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INTRODUCTION

This special issue of Bio-based and Applied Economics “Economic and
policy analysis of technology uptake for the smart management of agricul-
tural systems” stems from the growing diffusion of innovative digital tech-
nologies as strategic solutions for the development of the agricultural sector.

Agriculture is undergoing a profound transformation thanks to the inte-
gration of new technologies (Vishnoi and Goel, 2024; Aijaz et al., 2025), with
a view to the sustainable development of the sector (Norman and MacDon-
ald, 2004; Nica et al., 2025). The combined economic and environmental
benefits of technology adoption in agriculture are widely recognized in the
literature (Giorgio et al., 2024; Papadopoulos et al., 2025). To illustrate, tech-
nologies in agriculture help address current interconnected challenges related
to productivity, cost reduction, agri-food safety, natural resource conserva-
tion, animal welfare, worker safety, and, more generally, the achievement of
sustainable development goals (Castillo-Diaz et al., 2025; Finger, 2023; Basso
and Antle, 2020; Musa and Basir, 2022; Sridhar et al., 2023). In this context,
technological innovations have enabled significant improvement of various
agricultural processes through the introduction of different tools, such as the
Internet of Things (IoT), sensors, robotics, drones, blockchain, and artificial
intelligence (Sharma and Shivandu, 2024). As discussed by Arraigada and
Mac Clay (2025), these tools can either complement traditional technologies
(e.g., 10T sensors connected to conventional irrigation systems) or substitute
them (e.g., spraying drones replacing a traditional sprayer).

The diffusion of innovative digital tools in agriculture is growing
(Shang et al., 2021), but their take up still varies significantly across coun-
tries, farm types, and production systems (Eastwood et al., 2019; Rose and
Chilvers, 2018; Shepherd et al., 2020). This uneven pattern highlights the
need to understand the mechanisms underlying the adoption of these tech-
nologies and suggests that digital transformation in agriculture is not just
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about technology, but also depends on social structures,
institutions, and interactions between networks and
governance systems (Roberts et al., 2017; Jia, 2021), as
well as farmers’ personal attitudes and traits (Deif3ler et
al., 2022).

This special issue contributes to the ongoing debate
on how digitalization is reshaping agriculture. Combin-
ing behavioral theories, such as the theory of planned
behavior (Ajzen, 1991), the technology acceptance mod-
el (Davis, 1989), and the unified theory of technology
acceptance and use (Venkatesh et al., 2012), with eco-
nomic and policy analyses, the articles examine in detail
the factors that help or hinder farmers in adopting new
technologies (Maesano et al., 2025; Cozzi et al., 2025;
Moussaoui et al., 2025).

PRESENTATION OF THE SPECIAL ISSUE

The articles collected in this special issue aim to
offer a broad and multifaceted view of the dynamics
linked to the diffusion of innovative digital technologies
in the agricultural sector, considering the behavioral,
economic, and political dimensions that influence the
intention to adopt them.

Kithnemund and Recke (2025), drawing on the
Technology Acceptance Model (TAM) framework,
investigate the determinants that drive German pig
farmers to introduce Al-based camera systems into
livestock production. Their findings indicate that per-
ceived ease of use, openness to innovation, and indi-
vidual innovativeness are the main factors influencing
adoption intention. Concerns about data ownership and
privacy, however, play a lesser role in driving behavior.
Opverall, the authors argue that farmers place significant
importance on the reliability and functionality of tech-
nology. However, trust and transparency are essential
determinants of technology adoption. These findings
underscore the importance of user-centered design and
clear communication regarding how intelligent technol-
ogies are implemented in practice.

Cozzi et al. (2025) conduct a study in the Italian
horticultural sector, to analyze the adoption of water-
smart technologies. Based on data from a survey of 251
farmers in Italy, using an extended TAM3 framework,
the authors find that perceived usefulness and social
norms strongly influence adoption intentions. The
results also show that ease of use is less influential in
driving intentions. Their analysis highlights how social
interaction and perceived benefits outweigh usabil-
ity or socioeconomic characteristics in shaping farmers’
behavior. From this perspective, the findings suggest

Giulia Maesano, Davide Menozzi2, Davide Viaggi

that participatory and peer-learning environments can
serve as effective channels to accelerate the diffusion
of innovation. The findings are consistent with those
of Sabbagh and Gutierrez (2025) and Kithnemund and
Recke (2025), both of which emphasize the key role of
social capital in linking technological potential to actual
behavioral change.

Sabbagh and Gutierrez (2025) extend the Unified
Theory of Acceptance and Use of Technology framework
to analyze the adoption of Agriculture 4.0. The authors
identify the main determinants of adoption by com-
paring marginal and non-marginal areas. Their find-
ings reveal that facilitating conditions, such as access to
infrastructure and technical support, and social influ-
ence are the main predictors of adoption. Furthermore,
according to the study’s findings, perceived performance
risks have been shown to be barriers to adoption. The
authors conclude that adoption intentions depend not
only on individual motivation, but also on social and
territorial structures that enable knowledge exchange
and reduce perceived risk. These findings echo previous
work on the rural digital divide, highlighting the need
for context-specific policies (Rose and Chilvers, 2018;
Eastwood et al., 2019).

Timpanaro et al. (2025) contribute to the litera-
ture debate by analyzing the methods of introducing
digital tools and their effects in Sicilian citrus farming.
Using a Living Lab approach, the authors demonstrate
that digital technologies can increase yield per hectare,
improve profitability, and enhance water efficiency on
citrus farms. Their findings also indicate that participa-
tory innovation processes promote knowledge exchange
and collaboration, helping to reduce farmers’ resistance
to change. The study highlights the need for targeted
training and institutional support to ensure that digi-
talization is effective and inclusive. This participatory
perspective resonates with the call for innovation ecosys-
tems that integrate technology into local socioeconomic
contexts and sustainability goals.

Maesano et al. (2025) examine the factors influenc-
ing Italian consumers’ intentions to purchase organic
pasta traced using blockchain technology. Extending the
Theory of Planned Behavior (TPB) framework (Ajzen,
1991), the authors assess the potential of blockchain in
preventing and detecting food fraud. Their findings sug-
gest that subjective norms, perceived behavioral control,
and attitudes toward technology are the main predictors
of purchase intention, while trust in traditional quality
certifications plays a limited role. Therefore, consumers
place greater trust in digital traceability tools than in
conventional certification systems. However, from a con-
sumer perspective, uncertainty remains about the practi-
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cal benefits of these technologies, highlighting the need
for a credible and transparent environment in which
innovation provides clear added value.

Pacciani et al. (2025) evaluate digitalization levels,
perceived benefits, needs, and barriers on a sample of
1,248 Ttalian farms. The results show that monitoring
systems and connected machinery are the most used
technologies. In addition, efficiency gains in farm and
production management, improved operational control,
and perceived benefits are key drivers of adoption, while
financial and structural limitations remain significant
obstacles. The authors call for coordinated policy meas-
ures to support the digital transition, combining advi-
sory services, investment in infrastructure, and human
capital development. Their conclusions are consistent
with those of Sabbagh and Gutierrez (2025) and Tim-
panaro et al. (2025), who also emphasize the importance
of governance coordination, training, and connectivity
in promoting technology diftfusion.

Moussaoui et al. (2025) employ a mixed-methods
design, combining surveys and in-depth interviews to
gather stakeholder perspectives on smart agriculture
technologies and their policy integration. The results of
the study show a broad agreement on the potential of
technologies to improve agricultural efficiency, sustain-
ability, and productivity; nonetheless, it also identifies
persistent barriers, including high upfront costs and lim-
ited technical expertise. The authors highlight the need
for financial incentives, capacity-building initiatives, and
stronger infrastructure to encourage adoption. The con-
clusion of this study supports adaptive, multi-level gov-
ernance frameworks that link top-down policy design
with bottom-up innovation processes to ensure greater
policy coherence. In line with Pacciani et al. (2025),
their findings reinforce the view that digital transforma-
tion depends as much on systemic governance reform as
on technological progress.

Finally, Arraigada and Mac Clay (2025) expands the
geographical scope with an exploratory study of digi-
tal agriculture (DA) start-ups in Argentina, providing
comparative insights from the Global South. The paper
discusses the interactions between the established agri-
cultural input industry and 114 DA start-ups based on
two technological dimensions: embodied/disembodied
technologies and complementary/substitutive. Overall,
the analysis shows that most of the solutions developed
by Argentine start-ups tend to be complementary to the
existing technological packages, and this may represent
an opportunity for dominant firms to strengthen their
position either by acquiring or investing in early-stage
start-ups to incorporate those solutions into their own
technological platforms.

CROSS-CUTTING INSIGHTS AND
POLICY IMPLICATIONS

This special issue offers different perspectives on the
dynamics of technology adoption and the governance of
digital transformation in agriculture. The evidence con-
firms that technology adoption is not merely a techni-
cal or economic process (though these aspects are very
important), but it is a socio-institutional transition, that
depends on mental constructs, social norms, and col-
lective learning mechanisms, and is strongly influenced
by the external conditions in which innovations are
embedded. Behavioral models indicate that perceived
usefulness and social influence are the main determi-
nants of farmers’ acceptance of innovations. Conversely,
perceived risk, high costs, and institutional uncertainty
remain the main barriers.

From a policy perspective, the findings highlight
that monetary incentives alone will not ensure a success-
tul digital transition unless they are part of coherent and
flexible governance arrangements that align public and
private resources, promote interoperability, and leverage
synergies within the sector (Wolfert et al., 2017; Klerkx et
al., 2019; Viaggi, 2019). The articles in this special issue
suggest that effective strategies must combine investment
with the development of digital infrastructure and educa-
tional programs to build long-term innovation capacity.
More generally, the integration of behavioral and eco-
nomic policy analysis in these articles demonstrates how
interdisciplinary science can inform evidence-based solu-
tions to ensure the deployment of smart technologies in
the context of resilient agri-food systems.
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Intention to use AI-Based Camera Systems in
German Pig Farming: An extended technology
acceptance model

ALEXANDER KUHNEMUND', GUIDO RECKE

Osnabriick University of Applied Sciences, Department of Farm Management, Osna-
briick, Germany
*Corresponding author. E-mail: alexanderkuehnemund@hs-osnabrueck.de

Abstract. This study explores the factors influencing German pig farmers’ intention
to use (ITU) Al-based camera systems in livestock farming. This research utilized
an extended Technology Acceptance Model. Data from 185 farmers were analyzed
through structural equation modeling, revealing that ease of use (=0.276), innova-
tion tolerance (p=0.398) and personal innovativeness (p=0.101) notably impact ITU.
Concerns over data ownership and transparency showed limited effects, and perceived
job relevance (p=0.355) enhanced acceptance. Expected transparency of Al camera
systems had strong influence on perceived ease of use (f=0.419). A gradual integra-
tion of the factors showed that perceived usefulness has a strong influence on ITU but
is superimposed by the factor job relevance in the modelling process. With an R2 of
0.749, the model has high explanatory and predictive power. These insights underscore
the importance of user-centric design and transparency in Al technology deployment
in agriculture. Although the ITU AI camera systems in pig farming depends on its ease
of use and transparency;, it also depends on the personal characteristics.

Keywords: Al surveillance, precision livestock farming, technology acceptance.

1. INTRODUCTION

Pig farmers face major challenges in the production and processing of
animals. On the one hand, legal requirements for animal health and animal
protection in Germany increased (German Federal Ministry of Food and
Agriculture, 2024), e.g. ban on tail docking and requirements for defined
husbandry types. On the other hand, pig farmers are faced with societal
demands for production like animal rights values (Albernaz-Gongalves et
al., 2021). For this reason, the integration of artificial intelligence (AI) into
the processes associated with pig farming is needed to improve modern agri-
culture. Therefore, an increasing number of animal behavior monitoring
technologies have been developed over the last decade. Many of these solu-
tions focus on the combination of visual recordings and artificial intelligence
interpretation. In pig farming, these innovations range from live weight
detection (Wongsriworaphon et al., 2015) and growth (Condotta et al.,
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2018) to behavioral detection (Nasirahmadi et al., 2019)
and early disease detection (Ferndndez-Carrién et al.,
2020). As a result, Al technologies can not only increase
productivity but also improve overall animal welfare
through early disease detection and prevention.
However, the adoption of Al systems and the use of
intelligent systems in animal husbandry are less com-
mon than that of other technologies on farms in Ger-
many (Rohleder et al., 2020). The aim of our study is to
investigate the factors that determine the intention to
use Al camera systems in pig farming. In the context of
livestock farming, cluster analyses have identified hetero-
geneity in attitudes toward the agricultural technologies
used (Schukat & Heise, 2021). In addition, various stud-
ies on the intention to use (ITU) farming technologies
have reached different conclusions. Michels, Bonke, et
al. (2020) investigated factors that influence farmers’ use
of smartphone apps for crop protection. Their analyses
revealed that performance expectancy and social norms
were among the determining factors for the ITU. In con-
trast, Mohr and Kuhl (2021) investigated the acceptance
of Al technologies in agriculture in general and reported
that previous factors have no influence on the intention
to use them. In their study, for example, the perceived
ease of use and the expectation of property rights over
business data were decisive factors influencing the inten-
tion to use. This finding indicates the importance of ana-
lyzing the factors that determine the intended use of spe-
cific technologies and target groups. An established meth-
od for analyzing the usage intentions of potential target
groups is the technology acceptance model (TAM) from
Davis (1985). The TAM and various extensions, as well
as models based on the original model, are precise means
of determining the factors influencing the intention to
use and predicting possible utilization (Davis & Granic¢,
2024). The model has also been applied to agricultural
technologies in different studies (Alambaigi & Ahangari,
2016; Mohr & Kiihl, 2021; Thomas et al., 2023). Besides
intentional models using the TAM there are different
other models used in the case of agricultural technolo-
gies. For example, the theory of planned behavior (TPB)
(Ajzen, 1991) have often been used in the context of the
implementation of new technologies in the rural econ-
omy. Sok et al. (2021) identified several articles in the
field of animal husbandry that successfully applied to
the TPB. In German agriculture this method was applied
in study investigates the adoption of mixed cropping
(Michels, Bonke, et al., 2020). In addition, a small num-
ber of researchers have examined technologies in agricul-
ture from the perspective of stage-based models (Block et
al., 2023; Lemken et al., 2017), such as the Transtheoreti-
cal Model of Behavioral Change (TTMC) (Prochaska &
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Velicer, 1997). This concept can be used to predict behav-
ioral change and has its origins in the health sciences.
Applying the model to adaptation is difficult at this stage
because similar technologies are not yet available, or are
limited, and understanding of the potential benefits can
be very narrow. Despite the variety of approaches aim-
ing to understand the use intentions of potential target
groups, a TAM-based study is an appropriate choice,
especially for technologies in the early stages of develop-
ment and with low market penetration (Davis & Granic,
2024). Findings from TAM and new extensions provide
valuable insights for potential technology users and help
developers and policymakers set the right course for the
adaptation of useful technologies.

The differentiation of the technology in question,
especially in the field of Al is necessary to define the
research object and draw specific conclusions. In gen-
eral, Al can be difficult to grasp with respect to the
selected target group and application, as there are differ-
ent perceptions of what Al is and can do. It is therefore
useful to design research on the acceptance of technolo-
gies according to the object of investigation. Another
reason to analyze this special issue related to Al tech-
nology is that both camera systems and AI that use
image data are sensitive cases for potential users (Saheb,
2023). Since Al-based camera systems are relatively new
and the use of this technology in the context of Ger-
man livestock farming is low, this study on intention to
use is essentially a theoretical ex ante model (Pierpaoli
et al., 2013). Against this background, this study ana-
lyzes the influence of theoretically derived factors on the
utilization intentions of German pig farmers. In addi-
tion, the research should help technology developers to
adapt their systems to enable better market integration.
Insights into the relevant characteristics that influence
adoption intentions can help to inform farmers about Al
camera systems in a targeted way. The findings should
also serve to identify potential barriers to adaptation and
provide an opportunity for developers and policy makers
to take these into account. We use an extended technol-
ogy acceptance model, which is explained and justified
in more detail in the methods section.

2. THEORETICAL FRAMEWORK

This investigation uses the TAM to analyze the
potential adoption behavior of German pig farmers and
to explain the intention to use this technology in terms
of acceptance (Useche et al., 2013). In the context of the
technology and the potential users (farmers), we expand
this model to the context of pig farmers and the usage of
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AT camera surveillance, as shown in the following chap-
ter The TAM is based on two factors, perceived useful-
ness (PU) and perceived ease of use (PEOU), which are
decisive for the possible acceptance of new technologies
by potential users (Davis, 1989). The PU indicates the
degree to which a system improves work performance
and, according to its founder Davis, is a strong influenc-
ing factor on the use of technology (Davis, 1989). The
PEOU indicates how difficult or simple potential users
consider learning and using a system or technology to
be (Davis, 1989). In the original model, the two factors
act as explanatory and predictive variables for the inten-
tion to use a new technology. The model in our analysis
showed a lack of explanatory power which substantiated
the contextual extension. Figure 1 illustrates the original
TAM framework.

Contextual model extension

In addition to the PU and the PEOU, many other
factors affect users’ intention to use new technologies
(Pierpaoli et al., 2013). With the aim of identifying these
factors, various extensions of the TAM have been made
over time and embedded in other concepts to gener-
ate independent models that explain the intention to
use technologies (Davis & Granié, 2024). In a system-
atic overview, Grani¢ (2024) presented a total of 17 dif-
ferent models that analyze technology adoption at the
individual level. These include, for example, the extend-
ed unified theory of acceptance and use of technology
(UTAUT) (Venkatesh et al., 2012) and innovation diffu-
sion theory (IDT) (Rogers, 1975). This resulted in a wide
range of possible predictors for the intention to use tech-
nologies, whereby different aspects can be categorized in

Perceived ease of use

relation to the users, technology, tasks and social factors
(Davis & Granié, 2024). Instead of applying one of the
existing models to Al-based camera systems, it appears
that the special nature of the technology and the task,
as well as the users, make an extension necessary that
considers these special aspects. In the present research,
the combination of surveillance technology and the use
of Al, in particular, plays a decisive role in this type of
expansion.

A literature search in the Scopus and SpringerLink
databases during the conception phase of the study led
to the factors explained below and, finally, to our extend-
ed TAM. As part of the modeling process, we assigned
the individual constructs to the categories of farmer
aspects, technological aspects and social aspects.

Farmers’ aspects

Innovation tolerance (IT) is a combination of risk
attitudes and the expectation of future relevance from
the user’s perspective. These factors can be well integrat-
ed into a behavioral model such as the TAM (Montes de
Oca Munguia et al., 2021). It is known from the litera-
ture that risk aversion has a negative effect on technol-
ogy adoption (Abadi Ghadim & Pannell, 1997). Con-
versely, Seibert et al. (2021) showed in their systematic
literature review the positive effect of the willingness to
take risks on the intention to use new technologies. A
decision under uncertainty involves, in the context of
technology adoption, the derivation of the value of the
technology in the future. Innovators recognize the val-
ue of the technology and the future benefits that its use
and rapid adaptation offer. They are convinced that uti-
lization will be important in the future to benefit from

B=.477

Intention to use

Adoption

Perceived usefulness

R2=.391

Figure 1. Results of the basic technology acceptance model based on (Davis, 1989).
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adoption (Rogers, 2003). Those who see high potential
in new technologies for the future are prepared to use
the technology now. This study assumes that the combi-
nation of self-perceived risk behavior and the assessment
of the importance of using technology in the future is
decisive for the intention to use it.

Personal innovativeness (PI) extends models of
technology acceptance by considering individual per-
ceptions and beliefs (Agarwal & Prasad, 1998). People
are described as innovative when they adopt new inno-
vations at an early stage (Rogers & Shiemaker, 1971). A
study on precision agriculture technologies revealed
significant correlations between technology acceptance
and PI as well as a moderating effect on the ITU by
influencing the PEOU (Aubert et al., 2012). In her study
on the adoption of virtual reality simulations, Fagan et
al. (2012) reported a significant interaction between PI
and PEOU. In the context of AI and agriculture, Mohr
and Kiihl (2021) showed the influence of the PI on the
PEOU.

Job relevance (JR) describes the extent to which AI-
based camera systems are relevant for daily tasks with
animals from the user’s perspective. Farmers are more
likely to use an information system if they perceive
that the information it conveys is relevant to their job
(Venkatesh & Davis, 2000). In the context of German
livestock farmers, the pressure to use technologies to
improve their jobs is a factor underlying the behavioral
acceptance of farmers. In addition to the direct influence
of JR on the intention to use new technologies, (agri-
cultural) studies have highlighted the significant effect
of this variable on PU (Maranguni¢ & Granié, 2015;
Michels et al., 2021).

Technological aspects

The expectation of property rights (PRs) over busi-
ness data plays an important role in the development
of digitalized livestock farming. PR, particularly in the
context of Al systems and camera technology, is unclear
from a legal perspective (Hértel, 2020). The acceptance
of Al-based camera systems is linked to the expectation
of ownership and the legal certainty of the data cre-
ated and used in this context (Hartel, 2020). Another
point pertains to the need for Al systems for data-driv-
en learning; for example, camera systems require video
and images. Currently, it remains unclear who owns the
original data and the data processed by the AI system. In
relation to the cultural context, German individuals are
critical of issues related to data security, especially with
regard to the use of surveillance technology (Kostka et
al., 2021; van Heek et al., 2017). A farmer who expects to

Alexander Kithnemund, Guido Recke

own the data is assumed to be less willing to use an Al-
based camera system.

The perceived risk of data abuse (RI) is a crucial fac-
tor for the intention to use new Al technologies. The use
of Al and camera technology indicates a type of surveil-
lance. Fundamental changes in the work environment
and people’s trust in Al often lead to irrational worries
in German society even at the individual level - a phe-
nomenon that has been called “German angst” (Nickl,
2014). In their study, Beaudry and Pinsonneault (2010)
reported that emotions such as anxiety have negative
effects on the intention to use and PU of technology.
In terms of surveillance characteristics, the RI has an
impact on ITU camera technology (Krempel & Beyerer,
2014). With respect to the combination of AI and sur-
veillance technology (Park & Jones-Jang, 2022), accept-
ance and even PU and PEOU can be negatively influ-
enced. In terms of the adoption of AI technologies in a
professional context, Dumbach et al. (2021) identified
data protection as the most challenging barrier with
respect to Al technology.

With respect to surveillance systems, the expected
data transparency (TR) of the processed data and the
operation of the system itself are important factors in the
acceptance of camera technology (Krempel & Beyerer,
2014). It is difficult or even impossible to understand all
aspects of Al systems, even when they are fully transpar-
ent. This situation represents a black box that may hin-
der the development of trust (Dam et al., 2018). Howev-
er, transparency is a major driver of trust, which deter-
mines people’s willingness to accept strategic uncertain-
ty (Poursabzi-Sangdeh et al., 2018; Schmidt et al., 2020;
Zhao et al., 2019). A study by Wanner et al. (2022) con-
cluded that transparency on Al-based camera systems
affects the PU and PEOU (Wanner et al., 2022). A trans-
parent system is easier to understand; thus, the PEOU
and PU increase because people have more knowledge
about the system.

Social aspects

Perceived social norm (PS) is based on perceived
social pressures, personal feelings of moral obligation
and the responsibility to engage in or refuse to engage
in a specific behavior (Gorsuch & Ortberg, 1983). The
expectations of behavior created by social pressure influ-
ence the intention and actual decision to behave in a
certain way (Ajzen, 1991). German consumers assess
their knowledge about agriculture as rather low (Heinke
et al., 2017). However, even without sufficient knowledge,
many consumers have a critical view of livestock pro-
duction (Heinke et al., 2017). In the past, technological
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development in agriculture has been viewed critically by
the population (Gupta et al., 2012; Pfeiffer et al., 2021).
With respect to animal production, the public opinion
of technological development has been accompanied by
a negative comparison with natural outdoor husbandry
(Cardoso et al., 2016; Weinrich et al., 2014). The expect-
ed view of society for Al-based camera systems therefore
seems relevant, as tasks are transferred from farmers and
the process of animal husbandry is autonomized. How-
ever, meat consumers have expressed a preference for
innovation as a solution to potential problems in animal
husbandry (Schulze et al., 2023). These findings high-
light the ambivalent attitudes of the public.

Table 1 summarizes the factors included in our
extended TAM.

After the potential explanatory factors were identi-
fied, the individual structures were hypothesized in the
structural model. Appendix 1 shows the list of individual
hypotheses. Figure 2 shows the hypothesized eftect of
each factor on the intention of potential users to adopt
the technology.

3. STUDY REGION, DATA COLLECTION
AND SAMPLING

The target population of our investigation was pig
farmers in Germany, who are decision-makers on their
farms. The questionnaire was distributed through
an agricultural panel to recruit participants from all
federal states of Germany. The members of the panel
were recruited throughout Germany via Deutscher
Landwirtschaftsverlag, a specialized publishing house
for agricultural media, which provides panels for
various target groups in the German-speaking area.
This approach also ensured that farmers who were
not involved in the pig industry were not included in

Table 1. Extended TAM constructs.

the data collection. The survey was conducted online
between January and March 2023. The recruitment
resulted in a total sample of 185 participants. Our
sample can be considered a convenience sample, which
is useful for studies with a pilot character, such as the
present study on the ex-ante intention to use a tech-
nology (Teddlie & Yu, 2007). The participants were
contacted via e-mail and initially informed about the
study project. Before beginning the questionnaire, the
participants provided informed consent to participate
in the study.

The questionnaire (Appendix 2) was divided into
different parts. The first part of the questionnaire col-
lected sociodemographic and farm-related information.
After the sociodemographic questions, the participants
were presented with a description of the Al-based cam-
era systems to provide them with a better understanding
of the research object. This description was presented
in text form. In the second part, farmers were asked to
evaluate several statements pertaining to the extended
TAM. Appendix 2 shows the different items, including
the questions and descriptive statistics. The survey was
administered in German, and the questions were trans-
lated into English for this manuscript; however, they
were not adapted to the specific cultural context. To
assess the statements, the questionnaire used a five-point
Likert scale ranging from 1 = do not agree to 5 = fully
agree. The questionnaire was pretested by two research-
ers with different groups of farmers to ensure that all the
questions could be understood and interpreted unilat-
erally. These pretests featured two groups of 15 partici-
pants. After the test, the participants were asked about
their understanding of the survey and its logic, and
adjustments were made if they did not understand the
statements or the sociodemographic questions. In addi-
tion, the intelligibility of the description of the subject
matter was assessed by the test group.

Category Factor

Source

Innovation tolerance (IT)

Farmers aspects . .
p Personal innovativeness (PI)

Job relevance (JR)

Own creation based on (Rogers, 2003; Seibert et al.,
2021)

(Agarwal & Prasad, 1998; Aubert et al., 2012; Mohr &
Kiihl, 2021)

(Rose et al., 2016; Venkatesh & Davis, 2000)

Expectancy of property rights over business data (PR)

Technological Aspects Perceived risk of data abuse (RI)

Expected data transparency (TR)

Own creation based on (Tiwari & Tiwari, 2020; van Heek
et al., 2017)

(Krempel & Beyerer, 2014)

(Krempel & Beyerer, 2014; Wanner et al., 2022)

Social aspects Perceived social norm (PS)

(Ajzen, 1991; Gorsuch & Ortberg, 1983; Heinke et al.,
2017; Mohr & Kiihl, 2021; Schulze et al., 2023)
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Figure 2. Expanded TAM based on Davis (1989).

4. STATISTICAL ANALYSIS: STRUCTURAL
EQUATION MODELING

Structural equation modeling (SEM) is used to mod-
el and estimate the relationships among multiple inde-
pendent and dependent variables concurrently (Hair et
al., 2021a). This method is particularly useful when the
concepts under consideration are unobservable and are
measured indirectly through multiple indicators. This
research uses the latest approach developed by Hair et
al. (2021a) with the assistance of the R package SEMinR
(Hair et al., 2022). In SEM, path models are used to rep-
resent the relationships among constructs or latent varia-
bles. Latent variables cannot usually be measured direct-
ly and are therefore created by indicators or manifest
variables. The path model visualizes the relationships
among all the constructs and depicts the hypotheses that
relate the variables via these paths (Hair et al., 2021a).
A partial least squares (PLS) path model consists of two
elements. The first element is the structural model, also

known as the inner model, which links the constructs.
The inner model also represents the hypothesized rela-
tionship between the constructs. Second, the path mod-
el contains a measurement model or outer model. This
model represents the relationships between the con-
structs and the individual indicators.

