famili-
arity. Autonomous systems, AI, IoT, and nature-based 
renewable systems each garnered attention from 13%-
18% of respondents, reflecting a broad interest in diverse 
smart agricultural innovations. Novel spectral interface 
technologies were the least familiar, with only 4.55% of 
respondents indicating involvement or interest, which 
could be attributed to limited applications or high imple-
mentation costs.

Online Respondents identified several primary con-
tributions of smart technologies to the agricultural sec-
tor (figure 4). The leading perceived benefit was resource 
waste reduction, cited by 25.81% of participants as a 
crucial advantage. Closely following was the poten-
tial for reducing environmental impact, highlighted by 
22.58% of respondents as a key benefit. Improved crop 
yields were also a prominent contribution, recognized 
by 19.35% of participants as a fundamental outcome of 
adopting smart technologies. Enhanced pest, as well as 
disease detection and increased labor efficiency were 
both identified as significant benefits, with each select-
ed by 16.13% of respondents. Interestingly, none of the 
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Figure 1. Geographic distribution of stakeholders.
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Figure 2. Professional Sector of the stakeholders.

18,18%

13,64%

18,18%
31,82%

13,64%

4,55%
Autonomous and Robotic Systems

IoT Technologies

Artificial Intelligence / Machine Learning
and Modelling

Sensor-based technologies/ Remote
Sensing/Geospatial technologies

Nature-based/Innovative Renewable
Agri-Systems / Water, soil, wastewater,
and nutrients reuse / Organic Agriculture

Novel Spectral Interface Technologies

Figure 3. Key stakeholders’ familiarity with Agritech project inno-
vative technologies.
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respondents chose the “Others” option, suggesting that 
the primary contributions listed were comprehensive 
enough to cover stakeholders’ perceptions of the benefits 
of smart technologies.

3.1.2. Policy awareness and integration

The survey revealed varied levels of policy aware-
ness among respondents. A substantial portion, 50%, 
expressed uncertainty regarding whether smart agricul-
ture technologies are acknowledged within existing policy 
frameworks, suggesting a need for clearer communication 
on policy provisions. In contrast, 37.50% of respondents 
believed that relevant policies do exist, while 12.50% indi-
cated an absence of any supportive policy. Several specific 
frameworks were noted among those who confirmed pol-
icy awareness, including PAC 2023-27, Agenda 2030, and 
precision farming policies. Additionally, respondents men-
tioned partial policy alignment with broader frameworks 
such as the Green Deal, Farm to Fork, and Soil and Bio-
diversity Strategies. This feedback highlights a fragmented 
policy environment where existing frameworks recognize 
the importance of innovation in agriculture but lack spe-
cific support for smart agriculture technologies.

Survey participants identified significant barriers 
impacting the adoption of smart agriculture technolo-
gies, primarily focusing on high initial investment costs 
and limited technical knowledge. 45% of respondents 
cited each of these factors, emphasizing the need for 
financial strategies and educational initiatives to address 
these challenges. Additionally, 10% of respondents not-
ed limited infrastructure as an obstacle, highlighting 
the importance of developing robust infrastructure to 
support connected technologies like IoT. None of the 
respondents considered regulatory barriers an issue, sug-
gesting that financial and knowledge-based obstacles are 
the most immediate concerns. These findings imply that 
while policies supporting smart agriculture technologies 
exist, they are not tailored to alleviate farmers’ specific 

challenges, particularly small and medium-sized opera-
tions with limited capital and expertise.

Participants offered a range of recommendations 
for policy adjustments that could facilitate the adoption 
of specific smart agriculture technologies. For autono-
mous and robotic systems, respondents suggested finan-
cial incentives, such as non-repayable grants, and the 
diddemination of broader information to raise aware-
ness. IoT technologies were identified as requiring tar-
geted training programs, while AI and machine learning 
would benefit from a structured data-sharing framework 
and technical support to aid users in navigating com-
plex algorithms. Sensor-based technologies require poli-
cies that focus on transforming raw data into actionable 
information, enabling farmers to make informed deci-
sions based on real-time insights. For renewable agri-
systems, respondents suggested training vouchers and 
regulatory adjustments to support organic and sustain-
able practices. These policy recommendations emphasize 
the importance of tailoring support mechanisms to the 
distinct requirements of each smart agriculture technol-
ogy, thus enhancing both accessibility and usability.

Online survey respondents prioritized several key 
research questions to guide future policy development 
regarding smart agriculture technologies. Approximately 
44.44% of participants identified “How can government 
policies foster innovation in agriculture?” as the most 
pressing question, signaling strong interest in govern-
ment’s direct role in driving technological advancements. 
Equally prioritized was “How can smart agriculture tech-
nologies be integrated into the existing agricultural sys-
tem?” indicating that the practicalities of implementing 
new technologies within current systems are of critical 
concern alongside policy considerations. The importance 
of understanding the impact of existing policies on the 
adoption of smart agriculture technologies was also not-
ed, with 11.11% ranking it as the primary concern and 
44.44% ranking it as the second most important concern. 
Lastly, the collaboration between government and pri-
vate sector stakeholders was noted as an area for future 
exploration, even if with lower priority. The diversity of 
opinions on this question suggests a balanced focus on 
government-led and collaborative initiatives.

The online survey also identified key stakehold-
ers essential to the development of smart agriculture 
technologies policy, including farmers and academia 
(each cited by 25% of respondents), smart technologies 
companies (17.86%), public agencies, and large retailers 
(14.29% each). This distribution underscores the neces-
sity of engaging diverse participants to create policies 
that address practical needs, market demands, and tech-
nological feasibility.
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16%
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Enhanced pest/disease detection

Increase in labor efficiency

Reduction of environmental impact

Figure 4. Contributions of innovative technologies to the agricul-
tural sector, according to key stakeholders.
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3.2. Technology-specific insights

The qualitative data gathered from the qualitative 
expert interviews provide a deeper understanding of 
stakeholder perspectives on specific smart agriculture 
technologies, their potential contributions, and the bar-
riers that may hinder their adoption. The insights gained 
through these interviews underscore the diversity of 
challenges and recommendations within the smart agri-
culture technologies domain, offering nuanced perspec-
tives that supplement the survey findings.

3.2.1. Perspectives on robotic systems

Stakeholders frequently highlighted the trans-
formative potential of robotic systems in addressing 
labor shortages, a pressing issue particularly in labor-
intensive areas such as fruit and vegetable production. 
Robotic technologies allow for precise management of 
tasks, from field crop monitoring to harvesting, which 
can significantly improve efficiency while reducing 
reliance on manual labor. This technological preci-
sion supports a shift toward sustainable practices, as 
robots can optimize resource allocation, minimize 
wastage, and even carry out tasks with environmen-
tal sensitivity in mind. However, stakeholders pointed 
out that the high costs associated with robotic systems 
pose substantial barriers to adoption, especially for 
small and medium-sized farms. The financial outlay 
required for these technologies and their technical 
complexity presents a formidable challenge for farm-
ers without specialized knowledge or resources to sup-
port this transition.

To address these issues, stakeholders suggested 
targeted financial incentives, such as non-repayable 
grants or tax relief for farms adopting robotic systems. 
Furthermore, they advocated for broader policy adjust-
ments to ease the learning curve associated with these 
technologies. Suggestions included on-site training 
programs, community equipment-sharing initiatives, 
and educational workshops that demystify the use of 
robotics in farming. From a policy perspective, inter-
viewees indicated that while overarching strategies like 
the Green Deal and Farm to Fork acknowledge the 
importance of agricultural innovation, they lack spe-
cific provisions to support the adoption of robotics. By 
expanding precision farming policies to include robot-
ics, policymakers could foster a more comprehensive 
approach to integrating these technologies into agri-
cultural systems.

3.2.2. IoT for resource optimization

IoT technologies were recognized by stakeholders 
as essential for optimizing resource use, particularly in 
water management. By integrating IoT-enabled devic-
es, farmers can collect real-time data on soil moisture, 
crop health, and environmental conditions, allowing for 
precise irrigation adjustments that conserve water and 
reduce costs. Beyond individual farm benefits, stakehold-
ers noted that the data generated by IoT systems could 
support broader agricultural analytics, improving fore-
casting and resource management on a regional or even 
national level (Weersink et al., 2018).

Despite these advantages, stakeholders expressed 
concerns over the cost and interoperability of IoT sys-
tems, which can make adoption challenging, particularly 
for smaller farms. The lack of standardized protocols for 
data sharing among different IoT devices presents anoth-
er barrier, as farmers often require an integrated view of 
data across multiple devices and systems. To address these 
issues, stakeholders recommended policy interventions to 
promote data-sharing standards and compatibility proto-
cols to enable seamless integration across IoT platforms. 
Additionally, they advocated for reducing bureaucratic 
complexities surrounding IoT implementation, which 
could encourage more farms to adopt IoT configurations 
and benefit from their potential efficiencies.

3.2.3. Sensor platforms and remote sensing technologies

Sensor technologies, particularly those designed for 
unmanned or automated configurations, were identified 
as having significant potential to enhance agricultural 
efficiency. These technologies allow for precise manage-
ment of resources like water and nutrients and provide 
real-time monitoring that supports effective disease con-
trol and overall crop health management. For example, 
by using soil moisture sensors, farmers can optimize 
irrigation schedules, reducing water use without com-
promising crop quality. Additionally, the environmental 
benefits of sensor-based systems are considerable, as they 
minimize the need for excess inputs, thereby lowering 
the environmental footprint of agricultural operations.

However, stakeholders noted that sensor platforms 
face barriers similar to those of other advanced technolo-
gies, including high installation costs, technical limita-
tions, and the need for specialized training. Furthermore, 
respondents pointed out that the absence of a unified data 
platform for sensor integration complicates data inter-
pretation, making it challenging for farmers to convert 
raw data into actionable insights. To support the adop-
tion of sensor technology, stakeholders suggested policy 
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adjustments that include infrastructure investments, such 
as broadband expansion to rural areas and establishing 
public-private partnerships for data platform development. 
These initiatives could facilitate real-time data aggregation 
and analysis, allowing farmers to maximize the benefits of 
sensor platforms for sustainable agriculture.