Figure 3 shows the exemplary inner and outer
models for the latent JR in the context of this investiga-
tion. The inner model is shown in the center of the fig-
ure. The relationships among the elliptical constructs
or latent variables are represented by the connecting
arrows. The outer model on the left is a formatively
measured construct captured by the indicators (JRI,
JR2, and JR3). The outer model on the right shows a
reflectively measured construct, in this case, the depend-
ent variable ITU. In addition to the indicators used to
measure the construct, the error terms for the manifest
variables are recorded. These error terms represent the
unexplained variance when the path model is estimated.
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Figure 3. Structural equation model (Hair et al., 2022).

However, this description applies only to the manifest
variables. In contrast, the formative variables, in which
context the relationship leads from the indicator to the
construct, have no error terms (Sarstedt et al., 2016).

Minimum sample planning

In general, PLS-SEM is applicable if the sample con-
tains ten times as many participants as independent vari-
ables (Thompson et al., 1995). However, concerns have
been expressed about the simple application of this “ten
times” rule in the case of complex structural models.
An alternative procedure is represented by the inverse
square root method (Kock & Hadaya, 2018), which is
used to calculate the probability that the path coefficient
and its standard error are greater than the critical value
for a predetermined significance level (Hair et al., 2021a).
Therefore, the minimum sample size (Kock & Hadaya,
2018) is obtained by the following equation, where p,;, is
the value of the path coefficient with the minimal mag-
nitude in the PLS path model. With a significance level
of 5%, np;, > (2.486/pyin)*. Since this method is only
suitable for ex post analysis, p,,;, deviates from the value
reported in previous studies featuring a similar number
of independent variables (Michels, Fecke, et al., 2020;
Mohr & Kiihl, 2021). Therefore, a p,,;, value of 0.185,
which indicates a sample size of 180 respondents at a sig-
nificance level of 0.05, was estimated in this study.

Statistical requirement verification

The results of the PLS-SEM are evaluated via a two-
step process. First, the outer models are analyzed before
the structural model (inner model) is evaluated. The
decision to measure constructs reflectively or formatively
is based on their conceptual nature and causal relation-

Outer model

e,

Intention to use
Al-camera
systems

ITU2

e,

I
I
|
|
|
- € 1
|
|
I
I
I

ships. Reflective constructs (PU, ITU, and PI) have highly
intercorrelated indicators that reflect the underlying vari-
able, with a focus on internal consistency. Formative con-
structs (PEOU, JR, TR, RI, IT, PS, and PRs) are defined
by unique, essential indicators that collectively form the
construct. The removal of any indicator from formative
constructs would significantly alter its meaning, ensuring
that all critical dimensions are considered. The analysis of
the reflective model reveals that the quality criteria of the
indicators are satisfied. The indicator reliability (loadings
> 0.7), convergence validity (average variance extracted
(AVE) = 0.5) and internal consistency (rhoA > 0.6) are
satisfactory (see Appendix 3) and indicate that the vari-
ables of the constructs are appropriate for further analysis
(Hair et al., 2021b). In addition, the analysis of the heter-
otrait-monotrait ratio shows that all values of the reflec-
tive factors are below the cutoff value (HTMT < 0.9) and
are therefore suitable for the analysis (Hair et al., 2021b)
(see Appendix 4). The variance inflation factors (VIFs) of
the formative variables are less than five, indicating that
no critical levels of multicollinearity are observed. The
weights (= 0.1) and loadings (> 0.5) are satisfactory and
significant (Hair et al., 2021b) (see Appendix 5). Vari-
ables of the formative constructs that did not meet these
values were excluded from further analysis. Variables may
be included in the analysis if they do not meet the above
requirements in part, but the t-statistics indicate that they
are significant. The variables listed in Appendix 5 contrib-
ute to the determination of the formative constructs.

Explanatory power analysis

The structural model represents the hypothesized
relationships among different constructs. Since the VIF
indicates a value lower than five, no multicollinear-
ity exists with respect to the variables. Some research-
ers have reported problems with multicollinearity with
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respect to values ranging between three and five (Becker
et al., 2015). This criterion is also satisfied for all but one
variable, which slightly exceeds three. The model qual-
ity regarding multicollinearity is satisfactory. To deter-
mine the explanatory power of the model, the R? of the
endogenous constructs is examined (Shmueli & Koppius,
2011). To assess statistical significance, the bootstrapping
approach with 10,000 subsamples was employed, as rec-
ommended by Streukens and Leroi-Werelds (2016). The
aim of PLS-SEM is to maximize the R? value, and values
of 0.75, 0.50 and 0.25 indicate substantial, moderate and
low levels, respectively (Hair et al., 2011). The R? in our
analysis is 0.749, which indicates high explanatory power
with regard to the adoption of Al-based camera systems
in animal agriculture.

Predictive power analysis

With respect to the analysis of predictive power,
however, R? serves only conditionally (Hair & Sarstedt,
2021). The PLS,, 4 method (Shmueli et al., 2016) was
used to test the predictive power; accordingly, the model
was divided into training samples and holdout samples
to evaluate the predictive performance of the model (set.
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seed 123). The root-mean-square error (RMSE) of each
indicator of the dependent construct of the structural
model was subsequently compared with the RMSE of
a naive linear regression model (LM) as a benchmark.
One quality criterion is that all indicators should have a
lower RMSE in the structural model than in the LM, in
which case the model is reliable and has high predictive
power (Shmueli et al., 2019). A majority or equal num-
ber of lower indicators have moderate predictive power,
whereas a minority of lower indicators have weak predic-
tive power (Shmueli et al., 2019). The test in this analy-
sis (Appendix 6) indicates high predictive power with
regard to the dependent indicator of the intention to use.
Figure 4 shows the full SEM and the influence of the
indicators after the prerequisite test.

5. RESULTS

Table 2 shows an overview of the descriptive sta-
tistics in comparison with the German average. In our
sample, farms have a greater number of animals than
the German average in each category. The majority of
farmers are aged between 35 and 54 (53.1%) and are thus
comparable with German farmers (Federal Ministry of

o) | | o |

Property
rights over
business
data

H5:-0.110

Intention to use Al [Imu1]

camera systemsin

agriculture [ITu2]

[ITus]

H4: -0.046

Innovation
tolerance

Perceived

social norm

[Ps3]

Figure 4. Results of SEM. Legend: Variables that influence the object of investigation are shown in bold.
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Table 2. Sample description.

German
N=185 average
%
Sex, N (%)
Female 17 (9.2) 11.252
Male 166 (89.7) 88.75°
Other 2 (1.1) /

Age [years], mean (range) 43.5 (20-72) 53

Vocational education, N (%)

No formal agricultural degree 6.4 33.22

Vocational or technical school 49.3 57.5%

University degree 443 9.2¢
Number of fattening pigs, mean (range)  1282.4 (0-8000) /
Number of sows, mean (range) 138.0 (0-3000) /
Number of rearing piglets, mean (range) 663.5 (0-16000)  /
Number of acres [hectares], mean (range) 135.0 (0-5000) /

2 Statistisches Bundesamt (2023).
b German Farmers Association (2022).

Food and Agriculture, 2023). In terms of gender, the dis-
tribution of the sample is different from the average dis-
tribution among German farmers, with one-third of the
farmers being female. For our sample, we targeted deci-
sion-makers on farms, such as owners or directors. The
majority (>99%) of our sample identified themselves as
decision-makers on their farms. In this context, the dis-
tribution of gender is representative with respect to deci-
sion-makers on farms (Statistisches Bundesamt, 2023).
The participants are more highly educated and younger
than the average farmer is.

The analysis shows that seven out of sixteen
hypotheses are supported. We obtain empirical evidence
for H2a (B =.276, 2= .152), H3 (B =.398, 2 = .213), H6a
(p = .101, f2 = .035), and H7a (p = .355, f2 = .116), indi-
cating that these constructs are relevant antecedents
for the intention to use Al-based camera systems in pig
farming. The results for PU and PEOU support H6b
(p = .237, 2 = .083), H7b (p =.833, {2 = 2.037), and H9c¢
(B = 419, f2 = .187). Table 3 shows the tested hypoth-
eses, path coefficients, effect size {2 and t statistics of the
model. The path coefficients indicate the direct relation-
ships among the hypothesized constructs in SEM and
can be understood as standardized beta coefficients
(Hair et al., 2022). In general, the higher the path coef-
ficient is, the greater the relevance of the relationship
between the construct and the dependent variable. The
analyses revealed that innovation tolerance has the
greatest influence on the ITU of all the integrated fac-
tors. The F? value in SEM measures the effect size of an
exogenous construct on the explained variance (R?) of
an endogenous construct.

Table 3. Results of SEM (estimated path co and statistical evalua-
tion measures).

0,
Hypothesis Pat}.l E.ffed el t-Statistics
coefficient  size f* LL UL
H1 PU-ITU 0.010 0.000 -0.146 0.123 0.138
H2a PEOU - ITU 0.276 0.152 0.150 0.387 2.339
H2b PEOU - PU 0.08 0.016 -0.008 0.186 1.594
H3 IT-~>ITU 0.398 0.213 0.241 0.518 5.632
H4 PS-ITU -0.046 0.005 -0.160 0.035 -0.909
H5 PR-ITU -0.110 0.032 -0.168 0.048 -2.078
Hé6a PI - ITU 0.101 0.035 0.020 0.193 2.339
H6b PI - PEOU 0.237 0.083 0.077 0.404 2.781
H7a JR > ITU 0.355 0.116 0.209 0.517 4.477
H7b JR > PU 0.833 2.037 0.756 0.889  24.563
H8a RI- ITU 0.004 0.000 -0.074 0.080 0.105
H8b RI - PU 0.035 0.004 -0.036 0.106 0.977
H8c RI-> PEOU -0.196 0.038 -0.381 0.003 -2.001
H9a TR -~ ITU 0.008 0.000 -0.117 0.067 0.153
H9% TR - PU 0.017 0.001 -0.063 0.106 0.409
H9¢ TR -» PEOU 0.419 0.187 0.233 0.595 4.432

Legend: ITU: Intention to use; IT: Innovation tolerance; JR: Job
relevance; PEOU: Perceived ease of use; PI: Personal innovative-
ness; PR: Property rights over business data; PS: Perceived social
norm; PU: Perceived usefulness; RI: Perceived risk of data abuse;
TR: Transparency.

In order to analyze the reliability of the model, a
stepwise extension of the original model was performed.
The extension showed that both the quality of the mod-
el and the influence of the variables changed as a result
of the extension. The extension of the classical model
showed that the additional factors increased the level
of elucidation. The influence on the variance is mainly
driven by the factors JR, IT and PI. RI shows no addi-
tional explanatory contribution. Other factors such as
PS, PR and TR have a rather marginal explanatory pow-
er for ITU. Figure 5 shows the evolution of the variance
explained (R?) by the gradual inclusion of the factors.

The path coeflicients were also analysed in the con-
text of stepwise extension. JR, IT and PEOU remain the
most important influencing factors after the expansion.
The change in the other path coefficients is marginal
in the course of extension. An exception is PU, which is
outweighed by JR after extension and loses importance
as a result of further enlargements. Table 4 shows the
results in detail.

6. DISCUSSION

The primary objective of this study was to elucidate
the factors influencing the intention to use Al-based
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Figure 5. Development of R* across model extensions. Legend: ITU:
Intention to use; IT: Innovation tolerance; JR: Job relevance; PEOU:
Perceived ease of use; PI: Personal innovativeness; PR: Property
rights over business data; PS: Perceived social norm; PU: Perceived
usefulness; RI: Perceived risk of data abuse; TR: Transparency.

camera systems in German pig farming. Even though
our data did not support all the hypotheses, the results
showed that user aspects concerning the farmer himself
and the perceived ease of use are decisive for the inten-
tion to use Al-based camera systems in pig farming.
Research on acceptance has been conducted to investi-
gate various technologies within the context of agricul-
ture. Our results are discussed in light of previous find-
ings on technology acceptance in agriculture.

The analyses initially revealed that PEOU [H2a]
is one of the most influential factors in the adoption of
Al-based camera systems in German pig farming. Pre-
vious research confirms these findings. Mohr and Kiihl
(2021) reported that the PEOU and PI, among other fac-
tors, influence the acceptance of artificial intelligence
among farmers in general. Other agriculture studies
have confirmed this finding with respect to ease of use

Table 4. Development of path coefficients.

Alexander Kithnemund, Guido Recke

and acceptance (Michels et al., 2021). The transferabil-
ity of the results to different agricultural sectors is rein-
forced by a study related to precision livestock farming,
which revealed that visualization and PEOU influence
the acceptance of a system (van Hertem et al., 2017).

In our study, innovation tolerance [H3] had the
greatest impact on the intention to use Al-based camera
systems in pig farming. The interpretation of the results
of IT can be assigned to the person himself or herself,
which incorporates a self-image consisting of risk affin-
ity and the estimation of the future importance of this
technology. This finding is in consistent with the litera-
ture, which states that risk aversion (Abadi Ghadim &
Pannell, 1997) or the willingness to take risks (Seibert et
al., 2021) determines the intention to use a new technol-
ogy. This construct also supports the assumption that
a positive view of the importance of the technology in
the future is decisive for the intention to use it (Rogers,
2003). Although the empirical results show a dominant
contribution of IT2, while IT1 exhibits a low weight and
loading. This suggests that the construct is essentially
driven by the specific item on Al-related attitudes, and
the general trait-based indicator contributes minimally.
Future research should consider refining the indicators
to ensure a more balanced and representative operation-
alization of the construct.

In this study, the influence of personal innovative-
ness [Hé6a] on the intention to use Al-based camera sys-
tems was demonstrated. This construct has a statistically
significant positive influence on the acceptance of Al-
based camera systems in our sample, indicating that the
intention to use increases with increasing innovativeness.
Although the influence of this construct on the depend-
ent latent variable is low, it can still explain acceptance to
some extent. Previous studies from Agarwal and Prasad

Number models

PU- ITU PEISI)‘(LJ] v JR>ITU PI-»ITU RI-ITU IT-ITU PS-ITU PR-ITU TR-ITU
Original TAM model 0.507 0.383 - - - - - - -
2 (+JR) 0.073 0.308 0.557 ; . - - . -
3 (+PI) 0.057 0.289 0.543 0.111 - - - - -
4 (+ RI) 0.057 0.290 0.545 0.111 0.005 - - - -
5 (+1T) -0.006 0.236 0.361 0.098 0.029 0.374 - - -
6 (+ PS) -0.005 0.242 0.365 0.095 0.027 0.400 -0.057 - -
7 (+ PR) 0.009 0.252 0.358 0.097 0.027 0.418 -0.041 -0.083 -
8 (+ TR) 0.010 0.276 0.355 0.101 0.004 0.398 -0.046 -0.110 0.008

Legend: ITU: Intention to use; IT: Innovation tolerance; JR: Job relevance; PEOU: Perceived ease of use; PI: Personal innovativeness; PR:
Property rights over business data; PS: Perceived social norm; PU: Perceived usefulness; RI: Perceived risk of data abuse; TR: Transparency.
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(1998) and Aubert et al. (2012) have identified PI as an
influencing variable. This construct serves to identify ear-
ly adopters as agents of innovation and should be consid-
ered an important factor in implementation processes in
agriculture. This finding contradicts the results reported
by Mohr and Kiihl (2021), who found only an indirect
influence of PI on acceptance. This indirect influence
[H6b] was also supported by our data. Notably, in the
case of the cited study, AI was considered in general, and
the measurement of PI was made more difficult by a gen-
eralization of the subject of the study.

The statistical analysis of the survey results revealed
another construct that has a statistically significant
influence on the ITU: the perceived relevance of the
technology for the farming profession [H7a]. The influ-
ence of JR on acceptance and adoption in the context
of agricultural technologies was also demonstrated by
Michels et al. (2021). The authors analyzed the accept-
ance of drone technology and demonstrated that JR has
the greatest influence on the ITU. In conclusion, for
practice and the development of new Al-based monitor-
ing systems, it is important to communicate precisely the
benefits for everyday working life.

Although the statistical measurements were not sta-
tistically satisfactory overall, this study demonstrated
that expectations of data ownership have an effect on the
intention to use [H5]. In contrast to other studies, our
approach assumed a negative effect of stronger expecta-
tions regarding data rights. According to the variables
PR2 and PR4 within the final construct and PRI out-
side of the construct, the importance of data ownership
to farmers determines their intention to use Al-based
camera systems. An undefined ownership structure of
the data is assumed to lead to rejection of the technol-
ogy. Previous studies have also shown that in the context
of German citizens and electronic data, German Angst
plays a central role in the adoption, acceptance, and
design of institutions (Akkaya et al., 2012).

Other constructs (e.g., PU, TR and RI) did not influ-
ence the intention to use Al-based camera systems in
this sample. This finding contradict the conclusions
of Krempel and Beyerer (2014), whose research on sur-
veillance cameras showed that the transparency of the
data processed was one of the most important factors
regarding acceptance. This difference may be due to
the type of AI surveillance. Furthermore, low perceived
transparency as a barrier may have an important influ-
ence on farmers’ intention to use risk management tools
(Giampietri et al., 2020). While PU [H1] is a crucial
factor according to many studies on the acceptance of
technology in agriculture (Michels, Fecke, et al., 2020;
Michels et al., 2021), it is not relevant in our statistical

model or in studies on the acceptance of Al in general
(Mohr & Kiihl, 2021). On the one hand, this difference
may be because the PU can be accepted or rejected inde-
pendently of the ITU. Thus, a rejection of the intention
to use is not synonymous with the system’s lack of actual
usefulness. On the other hand, the rejection of Al-based
camera systems despite a perceived high or very high
benefit is due to other factors, such as a lack of PEOU.
This finding was not only supported by the full SEM,
but also by the stepwise inclusion of the factors and the
resulting development of the path coefficients. It can be
concluded that PU has an influence on the original mod-
el, but that is outweighed by, among other things, the
introduction of JR. On the one hand, this effect could
derive by the fact that both variables measure similar
characteristics in the occupational context. On the other
hand, there are indications in our model that there is a
stronger relationship between JR and ITU in the adap-
tation of technologies by the decision makers, as appar-
ently the relevant professional context is more important
than the actual usefulness.

An additional consideration in the context of mod-
elling and hypothesis generation is the differentiated
role of individual factors, whether as direct determi-
nants, potential mediators, or moderators within the
model structure. In the present model, it may be hypoth-
esized that PI exerts a moderating influence on ITU,
as it reflects, at least in part, trait-like characteristics of
the respondents. While the conceptual phase of theory-
driven hypothesis development did not provide sufficient
justification for including such a moderation effect, theo-
retical reflections combined with the empirical findings
of this study suggest that future analyses should explic-
itly consider this possibility.

Besides the findings of our model applying an
extended TAM, other approaches should be used to
investigate the ITU of Al camera systems. For exam-
ple, the TPB could be an appropriate model for further
research. In the case of animal husbandry and the moni-
toring of health and welfare parameters, TPB constructs
would help to identify voluntary action by farmers in
technology adaptation. An investigation of TPB factors
would help to provide important insights for the devel-
opment of systems and recommendations for policy, par-
ticularly in the highly regulated area of agriculture and
Al Especially in a policy context where voluntarism is
the preferred option for adaptation over regulation.

Apart from the analysis of behavioral factors fur-
ther research on the technology itself is also needed. It
is equally important to know which economic and tech-
nology-specific factors, in addition to behavioral factors,
moderate the potential adaptation. For new technolo-
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gies with a specific field of application, Sok and Hoestra
(2023) used the subject of electrified tractors to show
that uncertainty about the economic benefits and cost-
effectiveness were the most important factors for the
decision of the farmers surveyed. An examination of the
economic and technology-specific factors using random
utility theory would provide further clarification on the
possible adoption or rejection of Al camera systems and
help companies and policymakers to create the necessary
framework conditions for market integration. Since anal-
yses of non-behavioral factors (e.g. age, education, farm
size) have shown little influence on the adaptation of Al
camera systems in pig farming (Kithnemund & Recke,
2024), consideration of the TPB and economic factors
could help to explain the variance in the intention to use.

Our study is limited by the notion that the results
must be understood considering the specific types of
animal farmers. Therefore, these results are only par-
tially applicable to other forms of livestock production.
Especially in the case of highly integrated value chains
that focus on the interests of the integrator, other fac-
tors could lead to acceptance or rejection, which were
not considered in this study. The results must also be
viewed in consideration of the convenience sample and
do not constitute a representative analysis of the object
of investigation. Therefor the findings are not general-
izable to the overall population of German pig farm-
ers. For further studies a representative sampling strat-
egy should be applied in order to investigate models
like TPB or random utility theory. Although Germany
is one of the largest pig-producing countries in Europe
and even worldwide, the results cannot be applied uni-
formly at the international level. Cultural idiosyncrasies,
the strongly male-dominated agricultural sector and the
formal institutions involved in handling the data in this
context are only some of the reasons why the results can-
not be fully generalized to a European or global context.
It is possible that the survey procedure (online survey)
causes selection bias because the survey invitation only
reached people who were on the mailing list and may
also have addressed those who are interested in technol-
ogy. Despite these limitations, this study provides impor-
tant findings for future research on and the development
of Al-based camera systems. This study is characterized
by a sample that corresponds to the characteristics of
German pig farmers. Furthermore, the necessary sample
size was achieved, increasing the robustness of the anal-
ysis. The model showed satisfactory performance, which
emphasizes the significance of the results.

Knowledge of development and the factors that pro-
mote successful implementation are essential for practi-
tioners as well as for policy and regulatory decision-mak-

Alexander Kithnemund, Guido Recke

ers. A technology is useful only if it is used by the target
group. Future research should focus on user-friendly
interfaces. In terms of simplicity, it is also important to
ensure low-barrier access to the technology and to create
an infrastructure that makes these systems easy to use
for all farmers. In addition, it is conceivable that the tar-
get group and potential users could be reached through
farmers who have already had experience with the sys-
tem. In addition, the legal component should be explored
by investigating the influence of such institutions. The
results show that developers should focus on the benefits
and application to the farmer’s job. The economic rele-
vance of Al-based camera systems, as well as their poten-
tial to generate added value at specific stages of the live-
stock production process, should be more explicitly iden-
tified and communicated. Their implementation could
offer targeted solutions to current challenges, such as the
early detection and prevention of tail biting in undocked
pigs or the reduction of labor-intensive, legally mandated
animal observation tasks that currently lack direct eco-
nomic return. In addition, attention should be paid to
ease of use to ensure successful market integration. The
analysis also suggests that AI camera systems should be
further developed in collaboration with tech-savvy farm-
ers to address their enthusiasm for innovation. Incorpo-
rating this technology into an intelligent housing system
could lead to successful integration with other solutions
such as housing climate and feeding. Policy makers
should create the basis for such compatibility in order to
increase the uptake of technologies. In addition to clear
frameworks for transparency and legal certainty of data,
policymakers and educational institutions should inte-
grate educational programs into the training of farmers
to facilitate the use of new AI technologies. This can lead
to future farmers being more open to innovation.

7. CONCLUSION

In summary, the perceived ease of use, innovation
tolerance, job relevance, and personal innovativeness
emerged as influential constructs that shape the intention
to use Al-based camera systems in pig farming. Under-
standing the behavior-based acceptance of AI technolo-
gies is crucial, and the factors identified in this study can
guide the development of Al-based camera systems that
are embraced by farmers and offer tangible benefits. In
this sample, the general acceptance of an Al-based cam-
era system was high; to support real adoption, the iden-
tified influencing factors should be considered. Evidence
synthesis showed that influential constructs depend on
the sample composition and the research object
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APPENDIX 1: HYPOTHESES

H1: The perceived usefulness of Al-based camera systems
in pig livestock farming has a positive effect on the inten-
tion to use Al-based camera systems in pig livestock farm-
ing.

H2a: The perceived ease of use of Al-based camera sys-
tems in pig livestock farming has a positive effect on the
intention to use Al-based camera systems in pig livestock
farming.

H2b: The perceived ease of use of Al-based camera sys-
tems in pig livestock farming has a positive effect on the
perceived usefulness of Al-based camera systems in pig
livestock farming.

H3: Innovation tolerance has a positive effect on the
intention to use Al-based camera systems in pig livestock
farming.

H4: Perceived social norms have a positive effect on the
intention to use Al-based camera systems in pig livestock
farming.

H5: The expectation of property rights over business data
has a negative effect on the intention to use Al-based cam-
era systems in pig livestock farming.

Hé6a: The personal innovativeness of farmers has a posi-
tive effect on their intentions to use Al-based camera sys-
tems in pig livestock farming.

Hé6b: The personal innovativeness of farmers has a posi-
tive effect on the perceived ease of use of Al-based camera
systems in pig livestock farming.

H7a: Job relevance has a positive effect on the intention to
use Al-based camera systems in pig livestock farming.
H7b: Job relevance has a positive effect on the perceived
usefulness of Al-based camera systems in pig livestock
farming.

H8a: The perceived risk of data abuse has a negative effect
on the intention to use Al-based camera systems in pig
livestock farming.

H8b: The perceived risk of data abuse has a negative
effect on the perceived usefulness of Al-based camera sys-
tems in pig livestock farming.

H8c: The perceived risk of data abuse has a negative effect
on the perceived ease of use of Al-based camera systems
in pig livestock farming.

H9a: Expected data transparency has a positive effect on
the intention to use Al-based camera systems in pig live-
stock farming.

H9b: Expected data transparency has a positive effect on
the perceived usefulness of Al-based camera systems in
pig livestock farming.

H9c: Expected data transparency has a positive effect on
the perceived ease of use of Al-based camera systems in
pig livestock farming.
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APPENDIX 2: ITEMS AND DESCRIPTIVE STATISTICS

Factor name Factor description Mean SD

To what extent do you agree with the following statements? I think that...

ITUL ... I will additionally observe my animals using cameras. 3.65 1.22
ITU2 ... I will use cameras in my business in the future. 3.49 1.25
ITU3 ... I would use cameras on my farm. 3.65 1.22

To what extent do you agree with the following statements? I think that the use of Al-based camera systems...

PU1 ... allows me to do work in the barn more quickly than before. 2.98 1.23
PU2 ... facilitates the work of all employees on my farm. 3.05 1.24
PU3 ... increases the productivity of my business. 3.20 1.16
PU4 ... reduces my overall workload on the farm. 3.05 1.19
PU5 ... gives me more flexibility in terms of my operating processes. 3.23 1.15

To what extent do you agree with the following statements? For me, ...

PEOUI1 ...operating Al cameras to observe animals is easy to learn. 3.79 0.95

PEOU2 ... videos from animal observation cameras are easy to evaluate. 3.25 1.07

PEOU3 ... working with cameras to observe animals in the barn is possible without technical 313 L.09
problems.

PEOU4 (R) ... it is difficult to operate AI cameras and evaluate videos. 3.67 1.11

To what extent do you agree with the following statements? I think that...

JR1 ... the use of AI cameras can be relevant to my work. 3.54 1.15

JR2 ... the use of AI cameras can have a high degree of relevance for my operations. 3.06 1.17

JR3 ... Al cameras are suitable for my business. 3.16 1.15

To what extent do you agree with the following statements? I think that...

TR1 ... I am well informed about what data are captured by a camera-based image processing 292 L15
system.

TR2 ... I am well informed about how such a system processes data. 2.76 1.17

To what extent do you agree with the following statements? I think that...

RI1 ... I could be disadvantaged by errors in the collection or processing of data by the system. 3.10 1.10

RI2 ... (image) data could be misused. 3.62 1.23

To what extent do you agree with the following statements?

IT1 I consider myself to be a risk taker. 3.24 0.93

IT2 I think it will be important in the future to use AI cameras for animal observation. 325 1.19

To what extent do you agree with the following statements?

PI1 I enjoy being around people who are trying out new technologies. 4.03 0.84

P12 I am very curious about how new agricultural technologies work. 4.07 0.91

PI3 I like to try out new agricultural technologies. 3.84 0.92

PI4 I often determine information about new technologies. 4.10 0.82

To what extent do you agree with the following statements?

PS1 The German population has a positive view of modern technology in agriculture. 2,61 0.99

PS2 Policy-makers support modern agriculture. 1.84 0.90
I think that the use of AT camera monitoring in barns is consistent with society’s

PS3 . . 3.09 1.13
expectations of agriculture.

To what extent do you agree with the following statements?

PR1 Corporate data belongs to the farmers. 4.78 0.55

PR2 Stronger regulation for data security reduces the competitiveness of German farmers. 2.40 1.10

PR3 The government should create a data platform for sharing agricultural data. 2.09 1.07

PR4 As long as I receive large benefits from it, I do not care if companies use operational data. 2.11 1.21

PR5 The data flow of visual material should be controlled by farmers. 4.40 1.12

Legend: ITU: Intention to use; IT: Innovation tolerance; JR: Job relevance; PEOU: Perceived ease of use; PI: Personal innovativeness; PR:
Property rights over business data; PS: Perceived social norm; PU: Perceived usefulness; RI: Perceived risk of data abuse; TR: Transparency.
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APPENDIX 3: REFLECTIVE CONSTRUCTS

Reflective Indicator reliabilit Convergent  Internal consistenc
measurement Indicator name . Y nvers ¥ rhoC Cronbach’s Alpha
Loadings validity AVE rhoA
models
Intention to use ITU1 0.942
Al-based camera ITU2 0.955 0.898 0.944 0.964 0.943
systems 1TU3 0.946
PU1 0.847
Perceived PU2 0.825
ereeve PU3 0.876 0.722 0.907 0.928 0.903
usefulness
PU4 0.865
PU5 0.835
P ! PI1 0.871
cersona PI2 0.856 0.729 0.827 0.90 0.815
innovativeness
PI3 0.834
Legend: ITU: Intention to use; PI: Personal innovativeness; PU: Perceived usefulness.
APPENDIX 4: HETEROTRAIT-MONOTRAIT
Perceived usefulness Personal innovativeness Intention to use
Perceived usefulness .
Personal innovativeness 0.366 .
Intention to use 0.742 0.443
APPENDIX 5: FORMATIVE CONSTRUCTS
Formative measurement models Indicator name VIF Weight Loadings
PEOU1 1.723 0.380 0.776
. PEOU2 1.753 0.482 0.849
Perceived ease of use
PEOU3 1.467 0.446 0.809
PEOU4 1.342 -0.199 0.329
JR1 2.943 0.407 0.920
Job relevance JR2 2.317 0.185 0.817
JR3 2.327 0.509 0.931
Perceived risk of data abuse RI1 1.169 0.941 0.992
R IT1 1.045 0.079 0.283
Innovation tolerance
1T2 1.045 0.981 0.997
Perceived social norm PS3 1.057 0.979 0.997
R PR2 1.360 0.559 0.797
Property rights
PR4 1.151 0.379 0.629
TR1 1.196 0.481 0.766
Transparency
TR2 1.196 0.703 0.898

Legend: IT: Innovation tolerance; JR: Job relevance; PEOU: Perceived ease of use; PR: Property rights over business data; PS: Perceived
social norm; RI: Perceived risk of data abuse; TR: Transparency.
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APPENDIX 6: PREDICTIVE POWER

ITUI ITU2 ITU3

RMSE (PLS)  0.733 0.741 0.768
RMSE (LM)  0.761 0.773 0.829
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Abstract. The adoption of digital technologies in agriculture is essential for enhanc-
ing sustainability, productivity, and resource efficiency. This study investigates the fac-
tors influencing Italian horticultural farmers’ adoption of innovative water-smart agri-
cultural technologies using an extended Technology Acceptance Model (TAM3). The
research employs a structured survey conducted with 251 Italian farmers, analysing
their perceptions of technology usefulness, ease of use, social norms, and sustainabil-
ity outcomes. Structural equation modelling (SEM) confirms that perceived useful-
ness significantly influences adoption intentions, while perceived ease of use plays a
limited role. Social norms and sustainability-related benefits also emerge as critical
determinants. Results also indicate the impact of farm size and workforce on adoption
behaviour. These findings highlight the need for targeted policies, training programs,
and financial incentives to overcome adoption barriers. The study provides insights
for policymakers, technology developers, and agricultural stakeholders to foster digital
innovation in the horticultural sector, contributing to sustainable water management
practices.

Keywords: digital agriculture, farmer adoption, Technology Acceptance Model
(TAM), horticultural sector, water-smart sustainable farming.

HIGHLIGHTS

- Astructured survey conducted with 251 Italian horticultural farmers

- The extended TAM3 explains 18% of the variance in the behaviour (the
adoption of water-smart technologies), and 65% of the variance in inten-
tion

- Behavioural intention is a significant predictor of the behaviour

- Perceived usefulness and social norms have a significant effect on adop-
tion intention

- Perceived ease of use has no influence on adoption intentions
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1. INTRODUCTION

The agricultural sector is facing many unprecedented
challenges. These include the need to develop sustain-
able resource management strategies to meet the growing
demand for food and to reduce the environmental impact
of agri-food production (Kapsdorferovd, 2024). Given the
increasing pressure on agricultural systems, in particu-
lar on natural resources, it is crucial to identify effective
measures to mitigate these negative impacts in line with
the European Green Deal and the United Nations 2030
Agenda (Montanarella and Panagos, 2021). In this con-
text, the application of digital technologies and the devel-
opment of smart solutions have emerged as key strategies
to improve efficiency, productivity and sustainability in
the agri-food sector (Yigezu et al., 2018). Among the vari-
ous forms of agricultural innovation, practices related to
irrigation are of particular importance today (Asadi et
al., 2020). Water scarcity and drought are now consid-
ered a global problem of paramount importance, that is
likely to be exacerbated by climate change, which is one
of the greatest environmental, social and economic chal-
lenges facing the entire planet (Ermolieva et al., 2022;
Ungureanu et al., 2020). Water-smart agricultural prac-
tices can be helpful in two ways: from an environmental
perspective, they can reduce pressure on water resources,
improve water use efficiency and reduce water waste.
From an economic perspective, these solutions can lead
to cost savings and productivity increases and contrib-
ute to overall profitability by maximizing crop yields per
amount of water used (Gemtou et al., 2024). The use of
specific innovations, such as soil moisture sensors, auto-
matic irrigation systems and predictive models has the
potential to address major challenges such as water scar-
city and the impact of climate variability (Adeyemi et al.,
2017), as well as energy savings (Patle et al., 2019). How-
ever, one of the biggest challenges facing smallholder
agriculture is the low uptake of innovative technological
solutions, which has led to relatively low technology pen-
etration in the sector (Senyolo et al., 2018). In this con-
text, it is crucial to gain insights into farmers’ behaviour,
their willingness to adopt smart solutions and potential
strategies to facilitate wider adoption of water technolo-
gies in the agricultural sector (Gemtou et al., 2024).

It is evident that despite the general focus on a fair
transition from agricultural practices to digital technolo-
gies, the diffusion and adoption of smart technologies
remains uneven and is influenced by a complex inter-
play of individual, technological and contextual factors
(Shang et al., 2021). Previous studies have shown that
there are significant differences in adoption rates among
farmers (Paustian and Theuvsen, 2017).

Elena Cozzi et al.

Farmers’ decision-making processes, which are
shaped by perceptions of benefits, ease of use and exter-
nal pressures, are key to understanding the adoption
landscape (Cimino et al., 2024; Schulze Schwering et al.,
2022). Given the limited technological penetration of the
agricultural sector and the potential benefits of digital
technologies, it is crucial to investigate the factors influ-
encing the adoption of smart technologies (Gemtou et
al., 2024).

While previous research has investigated adop-
tion patterns among farmers, it has often focused on
large-scale farming operations or specific regions with
advanced technological infrastructures (Paustian and
Theuvsen, 2017). Additionally, studies have highlighted
barriers such as limited digital literacy, financial con-
straints, and a lack of institutional support for small and
medium-sized farms (Senyolo et al., 2018; Shang et al.,
2021). Despite this growing body of work, several gaps
in the literature remain. First, little research has focused
on the adoption of water-smart technologies in the hor-
ticultural sector, which plays a crucial role in agricultural
sustainability. Most studies on precision agriculture have
examined large-scale cereal farming, neglecting horti-
cultural systems where irrigation efficiency is a key fac-
tor (Adeyemi et al., 2017). Second, while research has
investigated the impact of farm size and socio-demo-
graphic characteristics on technology adoption, the role
of sustainability considerations and social norms remains
underexplored. Previous studies have suggested that per-
ceived usefulness and perceived ease of use drive adop-
tion, but the extent to which sustainability motivations
influence farmers’ decisions is not well understood (Gem-
tou et al., 2024). Finally, existing literature has rarely
examined the adoption of digital technologies in Italian
agriculture, a sector characterized by fragmented land
ownership, diverse regional farming practices and differ-
ent levels of technological readiness (Baldoni et al., 2018).

This study aims to address these gaps by analys-
ing the factors influencing Italian farmers in the adop-
tion of digital technologies for better water management
and the barriers they face, with a focus on horticultural
crops. Horticulture has been considered for some rea-
sons: first, because of the importance of this sector in
the Italian agricultural system; secondly, for the rele-
vance of the irrigation in this cropping system (Patle et
al., 2019); third because of the relevance of smart preci-
sion in horticulture (Adeyemi et al., 2017). The technolo-
gies studied relate to smart water management through
a three-stage technology complexity: the first (basic)
stage is represented by the introduction of soil moisture
sensors, which proceeds to a system that combines sen-
sors with an automatic irrigation system, and in the last
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stage the sensors are connected to an automated system,
which in turn is connected to and dialogs with predic-
tive models'. Understanding how these farmers per-
ceive and adopt water-efficient innovations is crucial to
develop targeted policies, design effective incentives, and
promote sustainable agricultural practices. The results of
this work can provide valuable insights to policymakers,
technology providers, and other stakeholders (e.g., coop-
eratives, producers’ associations, etc.) seeking to promote
sustainable and efficient agricultural practises through
innovation.

2. LITERATURE REVIEW AND
THEORETICAL BACKGROUND

As the existing literature shows, the process of
adopting new technologies is inherently complex and
dynamic (Montes de Oca Munguia et al., 2021). In par-
ticular, the decision-making process is influenced by
various factors that affect the rate of technology adop-
tion by farmers (Gemtou et al., 2024; Osrof et al., 2023).
Although the existing literature has explored the mecha-
nisms of innovation diffusion, there does not seem to be
a unified set of theories or models that could explain the
phenomenon. Some authors have highlighted the speci-
ficity of theories in modelling different aspects of the
technology adoption process (Dissanayake et al., 2022;
Osrof et al., 2023), while others have expressed doubts
about the generalist ability of theories to represent differ-
ent technologies and practices (Montes de Oca Munguia
et al., 2021). Indeed, there is still confusion about the
methods of analysis and the choice of explanatory vari-
ables that should be used to model the adoption process
(de Oca Munguia and Llewellyn, 2020). To illustrate,
Shang et al. (2021) argue that the mechanisms of adop-
tion and diffusion of digital agricultural technologies
need to be understood at both the farm level and the
system level. They also suggest that the focus in deter-
mining technology diffusion should be on system inter-
actions in combination with individual characteristics.
Given the evidence presented in the literature, it can be
assumed that the categories of individual, technologi-
cal, social and economic factors influencing technology
adoption can describe the entire decision-making pro-
cess (Dissanayake et al., 2022). There is a clear lack of

! Specifically, automatic irrigation systems are connected to sensors that
monitor soil moisture and activate valves wirelessly; instead, predictive
modelling integrates the first two solutions (soil moisture sensors and
automatic irrigation systems) into predictive models that merge real-
time data with historical data, analyse it, and make autonomous irriga-
tion decisions thanks to water delivery schedules that optimize dosing
based on specific crop requirements and environmental conditions.
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convergence and consistency in the results regarding the
impact and statistical significance of the individual fac-
tors assessed in the adoption models (de Oca Munguia
and Llewellyn, 2020). This discrepancy can be attribut-
ed to the fact that most adoption studies do not include
variables on technologies or practices. It is recognized
that the use of multiple paradigms in modelling technol-
ogy adoption and diffusion can increase the explanatory
power of the models. However, it is important to con-
sider the factors and their interactions in a way that is
consistent with the objectives and context of the study
within a specific food system (Dentoni et al., 2023).

In the present work we applied the Technology
Acceptance Model (TAM) (Davis, 1989) for measur-
ing the intention of Italian farmers to adopt innovative
smart technologies. According to this paradigm, two
dispositions towards a new technology (perceived use-
fulness and ease of use) determine a person’s attitude
towards using that technology and influence their desire
to use it. Perceived usefulness is the extent to which a
person believes that job performance can be enhanced
by using the new technology, whereas perceived ease of
use is the extent to which a person believes that using
the new technology is effortless. Some extensions of the
original TAM conceptualization have been proposed,
such as the TAM3 version (Venkatesh and Bala, 2008).
The TAM3 extension introduces new constructs and
determinants that affect the core variable perceived
ease of use and proposes new relationships between
the constructs. The factors influencing perceived ease
of use in the TAM3 version are computer self-efficacy,
perception of external control, computer anxiety, com-
puter playfulness, perceived enjoyment, and objective
usability, whereas perceived usefulness is affected by
subjective norm, image, relevance to work, output qual-
ity and demonstrability of results. Other innovations
introduced by this extension include: (i) the correlation
between perceived ease of use and perceived usefulness,
(ii) the correlation between perceived ease of use and
intention, and (iii) the concept of anxiety. The latter fac-
tor, which expresses the degree of emotional fear, appre-
hension, nervousness, or stress experienced when inter-
acting with a new technology, is supposed to negatively
affect the perceived ease of use. The more anxiety a per-
son feels, the less likely they are to perceive the technol-
ogy as easy to use.

Some minor adjustments were made to the original
TAM3 version by Venkatesh and Bala (2008) to bet-
ter suit the purpose and context of the analysis. First,
all constructs were considered in the context-specific
environment, i.e. the adoption of new water-smart agri-
cultural technologies by Italian horticultural farms.
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Moreover, some aspects were evaluated as very impor-
tant and emerged explicitly from the exploratory phase
with the participants, such as technology self-efficacy
and quality of outcomes. Other characteristics, such
as (computer) playfulness or perceived enjoyment, that
are characteristic of the original conceptualization of
the TAM3 model in relation to information technolo-
gies, do not apply to the context of the current research
and were therefore excluded from the model design.
Then, some variables were found to be significant when
considering sustainability issues (Gemtou et al., 2024).
Consequently, a category based on with the Sustainabil-
ity Assessment of Food and Agriculture Systems (SAFA)
(FAO, 2014) was included in the model. More specifi-
cally, the themes inspired by the FAO-indicators were (i)
the reduced water-used thanks to the optimization of the
irrigation system, (ii) the improved skills the employees
and the holder/farmer need to reach to use the technol-
ogy, and (iii) new employees recruited thanks to their
technological skills. Therefore, we tested the following
main hypotheses on the factors influencing the adoption
of new water-smart agricultural technologies by Italian
horticultural farms (Figure 1):

Subjective
Norm

Qutput

Quality

Perceived
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H1: perceived usefulness is positively affected by output
quality (H1a), by sustainability outcomes measured by
SAFA indicators (H1b), and by subjective norms (H1c);
H2: perceived ease of use is positively affected by technol-
ogy self-efficacy (H2a), and is negatively affected by anxi-
ety (H2b);

H3: perceived ease of use has a positive impact on farm-
ers’ intention to adopt new technologies (H3a), and is pos-
itively affecting the perceived usefulness of new technolo-
gies (H3b);

H4: perceived usefulness has a positive impact on farmers’
intention to adopt new technologies;

H5: subjective norms have a positive impact on farmers’
intention to adopt new technologies;

Heé: the farmers’ intention to adopt new technologies is
positively affecting the behaviour, i.e. the new technology
adoption.

Moreover, individual factors, such as socio-demo-
graphic and organizational factors, which determine the
natural and structural conditions of the farm, have been
found to correlate with farmers’ decisions. In particular,
farmers’ education level, gender, age, technology litera-
cy, were among the individual drivers more frequently
included in studies investigating the smart farming tech-
nologies adoption (Osrof et al., 2023). Farm size, mostly

H5

7 Usefulness
~Hib \
\ . H6
. Intention to -
H3b S adopt M
TN e ’
Technology H2a H3f{/” /
Self-Efficacy ./ ™~ -
™. Perceived T T—— A
- Ease of Use
e Individual drivers Organisational drivers
" H2b Age Farm size

Farm location

Number employees
Membership in coop/POs
Turnover

Educational level
Years of experience

Figure 1. Model testing the factors affecting the adoption of water-smart agricultural new technologies by Italian horticulture farms.
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expressed in total acreage farmland, is a prominent fac-
tor among the organizational ones, since larger farm size
is consistently seen as pivotal for achieving economies of
scale when adopting smart farming technologies. Farm
income is another key element, as farmers with a higher
income are more willing to invest in new technologies
(Osrof et al., 2023). Farm location is also a notable bar-
rier within this theme, showing mixed effects in past
studies. Some research indicates that it might negatively
affects farmers’ motivation to adopt smart technology,
particularly if farms face unfavourable climate conditions
or soil quality (Paxton et al., 2011). In Italy, farms in the
northern regions are generally more competitive, due to
larger farm sizes, advanced mechanisation, and stronger
market integration. In contrast, farms located in central
and southern regions often face structural constraints,
including smaller farms and lower productivity (Baldoni
et al., 2018). Other studies emphasize the importance of
social factors and access to information for the adopting
of innovative smart technologies (Blasch et al., 2022). In
this context, being a member of a farmers’ associations or
a producer organizations (POs), where knowledge trans-
fer is one of the main objectives, might facilitate adoption.
Therefore, we controlled the main endogenous variables
of the model, i.e. perceived usefulness, perceived ease of
use, adoption intention and behaviour, with individual
factors, namely farmers’ age, education level and years of
experience in the agricultural sector, and organizational
ones, including farm size, farm location (expressed by the
latitude of the province where the farm is located), num-
ber of employees, membership in a cooperative or a pro-
ducer organization, and farm turnover (Figure 1).

3. DATA AND METHOD
3.1. Data collection

The data collection consisted in two phases: first we
conducted a preliminary exploratory phase with qualita-
tive, unstructured interviews. The aim of the exploratory
interviews was to identify relevant aspects to be included
in the final model and to highlight those that could be
omitted. In this way, relevant points such as the quality
of results and self-efficacy were included in the final sur-
veys. The questions focused on previous experience with
smart technologies, skills in using them, public finan-
cial support for the adoption of technical solutions and
the farm structure, as well as farmers’ previous personal
background. In the second phase, we conducted a survey
among a sample of Italian horticultural farms. After an
initial pilot phase (n=21 interviews) to test the question-
naire, the main study was conducted in the period from
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October to November 2024 by an international market
research company using the CATI (Computer Assisted
Telephone Interview) method. The survey lasted approx-
imately 30 minutes. The total defined sample consisted
of 251 Italian farmers.

The sample includes farmers who grow tomatoes
(50% in northern Italy and 50% in the south), and those
who grow fresh vegetables, such as carrots, peppers, egg-
plants, lettuce, etc., spread across northern, central and
southern Italy (30%, 17%, and 53%, respectively).

The geographical breakdown was chosen to be rep-
resentative of the horticultural farms according to the
Italian National Institute of Statistics (ISTAT). The cov-
erage of different administrative regions throughout Italy
ensures a comprehensive understanding of cultivation
practices across the country and also illustrates the dif-
ferent technological levels.

3.2. Measures

Together with the socio-demographic information
and the descriptive indicators, the questionnaire was
designed to test the model hypotheses. Overall, it includ-
ed 14 constructs, with a total of 45 items. The constructs
included in the final model (Figure 1) were aimed to
understand the drivers for the adoption of innovative
water-smart agricultural technologies by Italian horticul-
tural farms. All TAM3 items were measured on a 7-point
scale (from ‘strongly disagree’ to ‘strongly agree’) (see
Annex Table Al).

Subjective norm, i.e. the perceived social pressure to
adopt the new technology, was assessed by three items
(e.g., “Many producers I know have already adopted this
innovation”). We measured the perceived usefulness
with four items (e.g., “This innovation could improve
my productivity”). Output quality, i.e. the perception of
the quality of the technology in performing the task, was
measured by four items (e.g., “Using this technology will
improve the quality of my products”), whereas SAFA-
based aspects (i.e. the sustainability-related outcomes
of the new technology adoption) were assessed by four
items (e.g., “By using this innovation, I could help reduce
water consumption”). We used two items for assessing
the perceived ease of use (e.g., “This technology should
be easy to use”). Technology self-efficacy, i.e. the belief in
how well someone can perform actions to achieve per-
formance outcomes, was measured by three items (e.g.,
“I would use this innovation easily if I had technical
support”), whereas anxiety was assessed by three items
(e.g., “New technologies make me feel uncomfortable”).
We used three items to assess behavioural intention (e.g.,
“I intend to use this technology in the near future”).
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The study focused on the three levels of water-smart
technologies described above: Level 1) - soil moisture
sensors, Level 2) — a system combining sensors with an
automatic irrigation system, and Level 3) - sensors con-
nected to an automated system, which in turn is con-
nected to and interacts with predictive models. If a
farmer indicated they have adopted a certain level of the
technology, the items were framed for the next level. For
instance, if a respondent have already adopted soil mois-
ture sensors, we asked about the intention to adopt the
sensors connected to an automated system. If no adop-
tion was reported, we asked about their intention to
adopt soil moisture sensors (Level 1), whereas when they
reported the highest level of adoption, we asked about
the intention to adopt more advanced predictive models.
Therefore, the behaviour was assessed with a single item,
ranging from 1 to 4, considering the different adoption
levels (1=no technology; 2=Level 1; 3=Level 2; 4=Level 3).

3.3. Data analysis

We performed the statistical analysis using SPSS
v.29.0 and AMOS v.29.0 statistical software (IBM Corpo-
ration, Armonk, NY, USA). Means, standard deviations,
median and interquartile range (IQR) were calculated
for each questionnaire item and its related construct.
Structural equation modelling (SEM) was used to test
hypotheses H1-H6 and the theoretical framework in
Figure 1. SEM allows models to be specified with both
latent (e.g., perceived usefulness) and observed variables
(e.g., farmer’s age) (Kline, 2016). Specifically, we have
considered two models: in Model 1 we included only the
variables of the extended-TAM3 model (i.e. behaviour,
behavioural intention, subjective norm, perceived useful-
ness, perceived ease of use, output quality, SAFA, tech-
nology self-efficacy and anxiety). Then, we controlled for
the effects of individual factors (i.e., farmers’ age, educa-
tional level, and years of experience in the agricultural
sector) and organizational factors (i.e., farm size, farm
location, number of employees, membership in a coop-
erative or a producer organization, and farm turnover)
on the endogenous variables (i.e., perceived usefulness,
perceived ease of use, behavioural intention, and behav-
iour) by adding them step by step to Model 1. We then
run Model 2 by adding to Model 1 the significant effects
of the individual and organizational factors previously
found. Convergent validity of the model variables was
assessed using average variance extracted (AVE), Cron-
bach’s a coeflicient, and composite reliability (CR). Dis-
criminant validity was tested by comparing the square
root of the AVE of each construct with the inter-con-
struct correlation (Bagozzi and Yi, 2012). The goodness-
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of-fit of the models was assessed using the x> and their
degrees of freedom (df), the Tucker-Lewis Index (TLI),
the comparative fit index (CFI), the root mean square
error of approximation (RMSEA) with a 90% confidence
interval, and the standardised root mean square residual
(SRMR) (Kline, 2016). The coefficient of determination
(R?) was used to measure the explained variance of the
endogenous variables. We applied the Maximum Likeli-
hood estimation routine (Byrne, 2010).

4. RESULTS
4.1. Descriptive statistics

The overall sample consisted of 251 respondents
who were responsible for farm’s decisions (78% always,
14% often, and 8% sometimes). Most respondents were
male (92%), had completed upper secondary education
(53%), had an average age of 53 years, and a median of
30 years of experience in the agricultural sector (Table
1). Most farms were located in southern Italy and on the
islands (51.4), had a median utilised agricultural area
(UAA) of 15 ha, employed less than 10 people (68%),
with a median turnover of €200.000. The most frequent-
ly cultivated vegetables were tomatoes, both for fresh
consumption (44%) and for the processing industry
(41%), followed by peppers (16%) and zucchinis (11%).

Most of the sampled farmers had not yet adopted
any of the proposed technologies (n=175, 69.7%). Those
who have deployed any of these technologies relied on
Level 1 (i.e. soil moisture sensors, n=43, 17.1%), and a
few were already using automated irrigation systems
(Level 2) or predictive models (Level 3), accounting for
6.4% (n=16) and 6.8% (n=17) respectively (Table 1). In
light of these findings, it is important to understand the
motivation for the adoption of new technologies and the
factors that hamper their introduction.

Overall, the results in Table 2 show a moderately
positive perceived usefulness of water-smart agricultur-
al new technologies (mean score: 4.81), which means in
particular that farmers moderately agree that by using
this technology they could reduce water consumption
and improve productivity. The results also show a mod-
erately positive perceived ease of use (4.69) and output
quality (4.59). Furthermore, important others had no
significant influence (3.63), and there was relatively low
anxiety about applying new technologies (3.16). The
results indicated a positive evaluation of the sustainabil-
ity aspects related to the new technology (e.g., reduced
water consumption, enhanced technical skills, etc., mean
score: 5.03), as well as positive technology self-efficacy
(5.12). In particular, respondents stated that they would
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Table 1. Description of the sample: farm characteristics and socio-demographic data of farmers (n=251).

Sample Sample
Variables Variables

N % N %
Age of the respondent Most cultivated vegetables
Age (years, mean and SD) 52.8 (11.9) Tomato (for fresh consumption) 110 43.8
Gender Tomato (for the processed industry) 104 414
Male 231 92.0 Peppers 40 15.9
Female 20 8.0 Zucchinis 27 10.8
Others or prefer not to answer 0 0.0  Eggplants 13 5.2
Educational level Lettuce 13 52
Primary 8 32 Potatoes 12 4.8
Secondary lower 57 227 Melons 9 3.6
Secondary higher 132 52.6 Cauliflowers 8 3.2
Tertiary 54 21.5 Enterprise n. employee category
Geographical area of the farm Micro (1-9 employees) 171 68.1
North-West 28 11.2 Small (10-49) 64 25.5
North-East 66 26.3 Medium 1 (50-99) 12 4.8
Center 28 112 Medium 2 (100-249) 4 16
South and Islands 129 51.4 Large (2250) 0 0.0
Farm size Farm’s turnover
UAA (ha, median and IQR) 15.0 (4.0-60.0) Turnover (.000 euro, median and IQR) 200 (90-650)
Farms by UAA classes Farmer’s years of experience in agriculture
<2ha 20 8.0 Years of experience (median and IQR) 30 (20-40)
2-499 ha 47 18.7 Levels of water-smart technologies *
5-19.99 ha 69 27.5 No technological innovation 175 69.7
20 - 49.99 ha 45 17.9 Level 1 43 17.1
> 50 ha 70 27.9 Level 2 16 6.4

Level 3 17 6.8

Notes: Data are presented as the mean (SD) for continuous variables for which the hypothesis of normal distribution cannot be rejected at
p<0.05, as median (IQR) otherwise, or as number (%) for nominal variables. SD = Standard Deviation. IQR = Interquartile Range. UAA
= Utilised Agricultural Area. ® Levels of water-smart technologies: Level 1) — soil moisture sensors, Level 2) — a system combining sensors
with an automatic irrigation system, and Level 3) - sensors connected to an automated system, which in turn is connected to and interacts

with predictive models.

use this innovation easily if they had technical support.
Furthermore, consumers exhibited a moderately positive
intention to adopt innovative water-smart agricultural
technologies (4.58).