3.2.4. Role of artificial intelligence and machine learning in 
agriculture

Artificial Intelligence (AI) and Machine Learn-
ing (ML) technologies hold transformative potential for 
agriculture, enabling real-time analysis and predictive 
insights that enhance decision-making and resource 
allocation. AI-driven applications allow farmers to moni-
tor crop health, predict yield outcomes, and optimize 
input use, making farm management more efficient and 
responsive. Stakeholders believe that AI could streamline 
processes across the agricultural value chain, from plan-
ning and planting to harvest and market delivery, there-
by adding value at each production stage.

Despite this promise, AI adoption in agriculture is 
restricted by several challenges. First, the high costs asso-
ciated with AI solutions can be prohibitive, particularly 
for smaller operations. Second, data interoperability pre-
sents technical challenges, as different AI applications 
often require diverse data inputs that may not be read-
ily compatible with each other. Lastly, stakeholders high-
lighted the complexity of using AI solutions, which often 
require advanced technical knowledge that may be inac-
cessible to many farmers. Recommendations for policy 
interventions included establishing open data systems, 
which could facilitate data sharing across AI platforms, 
and government-supported training programs that simpli-
fy the use of AI. Additionally, respondents advocated for 
technical support mechanisms to help farmers navigate AI 
applications and fully realize their potential benefits.

3.2.5. Nature-based solutions and renewable agriculture

Stakeholders emphasized the growing importance 
of nature-based solutions, such as water and soil reuse, 
nutrient recycling, and organic farming practices, as 
essential components of sustainable agriculture. These 
renewable systems reduce environmental impact by 
reducing reliance on synthetic inputs and fostering a 
more balanced relationship between agriculture and the 
environment. Nature-based solutions promise healthier 
soils, improved crop resilience, and long-term sustain-
ability, making them an attractive alternative for farmers 
aiming to minimize their ecological footprint.

However, the transition to renewable agri-systems 
is not without challenges. Stakeholders noted that high 
initial investment costs, limited expertise, and regula-
tory inconsistencies are significant barriers. To address 
these challenges, respondents recommended that policies 
provide financial incentives, such as subsidies for transi-
tioning to organic farming and grants for infrastructure 
investments. Training programs focused on sustainable 
farming practices and more robust certification systems 
were also suggested to ensure market recognition of 
organic and nature-based products. By supporting these 
transitions, policymakers can promote a more sustainable 
agricultural model that aligns with environmental goals.

3.2.6. Novel spectral interface technologies

While novel spectral interface technologies, includ-
ing microwave and THz radiation applications, were 
less familiar to many respondents, some stakeholders 
acknowledged their potential for non-invasive agricul-
tural monitoring. These technologies allow for detailed 
analysis of crop health, soil composition, and other 
critical indicators without physical contact, which could 
prove valuable for precision agriculture. However, the 
application of spectral technologies faces unique chal-
lenges, including high costs, safety concerns related to 
radiation use, and the need for specialized expertise to 
interpret complex data.

Stakeholders recommended targeted policy interven-
tions to address these challenges. Suggestions included 
funding for research focused on agricultural applica-
tions of spectral technologies, safety standards to ensure 
that radiation use does not pose health risks, and farmer 
training programs to build competence in spectral data 
interpretation. Additionally, respondents expressed inter-
est in exploring integrating spectral data with AI, which 
could improve data analysis and support more efficient 
agricultural decision-making.

4. DISCUSSION

The findings of this study reinforce the well-doc-
umented potential of smart agriculture technologies to 
address pressing challenges in the agricultural sector, 
such as resource efficiency, climate adaptation, and sus-
tainability. These technologies, when the right conditions 
are met, also play a growing role in building food system 
resilience by improving productivity and reducing losses, 
particularly under climate stress, as reported by Gemtou 
et al., (2024). Despite this potential, adoption remains lim-
ited due to financial, technical, and infrastructural con-
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straints. These results align with previous research, which 
emphasizes that economic barriers and knowledge gaps 
are among the most significant obstacles to the adoption 
of technology in agriculture (Basso & Antle, 2020; Finger 
et al., 2019). However, the findings also highlight a critical 
gap in policy awareness, which has received less attention 
in the existing literature but emerged as a key concern 
among stakeholders in this study.

One of the particularities of this research lies in its 
mixed-methods approach, which combines qualitative 
depth with exploratory quantitative insights. While the 
number of responses in the survey is modest, the align-
ment between the survey trends and the interview nar-
ratives provides a form of triangulation that enhances 
the robustness of the results. This integration allowed us 
to validate emerging patterns, ensuring that the insights 
are not reliant on a single data source but are reflected 
across multiple forms of stakeholder engagement (Fet-
ters et al., 2013; Creswell & Plano Clark, 2017). The tri-
angulation design was particularly valuable for assessing 
the adoption barriers and policy dynamics around smart 
technologies, where numerical trends were consistently 
reinforced by expert perspectives.

This convergence of evidence across the two meth-
ods strengthens confidence in the relevance of the 
results. One of the most striking of these results is the 
widespread lack of clarity regarding the role of existing 
policies in supporting smart agriculture technologies. 
Many respondents expressed uncertainty about whether 
current frameworks, such as the Common Agricultural 
Policy (CAP) 2023–2027, the Green Deal, and Farm to 
Fork, sufficiently address the specific needs of techno-
logical adoption in agriculture. This reflects findings 
from previous studies indicating that while sustainability 
and innovation are often mentioned in high-level poli-
cies, their implementation at the farm level is often frag-
mented and unclear (Candel, 2022; Rose et al., 2021). A 
key implication of this study is that policymakers must 
improve communication strategies to ensure that farm-
ers, technology developers, and other stakeholders are 
well-informed about existing policy instruments and 
funding opportunities.

This lack of clarity is also linked to a broader issue 
of trust and how farmers perceive these policies. For 
instance, Giampietri et al. (2020) show that trust in 
intermediaries plays a critical role in adoption of CAP-
subsidized risk management tools. Our findings suggest 
that in the context of smart farming, this trust must 
extend to digital service providers and data systems, 
highlighting the need for transparency, digital literacy, 
and certification mechanisms that can build farmers’ 
confidence in technological tools.

Consistent with earlier research (Long et al., 2016; 
Weersink et al., 2018), this study also confirms that high 
initial investment costs remain a fundamental barrier 
to technology adoption. This is particularly problematic 
for small and medium-sized farms, which struggle to 
access capital for automation, AI-driven decision support 
tools, and IoT-enabled monitoring systems. The explora-
tory quantitative results highlighted the widespread 
concern about financial and technical barriers, and like-
wise, these survey insights were strongly supported by 
qualitative findings, where experts repeatedly empha-
sized similar barriers such as high upfront costs, limited 
access to financial resources, and difficulties accessing 
technical support. This cross-analysis between survey 
data and expert interviews strengthens the validity of 
our observations and highlights the need for targeted 
policy responses that directly address these barriers. 
While financial incentives, such as grants, tax credits, 
and low-interest loans, are already part of some policy 
frameworks, stakeholders expressed concerns that these 
incentives are often complex, difficult to access, or insuf-
ficient to offset adoption costs. Policymakers should con-
sider simplifying administrative procedures for funding 
applications and targeting financial assistance toward 
the most impactful technologies identified in this study, 
such as sensor-based monitoring, AI-driven decision-
making, and precision irrigation systems.

Additionally, as reinforced by both datasets, cost-
sharing and infrastructure emerged as cross-cutting 
themes, underscoring their significance regardless of 
methodological lens. Stakeholders recommended public-
private partnerships to support cost-sharing initiatives, 
particularly for expensive infrastructure investments, 
such as rural broadband expansion. These findings 
reinforce recent discussions on the role of co-financing 
mechanisms and innovation clusters in mitigating the 
risk associated with technology adoption for farmers 
(Ehlers et al., 2022).

A consistent finding across both data sources was 
the importance of technical knowledge and training in 
shaping adoption outcomes, consistent with previous 
studies (Charatsari & Lioutas, 2013; Lovec et al., 2020). 
Smart agriculture technologies often require specialized 
skills, yet many farmers have limited access to training 
programs that could help them integrate these innova-
tions effectively. Stakeholders emphasized the need for 
structured, hands-on training initiatives that focus on 
technology usability, data interpretation, and integration 
into existing farming systems. 

This highlights an important policy gap: while some 
funding exists for technology development, there is often 
insufficient investment in farmer education and capacity 
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building. Policymakers should consider expanding agri-
cultural extension services to provide in-person training, 
online courses, and demonstration farms where farmers 
can experience the benefits of digital agriculture first-
hand. Knowledge transfer partnerships between research 
institutions and farming communities could also play 
a crucial role in reducing this barrier. This aligns with 
Menozzi et al. (2023), who emphasize that perceived 
behavioural control and attitudes are pivotal in shaping 
adoption decisions, especially when practices are unfa-
miliar or technically demanding. Similarly, our respond-
ents stressed the difficulty of using AI or IoT platforms, 
reinforcing the need for support measures that go 
beyond finance to include training, usability, and peer-
to-peer learning networks.

The study also highlights infrastructure limita-
tions, particularly concerning internet connectivity in 
rural areas. Technologies such as IoT-based monitor-
ing, remote sensing, and AI-driven decision support 
tools rely on high-speed internet and cloud comput-
ing, yet many agricultural regions lack the necessary 
broadband infrastructure. This issue is consistent with 
prior research, which emphasizes that the digital divide 
between urban and rural areas is a significant barrier to 
the diffusion of technology (Ehlers et al., 2022).

A broader finding from this study is that smart agri-
culture policies must be adaptive, responsive, and inclu-
sive. Stakeholders reported that existing policies often 
fail to differentiate between the needs of different types 
of farmers, particularly smallholders versus large-scale 
agribusinesses. One-size-fits-all policy approaches may 
not be effective in promoting equitable adoption, sug-
gesting the need for targeted support mechanisms.