4.2. Drivers of digital innovation

Table 2 shows the descriptive statistics of the latent
and observable variables, as well as the tests conducted
on the constructs. The factor loadings of the variable
items (4) exceeded 0.50, the Cronbach’s o and CR values
were above 0.70, and the AVE values exceeded 0.50; these
results, with the only exception of perceived ease of use,
demonstrated strong reliability, as well as convergent and
discriminant validity of all factors in the measurement
model. Discriminant validity was further confirmed by
verifying that the square root of the AVE for each con-

struct, as shown in Table 3, was greater than the correla-
tions between the constructs (Bagozzi and Yi, 2012).
Model 1 showed a good fit with the collected data: 2
(df) = 461.975 (280), CFI = 0.950, RMSEA = 0.051 (90%ClI
0.043 - 0.059), TLI = 0.942 and SRMR = 0.054. The stand-
ardized path coefficients and their significance levels are
shown in Table 4, whereas the unstandardized coefficients
and standard errors are shown in the Appendix Table A2.
Overall, the model shows R? values of 0.65 for the
intention and 0.16 for the behaviour in adopting a new
water-smart technology. This means that, respectively,
65.1% of the variance in intention and 16.4% of the vari-
ance in behaviour can be explained by the tested vari-
ables. The results suggest that the intention to adopt an
innovative water-smart technology significantly influenc-
es the actual behaviour (i.e., the adoption of the technol-
ogy itself), as postulated by H6 (p<0.001). Behavioural
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Table 2. Mean values (standard deviation, SD) and median values (interquartile range, IQR) of single items and constructs, factor loadings

Elena Cozzi et al.

(4), composite reliability (CR), average variance extracted (AVE) and Cronbach’s « of the sample (n=251).

Mean (SD) Median (IQR) A CR AVE a

Perceived Usefulness 4.81 (1.06) 5.00 (4.25-5.25) 0.84 0.56 0.84
PUL 4.80 (1.25) 5.00 (4.00-5.00) 0.78

PU2 4.61 (1.34) 5.00 (4.00-5.00) 0.75

PU3 4.86 (1.20) 5.00 (4.00-5.00) 0.79

PU4 4.95 (1.37) 5.00 (4.00-6.00) 0.67

Perceived Ease of Use 4.69 (0.92) 4.50 (4.00-5.00) 0.61 0.45 0.61
PEU1 4.98 (1.06) 5.00 (4.00-5.00) 0.59

PEU2 4.40 (1.10) 5.00 (3.00-5.00) 0.75

Output Quality 4.59 (0.98) 4.75 (4.00-5.00) 0.83 0.56 0.84
0Ql1 457 (1.15) 5.00 (4.00-5.00) 0.70

0Q2 452 (1.25) 5.00 (4.00-5.00) 0.78

0Q3 4.80 (1.16) 5.00 (4.00-5.00) 0.85

0Q4 448 (1.20) 5.00 (4.00-5.00) 0.64

SAFA 5.03 (1.00) 5.00 (4.67-5.67) 0.78 0.55 0.79
SAFA1 5.12 (1.21) 5.00 (5.00-6.00) 0.68

SAFA2 4.87 (1.17) 5.00 (4.00-5.00) 0.72

SAFA3 5.10 (1.20) 5.00 (5.00-6.00) 0.81

Anxiety 3.16 (1.18) 3.00 (2.67-3.67) 0.85 0.66 0.85
ANX1 3.28 (1.33) 3.00 (3.00-4.00) 0.74

ANX2 3.10 (1.33) 3.00 (2.00-3.00) 0.88

ANX3 3.10 (1.37) 3.00 (2.00-3.00) 0.81

Technology Self-Efficacy 5.12 (1.11) 5.00 (4.67-6.00) 0.92 0.80 0.92
TSE1 5.07 (1.22) 5.00 (5.00-6.00) 0.87

TSE2 5.20 (1.18) 5.00 (5.00-6.00) 0.93

TSE3 5.08 (1.18) 5.00 (5.00-6.00) 0.88

Subjective Norms 3.63 (1.09) 3.67 (3.00-4.33) 0.76 0.53 0.74
SN1 3.84 (1.31) 4.00 (3.00-5.00) 0.84

SN2 3.52 (1.41) 3.00 (3.00-5.00) 051

SN3 3.53 (1.31) 3.00 (3.00-5.00) 0.78

Behavioural Intention 4.58 (1.35) 4.67 (4.00-5.33) 0.91 0.77 0.91
BI1 441 (1.51) 5.00 (4.00-5.00) 0.93

BI2 4.54 (1.47) 5.00 (4.00-5.00) 0.89

BI3 4.80 (1.41) 5.00 (4.00-6.00) 0.80

Behaviour ¢ 1.50 (0.89) 1.00 (1.00-2.00)

Note: All items were measured on a 7-point scale (from ‘strongly disagree’ to ‘strongly agree’). * Behaviour was assessed with a single item,
ranging from 1 to 4, considering the different adoption levels (1=No technological innovation; 2=Level 1; 3=Level 2; 4=Level 3).

intention, in turn, is positively influenced by perceived
usefulness with p<0.001, which is one of the two core
variables of the TAM3 (H4 accepted).

Perceived ease of use does not significantly affect the
intention to adopt technologies, therefore not supporting
H3a; however, it positively affects perceived usefulness
of new technologies with p<0.05, confirming H3b. H5 is
also supported since subjective norm has a positive effect
on the intention to adopt a technology (p<0.001), show-
ing that perceived social pressure has an influence on the

farmers’ motivation to adopt a new technology. The con-
struct of anxiety shows a negative effect on the perceived
ease of use (p<0.05), a property that is stimulating and
that could open up new ways of designing and conceptu-
alizing modern technologies. Perceived ease of use, on the
other hand, is positively influenced by the self-efficacy of
the technology, with p<0.001. In turn, perceived useful-
ness is influenced by the quality of the output (i.e., the
perceived quality of the effects achieved by using the tech-
nology, p<0.001) and by the SAFA-based items (p<0.05).
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Table 3. Spearman’s rank-order correlations (p) between the constructs including the squared root of the AVE of each construct (reported
in bold on the main diagonal).

PU PEU oQ SAFA ANX TSE SN BI BEH
PU 0.75 0317 0.63™ 0.52" -0.28™ 0.40™ 0.36™" 0.57" 0.36™
PEU 0.67 0.24™ 031" -0.17" 0.34™ 0.14" 0.28™ 0.15"
0oQ 0.75 0.46™ -0.21 0.34™ 0.43"™ 0.60™ 0.35™
SAFA 0.74 -0.23™ 0.63™ 0.16° 0.39™ 0.19"
ANX 0.81 0.16" -0.15 -0.29™ 0.17"
TSE 0.89 n.s. 0.39™ n.s.
SN 0.73 0.44™ 0.36™
BI 0.88 0.40™"

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; OQ = Output Quality; SAFA = Sustainability Assessment of Food and
Agriculture Systems; ANX = Anxiety; TSE = Technology Self-Efficacy; SN = subjective norms; BI = Behavioural Intentions; BEH = behav-
iour; Sign.: ** p<0.001, ** p<0.01, * p<0.01, n.s. = not significant.

Table 4. TAM3-extended model: coefficient of determination (R?), standardised coefficients (B), p-values, and research hypotheses (n=251).

Model 1 Model 2

R? p p Hypotheses R? p p Hypotheses
PU 0.791 0.811
PEU -» PU 0.133 0.044 H3b accepted 0.118 0.068 H3b accepted
0Q - PU 0.658 <0.001  Hla accepted 0.693 <0.001  Hla accepted
SAFA - PU 0.199 0.027 H1b accepted 0.172 0.052 H1b accepted
SN - PU 0.045 0.512 Hilc rejected 0.033 0.627 Hilc rejected
EMP -~ PU 0.157 <0.001
PEU 0.305 0.302
TSE -» PEU 0.487 <0.001  H2a accepted 0.488 <0.001  H2a accepted
ANX - PEU -0.169 0.041 H2b accepted -0.161 0.051 H2b accepted
BI 0.651 0.653
PU - BI 0.601 <0.001 H4 accepted 0.616 <0.001 H4 accepted
PEU - BI 0.069 0.295 H3a rejected 0.056 0.380 H3a rejected
SN - BI 0.278 <0.001 H5 accepted 0.261 <0.001 H5 accepted
UAA - BI 0.081 0.068
BEH 0.164 0.178
BI -~ BEH 0.404 <0.001 H6 accepted 0.376 <0.001 H6 accepted
UAA - BEH 0.158 0.006
Model fit indices
¥ (df) 461.975 (280) 510.533 (328)
CFI 0.950 0.950
TLI 0.942 0.943
RMSEA (90% C.I.) 0.051 (0.043 — 0.059) 0.047 (0.039 - 0.055)
SRMR 0.054 0.062

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use; OQ = Output Quality; SAFA = Sustainability Assessment of Food and
Agriculture Systems; ANX = Anxiety; TSE = Technology Self-Efficacy; SN = subjective norms; BI = Behavioural Intentions; EMP = number
of employees; UAA = average farm size (Utilised agricultural area); BEH = Behaviour.

When controlling for individual and organiza-  of utilised agricultural area, UAA) and the number of
tional factors we have found that, among all observed employees have an effect on the endogenous variables.
items, only the average farm size (expressed in hectares  In particular, the number of employees positively influ-
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ences respondents’ perceived usefulness (p<0.001), indi-
cating that decision-makers in larger farms, in terms
of workforce, find the innovative technology capable
of enhancing farm performance. In turn, the average
farm size in UAA positively influences the behaviour
(p<0.001) and behavioural intentions (p<0.10). In other
words, respondents working in larger farms are more
willing to adopt the new technologies, or have already
adopted them. Overall, the Model 2 shows good fit with
the data (x? (df) = 510.533 (328), CFI = 0.950, RMSEA
= 0.047 (90%CI 0.039 - 0.055), TLI = 0.943 and SRMR
= 0.062) while also improving the explained variance of
behaviour, up to 17.8%. The overall path and the tested
hypotheses are confirmed, albeit with some of them
showing slightly lower significance levels (Table 4).

5. DISCUSSION

Our study found that approximately 70% of the
farmers interviewed did not adopt any of the proposed
digital technologies. This finding confirms the limited
adoption of innovative water-smart solutions in the Ital-
ian horticultural sector, highlighting the need to thor-
oughly understand the barriers and the factors that
could promote such adoption. Therefore, the results of
this study represent an important step toward achieving
this goal. The applied extended-TAM3 model consistent-
ly explains around 18% of the variance in the behaviour
(the adoption of water-smart technologies), and 65% of
the variance in individuals’ intention to adopt the new
digital technologies. We confirm that behavioural inten-
tion is a significant predictor of the behaviour, indicating
that farmers motivation in adopting the innovative tech-
nologies affect the actual adoption. The applied model
further assumes that the effect of other variables (e.g.,
self-efficacy) on behavioural intention is mediated by
perceived usefulness and perceived ease of use. The find-
ings are consistent with previous literature, particularly
in relation to the importance of perceived usefulness
(Davis, 1989; Venkatesh and Davis, 2000). Perceived use-
fulness was found to be a strong determinant of farmers’
intention to adopt new water-smart technologies, high-
lighting its role in shaping the adoption behaviour. Oth-
er studies conducted using TAM demonstrate that per-
ceived usefulness is a central aspect for technology adop-
tion, provided that it do not cause a significant increase
in the production costs (Pierpaoli et al., 2013). This sup-
ports the findings of Paustian and Theuvsen (2017) and
Shang et al. (2021), who emphasize the importance of
clear and tangible benefits for adoption of technologies
in agriculture.

Elena Cozzi et al.

However, our results differ from the TAM3 model
with respect to the role of perceived ease of use, which
has no influence on adoption intentions. While TAM3
suggests that perceived ease of use is an important deter-
minant (Venkatesh and Bala, 2008), the limited impact
observed can be attributed to contextual factors, such
as the different levels of digital literacy and prior expe-
rience with technology among Italian farmers. The not
significant effect of this factor was also found in another
studies (for a review, see Osrof et al., 2023). In another
study carried out in the Italian fruit and grapevine sec-
tor, perceived ease of use was found to be insignificant
when adopting variable rate irrigation (Canavari et al.,
2021). Schulze Schwering et al. (2022) also found that
perceived ease of use may become less important when
end users rely more on external support or community
recommendations, as social norms take precedence.

Social norms were another important factor that
positively influenced adoption intentions in our study,
which is consistent with the findings of Senyolo et al.
(2018). The role of perceived social pressure in motivat-
ing farmers suggests that fostering a culture of innova-
tion and demonstrating success among peers may be
critical to increasing adoption rates. Furthermore, our
findings echo the observations of Dissanayake et al.
(2022) that contextual and cultural factors play a signifi-
cant role in shaping individuals’ intention to adopt inno-
vative technologies.

By demonstrating that sustainability-related factors,
such as improved water management and workforce skills,
influence perceived usefulness, our study confirms the
potential of sustainability considerations to improve tech-
nology uptake. This result is in line with the research find-
ings of Montes de Oca Munguia et al. (2021), who advo-
cate the inclusion of sustainability goals in the technology
adoption framework. This last point is thought-provoking
when it comes to examining the role of farmers and their
commitment to sustainability, as well as their awareness of
the use of smart devices to promote more sustainable prac-
tices. In the face of climate change and the pressure that
agriculture is putting on environmental resources, only
the direct and committed involvement of farmers can pro-
mote a more conscious and widespread use of smart tech-
nologies with the aim of reaping their benefits (Menozzi
et al., 2015). Furthermore, linking sustainability aspects
to the concept of usefulness could also promote higher
acceptance and adoption rate, which underpins the posi-
tive impact for farmers in terms of profitability. This is also
confirmed by the correlation indices between the SAFA-
inspired construct and the technology self-efficacy and
output quality constructs, that are both high and signifi-
cant, 0.74 and 0.70 respectively.
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Technology self-efficacy strongly affects perceived
ease of use, indicating that individuals who are more
confident in their ability to use the technology are more
likely to perceive it as an easy task. In other studies, per-
ceived behavioural control has been found to predict
intentions to adopt agricultural sustainability schemes
(Menozzi et al., 2015). On the other hand, our results
also suggest barriers to adoption, including lack of digi-
tal skills and limited access to information, which is
consistent with the observations of other studies (Osrof
et al., 2023; Sabbagh and Gutierrez, 2023; Yigezu et al.,
2018). To address these barriers, targeted training pro-
grams and policies are needed to lower the entry thresh-
old for farmers, especially for farmers in resource-poor
regions. Interestingly, the negative correlation between
anxiety and perceived ease of use highlights the impor-
tance of developing technologies that minimize cognitive
and operational barriers. In our study, we controlled the
endogenous variables of the model (i.e., perceived use-
fulness, perceived ease of use, intention to adopt, and
behaviour) with individual and organizational factors.
Only farm size and number of employees had a signifi-
cant effect on these variables, while the other constructs
showed no significant effect. Another review revealed
that several of these factors showed inconsistencies
across multiple studies (Osrof et al., 2023). For instance,
the insignificance effect of farmers’ level of education on
decision-making could be explained by the possibility
that highly educated farmers might opt for careers out-
side farming (Michels et al., 2020) or show interest in
basic technology features that do not require extensive
education (Wachenheim et al., 2021). Similarly, although
numerous studies have found that older farmers are less
motivated to adopt smart technologies on their farms,
Osrof et al. (2023) identified a large number studies with
inconsistent results, where age did not affect farmers’
adoption decisions. For example, age did not influence
farmers’ intention to use smart technologies such as yield
monitors with GPS (Garcia-Jiménez et al., 2022). Farm
location is also a notable barrier that might hamper the
adoption of smart technologies, in particular if farms face
unfavourable conditions such as climate, rainfall, or poor
soil quality (Osrof et al., 2023; Paxton et al., 2011). How-
ever, in our case farm location did not significantly affect
the endogenous variables, as other factors associated with
this variable (e.g., farm size) likely masked this effect.

On the contrary, our study indicated that larger
farms, in terms of UAA acreage, are more likely to be
motivated to adopt the innovative water-smart technolo-
gies or have already adopted them. This finding con-
firms that larger farm size is consistently seen as pivotal
for achieving economies of scale when adopting smart

39

technologies that entail high investments and initial
costs (Osrof et al., 2023).

The significant effect of the number of employees
on the perceived benefit indicates that farms with a large
workforce are more likely to believe that the use of water-
saving technologies will improve their performance. This
result can be interpreted in different ways. On the one
hand, it could indicate that the use of these technologies
could reduce the need for farm labour and thus reduce
labour costs. On the other hand, it could indicate that
these technologies are perceived to improve the knowl-
edge and technical skills of employees and thus increase
the productivity of the workforce. This second interpreta-
tion seems more consistent with the positive effect of the
SAFA-based construct on perceived usefulness.

In summary, this study enriches the understanding
of technology adoption in agriculture by confirming the
relevance of the key TAM3 constructs and also high-
lighting context-specific variations. By addressing the
identified barriers and harnessing the drivers of adop-
tion, policy makers, technology developers and stake-
holders can promote greater technology adoption and
thus contribute to more sustainable and efficient agricul-
tural practices.

6. CONCLUSION

The integration of digital technologies in the Italian
horticultural sector is a multifaceted challenge influenced
by a variety of individual, technological, social and con-
textual factors. This study shows that individual inten-
tion is an important determinant of the actual adoption
of innovative water-saving technologies and highlights
the crucial role of farmer motivation in decision-making.
Perceived usefulness of these technologies has a signifi-
cant effect on adoption intention, while perceived ease of
use requires further investigation due to its limited rel-
evance in the current context. Social norms were identi-
fied as an important determinant of farmers’ intentions,
highlighting the importance of community influence and
external support in promoting the adoption of digital
technologies. To close the observed adoption gap, target-
ed interventions should be developed to address barriers
such as digital literacy, infrastructure and accessibility of
technology. Furthermore, the regional and culture-spe-
cific nuances observed in this study should be taken into
account when developing customised strategies.

The results highlight important policy and business
implications, suggesting that government agencies, agri-
cultural cooperatives, and technology developers should
emphasize the economic and environmental benefits
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of digital irrigation technologies. Encouraging farmer
networks and knowledge-sharing initiatives could also
accelerate adoption. By addressing these research gaps,
this study contributes to both the academic literature
and practical policy making. It provides a refined theo-
retical model to understand technology adoption in
small- and medium-sized farms and offers practical
insights to promote sustainable and efficient water man-
agement in agriculture. Further exploration of constructs
that have negative correlates, such as anxiety, could lead
to more user-centred technology design that reduces
barriers to technology adoption and improves usability.

Some limitations of this study should be mentioned.
The study reflects not only a specific context, such as the
horticultural sector, but also national characteristics,
which can vary greatly from country to country due to
different regulatory and incentive frameworks, cultural
practises and, most importantly, technological infra-
structures. Nevertheless, the sample is not representative
of Italian farmers. This must be taken into account when
interpreting the results and deriving consequences for
corporate management. An extension of the sample and
a repetition of the study in other countries could there-
fore be interesting to test the validity of all the hypoth-
eses put forward in the original theory. Second, we
did not consider prospective behaviour, i.e., we did not
measure actual behaviour in the future (i.e., future adop-
tion of the innovative technologies), but only current
behaviour. Although this approach is quite common in
similar studies, it might have limited the compatibility of
behaviour with its antecedents (McEachan et al., 2011).
Moreover, this study used self-report measures about
the behaviour which may be subject to response biases.
However, the CATI method can help with complex or
sensitive questions by allowing the interviewer to clarify
questions and guide the respondent, thus reducing mis-
interpretation and encouraging more accurate responses
(Dillman et al., 2014).

Despite these limitations, this study is, to our knowl-
edge, one of the first aimed at investigating the relative
importance of behavioural precursors in explaining the
intention to adopt innovative water-smart technologies
in Italian horticultural farms.
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APPENDICES

Table Al. Constructs and Items.

Codes Items

Perceived Usefulness

PUL  This innovation would make my work easier

PU2  This technology would make my work faster

PU3  This innovation could improve my productivity

pus4  DByusing this t.echnology, I could reduce water
consumption in my company
Perceived Ease of Use

PEU1 This technology should be easy to use

PEU2 Using this technology will not require much effort
Output Quality

ol I expect that the results of using this technology will be
excellent

oQ Using this technology will improve the quality of my
products

o By using this system, I would increase the efficiency of my

Q3

work

o By using this innovation, I would increase the quantity of
product in the field
SAFA

SAFAL By using this innovation, I could help reduce water
consumption

With the introduction of this technology, employees could
SAFA2 receive training and enhance their knowledge and technical
skills

By introducing this innovation, I could receive training and

SAFA3 improve my technical skills
Anxiety
ANXI I get nervous when working with new technologies
ANX2 New technologies make me feel uncomfortable
ANX3 T am afraid of applying new technologies
Technology Self-Efficacy
TSEL I would use this technology easily if someone showed me
how to use it
TSE2 I would use this innovation easily if I had technical support
TSE3 I would use this innovation easily if I were familiar with
the system
Subjective Norms
People whose opinions matter to me think that I should
SN1 use this technology
SN2 Many producers I know have already adopted this

innovation
SN3 My customers think that I should use this technology
Behavioural Intention

BI1 I will definitely use this technology in the near future
BI2 I intend to use this technology in the near future

If there were no significant barriers, I would use this system

BI3 in the near future

Note: All items were measured on a 7-point scale (from ‘strongly
disagree’ to ‘strongly agree’).
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Table A2. TAM3-extended model: unstandardized beta coefficients
and standard errors (S.E.) (n=251).

Model 1 Model 2

Beta S.E. Beta S.E.
PU
PEU -» PU 0.202* 0.100 0.176* 0.097
0Q -~ PU 0.796*** 0.136 0.824*** 0.134
SAFA - PU 0.236* 0.106 0.200* 0.103
SN - PU 0.040 0.060 0.028 0.059
EMP - PU 0.249*** 0.068
PEU
TSE - PEU 0.308*** 0.064 0.307*** 0.064
ANX - PEU -0.098* 0.048 -0.093* 0.047
BI
PU - BI 0.862*** 0.110 0.890*** 0.110
PEU - BI 0.149 0.142 0.121 0.138
SN - BI 0.351*** 0.082 0.324*** 0.080
UAA - BI 0.000% 0.000
BEH
BI - BEH 0.256*** 0.039 0.240*** 0.039
UAA > BEH 0.000** 0.000

Note: PU = Perceived Usefulness; PEU = Perceived Ease of Use;
OQ = Output Quality; SAFA = Sustainability Assessment of Food
and Agriculture Systems; ANX = Anxiety; TSE = Technology Self-
Efficacy; SN = subjective norms; BI = Behavioural Intentions; EMP
= number of employees; UAA = average farm size (Utilised agri-
cultural area); BEH = Behaviour. Sign.: *** p<0.001, ** p<0.01, **
p<0.05, # p < 0.10.
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Abstract. Agriculture 4.0 enhances efficiency, sustainability, and yields while support-
ing climate change mitigation and adaptation. This study explores the adoption of
Agriculture 4.0 among 131 durum wheat farmers in Sardinia, focusing on differenc-
es between marginal and non-marginal areas. Using an extended Unified Theory of
Acceptance and Use of Technology (UTAUT2) framework, which includes perceived
performance risk, the study identifies key factors influencing adoption. Facilitating
conditions positively impact the adoption intentions, and perceived performance risk
has a negative impact. However, performance expectancy, effort expectancy, social
influence and price value don’t significantly affect adoption intentions. Policy recom-
mendations include financial support, technical advice access, training programs, and
awareness campaigns to promote adoption. These interventions aim to address barriers
and foster equitable integration of Agriculture 4.0 technologies across diverse farming
contexts.

Keywords: Agriculture 4.0, technology adoption, marginal areas, non-marginal areas,
UTAUT2.

1. INTRODUCTION

Marginal areas are territories where farming is challenging due to a con-
fluence of biophysical, socioeconomic, and infrastructural aspects (Ahmadzai
et al., 2021; Alhajj Ali et al., 2024; Peter et al., 2018; Sallustio et al., 2018).
These territories face natural and geographic constraints that reduce agricul-
tural competitiveness (Ahmadzai et al., 2022; Csikds & Téth, 2023; Food &
Nations, 2017; Jussila et al., 2019; Lal, 2004). On the other hand, non-mar-
ginal areas benefit from better natural resources, more established infrastruc-
ture, and more access to markets, technology, and research and development
(R&D) (Coxhead et al., 2002; Hidayat et al., 2024; Rondinelli, 1992; Ruddle,
1991). These areas are often better integrated into regional, national, and
worldwide agricultural markets, resulting in increased production and eco-
nomic benefits (Hidayat et al., 2024; Jouanjean, 2013; Long et al., 2016).

Farmers in non-marginal areas are generally more willing to accept new
technologies due to improved access to credit and extension services, which
reduce perceived risks and increase the possibility of successful adoption
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(Pannell et al., 2006; Rogers, 2003; Yigezu et al., 2018).
Differently, farmers in marginal areas are more likely
to be risk-averse and hesitant to adopt new technolo-
gies due to uncertainties about their effectiveness and
the potential financial risks involved (Girma et al., 2023;
Marra et al., 2003; Wu et al., 2023). These farmers may
also lack the technical knowledge and skills required
to effectively implement and benefit from new tech-
nologies, as well as the necessary support systems for
ongoing innovation and R&D (Abrol & Ramani, 2014;
Douthwaite et al., 2001; Klerkx et al., 2019; Scoones et
al.,, 2009). Agriculture 4.0 may provide a transforma-
tive opportunity to solve these imbalances. Agriculture
4.0, an advanced framework that incorporates tech-
nologies such as the Internet of Things (IoT), Artificial
Intelligence (AI), robotics, precision farming, and big
data analytics, has the potential to transform farming
methods in a variety of situations (Abiri et al., 2023;
Fuentes-Penailillo et al., 2024; Raj et al., 2021; Stupina
et al., 2021; Wolfert et al., 2017). IoT systems enable
real-time monitoring of soil, crops, and equipment (e.g.,
moisture sensors and smart irrigation) (Osservatori.net,
2023). Precision agriculture tools such as GPS-guided
machinery and variable-rate technology (VRT) opti-
mize the use of inputs like fertilizers, pesticides, and
water (McCormick, 2023) being tools to achieve more
sustainable farming systems. Remote sensing technolo-
gies and drones are destinated to crop health analysis
and yield forecasting (Maffezzoli et al., 2022). Robotics
and automation through autonomous tractors, harvest-
ers, and weeding robots help reduce labor requirements
(McCormick, 2023; Osservatori.net, 2023) , while AI and
machine learning offer predictive analytics and deci-
sion support (Abiri et al., 2023). Additionally, blockchain
and cloud computing enhance traceability and data
management, big data analytics support informed fore-
casting and strategic planning (Maffezzoli et al., 2022),
and mobile applications provide farmers with access to
weather data, technical assistance, and real-time market
prices (AgendaDigitale, 2023). Together, these technolo-
gies not only improve efficiency and productivity but
also reduce environmental impact and enhance climate
resilience. These advances are intended to maximize
resource utilization, boost crop yields, and improve over-
all farm management, being extremely advantageous,
especially in marginal areas (Abiri et al., 2023; Benfica
et al., 2023; Klerkx et al., 2019; Rose & Chilvers, 2018;
Saidakhmedovich et al., 2024). However, whereas non-
marginal areas are well-positioned to adopt these tech-
nologies, marginal areas face major barriers (Benfica et
al., 2023; Klerkx et al., 2019; Mercure et al., 2021; Said-
akhmedovich et al., 2024). Understanding these con-
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straints is critical to ensure that the benefits of Agri-
culture 4.0 are more widely realized, thereby possibly
bridging the development gap between marginal and
non-marginal areas (Burland & von Cossel, 2023; Kirk
& Cradock-Henry, 2022; Sureth et al., 2023). A complex
interaction of elements such as economic situations,
information access, social influences, and individual per-
ceptions of risk and benefit impact farmers’ attitudes and
behaviours regarding new technology adoption (Adrian
et al., 2005; Brick & Visser, 2015; Rizzo et al., 2024; Sab-
bagh & Gutierrez, 2022, 2023). Previous studies investi-
gated such elements on smart agriculture technologies in
the Italian context (Caffaro & Cavallo, 2019; Caffaro et
al., 2020; Caffaro et al., 2019).

To investigate these dynamics,this research utilized
the Unified Theory of Acceptance and Use of Technol-
ogy 2 (UTAUT2) model (Venkatesh et al., 2012), which
provides a comprehensive framework for understanding
technology adoption (Alghatrifi & Khalid, 2019; Mac-
edo, 2017; Tamilmani et al., 2021).

UTAUT?2 expands on the original UTAUT model,
which identifies core factors that influence technol-
ogy acceptance and use (Chang, 2012; Venkatesh et al.,
2012). UTAUT2 introduces additional variables such
as hedonic motivation, price value, and habit that cap-
ture a more comprehensive understanding of consumer
and user behaviour in different contexts such as mobile
applications, digital communication, e-health, education-
al tools, banking, agriculture, etc. (An et al., 2016; Arain
et al., 2019; Arenas Gaitan et al,, 2015; Chang, 2012;
Medeiros et al., 2022; Venkatesh et al., 2012; Widodo
et al., 2019). As well, UTAUT?2 is important in under-
standing technology adoption since it explains both
short-term and long-term technology use (Diekmann &
Theuvsen, 2019). Moreover, research has shown that per-
ceived performance risk predicts the intention to adopt
a new technology (Abikari, 2024; Budhi & Aminah,
2010; Budhi et al., 2022; Deng et al.,, 2018; Diekmann
& Theuvsen, 2019; Hasselwander & Weiss, 2024; Sohn,
2024). For this reason, we extended the UTAUT2 mod-
el to include the variable of perceived performance risk
(Featherman & Pavlou, 2003).

We focus our analysis on durum wheat farmers in
the Sardinia region, considering both marginal and non-
marginal conditions. Sardinia’s unique agricultural land-
scape, with considerable regional differences, makes it
an appropriate case study for investigating these dynam-
ics. Some areas of Sardinia suffer severe challenges due
to low soil quality, water scarcity, and limited infrastruc-
ture (Fraser-Baxter, 2024). Durum wheat, a key crop in
the region and vital to producing traditional items such
as pasta and bread, is inseparably linked to Sardin-
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ian history and the local economy (Mefleh et al., 2019;
Soddu et al., 2013). Furthermore, durum wheat agricul-
ture in Sardinia is particularly sensitive to environmen-
tal conditions, making it a great indicator of the overall
agricultural issues faced across the region (Mereu, 2010).

Agriculture 4.0 technologies may improve durum
wheat sowing, monitor soil moisture and nutrient levels
in real time, and predict crop diseases before they spread
(Balyan et al., 2024; Giiven et al., 2023; Shafi et al., 2019;
Trivelli et al., 2019). The geographical differences in
durum wheat yields in Sardinia, caused by different soil
quality, water availability, and infrastructure, make it a
suitable case study for investigating farmers’ intentions
to implement Agriculture 4.0 technologies in marginal
and non-marginal areas.

This study is pioneering in proposing an expanded
UTAUT2 model to explore the behavioural factors influ-
encing the adoption of Agriculture 4.0 technologies in
marginal and non-marginal settings. The implications
of this study may extend beyond Sardinia, providing sig-
nificant insights into the broader challenges and oppor-
tunities associated with the adoption of agricultural
technologies. The findings could help shape agricultural
policies that promote sustainable farming practices and
economic development in locations with similar agricul-
tural profiles. Moreover, it intends to contribute to the
global discourse on sustainable agricultural innovation
by offering a detailed knowledge of the factors that influ-
ence technology adoption, thereby assisting in the tran-
sition to more resilient and efficient farming systems.
This leads to the central research question: “What are
the key factors influencing farmers’ behavioural intention
to adopt Agriculture 4.0 technologies in Sardinia?”

This research aligns with several United Nations
Sustainable Development Goals (SDGs), specifically
SDG 2 (Zero Hunger), SDG 9 (Industry, Innovation, and
Infrastructure), and SDG 12 (Responsible Consumption
and Production). By investigating the behavioural and
structural factors that influence the adoption of Agricul-
ture 4.0 technologies, especially in marginal areas, the
study contributes to the broader agenda of building resil-
ient food systems and fostering inclusive and sustainable
economic growth in rural areas (SDG 8). Moreover, pro-
moting the use of resource-efficient technologies direct-
ly supports climate action goals (SDG 13) by reducing
environmental impact and improving adaptation to cli-
mate-related risks. This study contributes to the ongoing
discussion on farmers’ motivations and aspirations in
agricultural innovation. As noted by Arata and Menozzi
(2023), there is a need for multidimensional approaches
that account for both individual drivers and contextual
influences on farmer behaviour. While recent contribu-

tions, such as Deifiler et al. (2022), have explored the role
of personality traits in shaping aspirations in smallhold-
er contexts, our work adds to this conversation by focus-
ing on behavioural intentions toward Agriculture 4.0
use. By drawing on the Theory of Planned Behaviour,
our approach emphasizes farmers’ perceptions and atti-
tudes as key drivers of decision-making. These are the
factors that, while distinct from personality traits, are
similarly influential in shaping future-oriented action.
This alignment offers a complementary perspective to
the journal’s growing body of research on aspirations
and innovation adoption. The paper is structured as fol-
lows: section 2 outlines the theoretical framework and
hypotheses; section 3 details the methodology, including
data collection and analysis methods; section 4 presents
and discusses the results; section 5 provides conclusions,
and section 6 addresses the study’s limitations.

2. AGRICULTURE 4.0 AND BEHAVIOURAL MODELS
FOR THE ADOPTION OF NEW TECHNOLOGIES

2.1. Agriculture 4.0 in marginal and non-marginal areas

Agriculture 4.0 represents a transformative shift in
farming, leveraging advanced technologies such as pre-
cision agriculture, IoT, Al, robotics, and big data ana-
lytics to enhance efficiency, optimize resource use, and
foster sustainable agricultural practices (Abiri et al.,
2023; Wolfert et al., 2017). These technologies have the
potential to revolutionize farming in both marginal and
non-marginal areas, but their adoption and impact vary
significantly due to differences in infrastructure, access
to resources, and socioeconomic conditions between the
two regions (Ahmadzai et al., 2022; Klerkx et al., 2019).
Non-marginal regions often benefit from stable and
predictable weather patterns, ensuring that Agriculture
4.0 technologies can function optimally (Mana et al.,
2024; Pechlivani et al., 2023). These tools, which include
IoT sensors that monitor crop health, soil moisture lev-
els, and pest infestations, empower farmers to make
data-driven decisions that enhance productivity, reduce
resource consumption, and promote environmental
sustainability (Fuentes-Penailillo et al., 2024; Raj et al.,
2021). The availability of advanced farming machinery
and technologies, such as Al-driven machinery and vari-
able rate technology (VRT), further contributes to higher
productivity, with less environmental impact (Shafi et
al., 2019; Van Klompenburg et al., 2020).

On the other hand, marginal areas face a host of
challenges that hinder the adoption of Agriculture 4.0
technologies. Marginal areas are often characterized by
poor soil quality, limited water resources, geographi-
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cal isolation, and inadequate infrastructure, which
restrict the applicability of advanced farming technolo-
gies (Ahmadzai et al., 2021; Jacobs et al., 2022). These
regions are prone to extreme environmental conditions
such as drought, floods, heat waves, soil erosion and
water scarcity, making it difficult to implement technolo-
gies like precision irrigation or smart farming systems
that rely on consistent environmental data (Akter et
al., 2023; Cogato et al., 2019; Wheaton & Kulshreshtha,
2017). The absence of digital literacy and technical sup-
port networks in these regions makes it even more chal-
lenging for farmers to adopt new technologies (Dibbern
et al.,, 2024; Ruzzante et al., 2021). As a result, farmers
in these areas often lack the knowledge or resources to
implement technologies such as IoT sensors, Al-driven
machinery, and other forms of Agriculture 4.0 (Douth-
waite et al., 2001; Klerkx et al., 2019).

Additionally, the high cost of adopting advanced
technologies further exacerbates the divide between
marginal and non-marginal areas. While financial sup-
port mechanisms such as subsidies and loans are more
readily available in non-marginal areas, farmers in mar-
ginal regions often have limited access to credit and
financial resources, making it difficult for them to invest
in expensive technologies like artificial intelligence (AI)
driven machinery or VRT (Klerkx et al., 2019; Yigezu et
al., 2018). In marginal areas, where the financial risks of
farming are already high due to environmental unpre-
dictability, the upfront investment in advanced technolo-
gies can seem discouraging (Hurlbert et al., 2019; Khan
et al., 2024). Without sufficient financial backing, many
farmers prioritize short-term survival, limiting their
ability to make long-term investments in precision farm-
ing tools that could potentially enhance productivity
(Marra et al., 2003).

Environmental factors, including the vulnerability
to climate change, further differentiate the two regions
in terms of Agriculture 4.0 adoption. In non-marginal
areas, stable climatic conditions, fertile soils, and reli-
able access to water resources make it easier to deploy
Agriculture 4.0 (Javaid et al., 2022; Solaw, 2011). Tech-
nologies that rely on real-time data on soil moisture and
weather conditions can significantly enhance water use
efficiency and boost agricultural productivity (Balyan et
al., 2024). However, marginal areas face more unpredict-
able environmental factors that challenge Agriculture
4.0. In these areas, the high variability of environmental
conditions means that Agriculture 4.0 may not deliver
accurate or effective results unless adapted specifically to
local conditions (Jacobs et al., 2022).

Social and cultural factors also influence the adop-
tion of Agriculture 4.0 technologies, with farmers in
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non-marginal areas typically more exposed to modern
farming practices and educational programs (Ahmed
& Ahmed, 2023; Nhuong & Truong, 2024). In these
regions, farmers often have access to extension servic-
es, training programs, and education that promote the
adoption of innovative technologies (Gardezi & Bron-
son, 2020; Raji et al., 2024; Ruzzante et al., 2021). Their
more favourable attitudes towards technology adoption
are often supported by governmental and institutional
initiatives aimed at integrating new technologies into
farming practices (Cramb, 2000; Tey & Brindal, 2012).
In contrast, farmers in marginal areas may be more
risk-averse, especially when their livelihoods are already
precarious due to environmental and financial chal-
lenges (Scoones et al., 2009). The limited access to edu-
cation, technical knowledge, and extension services in
these regions further limits the willingness and ability
of farmers to adopt new technologies, resulting in slow-
er adoption rates compared to non-marginal areas (De
Rosa & Chiappini, 2012; Girma et al., 2023; LEAP, 2023;
Masi et al., 2023; Wu et al., 2023).

The differences in the adoption of Agriculture 4.0
technologies between marginal and non-marginal areas
highlight the need for tailored interventions. While non-
marginal areas focus on optimizing technology and fos-
tering innovation, marginal areas require foundational
efforts to improve basic infrastructure, enhance digi-
tal literacy, and address the specific environmental and
socioeconomic challenges that hinder technology adop-
tion (Elsawah et al., 2020; Loo et al., 2023; Mazzucato
& Willetts, 2019). The development of affordable, locally
tailored technologies and support systems is crucial for
ensuring that farmers in marginal areas can benefit from
the transformative potential of Agriculture 4.0, without
exacerbating existing inequalities (Jacobs et al., 2022;
Klerkx et al., 2019).

Agriculture 4.0 technologies present a stark con-
trast between marginal and non-marginal agricultural
areas due to inherent disparities in natural resources,
infrastructure, socioeconomic conditions, and access to
technology (Ahmadzai et al., 2022; Klerkx et al., 2019;
Saidakhmedovich et al., 2024). Understanding these
contrasts is critical for developing strategies that ensure
equitable access to these technologies and bridge the
development gap.

2.2. The Unified Theory of Acceptance and Use of Technol-
ogy 2

This study utilizes the UTAUT2 model to explore
the factors affecting farmers’ intentions to adopt Agri-
culture 4.0 technologies. The UTAUT2 model, intro-
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duced by Venkatesh et al. (2012), expands upon the
original UTAUT framework by integrating additional
constructs pertinent to consumer-related contexts. The
original UTAUT model emerged from synthesizing eight
theoretical frameworks from various disciplines, focus-
ing on technological change and adoption.: Innovation
Diffusion Theory IDT (Rogers, 1962); Theory of Rea-
soned Action TRA (Ajzen & Fishbein, 1980); Theory of
Planned Behaviour TPB (Ajzen, 1991); Social Cogni-
tive Theory SCT (Bandura, 1986); Technology Accept-
ance Model TAM (Davis, 1989); Model of PC Utili-
zation MPCU (Thompson et al., 1991); Motivational
Model MM (Davis et al., 1992); Combined TAM-TPB
C-TAM (Taylor & Todd, 1995). The main value of this
model arises from bringing a historical light on technol-
ogy use by working around a set of constructs; that is,
concepts that encapsulate what is central to the effects of
technology use from a user’s intention perspective (Yu,
2012). The UTAUT model centered on four constructs:
Performance Expectancy (PE), Effort Expectancy (EE),
Social Influence (SI), and Facilitating Conditions (FC)
with moderating demographic inputs: gender, age, level

Table 1. The main constructs of UTAUT and their origins.

of experience, and voluntariness of use (Venkatesh et
al., 2003). Table 1 illustrates these constructs alongside
their theoretical origins, showcasing how each is rooted
in one or more of the eight foundational models. Build-
ing on the theoretical foundation of UTAUT, Venkatesh
et al. (2012) introduced the UTAUT2 model, a pivotal
framework that emphasizes the consumer perspective
by incorporating three key factors: Hedonic Motiva-
tion, Price/Value, and Habit. This enhancement signifi-
cantly boosts the model’s predictive accuracy for esti-
mating user adoption, reaching up to 74% (Venkatesh et
al., 2016). The UTAUT2 model’s applicability has been
widely recognized as a robust framework within the
technology industry. The extensive body of research sup-
porting it underscores its effectiveness in analysing the
adoption of new technologies, especially in diverse cul-
tural and social contexts (Sumak & Sorgo, 2016). Several
studies, such as those by Ena and Siewa (2022) Toral et
al. (2018), have utilized the UTAUT2 model to investi-
gate the factors influencing farmers’ adoption of preci-
sion agriculture technologies.

Constructs

Variables

Model contributing to constructs

Perceived usefulness

Technology Acceptance Model (TAM) (Davis,
1989)

Combined TAM-TPB (Taylor & Todd, 1995)

Extrinsic motivation

Motivational Model MM (Davis et al., 1992)

Performance Expectancy
Job-fit

Model of PC Utilization MPCU (Thompson et
al., 1991)

Relative advantage

Innovation Diffusion Theory IDT (Rogers, 1962)

Outcome expectations

Social Cognitive Theory SCT (Bandura, 1986)

Perceived ease of use

Technology Acceptance Model (TAM) (Davis,
1989)

Effort Expectancy
Complexity

Model of PC Utilization MPCU (Thompson et
al., 1991)

Subjective norms

Social Influence

Theory of Reasoned Action TRA (Ajzen &
Fishbein, 1980)

Theory of Planned Behaviour TPB (Ajzen, 1991)

Technology Acceptance Model (TAM) (Davis,
1989)

Combined TAM-TPB C-TAM (Taylor & Todd,
1995)

Social factors

Model of PC Utilization MPCU (Thompson et
al., 1991)

Image

Innovation Diffusion Theory IDT (Rogers, 1962)

Perceived behavioural control

Theory of Planned Behaviour TPB (Ajzen, 1991)

Combined TAM-TPB (Taylor & Todd, 1995)

Facilitating Conditions - i
Facilitating conditions

Complexity

Model of PC Utilization MPCU (Thompson et
al,, 1991)

Innovation Diffusion Theory IDT (Rogers, 1962)
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2.3. Selected variables for the study

This study engages important variables from the
UTAUT2 (Venkatesh et al., 2012) as well as the variable
of perceived performance risk (Featherman & Pavlou,
2003) to cope with the extended research model and bet-
ter understand the factors influencing farmer acceptance
of Agriculture 4.0 technologies. Each variable indicates a
distinct feature that may influence a farmer’s willingness
to adopt Agriculture 4.0 technologies. As a result, the
variables chosen for this study are presented below.

Firstly, Performance Expectancy (PE) refers to the
degree to which individuals believe that using technol-
ogy will help them achieve gains in job performance
(Venkatesh et al., 2012).In the context of Agriculture 4.0,
this construct captures farmers’ expectations regarding
the improvement in crop yield, efficiency, and overall
farm productivity due to the adoption of advanced tech-
nologies. Previous research has seen this variable for its
influence on the adoption of Agriculture 4.0 (Kolady et
al., 2021; Paustian & Theuvsen, 2017). Therefore, based
on this, the following research hypothesis is proposed:

H1: PE directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Secondly, Effort Expectancy (EE) is defined as the
degree of ease associated with the use of the technol-
ogy (Venkatesh et al., 2012). For farmers, this relates to
the perceived ease of learning and using Agriculture 4.0
technologies, including IoT devices, data analytics tools,
and automated machinery. Previous research has studied
this variable to understand its influence on Agriculture
4.0’s adoption (Fragomeli et al., 2024; Giua et al., 2022).
Hence, we investigate the research hypothesis that:

H2: EE directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Then, Social Influence (SI) refers to the degree to
which individuals perceive that important others believe
they should use the new technology (Venkatesh et al,,
2012). In agricultural communities, social influence can
come from peers, family members, agricultural advi-
sors, and community leaders. In the context of the study,
it is the degree to which a farmer believes that impor-
tant people support their use of Agriculture 4.0 for their
daily field tasks. Previous studies have provided empiri-
cal support that evidences the impact of SI on the use
of a new technology (Moriuchi, 2021). Zhai et al. (2020)
and Harisudin et al. (2023) have studied this variable to
examine its influence on the adoption of Agriculture 4.0.
In this context, our hypothesis is the following:

Maria Sabbagh, Luciano Gutierrez

H3: SI directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Also, Facilitating Conditions (FC) are the degree to
which an individual believes that an organizational and
technical infrastructure exists to support the use of the
technology (Venkatesh et al., 2012). This includes access
to necessary resources, such as training programs, tech-
nical support and funds. Previous research analysed FC
from the standpoint of influence on adoption, specifi-
cally, Agriculture 4.0 (Da Silveira et al., 2023; Giua et al.,
2022). Thus, our research hypothesis is formulated as
follows:

H4: FC directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

In addition, the Price Value (PV) variable has intro-
duced to capture the farmer’s evaluation of whether the
benefits of adopting Agriculture 4.0 technologies justify
the costs (Venkatesh et al., 2012). Previous studies have
evidenced the effect that price/value has on technol-
ogy adoption, a process that is enhancing in itself, and
as such, provides a positive feeling and impact on users
(Moorthy et al., 2019; Palau-Saumell et al., 2019). The
research hypothesis is formulated as follows:

H5: PV directly and positively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

Finally, Perceived Performance Risk (PR) refers to
the potential negative outcomes associated with the use
of technology, such as financial loss and crop failure.
This construct, introduced by Featherman and Pavlou
(2003), is particularly relevant in the agricultural sector
where adopting new technologies often involves signifi-
cant risks. Understanding PR is crucial as it influences
farmers’ willingness to adopt innovative agricultural
technologies like those encompassed in Agriculture
4.0. Several studies have incorporated PR to predict the
adoption of Agriculture 4.0 technologies (Cook et al.,
2022; Fragomeli et al., 2024; Kendall et al., 2022). For
that, the proposed research hypothesis is the following:

H6: PR directly and negatively influences farmers’ inten-
tion to adopt Agriculture 4.0 technologies.

The extended UTAUT2 model, with the addition of
Perceived Performance Risk, provides a comprehensive
framework for understanding the adoption of Agricul-
ture 4.0 technologies. The research model is depicted in
Figure 1.
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Figure 1. The research model.

3. METHODS
3.1. Survey Design

The survey’s questionnaire was divided into three
sections. The first section explained the scenario and
the research objectives, as well as the definition of Agri-
culture 4.0, its advantages, and the related investments.
To ensure participants clearly understood the concept
of Agriculture 4.0, the questionnaire provided a detailed
definition inspired by the International Association of
Precision Agriculture. Agriculture 4.0 was described as a
data-driven farm management strategy where informa-
tion is collected, processed, and analyzed to guide deci-
sions aimed at improving the efficiency of resource use,
productivity, quality, profitability, and sustainability. The
definition was accompanied by examples of potential
benefits, such as reducing resource waste (e.g., more effi-
cient fertilizer and pesticide use), increasing yields and
improving crop quality, enhancing work conditions and
efficiency through automation, enabling traceability from
production to consumer. Furthermore, examples of spe-
cific Agriculture 4.0 tools and their estimated costs were
provided. This allowed respondents to better relate to
the technologies under investigation and reflect on their
potential adoption. A summary is presented in Table 2.

The second section included questions about the
farmers’ socio-economic characteristics (Table 3). This
survey section featured the use of nominal and ordi-
nal scales. The third section contained questions about
the major constructs included in the UTAUT?2 research
model, which are PE, EE, SI, FC, PV, PR, and BI. Spe-
cifically, PE was measured using four items. These items

were relative to the respondents’ belief that Agriculture
4.0 reduces the use of phytosanitary treatments, increas-
es yield, enhances durum wheat’s quality, and is compat-
ible with other technologies that the farmer already uses
to cultivate durum wheat. EE was evaluated using three
items related to respondents’ belief that Agriculture 4.0
reduces time and workloads and allows for better organ-
ization of work, limiting injuries in the cultivation of
durum wheat, especially on the most difficult surfaces.
SI was measured using three items reflecting the useful-
ness of considering the opinion of other farmers regard-
ing the adoption of Agriculture 4.0, the easiness of using
Agriculture 4.0 if other farmers close to the respond-
ents’ farms utilize it, and the belief of considering the
adoption of this technology if farmers’ associations will
actively promote it. FC was assessed with three items
related to the belief of having the necessary knowledge
for the adoption of agriculture 4.0 on durum wheat,
the belief of having easy access to technical advice in
using this technology as well, as the reliance that the
stabilization of a specific measure in the Rural Develop-
ment Program (RDP) in Sardinia Region with a capital
contribution greater than or equal to 60% would lead
respondents to invest in Agriculture 4.0. Furthermore,
the PV construct was assessed with three items related
to the belief that Agriculture 4.0 could reduce the cost
of durum wheat production, obtaining more profits and
promoting the efficient work of the farmers as well. PR
was measured with three items regarding the possibility
that Agriculture 4.0 could generate more problems than
solutions in managing the farm, tying the farmer as well
to external consultants and experts, and creating more
administrative work diverting the farmer from fieldwork.
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Table 2. Precision agriculture tools: functionalities and investment estimates.

Technology / Tool Functionality

Estimated Cost

4.0 T Impl . e
0 Tractors & Implements spraying/fertilization

Weather Stations & DSS
(Decision Support) irrigation/fertilization advice
Analytics Platforms & Farm

Apps equipment; decision support

Drones
treatments

Onboard computer, automatic guidance, automated
Real-time weather and field monitoring, pest/disease alerts,
Integration of field data from sensors, drones, and

Aerial imaging, multispectral surveys, application of

+ €5,000 over traditional machinery
From €1,500 upwards

€500-€2,500 per year

From €5,000 (excluding pilot license) or €25-
€200/ha if outsourced

The intention to invest in Agriculture 4.0 was measured
with three items regarding the near future intention of
adopting this technology.

Intentions and attitudes cannot be quantified direct-
ly (Straub et al., 2004). However, they can be indirectly
quantified through observed and measurable indicators
using scaling approaches (Gefen et al., 2000). To this
end, a five-point Likert-type scale ranging from “strongly
disagree” (-2) to “strongly agree” (2) was used to measure
the participants’ attitudes, beliefs, and opinions about
the adoption of Agriculture 4.0 (see Table 4 for the mean
and standard deviation of scores). The structural equa-
tion model (SEM) was used for the analysis of the results
since it allows testing all the relationships between the
observed and latent variables simultaneously by com-
bining multiple regression with factor analysis and pro-
vides general adjustment statistics (Iacobucci, 2010). In
addition, it can consider the measurement error with the
observed variables (Hair et al., 2006).

3.2. Data collection

An online questionnaire was distributed from
November 20th, 2023 to February 26th, 2024, to 217
randomly selected durum wheat farmers in Sardinia,
Italy, with the help of a farmers’ association, Coldiretti
Sardinia. The sample was obtained using a convenience
sampling method facilitated by Coldiretti. It is not statis-
tically representative of the full Sardinian farming popu-
lation but includes a diverse range of farm sizes and con-
ditions. To better understand the participants’ perspec-
tives, we asked whether they believe the land used for
cultivating durum wheat meets the criteria for marginal
lands. In the questionnaire, we defined marginal lands,
according to existing scientific literature (Ahmadzai et
al., 2022; Csikés & Téth, 2023; Food & Nations, 2017;
Jussila et al., 2019; Lal, 2004), , as areas characterized
by poor soil quality, limited rainfall, extreme tempera-
tures, and inadequate access to transportation and com-

munication networks Respondents who indicated that
their land fit this description were classified as cultivat-
ing in marginal conditions, while those who did not
were classified as operating in non-marginal conditions.
By that, the sample was divided into two groups: farm-
ers located in marginal areas and those in non-marginal
areas. Overall, 86 questionnaires were eliminated due
to incomplete ones and small duration completion (less
than 4 minutes, i.e., less than half the median duration
of the interview).

In Table 3, we present the demographic and socio-
economic characteristics of the participants in mar-
ginal and non-marginal conditions. The majority of
respondents are male in both non-marginal and mar-
ginal conditions, with a slightly higher percentage of
females in marginal conditions. The age distribution is
quite similar between the two groups, with the major-
ity being between 50-64 years old. This indicates that
middle-aged farmers form the core demographic in both
non-marginal and marginal conditions. Education lev-
els are comparable across both conditions, with most
respondents having a high school diploma or less. Most
farms are multi-generational family farms, with a slight-
ly higher presence of first-generation farms in marginal
conditions (a first-generation farm refers to one where
the current farmer is the first in their family to establish
or manage a farming business, as opposed to multi-gen-
erational family farms passed down through successive
generations). There is a notable difference in the likeli-
hood of having a successor between the two conditions.
Non-marginal farms are more optimistic about having
successors compared to marginal farms, where a signifi-
cant percentage are unlikely to have successors. This is
aligned with Lobley et al. (2010) who showed that farm
succession planning is more prevalent in financially sta-
ble farms, where future prospects are more secure and
with Kimhi and Nachlieli (2001) who indicated that
farm profitability and stability significantly influence
the likelihood of having successors, with marginal farms
often facing more uncertainty. Moreover, yield levels are
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Table 3 Demographic and socio-economic characteristics of the respondents.