Additionally, stakeholder engagement must be pri-
oritized in policy design and implementation. The find-
ings of the qualitative survey suggest that many policy 
frameworks lack farmer representation in the decision-
making process, leading to misalignment between policy 
objectives and on-the-ground realities. To improve this, 
policymakers should, according to the key expert stake-
holders, incorporate participatory approaches, such as 
co-design workshops, multi-actor innovation networks, 
and regional consultation forums.

While this study aims to provide valuable insights 
into the adoption barriers and policy needs of smart 
agriculture technologies, using triangulation, combin-
ing exploratory survey findings with detailed expert 
interviews, to provide a balanced and credible approach, 
in an attempt to make the insights more robust, certain 
limitations should be acknowledged. The sample size, 
particularly for the qualitative interviews, was relatively 
small, which may limit the generalizability of some find-

ings. Additionally, the reliance on self-reported data 
introduces the possibility of response biases, as par-
ticipants’ perceptions may not always reflect objective 
realities. However, it is important to note that the study 
purposefully targeted key stakeholders, namely: policy 
experts, researchers, and technology developers, identi-
fied through a structured stakeholder mapping within 
the Agritech project. As such, the participants likely rep-
resent some of the most informed individuals on smart 
agriculture policy and technology in Italy, enhancing 
the relevance and depth of the insights gathered. Future 
research should explore larger and samples to validate 
these findings across different agricultural systems and 
geographic regions. Comparative studies examining pol-
icy effectiveness in multiple countries could offer deeper 
insights into best practices for supporting smart agricul-
ture adoption. 

5. CONCLUSION AND POLICY IMPLICATIONS

This study highlights the importance of policy frame-
works in facilitating the adoption of smart agriculture 
technologies while revealing key barriers hindering their 
widespread implementation. The results emphasize stake-
holders’ strong optimism regarding these technologies’ 
role in improving agricultural efficiency, sustainability, 
and resilience. However, the study also identifies three 
major obstacles: high investment costs, technical knowl-
edge gaps, and inadequate infrastructure, all of which 
must be addressed through targeted policy interventions.

A critical takeaway from this research is the neces-
sity for policy alignment and accessibility. While exist-
ing frameworks acknowledge innovation, a discon-
nect exists between policy provisions and stakeholder 
awareness. This highlights the need for simplified 
policy regulations, better communication strategies, 
and stronger engagement with the farming community. 
Policies should be designed to be practical, transparent, 
and adaptable, ensuring that they effectively support 
farmers and technology adopters in different agricul-
tural settings.

Another key implication is the urgent need for finan-
cial instruments tailored to the realities of smart agricul-
ture, Such as differences in farm sizes, digital readiness 
and access to broadband infrastructure, among others. 
Policies must focus on incentives such as subsidies, tax 
relief, and low-interest loans to lower the entry barri-
ers for farmers, particularly small and medium-sized 
operations. At the same time, public-private partnerships 
should be expanded to create co-financing models that 
distribute investment risks across multiple stakeholders.
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The role of education and technical training also 
emerges as a fundamental aspect of successful adoption. 
Smart agriculture technologies require specialized skills 
that many farmers currently lack. To address this, agri-
cultural extension services should integrate digital train-
ing programs, on-field demonstration projects, and men-
torship initiatives. Collaboration between universities, 
policymakers, and industry leaders can create structured 
knowledge-sharing platforms that provide ongoing sup-
port to farmers.

Finally, this study underscores the importance of an 
inclusive and adaptive policy-making approach. Engag-
ing diverse stakeholders, from farmers to technology 
developers and policymakers, is essential for crafting 
policies grounded in real-world needs. Multi-actor gov-
ernance structures, such as stakeholder consultation 
groups, regional innovation hubs, and participatory pol-
icy platforms, should be institutionalized to ensure that 
agricultural policies evolve in tandem with technological 
advancements.

In conclusion, smart agriculture technologies rep-
resent a transformative opportunity for the agricultural 
sector; however, their full potential can only be realized 
with robust, well-coordinated, and forward-thinking poli-
cies. Policymakers can accelerate the transition toward a 
more sustainable, productive, and resilient agricultural 
system by addressing financial constraints, bridging the 
knowledge gap, expanding digital infrastructure, and 
improving stakeholder engagement. Beyond economic and 
technological advancements, the successful integration 
of these innovations has profound implications for long-
term sustainability and global food security. By improving 
resource efficiency, reducing environmental degradation, 
and enhancing adaptive capacity to climate change, smart 
agriculture technologies contribute to more resilient food 
systems that can meet the demands of a growing popu-
lation. However, ensuring equitable access to these tech-
nologies is essential to prevent the widening of disparities 
between large-scale and smallholder farmers. Future pol-
icy efforts should focus on fostering inclusive innovation, 
integrating sustainability goals into technology adoption 
strategies, and aligning digital agriculture with broader 
climate and food security policies. By doing so, agricul-
tural technologies can evolve in ways that not only drive 
economic growth but also ensure environmental sustain-
ability and food system resilience.
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Abstract. Agri-food global value chains (GVCs) face growing pressure to enhance 
productivity and environmental sustainability, with technological innovation playing 
a critical role. In this context, start-ups have emerged as key innovation developers. 
This study provides a qualitative, exploratory analysis of the technological character-
istics of 114 digital agriculture (DA) start-ups in Argentina. We have characterized 
their solutions and proposed implications for the industrial dynamics in agricultural 
input markets. Our analysis implies that most DA innovations tend to be comple-
mentary to existing technological packages rather than being disruptive. While these 
start-ups introduce innovative solutions, they currently seem to hold limited capac-
ity to challenge the market dominance of large multinational agricultural input firms. 
By exploring the intersection of innovation and market structures, this study provides 
valuable insights into the evolving industrial dynamics of ag-input markets in agri-
food GVCs. The findings offer strategic implications for start-ups, incumbents, and 
policymakers.

Keywords: start-ups, digital agriculture, innovation, industrial organization.

1. INTRODUCTION

Over the past decades, agri-food systems have undergone profound 
transformations driven by accelerated urbanization, technological change, 
and novel production techniques, resulting in significant gains in both pro-
ductivity and food availability (Barrett et al., 2022; FAO, 2017; Reardon et al., 
2019). However, global agri-food value chains (GVCs) continue to face sub-
stantial challenges related to addressing multiple imperatives: increasing food 
production for a growing global population, supporting agricultural-depend-
ent emerging economies in their development trajectories, implementing 
more sustainable and efficient production practices that align with new social 
and environmental standards, and developing resilience to climate change 
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impacts (Cerutti et al., 2023; Crippa et al., 2021; Yang et 
al., 2024).

In response to increasing pressure, we have seen in 
recent years the development of a large set of technolo-
gies aimed at enhancing the resilience of GVCs to poten-
tial shocks and steering them toward more sustainable 
trajectories (Costa et al., 2022; Wang et al., 2021). Unlike 
a few decades ago, when innovations were mainly con-
centrated in the R&D departments of large companies, 
today many innovations in this field are rooted in small 
technology-based companies and start-ups, known as 
agrifoodtech start-ups (Klerkx & Villalobos, 2024; Mac 
Clay et al., 2024). These companies, increasingly recog-
nized as key players in the transformation of GVCs, offer 
solutions across the entire agri-food value chain, from 
upstream activities such as farming inputs and agricul-
tural production, through food processing and distribu-
tion, all the way to downstream segments that connect 
with the end consumer. Among this large set of agri-
foodtech start-up companies, a specific group is focused 
on providing digital agriculture (DA) solutions to the 
upstream segment of the value chain (McFadden et al., 
2022, 2023; Wolfert et al., 2023), contributing to enhance 
farm-level data analysis, decision-making, and automa-
tion through technologies such as artificial intelligence, 
the Internet of Things (IoT), big data, robotics, sensors, 
remote sensing, platform technologies and blockchain, 
among others (Klerkx et al., 2019; Klerkx & Rose, 2020; 
Lezoche et al., 2020)1.

In recent years, Latin America has witnessed rap-
id growth in the number of start-ups focused on food 
and agriculture, particularly in Brazil and Argentina, 
which account for 51% and 23% of these companies in 
the region, respectively (Bisang et al., 2022; Vitón et al., 
2019). In particular, the dynamism of Argentina in this 
field can be attributed to a combination of factors. Exter-
nally, the country ranks as the world’s third-largest net 
food exporter (World Bank, 2024). Internally, the agri-
industrial sector explains 23.1% of the GDP and gener-
ates around 23% of private-sector employment (Ram-
seyer et al., 2024). Moreover, Argentina has pioneered 
in the adoption of agricultural technologies in the past, 
such as no-till farming (Peiretti & Dumanski, 2014; Sco-
poni et al., 2011) and genetically modified seeds (Qaim 
& Janvry, 2005; Qaim & Traxler, 2005), demonstrat-
ing a tradition of technological openness among farm-
ers. Farmers are, on average, young (average age of 44 
years) and highly educated (around 45% of farmers in 
Argentina have completed undergraduate or graduate 

1 This paradigm of accelerated innovation in the digital agriculture field 
is also known in the literature as Agriculture 4.0, Agri-food 4.0 or the 
Fourth agricultural revolution.

studies), which favors the adoption of technology (FAO 
et al., 2021). Additionally, the availability of qualified 
professionals and entrepreneurial capacities seems to be 
fostering the development of agrifoodtech start-ups in the 
country (Lachman et al., 2022; Lachman & López, 2022; 
Navarro & Camusso, 2022). 

However, beyond the promises and enthusiasm cur-
rently driving the innovative practices of these start-ups, 
there are critical aspects of political economy that deter-
mine the long-term fate of a technological innovation, 
which should not be overlooked (Hackfort, 2024; Prause 
et al., 2021). The scaling and success of a technological 
package do not depend exclusively on its intrinsic poten-
tial, as market and industrial dynamics will necessarily 
shape this process. Agricultural input markets currently 
exhibit high levels of concentration and market power, 
with a reduced group of companies wielding influence 
over commercial and technological trends (Fairbairn & 
Reisman, 2024; Mac Clay et al., 2024; Sauvagerd et al., 
2024). Under this scenario, the promised transformation 
in agriculture risks being slowed down (or eventually 
thwarted) by incumbent strategies (Béné, 2022). 