Non-Marginal Conditions Marginal Conditions

Socio-Economic Variables Category (N=72) (N=59)
Frequency % Frequency %
Male 63 87.50 49 83.05
Gender
Female 9 12.50 10 16.95
18-49 years 24 33.33 19 32.20
Age 50-64 years 37 51.39 30 50.85
> 65 years 11 15.28 10 16.95
Lower than high school diploma 35 48.61 28 47.46
Educational level High school diploma 31 43.06 24 40.68
University degree 6 8.33 7 11.86
Family farm for several generations 62 86.11 49 83.05
Characteristics of the farm First generation family farm 9 12.50 10 16.95
Part of a corporate enterprise 1.39 0 0
None 8 11.11 6 10.17
The srabability that the far Ul 11 15.28 26 44.08
ne probabrity that the farm 4 o), 40 55.56 21 35.59
will have a successor -
Very Likely 5 6.94 3 5.08
Certainly 11.11 3 5.08
) <2t/ha 5 6.94 13.56
Average yield per hectare of 5173 39 54.17 37 62.72
the area cultivated with durum
3.1-4t/ha 23 31.95 13 22.03
wheat
> 4.1 t/ha 5 6.94 1 1.69
I have no experience with Agriculture 4.0 techniques. 32 44.44 33 55.94
Experience Agriculture 4.0 I don’t use these techniques, but I've seen them used by 13 18.06 13 2203
techniques others and I think I'm somewhat familiar with them. ’ ’
I use Agriculture 4.0 techniques. 27 37.50 13 22.03

higher in non-marginal conditions, with a notable per-
centage achieving between 2,1-4 tons/ha. Marginal con-
ditions show a greater proportion of farms with yields
less than 2 tons/ha. This could be due to the fact that
yield performance is related to farm management prac-
tices and resource availability, which are typically better
in non-marginal conditions (Fischer et al., 2014) and as
well the fact that non-marginal lands benefit from better
soil quality, access to water, and inputs leading to higher
yields compared to marginal lands (Tilman et al., 2011).
To explore group differences, pairwise t-tests were
performed to assess differences between marginal and
non-marginal conditions. To save space, we do not
report these t-tests. However, all the pairwise t-tests
were significant at the 5% level of confidence. Thus, the
constructs showed significant differences between the
two areas. The analysis of Agriculture 4.0-related items
(Table 4) reveals notable differences in perceptions
between non-marginal and marginal farmers. Each con-
struct was calculated by taking the average of all related
items. Non-marginal farmers consistently report higher

scores across all UTAUT2 constructs compared to mar-
ginal farmers. They perceive Agriculture 4.0 as more
beneficial (higher PE and PV), easier to use, and better
supported socially and institutionally. In contrast, mar-
ginal farmers show greater PR and lower BI to adopt
these technologies.

3.3. Modelling analysis framework

Due to the limited data available, we had to create a
unified model to offer a comprehensive understanding of
the factors influencing the adoption intentions of Agri-
culture 4.0 technology. Consequently, we merged data
from both marginal and non-marginal areas to develop
a consolidated model that reflects the overall regional
dynamics.

A confirmatory factor analysis (CFA) was carried out
using IBM SPSS AMOS version 26 to evaluate the meas-
urement model’s validity, focusing on convergent valid-
ity, discriminant validity, and internal consistency of the
constructs.
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Table 4. Summary statistics of the Agriculture 4.0 related items and latent components.

Agriculture 4.0 items and latent components

Non-Marginal
Conditions
Variables (N=72)

Marginal Conditions
(N=59)

Mean(M) StDev(SD) Mean(M) StDev(SD)

Performance Expectancy (I Believe that...) PE 0.93 0.07 0.68 0.09
Agriculture 4.0 would help the cultivation of durum wheat by reducing the use of ~ PE1 1.15 0.09 0.80 0.12
resources such as, for example, fertilizers and phytosanitary treatments.

Thanks to Agriculture 4.0, we can increase the yield per hectare of durum wheat. PE2 0.92 0.09 0.54 0.12
Agriculture 4.0 allows for a better quality of durum wheat production. PE3 0.85 0.09 0.49 0.13
Agriculture 4.0 is compatible with the other technologies I already use to cultivate =~ PE4 0.88 0.09 0.81 0.11
durum wheat.

Effort Expectancy (I Believe that ...) EE 0.76 0.07 0.58 0.10
Agriculture 4.0 allows us to reduce time and workload in the cultivation of durum  EE1 0.89 0.10 0.66 0.13
wheat.

Agriculture 4.0 allows for better organization of work in cultivating durum wheat. ~ EE2 0.97 0.08 0.81 0.10
Agriculture 4.0 can limit injuries in the cultivation of durum wheat, especially on EE3 0.46 0.10 0.22 0.14
the most difficult surfaces.

Social Influence (I Believe...) SI 0.83 0.06 0.60 0.11
It is useful to consider the opinions of other farmers regarding the adoption of SI1 0.92 0.08 0.81 0.13
Agriculture 4.0 techniques.

It would be easier to use Agriculture 4.0 techniques if other farmers close to my SI2 0.69 0.09 0.41 0.13
farm also used it.

I would consider adopting Agriculture 4.0 techniques if Farmers’ Associations SI3 0.88 0.08 0.58 0.14
actively promoted their use.

Facilitating Conditions (I Believe ...) FC 0.76 0.07 0.51 0.11
I have all the necessary knowledge for the adoption of Agriculture 4.0 in the FC1 0.26 0.12 -0.03 0.17
cultivation of durum wheat.

The stabilization of a specific measure in the RDP in the Sardinia Region, with FC2 1.15 0.09 0.83 0.16
a capital contribution greater than or equal to 60% for companies that invest in

Agriculture 4.0, would lead me to invest in these new technologies.

Agriculture 4.0 technologies are compatible with those I already use. FC3 0.72 0.10 0.54 0.14
Price Value (Thanks to the use of Agriculture 4.0 ...) PV 0.87 0.08 0.75 0.13
A reduction in the cost of durum wheat production can be achieved. PV1 0.89 0.09 0.71 0.15
I could work more efficiently. PV2 0.96 0.08 0.88 0.13
I could obtain a greater profit. PV3 0.75 0.09 0.66 0.14
Perceived Performance Risk (I believe it is likely that the use of Agriculture 4.0 PR 0.00 0.10 0.14 012
techniques will ...)

Generate more problems than solutions in managing my farm. PR1 -0.24 0.12 -0.34 0.16
Tie me to external consultants and experts due to the level of sophistication in PR2 0.25 0.12 0.46 0.15
applying these techniques.

Create more administrative work, diverting my business from fieldwork. PR3 0.00 0.12 0.29 0.15
Behavioural Intention BI 0.38 0.11 -0.12 0.14
I will introduce Agriculture 4.0 to durum wheat cultivation in the coming months. ~ BIl1 0.35 0.11 -0.15 0.16
In the near future, I plan to use Agriculture 4.0 techniques in growing durum BI2 0.58 0.11 0.27 0.16
wheat.

I have already planned to use Agriculture 4.0 techniques on my farm. BI3 0.22 0.12 -0.49 0.16

Convergent validity was assessed by examining the
reliability of measurement items (factor loadings), the
composite reliability (CR) of each construct, and the
average variance extracted (AVE) (Anderson & Gerbing,
1988). Standardized factor loadings ranged from 0.58 to

0.96, all exceeding the recommended minimum of 0.50
(Gefen et al., 2000). The composite reliability values
were consistently above the threshold of 0.70, indicat-
ing strong internal consistency of the latent constructs
(Heinzl et al., 2011). Additionally, the AVE values, which

Bio-based and Applied Economics 14(4): 45-66, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17229



Farmers’ intention to use Agriculture 4.0 in marginal and non-marginal conditions 55

measure the proportion of variance explained by the
latent variables relative to measurement error, ranged
between 0.50 and 0.70, exceeding the minimum accepta-
ble value of 0.50 (Fornell & Larcker, 1981). These results,
detailed in Table 5, demonstrate high reliability and
good convergent validity of the constructs, as they are
well-correlated with each other within the model.

Discriminant validity was evaluated using the Het-
erotrait-Monotrait ratio (HTMT) (Henseler et al., 2015)
with coefficients needing to be below 0.90 to confirm
that the latent variables are distinct. The results, shown
in Table 6, indicated that all HTMT values were below
0.90, confirming that the constructs are appropriately
differentiated.

The overall fit of the measurement model was
assessed through three key goodness-of-fit indices: the
chi-square to degrees of freedom ratio (PCMIN/DF), the
Comparative Fit Index (CFI), and the Standardized Root
Mean Square Residual (SRMR). According to estab-
lished criteria, the model is considered to fit well if the
PCMIN/DF ratio is less than 3, the CFI exceeds 0.90,
and the SRMR is below 0.08 (Hair et al., 2006). The
results showed PCMIN/DF = 2.330, CFI = 0.921, and
SRMR = 0.080, indicating that the measurement model
demonstrates a good fit for the data.

Table 5. Results for the measurement model.

Constructs Items Loading CR AVE
Values

Performance Expectancy PE1 074 086 0.87 0.53
PE2 0.85
PE3 0.91
PE4 0.58

Effort Expectancy EE1 083 0.79 0.78 0.50
EE2 0.80
EE3 0.62

Social Influence S 058 0.72 0.75 0.50
SI2 0.63
SI3 0.91

Facilitating Conditions FC1 060 070 0.69 0.50
FC2 0.84
FC3 0.58

Price Value PV1 0.77 087 0.87 0.69
PV2 0.86
PV3 0.86

Perceived Performance Risk ~ PR1 ~ 0.60 0.74 0.75 0.50
PR2 0.71
PR3 0.81

Behavioural Intention BI1 0.83 089 0.87 0.70
BI2 0.96
BI3 0.88

Table 6. Heterotrait-monotrait ratio (HTMT) results.

BI EE FC PE PR 13% SI

BI

EE 0.523

FC 0.834 0.621

PE 0.632 0.758 0.676

PR 0.422 0.178 0357 0.315

PV 0.684 0.692 0.769 0.647 0.267

SI 0.579 0.513 0.750 0.554 0.184 0.564

3.4. Structural model assessment
34.1. Dataset sample validation

With the aim of validating the adequacy of samples
collected, Hoelter’s N critical index was applied with a
significance level of 0.05, equivalent to 95% confidence
(Bollen & Liang, 1988; Hoelter, 1983). The size of the
sample is131 questionnaires and the Hoelter’s N (0.05) is
83 which exceeds the commonly cited minimum thresh-
old of 75, indicating an acceptable sample size for model
fit (Garson, 2015).

3.4.2. Framework model analysis

After performing the overall goodness of fit of the
research model indicating a good fit to the data (chi-
square to degrees of freedom ratio (PCMIN/DF) of
2.330, Comparative Fit Index (CFI) of 0.921, Standard-
ized Root Mean Square Residual (SRMR) of 0.080), the
next step in the analysis involves assessing the explana-
tory power of the model’s dependent variable, meas-
ured as R? which reflects how well the independent
variables account for variations in the dependent vari-
able. In this study, the R? for behavioural intention was
found to be 0.49, meaning that 49% of the variability in
behavioural intention is explained by the independent
variables in the model (Kapoor & Singh, 2023; Schukat
& Heise, 2021). The f* values (the change in R* when
an exogenous variable is removed from the model)
range from 0.09 to 0.16, suggesting a small to medium
effect size (Cohen, 2013) as indicated in Table 7. Fur-
ther analysis involves examining the structural relation-
ships among constructs using the Structural Equation
Modelling (SEM) approach with the IBM SPSS AMOS
version 26 software. The results of the path coefficient
analysis are shown and detailed in Figure 2 and Table
8. Findings reveal that FC significantly affects behav-
ioural intention (Bf=0.625, p-value=0.010), while PR
negatively impacts behavioural intention (f=-0.315,
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Performance Effort Expectancy Social Influence
Expectancy
0.05¢ 0.039
0.097
0.625*
0.069 -0.315*
Facilitating Prive Value perceived

Conditions

Performance Risk

Figure 2. Final structural model.

p-value=0.010). This suggests that participants who per-
ceive higher performance risks are less likely to invest
in Agriculture 4.0 technologies. The analysis highlights
that FC exerts the most substantial influence on the
intention to adopt these technologies. Conversely, the
hypotheses related to PE (p=0.056, p-value=0.729), EE
($=0.039, p-value=0.792), SI (p=0.097, p-value=0.686),
and PV (B=0.069, p-value=0.685) were not supported,
indicating that these factors do not significantly affect
farmers’ intentions to adopt Agriculture 4.0 technolo-

Table 7. F-square results.

Constructs F-square

PE - BI 0.09
EE - BI 0.13
SI - BI 0.09
FC - BI 0.16
PV - BI 0.11
PR > BI 0.10
Table 8. Results.

Hypothesis B p-value Decision
H1: PE- BI 0.056 0.729 Unsupported
H2: EE -~ BI 0.039 0.792 Unsupported
H3: SI -» BI 0.097 0.686 Unsupported
H4: FC -~ BI 0.625* 0.010 Supported
H5: PV »BI 0.069 0.685 Unsupported
Hé6: PR »BI -0.315* 0.010 Supported

Note: *p-value < 0.05.

gies for durum wheat cultivation. It’s worth noting that
demographic variables such as age, education, and previ-
ous experience were initially considered for inclusion in
the model. However, upon analysis, none of them were
statistically significant, and their inclusion resulted in
a decrease in the model’s goodness of fit. Therefore, to
maintain the model’s validity and optimal fit, demo-
graphic variables were excluded from the analysis.

4. DISCUSSION AND POLICY RECOMMENDATIONS

4.1. Differences in impact between marginal and non-mar-
ginal areas and their policy implications

As emerged from Table 4, non-marginal farmers
demonstrated higher performance expectancy, effort
expectancy, social influence, facilitating conditions, and
price value compared to marginal farmers. In this con-
text, non-marginal farmers perceived Agriculture 4.0
technologies as beneficial for resource efficiency, yield
improvement, reduced effort, and work efficiency.

Policies and interventions for farmers should aim to
reinforce their positive behavioural intentions and help
them scale adoption. Information provision (Hines et al.,
1987; Stern & Dietz, 2002) can focus on showing case
studies of successful implementation from peer farmers,
inducing a reduction in resource use, increased yield,
and efficient work, accompanied by less effort. These
campaigns could also be amplified to present, in the
form of infographics or videos, how Agriculture 4.0 can
contribute to sustainability goals by adopting it. Addi-
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tionally, incentives (van Valkengoed et al., 2022) such as
stabilizing a specific measure within the regional RDP
can reward those who adopt these practices. Commit-
ment strategies (Cialdini, 2009) can motivate farmers
to adopt new technologies because people are driven to
remain consistent with their actions and beliefs, lead-
ing them to feel obligated to fulfil their promises. Pub-
lic commitments are made to try specific technologies,
and these pledges can be recognized in public forums
through certifications or awards. Public recognition
inspires individuals and sets positive examples in farm-
ing communities, encouraging others to follow suit
(Cialdini, 2009; Schultz et al., 2007).

In contrast, marginal farmers expressed hesitancy
and a negative behavioural intention due to higher per-
ceived performance risks related to their concerns about
being linked to external consultants and lower availability
of facilitating conditions, especially for technology knowl-
edge and limited access to financial resources. To increase
knowledge and build technological trust, workshops, and
training programs can help marginal farmers understand
how to efficiently utilize Agriculture 4.0 technologies and
understand their benefits (Kutter et al., 2011; Menozzi et
al., 2015). Implementing pilot programs could enable mar-
ginal farmers to test these technologies on their farms for
a limited time without long-term commitments.

Additionally, the government should prioritize pro-
viding subsidies or establishing low-interest loans to
facilitate access to Agriculture 4.0 technologies. These
technologies can lead to more efficient resource use and
reduced environmental impact; outcomes that benefit not
only farmers but also the broader public through envi-
ronmental protection, rural development, and climate
change mitigation. Insurance incentive strategies can
help reduce obstacles and ease fears of financial instabil-
ity by offsetting potential losses during the transition to
new technologies (Mills, 2007; Wreford et al., 2017). Poli-
cymakers can support marginal farmers by collaborating
with local institutions and experts to define small, attain-
able goals that gradually build trust and familiarity with
technology. According to Appelbaum and Hare (1996),
setting clear and realistic objectives — whether individu-
ally or through collective initiatives - can strengthen
farmers’ self-efficacy and motivation, ultimately support-
ing more ambitious technological transitions.

4.2. The Unified UTAUT2 model

Results of the unified UTAUT2 model supported
H4 and H6 hypotheses as seen in Table 6, showing that
facilitating conditions and perceived performance risk
significantly influence farmers’ intention to adopt Agri-

culture 4.0 technologies on durum wheat within our
convenience sample. The results showed that facilitat-
ing conditions significantly impacted farmers’ intentions
to use Agriculture 4.0 technologies. Our findings align
with Fragomeli et al. (2024), who emphasize that prac-
tical and financial support from government initiatives
significantly influences the adoption of Agriculture 4.0.
This support often includes subsidies, training and edu-
cational programs, and technical assistance, which help
farmers overcome barriers to adopting new technologies.
For instance, government-funded training sessions can
provide information to improve farmers’ understanding
of how to use Agriculture 4.0 technologies based on IoT
devices and data analytics platforms, making it easier
for them to integrate these technologies into their opera-
tions. As well, creating educational programs explaining
the challenges in traditional farming practices and the
environmental and economic benefits of Agriculture 4.0
can also positively induce the adoption of Agriculture
4.0. Araujo et al. (2021) highlight that having access to
essential technological infrastructure such as IoT sensors
and data analytics tools is critical for successful imple-
mentation. When farmers have the necessary resources,
infrastructure, and knowledge, they are more likely to
adopt and utilize Agriculture 4.0 technologies effectively.

Perceived performance risk had a negative and sig-
nificant impact on the intention to adopt Agriculture 4.0
technologies. Perceived performance risk encompasses
concerns about the reliability and effectiveness of new
technologies. Benos et al. (2022) found that if farmers
are uncertain about whether Agriculture 4.0 will deliver
the promised benefits or if they fear potential operation-
al failures or being linked to external consultants, they
may be hesitant to adopt these technologies. This con-
cern can stem from previous experiences with technol-
ogy failures or from insufficient evidence demonstrating
the technology’s effectiveness. Abikari (2024) further
supports this by showing that perceived risks, including
those related to technology performance, are crucial in
adoption decisions. Duong et al. (2019) also highlight
that uncertainties about new technologies’ effectiveness
can significantly impact farmers’ willingness to adopt
them. To mitigate these concerns and build trust, not
only clear demonstrations, pilot projects, and empirical
evidence of technology benefits should be emphasized
but also providing financial incentives, such as subsidies
for purchasing Agriculture 4.0 technologies or micro-
loans (Fragomeli et al., 2024; Osorio et al., 2024). It is
important to note that financial incentives and public
subsidies may strongly influence farmers’ awareness and
perceived value of Agriculture 4.0 technologies. Menozzi
et al. (2015) indicates that many Italian farmers are pri-
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marily driven by economic benefits. This pattern could
affect how farmers evaluate the usefulness and feasibility
of adopting such technologies, especially if some options
are more frequently promoted through subsidy programs
or public campaigns. Additionally, media coverage and
institutional promotions often emphasize the availability
of tax credits or financial contributions for specific Agri-
culture 4.0 technologies (Confagricoltura, 2024; ESG360,
2023), which may shape farmer awareness and preferenc-
es toward subsidized solutions.

Contrary to expectations, performance expectancy
did not significantly influence the intention to use Agri-
culture 4.0 technologies. Although performance expec-
tancy scores were relatively positive in both marginal
(0.68) and non-marginal areas (0.96), this construct did
not significantly influence behavioural intention in our
model. This finding contrasts with Im et al. (2008) and
Aradjo et al. (2021), who found that when farmers per-
ceive significant improvements in their operations due
to new technologies, they are more inclined to adopt
them. A possible explanation for our results could be
that, while farmers acknowledge the potential benefits
of Agriculture 4.0, these benefits alone are not sufficient
to drive adoption. This may be due to overriding con-
cerns such as performance risk, limited infrastructure
and experience with digital tools, which may weaken the
link between perceived performance and the intention
to adopt, especially in marginal areas. Another possible
explanation for our result could be that the perceived
benefits of Agriculture 4.0 technologies might not align
with the specific needs of farmers in Sardinia. If farmers
do not clearly see how these technologies will enhance
their productivity or efficiency, their intention to adopt
may not be strongly influenced by performance expec-
tancy (Kutter et al., 2011; Menozzi et al., 2015).

Effort expectancy also did not impact on the inten-
tion to adopt Agriculture 4.0 technologies. This result
differs from findings by Fragomeli et al. (2024) and Abi-
kari (2024), who suggested that technologies perceived as
user-friendly and requiring minimal additional effort are
more likely to be adopted. Our findings are consistent
with Aragjo et al. (2021), which noted that difficulties
in integrating Agriculture 4.0 technologies with exist-
ing systems can act as barriers to adoption. If the tech-
nologies are perceived as challenging to integrate, farm-
ers may be discouraged from using them despite their
potential benefits. This suggests that high expectancy, or
the perception of increased effort and complexity, could
negatively impact adoption intentions.

Social influence did not significantly affect the inten-
tion to adopt Agriculture 4.0 technologies. This find-
ing is consistent with Li et al. (2024) which found that
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societal norms and peer pressure do not always posi-
tively impact the intention to use Agriculture 4.0 tech-
nologies. Farmers may resist adopting new technologies
due to scepticism from their community or a preference
for traditional methods. Yap and Al-Mutairi (2024) also
highlight that negative social perceptions within certain
farming communities can hinder technology acceptance.
If the broader community holds negative views about
Agriculture 4.0 technologies, individual farmers may
be less inclined to adopt them, even if they recognize
potential benefits.

Price value did not significantly influence the inten-
tion to adopt Agriculture 4.0 technologies such as 4.0
tractors, weather stations and DSS, analytics platforms,
farm applications and drones. This result contrasts
with findings by Aradjo et al. (2021) and Fragomeli et
al. (2024) who highlighted that farmers often justify
the initial investment in Agriculture 4.0 technologies
through anticipated long-term economic returns, such
as increased crop yields and improved resource manage-
ment. The lack of significant impact in our study might
suggest that other factors, such as perceived risks or the
complexity of technology, overshadow price considera-
tions in the adoption decision-making process.

Overall, the extended UTAUT2 framework provides
a solid foundation for understanding how facilitating
conditions and perceived performance risk influence
Sardinian wheat farmers’ intentions to adopt Agriculture
4.0 technologies. Designing a supportive choice architec-
ture (Thaler & Sunstein, 2008) can simplify the adoption
process. Ensuring easy access to Agriculture 4.0 tech-
nologies can reduce difficulties. This comprehensive
approach, combining education, financial support, social
recognition, and accessibility, addresses the barriers to
adoption while enhancing farmers’ readiness to embrace
Agriculture 4.0 technologies.

5. CONCLUSIONS

The study highlighted notable differences in adop-
tion intentions between marginal and non-marginal
farmers of durum wheat in Sardinia, driven by dispari-
ties in facilitating conditions, perceived benefits, and
social influence. Non-marginal farmers demonstrated
greater readiness and positive intentions toward Agri-
culture 4.0 technologies, while marginal farmers faced
barriers such as limited resources and higher perceived
risks although they had positive performance expec-
tancy, effort expectancy, social influence, facilitating
conditions and price value. Combining data from both
groups provided a holistic understanding of regional
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adoption dynamics showing that facilitating conditions
and perceived performance risk significantly affect the
intention to adopt Agriculture 4.0 technologies. Facili-
tating conditions were found to have a positive and sub-
stantial impact, highlighting the critical role of support
mechanisms such as financial aid, technical training,
and access to technological infrastructure in promoting
the adoption of these advanced technologies. In contrast,
perceived performance risk negatively influenced adop-
tion intentions, reflecting farmers’ concerns about the
reliability and effectiveness of new technologies.

Several targeted interventions are recommended to
enhance the adoption of Agriculture 4.0 technologies. It
is essential to focus on providing easy access to techni-
cal advice and educational programs through regional
extension services. This approach will enable farmers
to effectively utilize Agriculture 4.0 technologies and
reduce barriers to adoption. Establishing accessible plat-
forms for technical support will ensure that farmers are
well informed about the benefits and functionalities of
these technologies.

Furthermore, improving the educational qualifica-
tions of technicians working in regional extension ser-
vices is necessary to address the knowledge gap related
to Agriculture 4.0 technologies. This aligns with the
findings of Caffaro and Cavallo (2019) that lower levels
of education were linked to higher perceptions of eco-
nomic barriers, which in turn were negatively corre-
lated with the adoption of smart farming technologies.
Universities and educational institutions should develop
specialized courses or master’s programs focused on
these technologies to equip technicians with the skills
and knowledge required to support farmers and facilitate
successful implementation.

Overall, by concentrating on enhancing facilitating
conditions and addressing perceived performance risks,
stakeholders can create a more supportive environment
for the adoption of Agriculture 4.0 technologies. These
interventions will help overcome existing barriers, pro-
mote the integration of innovative solutions in durum
wheat farming, and ultimately improve productivity and
sustainability within the agricultural sector.

6. LIMITATIONS

While this study provides valuable insights into
adopting Agriculture 4.0 technologies in durum wheat
farming, it is important to acknowledge several limita-
tions. The study is constrained by its geographical focus
on Sardinia, which may limit the generalizability of
the findings to other regions with different agricultural

contexts or technological infrastructures. Additionally,
using a convenience sampling method further limits the
representativeness of the findings. Therefore, the results
can be generalised to the wider farming population in
Sardinia. Additionally, the study relies on self-reported
data from farmers, which may introduce biases related
to respondents’ perceptions or reporting accuracy. The
adoption intentions assessed are also based on subjec-
tive assessments, which might not fully capture actual
technology usage or long-term adoption outcomes. Fur-
thermore, the research does not account for all possi-
ble variables influencing technology adoption, such as
economic fluctuations or policy changes, which could
impact the relevance of the findings over time. As high-
lighted by Menozzi et al. (2015), economic incentives
often outweigh environmental concerns in Italian agri-
cultural decision-making. Therefore, farmers may have
expressed more favourable opinions toward technologies
with known funding opportunities, possibly biasing the
intention data. Future studies could attempt to control
for this effect by comparing knowledge of subsidized vs
non-subsidized solutions. Also, future research could
benefit from a broader geographical scope, longitudinal
studies, and a more comprehensive analysis of external
factors to enhance the understanding of Agriculture 4.0
adoption across diverse agricultural settings.

DISCLAIMER

The data supporting this study’s findings are avail-
able as a supplementary file to this paper.
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Abstract. This study examines the role of enabling technologies in the agroecologi-
cal transition, focusing on sustainable water management in citrus farming through
the participatory approach of a Living Lab in the Inner Area of Calatino in Sicily. The
analysis is based on a comparison of two citrus farms: one equipped with advanced
digital tools (sensors, decision support systems, and real-time monitoring), and one
with a traditional management approach. Through the joint application of economic
analysis, Monte Carlo simulation and sensitivity analysis, it was possible to estimate
the effects of technology adoption. Findings reveal that enabling technologies reduce
water consumption by 33%, increase yield per hectare by 16%, and boost net profit by
25% (+€2,780/ha), enhancing resource efficiency and lowering operational costs. Addi-
tionally, the Living Lab facilitated knowledge transfer, fostered collaboration, and miti-
gated resistance to innovation, highlighting the need for targeted training and institu-
tional support to promote broader adoption. These results provide valuable insights for
policymakers and stakeholders, demonstrating how digital solutions can drive sustain-
ability, economic viability, and resilience in agriculture, but also for farmers, providing
operational tools to improve farm efficiency and profitability.

Keywords: agroecology, enabling technologies, living lab, water management, citrus
farming.

1. INTRODUCTION

In recent decades, agroecology has become a key strategy to tackle sus-
tainability challenges in agriculture. It combines ecological, economic, and
social principles to address problems like soil degradation, biodiversity loss,
climate change, and economic inequality This paradigm not only protects
the environment but also offers economic advantages by fostering local mar-
kets, short supply chains, and more equitable and resilient food systems (Van
der Ploeg et al., 2019; D’Annolfo et al., 2017; Poux and Aubert, 2018).

Agroecology successfully integrates environmental sustainability with
agricultural productivity through practices that enhance soil fertility, pro-
mote crop diversification, and reduce reliance on chemical inputs. Studies
have demonstrated that agroecological systems can achieve yields comparable
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to those of conventional agriculture while delivering sig-
nificant benefits in terms of lower environmental impact
and increased resilience to climate change (D’Annolfo
et al., 2017; Poux and Aubert, 2018). Moreover, adopt-
ing agroecological practices improves the quality of food
produced, contributing to human health and the well-
being of farming communities (Belliggiano and Conti,
2019).

Other studies have highlighted how agroecological
systems can generate economic benefits for farmers by
reducing dependence on external inputs and increas-
ing long-term profitability (Van der Ploeg et al., 2019;
D’Annolfo et al., 2017). However, the agroecological
transition requires adequate support from public poli-
cies, including instruments that promote the adoption
of agroecological practices and facilitate market access
for small-scale producers (Gava et al., 2022; Schiller et
al., 2020). Agroecology not only promotes more sustain-
able and resilient farming practices but also represents a
comprehensive approach to agri-food governance, foster-
ing farmers’ autonomy, food sovereignty, and social jus-
tice (Van der Ploeg et al., 2019).