Despite a growing body of research analyzing the 
potential of new technologies in agri-food GVCs (Finger, 
2023; Herrero et al., 2020, 2021; Meemken et al., 2024), 
little attention has been given to the dynamics of techno-
logical innovation within them, especially in developing 
countries, in which the development and commercializa-
tion of innovations pose additional challenges (Alam et 
al., 2023; Macchiavello et al., 2022). Overall, this work 
seeks to provide a preliminary perspective on how young 
start-up companies may reshape the market dynamics 
of the agricultural input industry and the implications 
for its future evolution. The main objective of this paper 
is to provide an exploratory analysis of whether digital 
agriculture (DA) start-ups have the potential to disrupt 
the industry structure in global agricultural input mar-
kets by challenging the dominant position of estab-
lished multinational firms, particularly in the upstream 
segment of the value chain. We approach this question 
through a case study of Argentina, a relevant context 
due to its dynamic entrepreneurial ecosystem and strong 
presence of global agribusiness actors (Lachman et al., 
2022; World Bank, 2024). We do this by characterizing 
the technological solutions offered by DA start-ups oper-
ating upstream at the farmer level2, and by exploring 
how these solutions interact with the current technologi-
cal standards set by incumbent companies in the agri-
cultural input industry. The rationale behind focusing 
on the DA segment is that digital solutions have particu-

2 We exclude companies offering solutions exclusively at the midstream 
or downstream level.
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larly drawn the attention of agricultural input suppliers 
(such as seed, agrochemical, fertilizer, and machinery 
manufacturers) who view DA as a transversal technol-
ogy across various activities in agricultural production 
(Lezoche et al., 2020). These companies also foresee DA 
as a potential enhancer of their current technological 
platforms in seed, crop protection, crop nutrition, and 
agricultural machinery segments (Fairbairn & Reisman, 
2024; Kenney et al., 2020; Prause, 2021). 

The remainder of this paper is structured as follows. 
In section 2, we describe the current industry structure of 
the agricultural input industry and the strategic actions 
incumbents are taking in the face of accelerating innova-
tion in DA. In section 3, we present our conceptual frame-
work, discuss the literature on interactions between estab-
lished firms and start-ups in the context of accelerated 
technological change, and outline our two main analyti-
cal dimensions. In section 4, we present our methodologi-
cal approach, and in section 5, we present the results of 
our analysis. In section 6, we discuss our results, explor-
ing the central topic of the paper: whether DA start-ups 
change industrial dynamics in ag input markets. Overall, 
our analysis shows that most of the solutions developed by 
Argentine start-ups tend to be predominantly complemen-
tary to the existing technological packages, and this may 
represent an opportunity for dominant firms to strength-
en their position either by acquiring or investing (as a way 
of technological exploration) in early-stage start-ups to 
incorporate those solutions into their own technological 
platforms. The last section of the paper presents conclu-
sions and implications for different stakeholders. 

2. THE AGRICULTURAL INPUT INDUSTRY IN 
THE FACE OF THE DIGITAL TRANSITION

Over the last three decades, concentration in agri-
food GVCs has increased simultaneously in industries 
such as crop seeds, agrochemicals, fertilizers, agricul-
tural machinery, and animal health and breeding prod-
ucts (Clapp, 2021; Fuglie et al., 2012; MacDonald, 2017; 
MacDonald et al., 2023). The path towards increasing 
market share has happened (mainly) through mergers 
or acquisitions (M&As), consolidating a small number 
of megacompanies that have led to GVCs’ reconfiguring3. 

3 Examples include the 2015 merger of Dow and DuPont, resulting in 
Corteva Agriscience; ChemChina’s acquisition of Syngenta in early 
2016; and Bayer’s subsequent purchase of Monsanto. This sector, 
already highly concentrated and dominated by the “Big Six” since the 
early 2000s, is now controlled by four major firms – Bayer, Corteva, 
Syngenta, and BASF. Something similar happens in the agricultural 
machinery sector, in which the four leading companies control around 
half of the market sales.

The implications of growing concentration in agricul-
tural input markets and (its consequent increase in mar-
ket power) have been explored in the literature by vari-
ous authors, including Fuglie et al. (2012), IPES (2017), 
Deconinck (2020), Clapp (2022), and Béné (2022). Fug-
lie et al. (2012) note that the increase in market power 
resulting from this concentration can lead to higher 
input prices for producers. Furthermore, consolidation 
often limits options, favoring products that are more 
profitable for large companies (Clapp, 2021).

However, within the current technological para-
digm driven by information and communication tech-
nologies (ICTs), DA solutions have sparked debate over 
whether this market dynamic of concentration can be 
disrupted. In the field of DA, many innovations originate 
from start-ups and small to medium-sized technology-
based firms (Klerkx & Villalobos, 2024; Manganda et al., 
2024). Over the last decade, we have witnessed a highly 
dynamic scenario of the creation of these types of firms, 
rooted in innovation ecosystems, which redefine rela-
tionships among traditional sector actors and introduce 
new business models based on digitalization and data 
access (Basso & Antle, 2020; Rotz et al., 2019). 

Large incumbent companies that control the agri-
cultural input markets are shifting toward incorporat-
ing digital solutions into their portfolios and adapting 
their business models to approach farmers with a more 
integrated, smart-farming approach. This is a limiting 
factor to start-ups’ potential to disrupt industry struc-
tures. Incumbent companies are now pivoting from 
selling products to offering more integrated solutions, 
using digital tools within broader systems to incorpo-
rate data analytics, decision support, and automation, 
while strengthening oligopolistic dynamics by establish-
ing collaborative and interconnected digital platforms, 
which may limit the access of new players (Sauvagerd et 
al., 2024). Seed and crop protection companies such as 
Bayer, Corteva, Syngenta, and BASF have developed pro-
prietary platforms that enable farm-level decision-mak-
ing based on real-time environmental and agronomic 
data. These systems, such as Bayer’s FieldView or BASF’s 
xarvio exemplify the shift towards offering service-based 
solutions that create data lock-ins and potentially rede-
fine customer relationships (Jiang, 2021; Trivedi, 2022). 
Fertilizer firms are also going in the same line. Com-
panies like Nutrien and Yara, for instance, use digital 
platforms to monitor field-level input application and 
promote practices related to precision fertilization, while 
large animal pharma incumbents have recently advanced 
in the acquisition of precision tools for livestock man-
agement and monitoring (e.g., Merck Animal Health 
acquired QuantifiedAg and Zoetis acquired Performance 
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Livestock Analytics). Crop protection and nutrition com-
panies are also investing in digital marketplaces that 
streamline the process of selling to farmers and create 
digital channels as a complementary solution to tradi-
tional distribution channels (for example, Yara and Syn-
genta are investors in the Argentine marketplace Agrofy).

Farm machinery manufacturers, including Deere & 
Co., CNH Industrial, Kubota, and AGCO, are investing 
in precision agriculture and smart machinery (Birner et 
al., 2021; Paolillo, 2022). These companies are integrat-
ing sensors and telemetry to improve the performance of 
their products, with a focus on automation and interop-
erability. They also offer services that enhance the value 
of the data collected by machinery. Moreover, commod-
ity trading companies such as Cargill, ADM, and Louis 
Dreyfus are using digitalization to improve the transpar-
ency and traceability of their value chains. They provide 
digital tools to farmers to facilitate selling and adopt dig-
ital platforms to enhance their sourcing process.

Collectively, these actions indicate a systemic trend: 
dominant input firms are not only adapting to digital 
agriculture but also seeking to shape its institutional and 
commercial architecture. Based on the C4 concentra-
tion ratio (ETC Group & GRAIN, 2025), we summarize 
in Appendix 1 the initiatives of top companies in each 
significant segment related to DA. These are the actors 
most likely to influence the direction and structure of 
digital agriculture.

Considering the actions these companies are taking 
towards DA, the critical question that emerges is wheth-
er the evolving patterns of innovation and the novel 
technological solutions associated with DA that small 
firms are developing have the potential to disrupt the 
recent trend of market concentration in aginput indus-
tries or whether they will entrench existing patterns of 
consolidation further.

3. CONCEPTUAL FRAMEWORK

3.1. Interactions between incumbents and start-ups in the 
context of technological change

The features of new technologies and their relation-
ship to incumbent firms’ current technological standards 
not only influence production but also shape market 
dynamics, including strategy configuration, leadership, 
and governance (Mac Clay & Sellare, 2025). This is espe-
cially relevant in a context in which the cost of techno-
logical building blocks has been drastically reduced over 
the last decades, due to increases in computing capacity 
(Lundstrom & Alam, 2022) and reductions in genome 
sequencing costs (Song et al., 2023). What was once an 

exclusively internal process for large firms is now being 
reconfigured as a distributed innovation process, with 
smaller players entering the scene. Start-ups (and small- 
to medium-sized firms) hold greater ability and flexibil-
ity to explore emerging technologies first, in many cases 
with disruptive potential. 

Start-ups can adapt quickly and flexibly to new busi-
ness opportunities and are more likely to align incen-
tives among entrepreneurs, investors, and employees 
(Bendig et al., 2022; Dushnitsky & Yu, 2022). In con-
trast, incumbents tend to focus on exploiting existing 
capabilities (Freeman & Engel, 2007). Thus, as start-ups 
have more dynamic rates of innovation, this may imply 
an opportunity for incumbents to outsource part of their 
R&D process by making corporate investments, acquir-
ing start-ups, or forming partnerships within an open 
innovation framework, in interactive contexts such as 
business or innovation ecosystems (Berthet et al., 2018; 
Bogers et al., 2018).      

While these advantages give start-ups some disrup-
tive potential, their ability to challenge dominant indus-
try positions can be mitigated by the response of incum-
bent firms, which are in control of the value chain and 
have the ability to set governance rules, as well as prior-
itize technology standards (Clapp & Ruder, 2020; Fair-
bairn & Reisman, 2024). Many novel technologies exhibit 
low marginal costs once they become commercially scal-
able but require substantial investments in the develop-
ment phase (Zilberman et al., 2022). Start-ups often lack 
the necessary operational and financial resources, as well 
as market access, distribution channels, and brand recog-
nition. Thus, for start-ups, partnering with large, estab-
lished firms may be necessary not only to secure funds 
for technological development but also to secure future 
access to markets once the technology is viable. By inter-
acting with start-ups, incumbents may be able to exploit a 
window of technology to incorporate promising solutions 
while reducing failure costs (Dushnitsky & Lenox, 2005). 
The possibility of engaging in open innovation processes 
is also critical for redefining corporate identity in rapidly 
evolving contexts (Waßenhoven et al., 2025).

This interaction between incumbents and start-ups 
may also give incumbent firms a way to control tech-
nological pathways, which is especially relevant in the 
context of high market concentration, as it happens in 
agricultural input industries (Béné, 2022). By invest-
ing in, acquiring, or entering into research partnerships 
with start-ups and emerging companies, these incum-
bents might find a way to control the type of technology 
that reaches the market (or even the pace of innovation). 
Moreover, some innovations tend to be systemic, requir-
ing adaptations from different members of the value chain 
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to be successful. In these cases, some industry incumbents 
need to step up and take leadership, promoting these 
technologies as the new standard, potentially leading to 
winner-take-all scenarios (Harryson & Lorange, 2024; 
Klerkx & Rose, 2020; Sauvagerd et al., 2024).  

3.2. Dimensions of analysis: materiality and functional 
integration of innovations

To assess the extent to which emerging DA start-ups 
offering solutions to farmers in the upstream segment of 
GVCs can disrupt and reshape the highly concentrated 
agricultural input markets (as described in the previous 
section), this paper characterizes start-ups technolo-
gies and examines how they interact with the currently 
incumbent-led technological paradigm. We proceed 
along two analytical dimensions. First, we explore the 
materiality and mode of deployment of technological 
change, distinguishing between embodied and disem-
bodied innovations, as proposed in the agricultural eco-
nomics literature by Sunding and Zilberman (2001) and 
Dosi et al. (2021). Simply put, embodied innovations are 
those that are integrated into physical capital or machin-
ery (i.e., technologies whose adoption requires invest-
ment in tangible equipment). Embodied digital tools are 
incorporated into physical agricultural equipment, such 
as selective-spraying modules, drones for crop monitor-
ing, variable-rate technologies, and animal-based devices 
(e.g., ruminal boluses that track internal health indica-
tors). These technologies often require capital investment 
and technical know-how for operation (Birner et al., 
2021; van der Velden et al., 2024).

Disembodied innovations, on the other hand, refer 
more to software and information technologies and 
do not depend exclusively on physical devices, being 
relatively placeless. These technologies could be imple-
mented without significant changes to capital goods and 
can be deployed without necessarily being tied to a par-
ticular machine or location (although they may require 
physical devices like computers or smartphones to 
work). These types of disembodied innovations include 
tools such as cloud-based advisory platforms, farm man-
agement apps, weather and pest forecasting systems, and 
data analytics services that support informed decision-
making. 

However, this distinction between embodied and 
disembodied innovations is insufficient to analyze the 
solutions provided by start-ups comprehensively. Sev-
eral authors (Birner et al., 2021; Lavarello et al., 2019) 
emphasize the importance of classifying solutions 
according to their relationship with existing products 
and services, reflecting the functional integration type. 

Lavarello et al. (2019) argue that, unlike previous tech-
nological revolutions characterized by technological 
substitution and the entry of new players, DA is associ-
ated with leveraging complementarities between new 
enabling technologies and existing technological trajec-
tories. Birner et al. (2021) suggest that product substitut-
ability in DA can be seen as a factor that reduces mar-
ket concentration, as substitutes tend to foster the entry 
of new players and competition. Therefore, this analysis 
incorporates a second fundamental dimension that dis-
tinguishes between substitute and complementary goods. 
Substitute goods can lower entry barriers and stimulate 
competition by enabling the replacement of traditional 
technologies (e.g., a spraying drone replacing a con-
ventional sprayer). On the other hand, complementary 
goods may eventually strengthen the position of domi-
nant market players by optimizing existing technologies 
and reinforcing dependence on established infrastruc-
tures (i.e., IoT sensors that enhance the efficiency of tra-
ditional irrigation systems) (Besanko et al., 2012).

A synthesis of our bi-dimensional conceptual frame-
work is shown in Figure 1. This framework considers 
(i) the distinction between embodied and disembodied 
innovations (materiality of the innovation) and (ii) the 
classification of goods into substitutes and complements 
(the functional integration of the innovation). The com-
bination of these dimensions results in a matrix with 
four quadrants, providing an analytical tool to explore 
the transformative potential of these innovations on the 
concentration of agricultural input markets.

4. DATA AND METHODS

4.1. Database building 

The first point in our analysis is to identify and sys-
tematize a comprehensive list of agrifoodtech start-ups in 
the country. We first start with this more comprehensive 
concept (which includes solutions at the farmer level as 
well as at the mid- and downstream segments), and we 
then narrow down to DA start-ups, which constitute the 
main objective of this paper. We have not found fully 
harmonized and updated databases that collect system-
atic information on agrifoodtech start-ups. For this pur-
pose, we combined industry reports with a selection of 
public sources, including news, press releases, and web-
sites, until a comprehensive database was established. 
We started collecting available information from previ-
ous research studies and surveys conducted between 
May and July 2022 (Soler et al., 2022) and between July 
and October 2023 (Navarro et al., 2024). We comple-
mented this information using Crunchbase, a database 
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of innovative ventures increasingly used for academic 
research (Dalle et al., 2017). This information was also 
combined with ad hoc web searches and consultations 
with experts and stakeholders in the local entrepreneur-
ial ecosystem.

While the term “start-up” lacks a universally accept-
ed definition (Connolly et al., 2018; Klerkx & Villalo-
bos, 2024), for this study, we define start-ups as busi-
ness ventures characterized by two key elements: (a) an 
innovative approach underpinned by intensive research 
and development activities; and (b) scalability potential, 
reflected in business models which tend to be replicable 
across multiple markets and the promise of exponen-
tial growth for investors (Escartín et al., 2020; Vergara 
& Barrett, 2025). For instrumental purposes, we define 
Argentine agrifoodtech start-ups as companies founded 
and operating in Argentina that develop technologies 
in agriculture and food and have achieved (or are close 

to) at least a minimum viable product by October 2024. 
While there is no undisputed temporal criterion for 
defining start-ups (i.e., companies not exceeding a cer-
tain number of years), we include in our analysis com-
panies founded in 2010 or later, considering that it was 
in early 2010s when concepts like Climate-Smart Agri-
culture, Digital Agriculture, and Agriculture 4.0 began 
to gain systematic attention in the literature (Alam et al., 
2023; FAO, 2010). We acknowledge this is a pragmatic 
operationalization, that combines the innovativeness 
profile, product readiness and year of foundation does 
not fully capture other relevant dimensions of a start-up 
company, such as the funding stage (whether the com-
pany has already received pre-seed or seed funding, or it 
is more advanced into series A, B, etc.), governance and 
ownership structure, or the realized scalability or inter-
nalization potencial. Thus, our criteria should not be 
read as a definitive taxonomy for selecting or identifying 
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Substitute Complementary

Embodied

Disembodied

Embodied solutions that replace 
products or processes currently 

in the market
(e.g., Autonomous spraying drones, 

which replace traditional sprayers by 
offering greater precision and reduced 
input usage, or automated harvesting 

robots, which replace the need for 
manual labor force in specific tasks.)

Embodied solutions that leverage 
or optimize existing technologies
(e.g., IoT soil monitoring sensors, which 

integrate with traditional irrigation 
systems to optimize water efficiency, or 

selective application modules for 
agricultural machinery, used to enhance 

the precision of seeders or sprayers.)

Disembodied solutions that 
replace products or processes 

currently in the market
(e.g., Online agricultural marketplaces,
which replace the traditional face-to-

face transactions with digital markets.)

Disembodied solutions that 
leverage or optimize existing 

technologies
(e.g., farm management software, which 

complements decision-making 
processes by integrating data from 

machinery and sensors or agricultural 
data analytics platforms used for 

management advice based on historical 
and real-time data.)

Figure 1. Categories of analysis. Classification of start-ups. Source: Own elaboration based on Sunding and Zilberman (2001), Lavarello et 
al. (2019), and Birner et al. (2021).
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start-ups, but rather as a practical shorthand for build-
ing an initial database.

As a first step, and to ensure comprehensive cover-
age and consistency with previous studies, we adopted 
an inclusive classification encompassing companies 
developing both agricultural-specific innovations and 
those implementing improvements across the entire 
value chain, including processing, logistics, marketing, 
and traceability. This is why, in this stage, we use the 
broader agrifoodtech denomination and we later move 
to specific DA companies. Our systematic search meth-
odology yielded a database of 239 Argentine agrifoodtech 
start-ups. For each company, we compiled data on their 
description, primary value proposition, and core tech-
nology applied. Around three-quarters of these compa-
nies initiated operations after 2016.

4.2. Identifying and classifying DA start-ups

As a second step, we leverage this database to identify 
start-ups offering farmer-centered solutions in the field 
of DA in the upstream segment. The literature provides 
various proposals to classify the solutions developed by 
start-ups working in agriculture and food (AgFunder, 
2024; Herrero et al., 2020, 2021; Mac Clay et al., 2024; 
McFadden et al., 2023), but due to the dynamic nature of 
the sector, no typology has yet achieved universal adop-
tion. To distinguish between start-ups that provide DA 
solutions and those that do not, we classify the start-
ups according to the criteria proposed by Mac Clay et 
al. (2024), which adopt a comprehensive agri-food value 
chain approach4, allowing us to capture those companies 
specifically providing DA solutions to farmers (rather 
than to mid- and downstream segments of the value 
chain). This preliminary step is essential to contextual-
ize DA start-ups within the value chain, evaluate their 
relative significance and visibility compared to other 
solutions, and understand their role within the broader 
innovation landscape in Argentina’s agri-food sector. For 
instrumental purposes, DA solutions are defined as those 
within the categories of “Precision agriculture, smart 
farming, and agricultural robotics” and “Digital Agribusi-
ness Marketplaces”5, as outlined by Mac Clay et al. (2024). 