A key factor in accelerating the agroecological tran-
sition is the integration of Key Enabling Technologies
(KETs), such as digital tools, Internet of Things (IoT) sen-
sors, artificial intelligence, and precision agriculture sys-
tems, which optimize resource management and reduce
waste (Chollet et al., 2023; Bellon-Maurel et al., 2022).
These technologies provide real-time data on soil and crop
status, boosting efficiency and reducing environmental
impact (Fischetti et al., 2025; Ewert et al., 2023). By adapt-
ing practices to local conditions, KETs offer agroecology a
practical path to greater sustainability (Ewert et al., 2023).

However, the integration of KETs into agroecology
has sparked debate within the agroecological commu-
nity, dividing the sector into two opposing perspectives.
Traditionalists argue that agroecology should preserve
traditional practices and local knowledge, avoiding reli-
ance on technological tools that could disrupt the eco-
logical and social balance of agricultural systems. Mod-
ernizers see innovation as an opportunity to improve
sustainability and efficiency. They support the respon-
sible integration of new technologies to make farming
models more resilient (Bertoglio et al., 2021; Menozzi et
al., 2015; Arata and Menozzi, 2023).

Despite these concerns, the synergy between agro-
ecology and enabling technologies offers significant
potential for sustainable development, particularly in
inner areas. These territories can benefit from agro-
ecological innovation to revitalize agricultural activ-
ity and enhance local natural resources (Gava et al.,
2025; Verharen et al., 2021). Moreover, inner areas offer

Giuseppe Timpanaro et al.

unique opportunities for agroecological innovation
due to the presence of traditional farming systems and
the availability of high-quality natural resources (Ver-
haren et al., 2021). The integration of modern technolo-
gies into agroecological production systems - through
decision-support tools, knowledge-sharing platforms,
and mobile applications for farm management (Espelt
et al., 2019; Emeana, 2021) - represents a concrete
opportunity to facilitate the transition to more sustain-
able models. These tools can help reduce barriers to the
adoption of agroecological practices and strengthen
producers’ competitiveness in the market (Maurel and
Huyghe, 2017).

In this context, Living Labs emerge as essential tools
for promoting an integrated system that combines tech-
nology and agroecology. These participatory innova-
tion spaces engage farmers, researchers, policymakers,
and other agri-food system stakeholders, fostering the
experimentation of innovative solutions and facilitat-
ing knowledge transfer at the local level (Larbaigt et al.,
2024; Berghez et al., 2019; Giampietri et al., 2020; Ouat-
tara et al., 2024). Living Labs serve as a bridge between
scientific research and agricultural practice, allowing
technologies to be tailored to specific territorial needs,
thereby improving farmers’ acceptance of new practices
and enhancing the effectiveness of transition strategies
(Giagnocavo et al., 2022; Belliggiano and Conti, 2019).

A concrete example of such integration is the experi-
mental initiative focused on citrus farming in the inner
area known as the “Calatino,” aimed at demonstrating
its economic feasibility. This territory encompasses nine
municipalities in central-eastern Sicily (Caltagirone,
Grammichele, Licodia Eubea, Mazzarrone, Mineo, Mira-
bella Imbaccari, San Cono, San Michele di Ganzaria,
and Vizzini) all within the Metropolitan City of Catania.
The area represents 1.6% of the regional population and
spans approximately one thousand square kilometres.

In this Living Lab a range of integrated systems have
been installed, incorporating weather stations, sensors,
and decision-support systems, with the aim of optimis-
ing water usage. This initiative is expected to enhance
resource use efficiency, while concurrently improving the
resilience and economic viability of the production sys-
tem (Fischetti et al., 2025; Ewert et al., 2023; Rocchi et
al., 2024).

Citrus farming was selected for this study because it
represents one of the most relevant agricultural sectors
in Sicily, with more than 30% of national citrus produc-
tion, and oranges covering more than 60% of the total
supply (Scuderi et al., 2022). While remaining a leading
global player, Italy has lost leadership in the last decade
due to structural criticalities in strategic areas such as
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Sicily (Rapisarda et al., 2015), which nevertheless main-
tains 55 % of the national area dedicated to citrus (about
61 000 ha) (Istat, 2022).

The research was based on the hypothesis that
adopting an integrated system (weather station, sensors,
and decision-support system) enables a more sustainable
management of water resources, reducing waste (water
consumption) and environmental costs while positively
impacting operational costs, revenues, and farm eco-
nomic efficiency.

Therefore, the following research questions were for-
mulated:

QI. How can the integration of enabling technologies
accelerate the agroecological transition in inner areas?
Q2. What are farmers’ perceptions and resistances regard-
ing the adoption of digital tools and precision agriculture
systems in the agroecological context?

Q3. What economic and environmental impacts result
from combining agroecological practices with innovative
technologies, particularly in the citrus sector?

Q4. To what extent do Living Labs facilitate the creation
of an integrated system that merges technology and agro-
ecology, fostering sustainability in inner areas?

2. MATERIALS AND METHODS
2.1. Study Area

The Inner Area of Calatino covers approximately
982 km? and includes nine municipalities in the prov-
ince of Catania: Caltagirone, Grammichele, Licodia
Eubea, Mazzarrone, Mineo, Mirabella Imbaccari, San
Cono, San Michele di Ganzaria, and Vizzini. The area
has a population of approximately 70,606 inhabitants. It

Table 1. Agricultural land and crops in the Calatino region.

is characterized by an economy strongly linked to agri-
culture, with a significant presence of farms and special-
ized crops, as well as artisanal activities primarily relat-
ed to ceramics and small-scale industry.

The utilized agricultural area (UAA) of the Inner
Area of Calatino amounts to 56,330 hectares, of which
approximately 4% is allocated to organic farming.
Organic production is particularly concentrated in the
municipalities of San Cono (11%) and Vizzini (9.9%).
Overall, the Calatino region hosts 279 organic farms,
primarily cultivating citrus fruits, vineyards, olive
groves, and herbaceous crops, representing a growing
sector.

One of the most representative sectors in terms of
income and employment in Calatino is citrus produc-
tion, particularly concentrated in the municipality of
Mineo, which hosts vast plantations dedicated to the cul-
tivation of oranges and mandarins (Table 1).

Additionally, other municipalities in the area, such
as Caltagirone and Vizzini, also feature extensive citrus
orchards, although integrated with other agricultural
productions. Mazzarrone is renowned for its PGI table
grapes, while San Cono stands out for its PDO prickly
pear (Figure 1).

Local agriculture is characterized by a combina-
tion of herbaceous crops (cereals, legumes, forages) and
tree crops (vineyards, olive groves, citrus orchards, and
fruit trees), with a huge portion of the area dedicated to
organic or transitioning farming methods.

The University of Catania has launched a Living Lab
with the aim of fostering the transition towards sustain-
ability and a circular economy. The initiative involves
farmers, local institutions, environmental organisa-
tions and consumers, and is focused on establishing the
Calatino Bio-district. Among the various crops present,

e . Utilised Citrus groves .. Olive groves ~ Herbaceous
Municipality Area (km?) Farms agricultural area Vineyards (ha)
(ha) (ha) (ha) crops (ha)
Caltagirone 383.37 2,368 20,437 615 892 1,469 10,659
Grammichele 32.07 511 1,698 480 21 176 665
Licodia Eubea 112.45 823 6,132 68 956 342 2,660
Mazzarrone 34.78 352 1,905 17 865 160 375
Mineo 245.27 1,859 15,423 3,000 30 952 5,573
Mirabella Imbaccari 15.3 214 990 4 9 117 419
San Cono 6.63 100 278 1 4 33 58
San Michele di Ganzaria 25.81 217 904 4 45 139 535
Vizzini 126.75 463 8,563 170 48 296 4,080
Total Calatino 982 6,907 56,330 4,359 2,870 3,684 25,024

Source: Elaboration on ISTAT data, 2022.
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Figure 1. Production characteristics of the study area (our elaboration).

citrus cultivation was chosen as the focal crop for the

Living Lab project because of its significant economic

weight in the Calatino area and its sensitivity to water

resource management issues. Citrus fruits represent one
of the main sources of local agricultural income and
require particularly efficient water management, making
them an ideal case for experimenting with innovative
strategies in line with agroecological principles.

The primary objectives are to promote:

- the transition to organic farming and organic certifica-
tion to enhance the competitiveness of local products;

- the adoption of sustainable agricultural practices,
such as crop rotations, organic fertilizers, and inte-
grated pest management, in line with agroecological
principles;

- short supply chains, through local markets and the
creation of a food hub for the distribution and val-
orization of organic products;

- social inclusion and cooperation among producers,
processors, and distributors.

Through these strategies, the Bio-district aims to
enhance the environmental sustainability of local agri-
culture and promote economic development based on
circularity and biodiversity, positioning Calatino as a
model for agroecological transition in Sicily.

2.2. Study design

The Calatino Living Lab serves as a participatory plat-
form where farmers, researchers, technical experts, and
institutional representatives collaborate to facilitate the
agroecological transition of the region. This large-scale
transition is often hindered by regulatory constraints, eco-
nomic challenges, and technological limitations (Toffo-
lini et al,, 2021; Beaudoin et al.,, 2022; Potters et al., 2022;
Yousefi and Ewert, 2023; Timpanaro et al., 2024; Gardezi
et al., 2024). In Sicily, the recent regional legislation on
agroecology (Regional Law No. 21 of 29/07/2021, “Pro-
visions on Agroecology, Biodiversity Protection, Sicilian
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Agricultural Products, and Technological Innovation in

Agriculture”) establishes strict criteria for farms, highlight-

ing the need for an in-depth analysis of its practical impli-

cations and potential areas for improvement.

The methodological approach adopted is summa-
rized in Figure 2. The establishment of a collaborative
ecosystem is imperative for the co-design of innovative
solutions for sustainable water resource management,
agroecology, and the adoption of enabling technologies
by farmers, institutions, researchers, businesses, and con-
sumers. A preliminary study involved the identification
of key stakeholders and the definition of local challeng-
es. This was followed by structuring the Living Lab as a
participatory platform for research and experimentation.
Stakeholders were selected using a targeted approach,
favoring organic or in-conversion farmers operating in
the citrus sector who expressed interest in adopting agro-
ecological practices and innovative technologies. Institu-
tional representatives, technicians and local associations
with a key role in promoting agricultural sustainabil-
ity in the Calatino area were also involved. Stakeholder
engagement was achieved through preliminary meetings,
thematic focus groups, interactive workshops, and dem-
onstration visits to pilot farms, with invitations dissemi-
nated via email, social media, and local networks.

Although this targeted selection ensured the active
participation of motivated and competent actors, it is
important to recognise that it may have introduced a
certain degree of bias into the selection. Specifically, the
inclusion of stakeholders already inclined towards inno-
vation and sustainability may limit the generalisability of
the results to broader agricultural populations that may be
more hesitant or resistant to adopting digital technologies.

The first step of the Living Lab was an in-depth
analysis of regional regulations to understand the crite-
ria for recognizing agroecological farms and the poten-
tial barriers to their adoption. Through participatory
discussions among stakeholders several critical issues
were identified, including:

- high initial requirements, such as the obligation to
allocate 20% of farmed land to native varieties and to
replant 20% of the area with indigenous tree species;

- management difficulties, due to the requirement for
complex environmental certifications and the high
costs of compliance;

- limited technological support, as no incentives are
provided for adopting innovative tools that could
facilitate the agroecological transition;

- commercial constraints, including the obligation to
sell 20% of production in local markets, a require-
ment that could disadvantage farms located in more
remote areas.

Co-creation
- ol and User -
'+ Focus group Sl * Enabling
with technologies,
stakeholders KETs
Public actors
Kxsnicty (long term
ive
i BT
Real- atan f-\ role Multi-
i, Stakeholders
setting Calatino Living Lab partecipation
Private actors Users (target
up and
know-how and avioural
resources) ~ definers)
* Irrigation + Pilot farms
resources,

Multi-Method
Approaches

Figure 2. Methodological framework adopted in the Calatino Liv-
ing Lab.

The stakeholder discussions within the Living Lab
also highlighted a shared need to leverage technological
innovations to support farms in resource management,
improve production eficiency, and ensure economic sus-
tainability. A key concern among stakeholders was water
resource management, one of the main challenges for
Sicilian agriculture. Multiple focus groups were organ-
ized to explore issues such as:

- how can water management be improved in agroe-
cological farms?

- which technologies can promote water conservation
without compromising productivity?

- what strategies can be adopted to make irrigation
more efficient and less dependent on intensive water
use?

The focus groups revealed that many organic farms
lack advanced tools for water monitoring, relying instead
on empirical practices that often lead to waste or water
shortages.

Based on the discussions and emerging needs, two
organic citrus farms in the Calatino region were selected
as pilot cases to assess the impact of enabling technolo-
gies applied to irrigation management (one implement-
ing Key Enabling Technologies and the other without
KETs). These farms align with the agroecological prin-
ciples defined by FAO (2018) and were equipped with
(Table 2):

- weather stations for real-time monitoring of temper-
ature, humidity, and precipitation;

- soil sensors to measure moisture levels and optimize
irrigation;
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Decision Support Systems (DSS) based on climatic
and agronomic data to enhance resource management.
The choice of these technologies was guided directly
by the critical issues identified during the focus groups.
Soil sensors and weather sheds allow accurate monitor-
ing of environmental parameters, enabling more efficient
irrigation management tailored to actual crop needs.
The DSS system provides farmers with decision support
based on objective data, reducing uncertainty in irriga-
tion planning and helping to limit water wastage. Table
2 summarizes the comparison between the principles
of agroecology (FAO, 2018), the corresponding enabling
technologies, and their practical application in tradi-
tional agroecology, precision agriculture, and the two
pilot farms within the Living Lab. The structure of the
table allows for a direct comparison of how different
approaches integrate technology to address agroecologi-
cal goals. Reading across each row, one can observe the
progressive transition from traditional practices to pre-

Giuseppe Timpanaro et al.

cision and digitally-supported agroecological farming.
Each principle - such as biodiversity, resource efficiency
or co-creation of knowledge - is linked to specific digital
tools (e.g. soil sensors, DSS platforms) and correspond-
ing practices observed in the field. For example, while
the traditional approach relies on experience-based deci-
sions, the digitised farm uses real-time data to manage
irrigation and nutrient input more precisely. This align-
ment between agroecological objectives and enabling
technologies illustrates how innovation can improve sus-
tainability and productivity without compromising eco-

logical integrity.

2.3. Elaboration method

The comparison between citrus farming with and
without innovative technologies was based on the analy-
sis of total costs and net benefits for each system, includ-

Table 2. Comparison between Agroecology, Precision Agriculture and the two pilot citrus farms for experimentation within the Calatino

Living Lab.
o . . . . Farm with Farm without
FAO principles  Enabling technologies Agroecology Precision agriculture technologies technologies
1. Diversity GIS (Geographic Biodiversity mapping Irrigation and Mapping cover crops Traditional cultivation

Information Systems)

Local agroecological

2. Synergy Big Data

planning
. IoT (Internet of Sensors for water
3. Efficiency . .
Things) conservation
os Monitori f natural
4. Resilience Drones onitoring of natura
resources
. Natural measurement
5. Recycling Sensors

of soil nutrients

Shared access to
environmental and
agricultural data

6. Knowledge Sharing Big Data and digital
platforms

7. Human and Social Mobile applications forDigital training for

Values farmers social inclusion
8. Food Traditions Blockc}‘la.m for Protectlf)n of local
traceability production

Active participation

9. Responsible . .
in agricultural

Open data and GIS

Governance
management.
IoT and Al for Recycling and
10. Circular Economy agricultural waste reuse of agricultural
management by-products

fertilization zoning

Optimization of
production efficiency

Automated irrigation
and fertilization

Detection of
infestations and
targeted irrigation

Advanced soil and
crop monitoring

Al-driven process
optimization

Agricultural workforce
automation

Monitoring of
production chains

Automated data
collection for
agricultural policies

Waste reduction
through optimization

and water retention
Weather and soil
data analysis for crop
synergy

Targeted irrigation
sensors and DSS for
water management
Decision-support
system for mitigating
water and climate
stress

Nutrient monitoring to
reduce chemical inputs

Software for
comparison between
agroecological farms
Decision-making
support based on
digital data

Traceability of farm
sustainability

Use of platforms for
farm monitoring

Crop residue
recovery and reuse of
wastewater

without mapping
Experience-based
management and
traditional rotations

Scheduled irrigation
without monitoring

Reactive response to
climate change without
predictive tools

Fertilizers and
compost application
based on experience
Limited knowledge
exchange within local
cooperatives
Dependence on
personal experience
and manual labor
Traditional sales
without digital
certification

Participation limited to
local cooperatives

Traditional disposal
without optimization
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ing water savings, production yield, and profitability
increase, as extensively explored in the literature (Alston,
2010; Pardey et al., 2010; Lubell et al., 2011; Alston et al.,
2021; Medici et al., 2021; Jamil et al., 2021).

The baseline assumptions for the comparison are
reported in Table 3. The analyzed parameters highlight
the potential impact of digital innovations on irrigation,
climate monitoring, decision-making processes, water-
use efficiency, management costs, and agronomic yield.

As for the total costs (C) for each agricultural sys-
tem, these are calculated as the sum of the costs of water,
fertiliser, labour, cover crops and technology (for the
innovative system only), as shown in Table 4.

The additional benefit of farming with innovative
technologies over conventional farming is given by:

AB=1I; - II.

Expanding

AB = A*((P,— P.)ep— [(W; — W.)*Cy + C; + Cvc])

where:
(P, - P) * p = represents the increase in profitability due
to increased production.
(W, - W) * C,, = represents the water savings in terms of
costs.
C, + C. are the additional costs for the adoption of tech-
nologies and cover crops.

If:
AB>0 - adoption of the technologies is cost effective.
AB<0 - the additional costs outweigh the benefits, mak-
ing the transition uneconomic without incentives.
AB ~0 - Profitability is similar in the two models, but
there may be indirect environmental benefits.

The economic evaluation was completed with a sen-
sitivity analysis, hypothesising alternative scenarios on a
possible rent for the KETs plant and equipment (neces-
sary to have up-to-date and enhanced decision support
systems with links to meteorological databases), and
with a Monte Carlo modelling to focus the analysis on
the other variables (water consumption, operating costs,
production) that present uncertainty and that most
influence the difference in profit between the two pilot
companies.

Monte Carlo modelling assumes that:

. _ Trtech __ Trnontech
AIL; = TIteeh — I

At the end of N iterations we estimate

- the average profit for each company
__tech __nontech

_ 1 N tech _ 1 N nontech
O =20 g I =¥ i 1L

- the average difference

All= L YN AL

- the distribution (and dispersion) of AII, which
makes it possible to assess the probability that the
technology will lead to a higher profit.

The final Monte Carlo model used was as follows:

ATT = [400*/Qtech — (w¥/clesh 4 /fclech 4+ /cleet

+/cheth + /et + /Ctech + /Cother) ]

7/[400*/(W*/C§,°“te‘:h + /nggctfch + /C?eorl:te‘:h + /ng;tech + /Cg]g?rtg;h + /Cother)}

where each uncertain parameter is sampled from a spec-
ified distribution. Repeating this calculation for many

Table 3. Comparison parameters adopted in the evaluation of KETs in citrus fruit growing.

Aspect Farm with technology

Farm without technology

Irrigation . .
optimize water requirements

Climate monitorin . .
g temperature, wind, and rainfall

Decision-making .
quantity

Water efficiency Greater water control with reduced waste

Management costs o
(e.g., energy for irrigation)

Agronomic yield leading to higher productivity

Uses precise data (soil moisture, weather forecasts) to
Weather station and sensors provide real-time data on

User-friendly application suggests irrigation timing and

Initial investment in technology, but lower variable costs

Optimized water requirements and reduced plant stress,

Irrigation based on experience and traditional fixed
irrigation cycles (not optimized)

Based on visual observations and generic weather forecasts

Subjective decisions based on intuition and experience

High risk of water excess or deficit, leading to higher-than-
necessary consumption

Constant costs due to inefficient resource use

Yield affected by irrigation mismanagement or unexpected
climatic conditions

Source: Our elaboration.
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Table 4. Data determination methodology for evaluating the cost-effectiveness of adopting KETs technology for water savings.

Variables Farm with Technology Farm without Technology
Ci=A*W*Cp + Cr+ Cp+ Ci 4+ Ce + Coc + Copher) Co = A*(W*Coy + Cp+ Cp + Ce + Crp + Cother)
R, = A*P.*p

Il = /Re = /Cc = A*(P *p—

(WC*/CW + /Cf + /Cp + /Ce + /Ccc + /Cother))

Total costs (C)
Total revenue (R) R; = A*P*p
Ht = /Rt — /Ct = A*(Pt*pf

11,
Net profit (1L¢) (W*Cy + /Ct + /Cp + /Ct + /Ce + Cee + /Cother))

The variables considered were the following: A = Cultivated area (ha); Pc = Production per hectare in agriculture without innovative water-
saving technologies (t/ha); Pt = Production per hectare in agriculture with innovative water-saving technologies (t/ha); p = Sales price
per tonne (€/t); We = Water consumption per hectare in agriculture without innovative water-saving technologies (m*/ha); Wt = Water
consumption per hectare in agriculture with innovative water saving technologies (m*/ha); Cw = Water cost per m* (€/m?); Cf = Fertiliser
cost per hectare (€/ha); C, = Pesticide cost per hectare (€/ha); Ct = Technology cost (installation + maintenance per hectare) (€/ha); Ccc =

P

Cover crop cost per hectare (€/ha); C, = Energy cost per hectare (€/ha); C,g,, = Other costs (€/ha).

iterations yields the profit difference distribution, which
provides a comprehensive assessment of the economic
sensitivity to the adoption of the innovative technology.

3. RESULTS
3.1. Living Lab approach and case study characteristics

The two citrus farms analyzed were identified as pilot
sites within the Living Lab of the Calatino Inner Area, a
collaborative ecosystem aimed at testing and validating
innovative solutions for regenerative citrus farming and
sustainable water resource management. The objective is to
develop scalable strategies for other farms seeking to inte-
grate regenerative practices with technological innovations.

The selection of the farms (Table 5) was based on:

-  Representation of the citrus sector within the region
and the study area.

- Diversity in management practices, as one farm
adopted enabling technologies, while the other relied
on a traditional agroecological approach.

- Entrepreneurs’ willingness to engage in the co-
experimentation and training process.

The two pilot farms are in Mineo (Catania province)
and share the same production identity (5 hectares of
blood oranges, organic certification, and a commitment
to regenerative agriculture). Their differing agricultural
management approaches make them suitable case stud-
ies for assessing the impact of enabling technologies
compared to a system based solely on traditional agro-
nomic experience.

The farm utilizing innovative technology has inte-
grated sensors, a decision support system (DSS), and
advanced soil analysis to optimize irrigation and plant
nutrition. The goal is to achieve more efficient water use,
a more targeted nutrient management strategy, and con-

tinuous pest monitoring, thereby reducing input usage
and maximizing productivity.

The farm without innovative technology follows a
more traditional approach, with manually scheduled
irrigation and fertilization based on the farmer’s experi-
ence. While it employs cover crops and organic farming
strategies, it lacks tools for real-time monitoring of soil
and water conditions, which can result in less precise
management and higher resource consumption.

The intersection of three key elements - organic
farming (a low-impact agricultural management model
aligned with agroecological principles, aiming for bal-
anced and resilient production systems while reducing
dependency on external inputs), regenerative agriculture
(cover crops contribute to reducing erosion, improv-
ing water retention, and increasing soil organic matter,
fostering a healthier and more productive ecosystem in
the long term), and enabling technologies (agroecology
does not exclude technology but leverages it to enhance
sustainable resource management) - is represented by
agroecology. This guiding principle unites the two pilot
farms of the Living Lab in the Calatino.

This integrated approach improves the sustainability,
productivity, and resilience of agricultural systems, turn-
ing environmental and economic challenges into oppor-
tunities for innovation (Niggli, 2015; Gascuel-Odoux et
al., 2022; Bless et al., 2023; Dominguez et al., 2024).

3.2. Issues related to the management of irrigation resources

The discussion among stakeholders on the water
emergency in citrus farming has highlighted how it is
the result of a combination of climatic, institutional and
economic factors that negatively affect production and
farm sustainability. Figure 3 represents a visualization
of the relationships between the main factors character-
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Table 5. Structural characteristics of the pilot sites.

Information Farm with technology Farm without technology
Localization Mineo Mineo
UAU, ha 5 5
Production address Blood orange Blood orange
Organic certification Yes Yes

Regenerative agriculture
Water use Sensor monitoring + DSS
Nutrient management Soil analysis + targeted fertilisation
Pest control

Market

Biological strategies + data monitoring

Cover crops + advanced water management

Selling to local supply chains and quality markets

Cover crops with traditional management
Manually programmed irrigation
Experience-based fertilisation

Biological strategies without monitoring

Selling to local supply chains and quality markets

Source: Our elaboration.

izing this crisis, as they emerged during the focus group.
The structure was elaborated using MAXQDA software,
through the exploration of co-occurrences between
thematic codes applied to text segments. The figure is
organized hierarchically, starting from the main cause
(climate change) at the top, branching downward into its
effects on water availability and plant health, and further
into institutional and economic consequences. Arrows
represent causal links, while mitigation strategies are
shown as side branches connected to the specific prob-
lems they address. No color coding was used; the struc-
ture is entirely based on logical connections and the-
matic clusters. This approach made it possible to clearly
highlight the connections between climatic, institutional
and economic variables, as well as the mitigation strate-
gies adopted by citrus growers and sector experts.

The central element of the water crisis, as emerged
from the discussion, is climate change, which manifests
through alterations in rainfall patterns. This results in
two opposing but equally damaging situations: water scar-
city, caused by reduced precipitation and rising tempera-
tures that intensify evaporation and increase plant water
demand, or water excess, with sudden and intense rainfall
leading to floods, water stagnation, and root damage.

These issues are compounded by institutional inefhi-
ciency, which worsens water resource management. The
lack of maintenance of watercourses, poor planning in
water distribution, and the bureaucratic rigidity of rec-
lamation consortia make it difficult for citrus growers to
access water when they need it most. Additionally, the
absence of a consumption-based pricing system leads to
waste and inefficient resource use.

To address the water crisis, citrus growers have adopt-
ed various technological and agronomic solutions. These
include innovations in irrigation, such as surface and sub-
surface micro-irrigation systems to reduce water waste, or
the use of regulated deficit irrigation systems to optimize

®
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Figure 3. Cause-effect relationships in irrigation water management
issues in citrus farming

water use according to plant growth stages. Farmers have
also experimented with alternative water resources, such
as treated wastewater, through phytoremediation process-
es, to reduce dependence on conventional water sources.
A common strategy is the selection of rootstocks resistant
to water stress, as well as the use of raised beds to improve
drainage and controlled cover cropping.

According to stakeholders, a coordinated territorial
approach involving public institutions, reclamation con-
sortia, and producer organizations is lacking. Addition-
ally, a revision of irrigation tariffs based on actual con-
sumption could encourage more responsible water use,
while increased digitalization in water resource manage-
ment (sensors, weather stations) could enable more pre-
cise irrigation planning.
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Table 6. Parameters for comparing citrus fruit farms with and without KETs.

Farm without technology Difference %

Parameter Farm with technology
. 3
ﬁ:)nual water consumption (m®/ 2,800
Average cost of water (€/m?) 0.3
Water saving (€/ha) 420 €
Water saving (%) 33%

Production per hectare (t/ha) 44

Sale price (€/t) 400 €
Revenues per hectare (€/ha) 17,600 €
Cost cover crops (€/ha) 250 €
Fertiliser costs (€/ha) 720 €
Pesticide cost (€/ha) 40 €
Energy cost for irrigation (€/ha) 520 €
Technology investment (€/ha) 500 €
Other cost 1,570€
Total cost (€/ha) 3,600 €

4,200 -33%
03 0%
0€

0 -

38 16%

400 € 0%
15,200 € 16%

250 €

850 € -15%

140 € -71%

750 € -31%
0€

1,990€ -21%
3,980 € -10%

Source: Our elaboration.