4 This typology comprises eleven different solutions, categorized by 
their position in the value chain.
5 The authors in this work consider a broader category, which is 
“E-commerce and delivery solutions”. Within this category, the authors 
include both apps specifically related to farmers’ digitalization, as well 
as other apps linked to food distribution to the final consumer (for 
example, delivery apps). This second group of solutions is unrelated 
to what we define as digital agriculture, so for practical purposes, we 
divide the category into two to specifically capture “Digital Agribusiness 
Marketplaces”, and the rest we indicate as “Other”.

To further characterize the remaining start-ups oper-
ating in the DA field, we apply the typology presented by 
McFadden et al. (2023), which categorizes digital solu-
tions into three groups: (i) “Data and Data collection”, 
(ii) “Decision Support” and (iii) “Equipment and input 
adjustment based on data”. Examples in the first category 
include data obtained from yield monitoring equipment, 
sensors, and images captured by drones, aircraft, or satel-
lites. Decision support tools include digital maps or other 
visualizations of georeferenced data, mobile applications, 
and other analytical tools that provide management rec-
ommendations. Technologies in the third category pri-
marily include guidance systems, automatic steering, 
and variable-rate applicators. The purpose of this clas-
sification is not to perform a selection (as was done in 
the previous step), but to provide an initial characteri-
zation of DA start-ups, using a standard criterion com-
monly applied in various reports on the subject. Finally, 
we characterize the subgroup of DA start-ups based on 
their primary technological features, following the typol-
ogy introduced in the previous section (Figure 1). This 
framework classifies DA start-ups into four distinguisha-
ble categories: (a) embodied and substitute, (b) embodied 
and complementary, (c) disembodied and substitute, and 
(d) disembodied and complementary. A summary of the 
categories is presented in Table 1.

Based on this final classification, which reflects key 
technological attributes, we hypothesize about the poten-
tial of these start-ups to challenge the dominant posi-
tion of large multinational companies in the agricultur-
al input segment of agri-food GVCs. Given the nascent 
nature of these start-ups and the technologies they offer, 
our analysis adopts an exploratory perspective. We out-
line ideas on how and to what extent each of the four 
groups of innovations identified in Figure 1 could drive 
changes in the industrial dynamics of highly concentrat-
ed input markets.

5. RESULTS: CHARACTERIZING 
ARGENTINE START-UPS

5.1. Initial identification of DA start-ups

In this section, we present the classification of the 
group of 239 agrifoodtech start-ups identified in Argen-
tina. We begin by identifying the subset of DA solu-
tions that constitutes the core of our analysis, based on 
the categories presented by Mac Clay et al. (2024) (the 
details of this classification are shown in Appendix 2). 
Within the upstream segment, Precision agriculture, 
smart agriculture, and agricultural robotics solutions 
account for 41% of the total companies. These start-ups 
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focus on developing solutions such as real-time data 
collection, satellite images and drones, farm manage-
ment software, precision livestock technologies, and 
digital advisory services. DA start-ups have the potential 
to transform agricultural input markets since the vast 
amount of data they generate can be utilized not only by 
farmers to optimize decisions but also by other start-ups 
to improve their technologies. At the same time, there 
is a group of companies defined as Digital Agribusiness 
Marketplaces (7% of the total number of companies) 
which contribute to farmers’ digitalization by connect-
ing them with input suppliers and clients, and provid-
ing services related to price discovery. These two groups 
form the core of what is defined, for the purpose of 
this paper, as DA. As the analysis shows, around half of 
start-up companies in Argentina are oriented toward the 
upstream segment, providing digital services for farms. 
A possible explanation for this is related to the distinct 
agricultural profile of the country and the importance 
of primary production both for the internal productive 
structure and the export markets (World Bank, 2024).

From this first classification step, we retain 114 com-
panies from the initial set of 239, which constitute our 
DA group (the full list of these companies is presented 
in Appendix 3). We will now focus on this subset of DA 
start-ups, which are the main object of this paper. As a 
first characterization, we apply McFadden et al. (2023) 
classification typology. As shown in Figure 2, we see a 
predominance in the categories of Data and data collec-
tion (37.7%)6 and Decision-making support7 (56.1%). This 
reflects a focus on solutions that are primarily oriented 
towards collecting information and optimizing the deci-
sion-making process. Technologies related to data collec-
tion and decision support are among the most adopted 
by Argentine farmers. According to Borbiconi et al. (Bor-

6 Examples of companies in this category are Aseagro, Caburé, Control 
Campo, Nandi; Vistaguay or Pastech.
7 Examples of companies in this category are Albor, Auravant, Eiwa or 
Sima.

biconi et al., 2024), half of the farmers in Argentina use 
technologies that facilitate data collection. Puntel et al. 
(2022) note that remote sensing and mapping solutions 
have an adoption rate of between 60% and 80%. The 
Data-driven Equipment and Input Adjustments8 category 
accounts for only 6.1%, indicating a lower representa-
tion of these solutions, which are more related to farm-
ing automation. This is also in line with adoption data. 
For equipment and inputs, registered rate adoptions 
are lower among Argentine farmers (except possibly for 
GPS, which is adopted mainly due to its integration into 
machinery). Variable-rate technology adoption ranges 
between 30% and 40% (Borbiconi et al., 2024; McKing-
sey & Company, 2024; Puntel et al., 2022).

5.2. Characterization of DA start-ups according to their 
technological features

After mapping and characterizing DA start-ups’ 
profiles based on McFadden et al. (2023), we categorize 
them now using our own analytical framework, outlined 
in Figure 1. As a starting point, and based on the value 
proposition of the 114 start-ups that constitute our object 
of study, we list the specific solutions these companies are 
providing and label them in terms of both dimensions: 
the materiality and the functional integration of the 
innovation. This is presented in detail in Table 2. In each 
row, we explain the criteria behind classifying a solution 
as embodied or disembodied (materiality) and as comple-
mentary or substitute (functionality). For example, a farm 
digital advisory platform is disembodied in nature, as it 
does not require dedicated hardware (beyond a comput-
er or smartphone), but is complementary, as it integrates 
data from different sources. On the other hand, a spray-
ing drone is embodied, considering that these are physi-
cal devices equipped with sensors, spraying systems, and 

8 Examples: Deepagro, Campo Preciso, UCO Drone or Agrovants.

Table 1. Technological classifications used in the analysis.

Mac Clay et al. (2024) McFadden et al. (2023) Own Conceptual 
Framework

Start-ups providing Digital Agriculture (DA) solutions (including precision agriculture, 
smart farming, and farm robotics and digital agribusiness marketplaces)

Data and Data 
Collection

Complementary & 
embodied

Other Solutions Decision-Making 
Support

Complementary & 
disembodied

Data-driven Equipment 
and Input Adjustments Substitute & embodied

Substitute & 
disembodied
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Table 2. Classification of start-ups (materiality and functional integration) according to the main solution they provide.

Solution Materiality Functional integration Start-ups

Custom tech solutions Disembodied: These are software-
based and digital developments 
without a dedicated physical 
component, focusing on data, 
analytics, and management.

Complementary: They enhance 
existing agricultural processes 
by digitizing, optimizing, and 
integrating operations rather than 
replacing them.

Agrosty, AgroToolbox, Integra 
Labs, Kan Territory Magoya, 
Sendevo

Digital agribusiness marketplaces Disembodied: Software-based 
platforms without a dedicated 
physical hardware component. 
They operate online and are 
accessible via computers or mobile 
devices, meaning their value lies in 
the digital services they provide.

Substitute: These platforms replace 
traditional, in-person agricultural 
buying and selling channels by 
enabling producers and buyers to 
transact entirely online.

AgriRed, Agro24, Agrofy, Bipolos, 
Enbaca, Flashagro, GenGanar, 
HaciendaGo, La Rotonda, Malevo, 
Mercado Agrario, Modo Agrario, 
Muu Mercado Digital Ganadero, 
Pacta, Qira, Rastro Agropecuario, 
Wymaq

Digital platforms enabling 
sustainable and regenerative 
agriculture

Disembodied: Operate through 
digital platforms and services 
without physical hardware.

Complementary: Support 
sustainability and traceability by 
providing data and validation 
tools, improving decision-making 
rather than replacing production 
processes.

Cacta, Edra, Eirú, Puma, Ruuts, 
Ucrop.it

Farm digital advisory platform Disembodied: Software and apps 
that process agricultural data via 
digital channels, without requiring 
dedicated hardware.

Complementary: Support and 
improve farming decisions by 
integrating data from other 
technologies, enhancing efficiency 
without replacing existing 
practices.

Agroapp, AgroBrowser, 
Agroconsultas, Agrohub, Agrology, 
Agro Aprilis, Avansys, Bold, Bright 
Data Analytics, Caburé, CROPilot.
tech, Dymaxion Labs, EcoDrip, 
Eiwa, Fauno, iAgro, Kilimo, Kuna, 
Nutrixya, OKARATech, PreSeeds, 
Rastros, Satellites On Fire, 
Terratio, UrsulaGIS, Vistaguay, 
Yield Data

Farm Management Software Disembodied: Digital applications 
that collect, process, and analyze 
agricultural data for farm 
management. It operates entirely 
through computers, tablets, or 
smartphones, without requiring 
a dedicated physical hardware 
component to function.

Complementary: These software 
enhance decision-making, 
optimize resource allocation, 
and improve efficiency in farm 
operations. It complements 
existing processes, machinery, 
labor, and agronomic practices by 
providing better coordination and 
data-driven management tools.

AgroPro, Auravant, Culti, 
Hi-Terra, Inteliagro, Lievrex, 
Ñandú, Riante, SaiLO, Sima, 
SmallData

Livestock digital advisory 
platforms

Disembodied: Software and digital 
platforms accessible via computers 
or mobile devices.

Complementary: Provide 
management support and advisory 
tools that optimize livestock 
production without substituting 
existing practices.

Nandi, RumIA, Uniagro soft

Livestock identification with AI Disembodied: Based on software 
and AI vision systems, not 
dependent on physical devices.

Substitute: Replaces traditional 
identification methods (tags, 
marks) with digital recognition 
powered by artificial intelligence.

IDanimal

Livestock management software Disembodied: Digital systems and 
applications that collect, process, 
and analyze data for livestock 
management without tangible 
hardware.

Complementary: Strengthen 
livestock production by enabling 
traceability, data-driven 
management, and efficiency, 
without replacing existing 
practices.

Avismart, Cattler, Cowdoo 
(Raíces), FieldData, Finca

(Continued)

http://Ucrop.it
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Solution Materiality Functional integration Start-ups

Real-time monitoring of air quality 
with sensors

Embodied: Requires physical 
sensor devices installed in the 
environment.

Complementary: Provide 
environmental data that improves 
management and risk prevention, 
supporting agricultural operations 
rather than replacing them.

AR-PUF, Indegap

Real-time monitoring of climate 
with weather stations

Embodied: Weather stations are 
tangible devices capturing and 
transmitting data.

Complementary: Offer real-time 
climatic information that supports 
planning and decision-making 
without replacing production 
processes.

AgroTrack, Canopilogger, Climate 
Sense, MKL Agro, Mixon, Pampe.
ro, Smartium

Real-time monitoring of fodder 
with satellites

Disembodied: Service based 
on satellite imagery and data 
analytics, delivered digitally 
without requiring specific 
hardware.

Complementary: Improve 
fodder management by providing 
objective and continuous 
information without substituting 
production.

Forrager

Real-time monitoring of grass with 
sensors and satellites

Embodied: Combine sensors and 
smart devices installed in the field 
with satellite data.

Complementary: Optimize 
pasture management by 
supplying precise and integrated 
information, enhancing existing 
practices.

Pastech

Real-time monitoring of livestock 
water systems with sensors

Embodied: Depend on physical 
devices and sensors installed in 
water systems.

Complementary: Strengthen 
existing infrastructure by enabling 
monitoring, alerts, and efficient 
use of resources.

Agrocheck, Control Campo

Real-time monitoring of 
machinery with sensors

Embodied: Sensors and hardware 
integrated into agricultural 
machinery.

Complementary: Improve 
existing equipment with real-time 
traceability, control, and efficiency, 
without replacing the machinery 
itself.

Acronex, Minnow, Corvus 
(AGDP), DVL Satelital

Real-time monitoring of silobags 
with sensors

Embodied: Physical sensors 
placed in silobags to track storage 
conditions.

Complementary: Support and 
enhance storage systems by 
providing data to prevent losses 
and improve conservation.

Wiagro

Real-time monitoring of soil with 
sensors

Embodied: Depend on physical 
sensors installed in the soil.

Complementary: Complement 
agronomic practices with real-time 
data on nutrients, humidity, and 
soil conditions.

Agrosense, Briste, Clarion

Real-time monitoring of water 
systems with sensors

Embodied: Requires physical 
devices and automation systems in 
irrigation or water infrastructure.

Complementary: Add control, 
efficiency, and automation to water 
systems, without substituting the 
infrastructure itself.

Hidromotic Ingeniería, Ponce

Smart devices and robotics for 
livestock

Embodied: Physical devices 
and robotic systems applied to 
livestock management.

Complementary: Enhance animal 
husbandry with monitoring, 
automation, and precision 
management, while keeping 
traditional production practices.

Bastó, Cattle Trace (Onsen 
Ingeniería), Dale Vaquita, 
Digirodeo, El Ojo del Amo, Huella 
Software, Magno, Novimetrics

Smart devices for sprayers Embodied: Physical devices 
integrated into spraying 
machinery.

Complementary: Improve 
precision and reduce input use by 
optimizing existing sprayers rather 
than replacing them.

DeepAgro

Solutions for smart data and 
connected devices

Disembodied: Provide digital 
platforms and connectivity (e.g., 
satellite data, IoT integration) 
without field hardware.

Complementary: Strengthen 
agricultural systems by enabling 
communication, data access, and 
interoperability of devices.

Innova Space, Satellogic, Vertrev

Table 2. (Continued).

(Continued)

http://Pampe.ro
http://Pampe.ro
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autonomous navigation technology, and are substitutes in 
their functional nature (as they cover the same function 
as traditional spraying equipment). 

When we examine this analysis as a whole, the first 
point to highlight is that Argentine digital agriculture 
start-ups notably gravitate towards complementary solu-
tions, that enhance the efficiency of existing technology 
platforms without replacing current production tools. 
As shown by Figure 2, among the 114 digital agriculture 
start-ups, approximately 80% offer complementary solu-
tions. In the group of embodied complementary solu-
tions (28.1% of total companies), we find devices for 
soil monitoring, precision irrigation systems, and tech-
nologies to optimize agricultural input requirements. 
One example is DeepAgro, which offers a device (called 
sprAI) that enhances the spraying process through an 
AI-based system capable of weed recognition, enabling 
more efficient use of machinery. They have recently 
incorporated a large language model system that ena-
bles better task tracking and facilitates inquiries regard-

ing equipment efficiency (Martínez, 2025). The recent 
partnership between DeepAgro and a local agricultural 
machinery manufacturer illustrates the complementary 
nature of this solution (La Nación Campo, 2024). Other 
examples include cases like Cattler or Digirodeo, which 
offer smart devices for livestock management, Wia-
gro, which provides sensors for monitoring silobags or 
Agrosense, offering devices for soil monitoring.

A second group (53.5% of the companies in DA) 
provides disembodied complementary solutions, such 
as digital farm management tools and data analysis 
platforms. This category includes software companies 
such as Eiwa, Agrology, or iAgro, which help farmers 
integrate data collected from their agricultural machin-
ery, telemetry systems, geographic information systems, 
and accounting software. The goal is to support more 
efficient farm management and data-driven decision-
making. These tools offer a more precise and integrated 
visualization of information, and in some cases, provide 
management recommendations based on data analy-

Solution Materiality Functional integration Start-ups

Spraying drones Embodied: Physical devices 
equipped with sensors, spraying 
systems, and autonomous 
navigation technology. Their 
operation depends on the physical 
machinery itself.

Substitute: They replace 
traditional spraying equipment, 
such as tractor-mounted sprayers, 
by performing the same task 
and reducing reliance on older 
machinery for spraying operations.

Agrovants, Servidrone, UCO 
Drone

Source: Own elaboration based on the two dimensions presented in Figure 1.

Total number of Argentine agrifoodtech start-ups

Startups providing Digital Agriculture (DA) solutions Other solutions

Decision-Making 
Support

Data and Data 
Collection

Complementary 
& Embodied

Complementary 
& Disembodied

Substitute & 
Embodied

Substitute & 
Disembodied

Data-driven Equipment 
and Input Adjustments

239 startups (100%)

114 (48%) 125 (52%)

43 (38%) 64 (56%) 7 (6%)

32 
(28.1%)

61 
(53.5%)

3 
(2.6%)

18 
(15.8%)

Classification 
Mac Clay et al. (2024)

Classification 
Mc Fadden et al. (2023)

Own 
conceptual 
framework

Figure 2. Summary of the classification and characterization process.

Table 2. (Continued).



146

Bio-based and Applied Economics 14(4): 135-153, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17313 

Julián Arraigada, Pablo Mac Clay

sis. However, they are complementary solutions in the 
sense that, despite the value they offer, they still rely on 
the generation of primary data from other equipment or 
software. Some firms in this category are even forming 
alliances with telecommunications companies to ensure 
connectivity in the field, which is crucial for data col-
lection and the integration of cloud-based equipment 
(Vazquez, 2024).  

Conversely, substitute solutions, which replace 
entirely current products, processes, or tools, are mar-
ginal within the DA landscape in Argentina. Only 2.6% 
of DA companies correspond to embodied substitutes. 
We can mention the case of companies such as UCO 
Drone, Servidrone, and Agrovants, which offer drones 
for crop spraying services. This practice helps avoid loss-
es caused by crop or soil damage resulting from ground-
based equipment, while also allowing spraying in areas 
that are otherwise inaccessible and achieving greater 
overall precision. With improvements in the load capac-
ity of drones (from approximately 10 liters to nearly 50 
liters, increasing efficiency by hectares per hour), many 
farmers in Argentina are beginning to replace some 
ground-based applications with drones (Razzetti, 2025). 
However, this trend is still in its early stages. 

Finally, among the group of companies offering dis-
embodied substitute solutions (15.8% of total), we find 
agricultural marketplaces, such as Agrofy or Agrired, 
which facilitate both the purchase of inputs (such as crop 
protection products and fertilizers) and even the sale 
of agricultural production. These marketplaces aim to 
disintermediate the value chain by enabling farmers to 
bypass traditional local distributors and purchase direct-
ly. Although still in its early stages, this trend clearly 
shows potential to substitute the conventional channels. 
In Argentina, only about 20% of farmers regularly pur-
chase online, although those who have done so express 
an intention to continue using the online channel (Bor-
biconi et al., 2024).

6. DISCUSSION: CAN DA START-UPS 
CHANGE INDUSTRIAL DYNAMICS 

IN THE AG-INPUT MARKETS?

As outlined in the conceptual framework, the inter-
actions between incumbents and start-ups in the context 
of technological change can have multiple facets, allow-
ing more f lexibility to technological exploration and 
enabling open innovation and deeper inter-firm link-
ages. This analysis focuses specifically on whether the 
technological profile of DA start-ups provides a sufficient 
foundation for transforming existing market dynamics, 

challenging the market positions of established domi-
nant firms. Drawing on our previous classification of 
DA start-ups in Argentina in Section 5, we propose an 
exploratory and conceptual analysis to examine whether 
the technological characteristics of these start-ups pos-
sess transformative potential for the industrial organiza-
tion of agricultural input markets, or whether they will 
reinforce the market power dynamics that have prevailed 
in the sector over the past thirty years (as described in 
Section 2). Given the current lack of sufficient empirical 
evidence on this topic, the ideas presented in this analy-
sis should be regarded as an exploratory exercise.

At first glance, the predominance of complemen-
tary solutions and the low representation of substitute 
technologies appear to limit their capacity to disrupt 
the current balance of power. Large companies can pre-
emptively acquire start-ups, integrating innovative tech-
nologies while maintaining market dominance. Further-
more, start-ups developing complementary technologies, 
whether embodied or disembodied, often depend on the 
infrastructure, data, or distribution channels of large 
companies, which limits their independence and ulti-
mately strengthens the position of the incumbents.

Dominant multinational companies are leveraging 
complementary technologies to transition from input-
based business models to platform or solution-based 
models. For example, a crop protection company that 
previously offered herbicides or pesticides is now offer-
ing systemic and integrated solutions to achieve weed 
and pesticide-free farms, thereby minimizing the need 
for agrochemicals. While greater precision in product 
application could be a driver of a sales reduction of these 
companies’ core products, digital tools enable companies 
to integrate solutions and shift their value creation mod-
el. This transition offers comprehensive agronomic man-
agement solutions that complement traditional product 
sales. Another example could be the case of an agricul-
tural machinery company, which in the past obtained 
revenue mainly from the sale of products (i.e., tractors) 
and today seeks to offer a service of real-time data analy-
sis of the field to maximize the efficiency of the planting 
process. In both cases, companies leverage smart tech-
nologies to transform product sales into recurring ser-
vice or subscription revenue streams.

Conversely, substitute solutions may represent a 
more evident opportunity to generate a disruptive mar-
ket impact. The development of substitute solutions, 
such as autonomous machinery, could facilitate the entry 
of new players, breaking the entry barriers imposed by 
large companies and diversifying the agricultural input 
market. However, their low representation among Argen-
tinian start-ups suggests the existence of significant 
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entry barriers, including prohibitive scaling expenses, 
limited access to capital, and challenges in establish-
ing and managing physical infrastructure. Aware of the 
threat posed by these specific innovations, large com-
panies may adopt defensive strategies to safeguard their 
leadership position and neutralize the impact of innova-
tions that could challenge their value propositions.

Our analysis is in line with previous evidence on the 
topic. Lavarello et al. (2019) observe that digital technolo-
gies tend to reinforce existing technological trajectories 
rather than disrupt them. Sauvagerd et al. (2024) show 
that despite many new digital solutions coming from 
small companies, the strategies of large incumbents tend 
to consolidate an oligopolistic landscape in these new 
platforms. Mac Clay et al. (2024) show that incumbent 
firms in the agricultural machinery, seed, and crop pro-
tection fields are employing corporate venture strategies 
to invest in digital agriculture platforms that may allow 
an upgrade in their own services and operations. In fact, 
these corporate venture strategies show that even when 
incumbent firms develop their own digital branches, they 
still seek complementarities in solutions developed by 
start-ups. There are several examples in this line, such 
as BASF and Yara investing in Ecorobotix9, a company 
utilizing AI for autonomous crop protection, Syngenta 
investing in Greeneye10, an AI-driven precision spraying 
solution, or Bayer investing in EarthOptics11, a precision 
agriculture company focused on soil health, to mention 
a few. The rapid acceleration of technological innova-
tion and the proliferation of digital solutions have led to 
a fragmented landscape, making it virtually impossible 
for any single firm to develop all the necessary capabili-
ties internally. This has led to the need for external explo-
ration of complementary capabilities. In a similar line, 
Rotz et al. (2019), Hackfort (2021), and Clapp and Ruder 
(2020) explain the political economy behind the develop-
ment of digital solutions and how multinational compa-
nies tend to prioritize the development of technological 
lines that are aligned with their own interests and may 
lead them to higher benefit capture. 

Additionally, the type of innovations developed by 
DA start-ups, whether embodied or disembodied, also 
influences their potential to disrupt concentration in the 
agricultural input industry. While embodied solutions 
directly impact agricultural production, their ability to 
alter concentration dynamics is limited. The “physical” 

9 https://press.ecorobotix.com/238233-ecorobotix-raises-52m-in-new-
funding
10 https://www.syngentagroupventures.com/news/news-release/green-
eye-technology-raises-funding-round-22m
11 https://earthoptics.com/news-insights/earthoptics-secures-27-6-mil-
lion-series-b-funding

nature of these innovations requires scale, production 
processes, physical infrastructure – and consequently 
capital – as well as the necessary channels to distribute 
these products, all of which constitute a set of entry bar-
riers for smaller firms. In contrast, disembodied solu-
tions offer a different field of action with greater poten-
tial to disrupt industrial concentration dynamics. These 
technologies enable greater flexibility in terms of scala-
bility and accessibility, as start-ups could offer their solu-
tions to a wide variety of actors, providing them with a 
potentially global reach.

A key element in this discussion is technological 
compatibility. Birner et al. (2021) state that interoper-
ability between various digital tools and agricultural 
machinery can influence market concentration. If start-
ups develop technologies that are not compatible with 
the dominant systems, they may face difficulties in 
scaling up and attracting users. Conversely, promoting 
standards that ensure interoperability could reduce entry 
barriers but also reinforce the dominant position of large 
companies, that hold a first-mover advantage in terms of 
the existing technological infrastructure. Finally, access 
to information and the use of big data emerge as addi-
tional factors that may strengthen concentration dynam-
ics. This raises questions related to the ownership and 
governance of such data. Digital technologies generate 
vast amounts of data, which, if exclusively controlled by 
large agricultural input companies, could further consol-
idate their advantages by optimizing processes, reducing 
costs, and adjusting prices.

As a final point in this section, we mention a caveat 
to our analysis. While we have focused exclusively on 
the technological characteristics of the solutions offered 
by start-ups, other factors may help reshape market 
dynamics. Further factors also require careful consid-
eration, especially given the complex nature of the prob-
lem we are studying, such as incumbent firms’ strategies 
and business reactions, access to venture capital (which 
shapes start-up scaling potential), and regulatory frame-
works that influence value chain dynamics from produc-
er to consumer. 

7. CONCLUSIONS

This paper provides a preliminary assessment of the 
potential of DA start-ups to transform market dynam-
ics in the agricultural input segment of agri-food GVCs, 
challenging dominant firms’ current positions as indus-
try leaders. For this purpose, we have characterized the 
technological features of 114 DA start-ups in Argentina (a 
country with increasing momentum in start-up creation), 

https://press.ecorobotix.com/238233-ecorobotix-raises-52m-in-new-funding
https://press.ecorobotix.com/238233-ecorobotix-raises-52m-in-new-funding
https://www.syngentagroupventures.com/news/news-release/greeneye-technology-raises-funding-round-22m
https://www.syngentagroupventures.com/news/news-release/greeneye-technology-raises-funding-round-22m
https://earthoptics.com/news-insights/earthoptics-secures-27-6-million-series-b-funding
https://earthoptics.com/news-insights/earthoptics-secures-27-6-million-series-b-funding
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based on two technological dimensions (embodied/disem-
bodied technologies and complementary/substitutive). Our 
analysis reveals that most Argentine start-ups offer comple-
mentary solutions to existing technological packages. They 
enhance and optimize the production tools already avail-
able to farmers but are unlikely to replace them. This, in 
turn, presents an opportunity for dominant firms to inte-
grate these technologies into their own innovation pipe-
lines (through start-up acquisitions, strategic alliances, or 
investments via corporate venture capital), thus reinforc-
ing the oligopolistic dynamics that have shaped the sector 
over the past 30 years. In this sense, despite the promise 
that start-ups bring to the market through new technolo-
gies, our preliminary analysis suggests that their disruptive 
potential concerning the industrial dynamics of the agri-
cultural input market remains somewhat limited.

Based on these findings, this study offers insights 
for various stakeholders. Large firms are compelled to 
develop open innovation capabilities. Collaboration 
with external actors becomes imperative to leverage the 
potential of new technologies and maintain competitive-
ness in a globalized and dynamic market. At the same 
time, ICTs have lowered the barriers to entry in agri-
food markets, enabling new players to introduce digital 
innovations. Meanwhile, start-ups need to acknowledge 
that generating solutions and innovations is a process 
distinct from scaling, commercializing, and distributing 
these solutions in the market – a domain still dominated 
by large firms. 

The above discussion underscores that start-ups 
alone do not appear sufficient to reverse industry con-
centration in agri-food agricultural input markets. This 
scenario demands innovative public policies that foster 
a more inclusive environment, combining public invest-
ment in R&D with regulatory frameworks to mitigate 
concentration risks. Additionally, measures are needed 
to facilitate technological interoperability, and address 
the infrastructure and financing challenges that start-
ups face in order to enhance their competitiveness.

This study represents a preliminary effort to explore 
the role of DA start-ups in the transformation mar-
ket dynamics, adopting a prospective viewpoint, which 
is suitable given the early and rapidly evolving stage of 
innovation in agriculture. As such, rather than offer-
ing conclusive impact assessments, we aimed to map 
out emerging trends and highlight possible directions 
of change in market dynamics and value chain mor-
phology. Our work, exploratory in nature, reflects the 
novelty of the DA field, which implies limitations in the 
availability of longitudinal data. Our findings provide 
a foundation for future research, particularly as more 
empirical evidence becomes available. Dynamics such as 

investments, acquisitions, mergers, and strategic allianc-
es would be valuable avenues of exploration. At the same 
time, it is necessary to intensify efforts to promote sys-
tematization and ensure the public availability of market 
data, sales figures, and market shares. This would ena-
ble the development of studies with a more quantitative 
focus. Additionally, examining the dynamic evolution 
of the market and incorporating factors such as regula-
tions, public policies, and the adoption of technology by 
farmers would open new perspectives on better under-
standing the forces shaping the structure of this ever-
changing sector and achieving a more comprehensive 
understanding of the phenomenon.
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