These results highlight not only the complexity of
the water crisis, but also the proactive role of farmers
in experimenting with feasible solutions. The issues and
strategies discussed in this section have been translated
into the visual structure shown in Figure 3, which helps
to summarise the entire problem-solving framework in a
single view. This makes the figure particularly useful for
better understanding where to intervene and how to sup-
port adaptation efforts more effectively.

3.3. Cost-effectiveness assessment of KETs deployment

The calculations clearly show the positive impact
of KET adoption on farm management, with benefits
reflected in water efliciency, operating costs, productivity
and overall profitability.

Table 6 shows that the adoption of enabling technol-
ogies results in a significant improvement in farm man-
agement, with water consumption reduced by 33% and
a consequent annual saving of 420 €/ha, without penal-
izing productivity. This implies greater sustainability in
resource use and reduced production costs.

The cost of energy for water withdrawal is reduced
by 31%, confirming how energy efficiency is an addition-
al economic benefit of technological innovation.

Productivity increases by 6 tons/ha (+16%), trans-
lating into a revenue increase of €2,400/ha. This result
underscores how technological adoption not only
improves efficiency, but also directly contributes to
strengthening the company’s competitiveness.

At the same time, there is a reduction in the use of
fertilizers (-15%) and a drastic decrease in pesticides

Table 7. Comparison of economic benefits and adoption conveni-
ence between citrus farms with and without KETs.

Farm with Farm without

Parameter Difference %

technology  technology
Revenues R (€/ha) 17,600 € 15,200 € 16%
Total costs C (€/ha) 3,600 € 3,980 € -10%
Net profit IT (€/ha) 14,000 € 11,220 € 25%
Change in benefits (AB) +2,780

Source: Our elaboration.

(-71%), reflecting the improvement in agronomic man-
agement and less dependence on external inputs, with
clear economic and environmental benefits.

Despite an initial investment of €500/ha, the inno-
vative company achieves a net profit of €14,000/ha, com-
pared to €11,220/ha for the traditional company, with a
25% increase in profitability (+€2,780/ha) (Table 7). This
highlights how the economic benefits far outweigh the
costs of technology adoption.

3.4. Sensitivity analysis

Considering three scenarios based on complete
enabling technologies to be acquired by annual sub-
scription, a sensitivity analysis can also be developed
(Table 8):

- 200 €/ha/year - Basic Package (sensors + basic soft-
ware);
- 400 €/ha/year -~ Intermediate (sensors + advanced

DSS + local weather)
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Table 8. Profit sensitivity with technology rent.

. Annual cost per hectare
Rental scenario p

Net new profit (€/ha)

Difference vs. farm Convenience compared to the

€) without technology (€) traditional model
Rent 200 €/ha/year 200.00 € 13,800.00 2,580.00 Very affordable
Rent 400 €/ha/year 400.00 € 13,600.00 2,380.00 Still profitable
Rent 600 €/ha/year 600.00 € 13,400.00 2,180.00 Advantageous but low margin

Source: Our elaboration.

- 600 €/ha/year -~ Advanced (sensors + advanced DSS
+ weather integrated with weather databases such as
SIAS, ISPRA, SwissMetNet, etc.).

Sensitivity analysis on the different levels of tech-
nology subscription shows that even with a higher fee
(600 €/ha/year), the positive margin remains substantial
(+2,180 €/ha compared to the farm without technology).
The intermediate package (400 €/ha/year) emerges as
the one most balanced between investment and econom-
ic benefit, suggesting a sustainable option for maximiz-
ing farm profitability.

To assess how net profit (€/ha) responds to key eco-
nomic drivers, a Monte Carlo simulation was conducted.
The goal was to compare the farm adopting innovative
technology with the one that does not, highlighting how
variations in certain parameters can either amplify or
reduce the benefits derived from technology adoption.

The model assumed that the product’s selling price
(400 €/t) and non-specific fixed costs (e.g., general
expenses, logistics) remain constant, while variations
in production and costs influenced by technology were
analyzed. Analysis considered water costs, expenses for
cover crops, fertilizers, pesticides, irrigation energy,
and, for the technology-adopting farm, the technologi-
cal investment.

The Monte Carlo simulation involves repeated itera-
tions, where in each cycle, random values are drawn for
each parameter according to predefined distributions. In
this study, uniform distributions around baseline values
were assumed. In particular, the unit cost of water was
varied between 0.3 and 0.5 €/m’ while water consump-
tion for the technological farm ranged between 2,520
and 3,080 m*ha, and for the non-technological farm,
between 3,780 and 4,620 m*/ha. Similarly, production
per hectare and operating costs were defined within spe-
cific intervals to reflect real-world variability and simu-
late a wide range of scenarios.

Table 9 shows that, on average, the farm adopt-
ing technology achieves a net profit of approximately
14,000 €/ha, while the non-technological farm reaches
around 11,220 €/ha, resulting in an average difference
of +2,780 €/ha. These results indicate a significant aver-

Table 9. Monte Carlo simulation results.

Farm with ~ Farm without = Difference
Statistics technology  technology (Tech -
(€/ha) (€/ha) NonTech, €/ha)
Average profit 14.000 € 11.220 € 2.780 €
Standard deviation 1.200 € 1.400 € 1.300 €
Minimum Profit 11.000 € 8.500 € 2.500 €
Maximum profit 17.000 € 15.500 € 3.500 €
Median 14.100 € 11.300 € 2.800 €

Source: Our elaboration.

age economic benefit from adopting innovative technol-
ogy. The standard deviations, 1,200 €/ha and 1,400 €/
ha respectively, highlight considerable variability. This
suggests that while the average benefit is positive, in
some scenarios, the advantage may be lower or even
more pronounced.

The economic advantage is primarily driven by
savings in operational costs. The technology enables
a substantial reduction in water consumption, leading
to lower water expenses, and decreases costs associated
with fertilizers and pesticides, due to more efficient and
sustainable farming practices. These savings, combined
with a potential increase in yield per hectare, contribute
to a higher net profit.

The simulation also highlights the model’s sensitiv-
ity to various parameters. For instance, an increase in
the unit cost of water shifts total costs to higher values,
making water savings even more critical. Similarly, vari-
ations in yield per hectare directly affect revenue and,
consequently, net profit. The ability to adjust multiple
parameters simultaneously helps identify key drivers of
economic success and potential sources of risk.

The Monte Carlo simulation comparing farms
with and without innovative technology demonstrates
that adopting technology leads to a significant average
increase in net profit per hectare. These findings provide
essential support for strategic decision-making in a com-
petitive and dynamic environment, where operational
efficiency and innovation are crucial for success.
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4. DISCUSSION

The analysis conducted within the Living Lab of the
Calatino inner area has enabled an exploration of the
impact of enabling technologies on the agroecological
transition in inner areas, highlighting economic, envi-
ronmental, and organizational benefits. Starting from
the research questions, the findings clearly show that the
integration of enabling technologies enhances the effi-
ciency of resource management, particularly in terms of
water and nutrient use, helping to improve productivity
and keep costs down. These findings align with those
reported by Bellon-Maurel et al. (2022) and Maurel and
Huyghe (2017), who highlight how digital tools contrib-
ute to resource optimization and improved sustainability
in agricultural systems. Furthermore, Ajena et al. (2022)
emphasize that digitalization can break down traditional
barriers fostering innovation in rural sectors, particular-
ly in inner areas where challenges are more pronounced.
Therefore, the integration of technology accelerates the
agroecological transition by providing farmers with real-
time data and decision-making tools that enhance preci-
sion and sustainability in farm management. Regarding
the second research question, the comparison between
the two pilot farms revealed a significant gap in farm-
ers’ perceptions. The farm that adopted the innovative
technology reported tangible benefits, such as reduced
operational costs and improved productivity. In con-
trast, the farm following a traditional approach relied
on well-established methods and expressed skepticism
toward digital tools. This resistance stems from a per-
ception of greater reliability associated with traditional
methods, combined with limited familiarity with inno-
vative technologies and concerns about high initial costs
and a steep learning curve. These aspects are consist-
ent with the findings of Anderson and Maughan (2021)
and Schiller et al. (2020), who describe the existing gap
between innovation and tradition in agriculture. Litera-
ture suggests that the lack of specific training and insti-
tutional support represents a major barrier to the adop-
tion of digital technologies (Timpanaro et al., 2023).

In this context, Living Labs serve as co-experimen-
tation and training spaces that facilitate knowledge
transfer and help overcome initial resistance (Scuderi
et al., 2023). Active participation and dialogue among
farmers, researchers, and technical experts contrib-
ute to demystifying new technologies and highlight-
ing their potential in sustainable resource management.
Living labs show that they can function as catalysts for
change, fostering an agroecological transition that is not
only technologically advanced, but also socially inclusive
(Cascone et al., 2024; Beaudoin et al., 2022).

Giuseppe Timpanaro et al.

The third research question led to a deeper analy-
sis and reflection on the economic outcomes through
Monte Carlo simulation. From an economic perspec-
tive, the farm integrating enabling technologies achieves
higher per-hectare revenues due to increased produc-
tion and more efficient cost management. These findings
align with the studies of Alston (2010) and Pardey et al.
(2010), which emphasize how agricultural innovation
can generate substantial economic benefits.

From an environmental perspective, the adop-
tion of innovative technologies promotes more sustain-
able resource management and a reduction in chemical
input use. The decrease in water consumption and pes-
ticide application, for example, contributes to minimiz-
ing environmental impact and fostering more regenera-
tive agricultural practices. These results are consistent
with the evidence provided by Dominguez et al. (2024)
and D’Annolfo et al. (2017), who highlight the potential
of combining agroecological practices with technologi-
cal innovation to promote sustainable and resilient agri-
culture. Thus, the integration of technologies not only
enhances economic efficiency but also represents a suc-
cessful approach to reducing environmental impact by
encouraging a more responsible use of resources.

Finally regarding Q4, the Living Lab model imple-
mented in the Calatino context has proven to be an effec-
tive environment for the co-creation and experimentation
of innovative solutions. The two pilot farms, despite shar-
ing the same production identity and organic certifica-
tion, differ in their management approach: one integrates
enabling technologies, while the other follows a tradi-
tional method. This strategic choice has highlighted how
the presence of digital technologies is not contradictory
to agroecological principles but rather enhances their
effectiveness, improving the sustainable management of
resources and the resilience of the production system.

Living Labs play a crucial role in bridging the gap
between technological innovation and traditional agri-
cultural practices. They provide a space where farmers,
researchers, technologists, and institutional stakeholders
can experiment, exchange experiences, and validate solu-
tions in real time (Scuderi et al., 2024). In our case, the
adoption of digital tools has improved irrigation monitor-
ing and management, leading to more efficient water use
and lower operational costs. These results, combined with
the integration of regenerative practices such as the use of
cover crops and targeted nutrient management, contribute
to creating an integrated system that addresses the envi-
ronmental and economic challenges of inner areas. More-
over, the active participation of farmers in Living Labs
fosters a bottom-up approach that stimulates responsible
innovation and the dissemination of best practices.

Bio-based and Applied Economics 14(4): 67-84, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17357



Enabling technologies in citrus farming: A living lab approach to agroecology and sustainable water resource management 79

For example, during one of the demonstration ses-
sions, an organic farmer had the opportunity to test a
low-cost soil moisture monitoring system, immediately
noting its usefulness in reducing water waste. This kind
of direct experience helped turn initial prejudice into
interest and openness. In another case, a young farmer
who initially showed skepticism toward the use of digi-
tal data for crop management changed his perspective
after sharing his needs with a group of experts within
the Living Lab and receiving support in interpreting
the data collected. The opportunity to learn by doing,
in a nonjudgmental and co-creation-oriented context,
proved essential to reduce cognitive barriers and build
confidence toward innovation. Recent studies (Gascuel-
Odoux et al., 2022; Potters et al., 2022) also highlight
how collaboration and the engagement of local actors are
essential for achieving effective and sustainable agroeco-
logical transitions.

A critical issue that deserves attention concerns the
economic implications related to the costs of adopting
enabling technologies, especially in vulnerable rural set-
tings. While these technologies can generate efficiency
and reduced operating costs, they often entail significant
upfront investments, the need for technical maintenance,
and increasing dependence on external suppliers. This
can lead to an imbalance in bargaining power between
farms, which are often small or medium-sized, and tech-
nology providers, which operate according to industrial
and centralized market logics.

In the absence of adequate support and regulatory
measures, this imbalance can produce regressive effects:
farms with greater economic capacity will be able to
access technologies more easily and take competitive
advantage of them, while the more fragile realities risk
being excluded from the innovation process (Bissadu et
al,, 2025).

For this reason, it is crucial to accompany technol-
ogy adoption with targeted policy strategies capable of
ensuring affordability, technical training, systems inter-
operability and open innovation models. Living Labs,
represent a possible lever to rebalance power dynamics
through co-design and direct involvement of farmers
in technology selection and testing processes. To effec-
tively address these power imbalances and promote a
more inclusive adoption of enabling technologies, sev-
eral targeted policy actions should be considered. Such
measures can help rebalance contractual relationships
between farmers and technology providers, in line with
the principles of responsible innovation (Bellon-Maurel
et al., 2022; Beaudoin et al., 2022; Gava et al., 2025).

First, public incentives for technology adoption
should be conditional on the use of open standards and

interoperable systems to avoid technological lock-in, as

discussed by Ditzler and Driessen (2022) and Clapp and

Ruder (2020). This approach strengthens farmers’ autono-

my and prevents dependence on proprietary technologies

controlled by a few large suppliers (Bissadu et al., 2025).
Second, it is essential to promote the creation of

farmer-led cooperatives or technology consortia to

strengthen collective bargaining power in the purchase
and negotiation of technology services. This is in line
with recommendations to strengthen agricultural inno-
vation systems (Potters et al., 2022) and enable bottom-

up governance models (Gava et al., 2025).

Thirdly, the creation of public platforms dedicated
to the collective procurement of technologies, supported
by technical advisory services and independent consult-
ants, can further protect farmers from unfavourable con-
tractual conditions. The provision of advisory vouchers
for access to third-party technical expertise would com-
plement this strategy.

Furthermore, regulatory frameworks should explicit-
ly recognise farmers’ ownership of agricultural data gen-
erated by digital systems, ensuring that technology pro-
viders cannot appropriate or monetise such data without
informed consent (Clapp and Ruder, 2020; Bellon-Mau-
rel et al., 2022).

Living Labs themselves can be institutionalised as
territorial “technology brokers”, acting as independent
intermediaries to ensure equitable access to innovation
and promote co-created solutions tailored to local needs
(Beaudoin et al., 2022; Gardezi et al., 2024). This mod-
el of participatory innovation is in line with the agro-
ecological governance structures advocated by Gascuel-
Odoux et al. (2022), which support equitable access to
technological innovation in rural areas.

By adopting these integrated strategies, policymak-
ers can help reduce asymmetries in bargaining power,
protect the interests of smallholder farmers, and pro-
mote an inclusive, resilient, and participatory agroeco-
logical transition.

In summary, our research findings indicate that:

- The integration of enabling technologies accelerates
the agroecological transition by improving resource
management and increasing profitability.

- Farmers’ perceptions are influenced by direct expe-
rience and the support provided by Living Labs,
which help overcome resistance to innovation.

- The combination of agroecological practices and
innovative technologies generates positive eco-
nomic and environmental impacts, as evidenced by
increased productivity and reduced operational costs.

- Living Labs play a key role in facilitating the inte-
gration of technology and agroecology, fostering the
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creation of integrated and sustainable systems in

inner areas.

These findings not only confirm the existing litera-
ture but also provide an operational framework to guide
strategic decisions in complex agricultural contexts,
where sustainability and innovation need go hand in
hand. The integrated and participatory approach promot-
ed by Living Labs thus emerges as an effective response
to current and future challenges, helping to transform
environmental and economic challenges into opportuni-
ties for innovation and sustainable development.

5. CONCLUSIONS

The study conducted within the Living Lab of the
Calatino Inner Area highlights how the integration of
enabling technologies can play a crucial role in acceler-
ating the agroecological transition in rural areas. The
results, derived from a comparative analysis of two pilot
citrus farms - one adopting advanced digital tools and
the other maintaining a traditional approach - demon-
strate economic, environmental, and managerial ben-
efits, confirming the transformative potential of such
innovations.

The farm that integrated sensors, decision support
systems (DSS), and other digital technologies achieved
significant operational efficiency, including a 33% reduc-
tion in water consumption and a 16% increase in yield
per hectare, leading to a 25% improvement in profitabili-
ty. These findings not only underscore the importance of
more precise resource management but also confirm that
the adoption of enabling technologies can enhance envi-
ronmental sustainability by reducing chemical inputs
and improving irrigation efficiency. The study also high-
lights some critical issues and concrete challenges to be
addressed. Among these, the affordability of technologies
is a major obstacle, especially for small companies with
limited liquidity. Similarly, the technical complexity of
the systems and the costs associated with maintenance,
software updates and staff training may limit widespread
adoption. Furthermore, the scalability of the tested solu-
tions remains to be verified in different contexts due to
soil and climate conditions, farm size and crop type.

However, this study has some limitations. First, the
small number of cases analyzed may limit the general-
izability of the results. Given the diversity of agronomic
and socio-economic contexts, further large-scale studies
are needed to confirm the replicability of the observed
benefits. Additionally, while the methodology integrates
an in-depth economic analysis and a Monte Carlo simu-
lation, it could be enriched by further long-term meas-
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urements to assess the economic and environmental sus-
tainability of these technologies over time.

Another limitation concerns the analysis of farmers’
perceptions. While the comparison between the innova-
tive and traditional groups highlighted resistance and
scepticism toward digital tools, a more extensive qualita-
tive investigation — such as in-depth interviews or focus
groups with a broader sample of producers - could pro-
vide further insights into the dynamics of adoption and
the training needs required to support the transition.

Based on these considerations, several future
research directions emerge. Expanding the Living Lab
model to other rural areas in Sicily and different agri-
cultural sectors could help determine whether enabling
technologies can generate similar benefits in different
contexts. Future studies could implement comparative
pilot projects in different production systems, such as
viticulture or olive growing, and monitor key indicators
like water use efficiency, yield performance, and farmer
adoption rates over at least three growing seasons.

Further research could also explore the long-term
impact of adopting digital tools, analyzing, for exam-
ple, how economic and environmental benefits evolve
over multiple production cycles and under changing
climatic and market conditions. Longitudinal studies
should be conducted, integrating detailed farm account-
ing records, soil and water monitoring data, and farmer
surveys, to track both economic returns and resource
use efficiency over a 5-10 year horizon. Another key
area of interest involves the development of training
programs and institutional support mechanisms to
facilitate the dissemination of these technologies among
farmers. Future initiatives should design modular, prac-
tice-oriented training programs focused on digital lit-
eracy, irrigation management, and precision agriculture
tools, targeting different farmer profiles (smallholders,
young farmers, cooperatives), possibly through partner-
ships with vocational training institutes and local coop-
eratives. Collaborations with universities and research
centers to design dedicated training programs could
help overcome learning curve challenges and promote
greater adoption of digital systems.

Finally, the study highlights the importance of tar-
geted policy actions to mitigate power asymmetries
between farmers and technology providers. By introduc-
ing conditional incentives, promoting collective procure-
ment mechanisms, supporting open innovation models,
and formalising the role of Living Labs as technology
intermediaries, policymakers can help ensure that the
digital transformation in agriculture promotes autono-
my, inclusiveness, and long-term sustainability (Clapp
and Ruder, 2020; Bellon-Maurel et al., 2022; Gava et al.,
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2025). These measures are essential to enable a fair and
balanced agroecological transition, particularly in vul-
nerable rural contexts.

This study demonstrates that the integration of ena-
bling technologies, supported by a participatory model
such as the Living Lab, represents a fundamental driver
in accelerating the agroecological transition in rural
areas. Despite certain limitations, the findings provide a
strong scientific and operational contribution, suggesting
that the combination of digital innovation and agroeco-
logical practices can not only enhance economic efficien-
cy and environmental sustainability but also foster cul-
tural and organizational change toward a more resilient
and inclusive agricultural system. Future research and
targeted policy interventions will be essential to facili-
tate the broader adoption of these models and contribute
decisively to the transformation of the agri-food system.
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Abstract. The increasing complexity of global food supply chains has heightened
consumer concerns about food safety, quality and authenticity, and triggered a grow-
ing demand for transparency-enhancing technologies such as blockchain. This study
examines the factors influencing consumers’ intention to purchase organic pasta with
blockchain-based traceability using an extended Theory of Planned Behaviour (TPB)
framework. In addition to the traditional TPB constructs, the study incorporates trust
in quality certifications and attitudes towards blockchain technology to provide a com-
prehensive analysis of decision-making processes. The data was collected via an online
survey of 190 Italian respondents and analysed using Partial Least Squares Structural
Equation Modelling (PLS-SEM). The results show that subjective norms, perceived
behavioural control and attitudes towards technology significantly influence purchase
intentions, while trust in quality certifications and attitudes towards the traceability of
blockchain do not significantly influence purchase intention.. These findings suggest
that while blockchain technology is recognised for its potential to improve transparen-
cy, its practical benefits are not yet fully understood or appreciated by consumers. This
study contributes to the literature on consumer behaviour in the agri-food sector and
provides practical insights for policy makers and marketers to promote blockchain-
based traceability systems.

Keywords: consumer purchase intention, theory of planned behaviour (TPB), organic
pasta, blockchain-based traceability, food fraud, technology.

1. INTRODUCTION

In the food sector, issues such as traceability and food safety have
become central to the supply chain, with producers increasingly prioritising
these aspects over other objectives (Alshehri, 2023). This shift goes hand in
hand with an emerging paradigm shift in consumer demand. Consumers
are now showing an increasing preference for products that are perceived
as safer (Mahsun et al., 2023). This is evidenced by the fact that more and
more consumers are expressing concerns about food safety and quality and,
therefore, favour foods whose labels provide clear and accurate information
about product characteristics (Lewis & Grebitus, 2016; Sadilek, 2019; Moru-
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zzo et al. 2020; Kaczorowska et al. 2021). The European
Parliament and the Council have also established qual-
ity certification for organic agri-food products through
Regulation (EU) No 2018/848. According to this Regu-
lation, organic products have been developed to respond
to a specific market where consumers demand products
whose production respects the environment and animal
welfare, preserves biodiversity and contributes to rural
development (Sampalean, et al., 2021). However, con-
sumers cannot verify credence attributes and must there-
fore rely on the reliability of the manufacturer’s or retail-
er’s claims (Plasek and Temesi 2019). Credence attributes
refer to product characteristics that consumers cannot
directly verify before purchase and must rely on external
assurances to assess their validity (Plasek and Temesi,
2019; Lassoued and Hobbs, 2015). In the context of food
products, these attributes include factors such as organic
certification, geographical origin, sustainability claims,
and production methods (Fernqvist and Ekelund, 2014)
The credibility of these parties also depends on con-
sumer trust in the food system, including the regulatory
authorities responsible for ensuring food safety and com-
pliance with food labelling regulations (Fernqvist and Eke-
lund 2014; Lassoued and Hobbs 2015; Meijer et al. 2021).
Trust is a multi-layered concept that is shaped by
several factors, including the geographical and temporal
distance between the parties involved, cultural norms,
the institutional environment and historical events that
influence perceptions of food safety and quality (Berg,
2004). Currently, consumer trust in the food system is
uncertain, particularly in relation to transparency and
authenticity (Frewer, 2017; Wu et al., 2021; Menon et
al., 2021) and more generally in relation to perceptions
of food safety (Macready et al., 2020; Meijer et al., 2021).
The main cause of this trend is the inherent complexity
of the food supply chain, which involves a multitude of
parties and processes (Hassoun et al., 2020; Reitano et
al., 2024) and can lead to food safety issues (Meijer et al.,
2021). This decline in consumer confidence has signifi-
cant consequences, such as the limited effectiveness of
certifications and consequently a decrease in potential
demand for products with credible attributes, such as
origin, production process characteristics and product
properties (Marozzo et al., 2022). From a public inter-
est perspective, low trust has negative implications for
sustainable development and public health policies that
rely on traditional forms of certification to inform con-
sumers about the nutritional and ethical value of prod-
ucts Kjeernes, 2006; Sapp et al, 2009; Hobbs and God-
dard, 2015; Kaiser and Algers, 2017). Considering the
above-mentioned characteristics of the agri-food produc-
tion system, it is essential to develop a coherent manage-
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ment system adapted to its specific needs (Gardeazabal
et al.,, 2023). In response to the prevailing concerns in
the agri-food sector, a number of technological inno-
vations have emerged to improve and strengthen food
traceability. Among these, blockchain technology (BCT)
has attracted much attention (Reitano et al., 2024). The
emergence of cryptocurrencies has led to the populari-
sation of BCT, which can be defined as a decentralised
and immutable register of information (Gupta and Sad-
oghi, 2019; Krzyzanowski, Guerra & Boys, 2022). In
such a system, all subjects in the chain can access the
recorded information at any time, but without the pos-
sibility to change a record (Tian, 2017; Zhao et al., 2019;
Wiinsche and Fernqvist, 2022). This function is suitable
for meeting the specific requirements of the food indus-
try and creating a reliable system for tracking the path
of a food product from production to consumption. This
will make it easier to ensure food safety (Saurabh & Dey;,
2021; Moénica Martinez-Castafieda & Fejoo, 2023) and
has the potential to combat problems such as label tam-
pering, counterfeiting of designations of origin and the
introduction of substandard products (Ayan et al., 2022;
Serra-Majem et al., 2020).

In the food sector, BCT seems to be a promis-
ing solution that could enable more transparency (see
Javaid et al., 2021; Aldrighetti et al., 2021; Singh &
Sharma, 2022; Vern et al., 2024). It is already being used
to record all transactions between actors involved in
the supply chain to ensure the transparency and trace-
ability of products (see Kamilaris et al., 2019; Galvez et
al., 2018). However, despite its potential, a fundamen-
tal factor is the understanding of the benefits attributed
by consumers, as emphasised by Feng and colleagues
(2020). Indeed, the widespread adoption of this technol-
ogy depends on consumer perception and acceptance
(Albertsen et al., 2020). As Singh et al. (2023) argue, the
success of any technological innovation in the food sec-
tor is inextricably linked to consumer acceptance. In the
consumer market, there is a growing willingness among
consumers to adopt innovative technologies that facili-
tate access to comprehensive data on supply chain opera-
tions (Cozzio et al., 2023). In line with this premise, a
study by Osei et al. (2021) hypothesises that consum-
ers will adopt BCT technology if it can demonstrably
improve food safety and quality.

Numerous studies have shown that BCTs have a pos-
itive impact on consumer purchasing decisions (Sander
et al.,, 2018; Violino et al., 2019; Polenzani et al., 2020;
Lin et al., 2022). However, other authors have pointed
to a discrepancy between consumer perception and the
actual value attributed to technology-specific informa-
tion confirming that food has been traced with BCTs
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(Shew et al., 2022). Liu et al. (2023) investigated the rela-
tionship between consumer trust in the agri-food system
and certification and showed a positive influence of high
levels of trust on preferences for products with traceabil-
ity and the use of BCTs. The influence of BCTs on pur-
chasing decisions, especially for certified food has a sig-
nificant impact on demand and thus contributes to the
success of BCT-based systems. The comprehensive trace-
ability information that this technology provides along
the entire food supply chain represents significant added
value for consumers.

Contini et al. (2023) have shown that BCT pro-
motes a positive attitude towards consumer preferences
and perceptions, thus increasing trust in the system due
to satisfaction with the perceived quality of the certi-
fied products. As Mazzu et al. (2021) note, BCT-based
traceability also requires the involvement of certification
and regulatory bodies in the supply chain system. This
helps to increase consumer confidence in the reliability
of the information provided, while facilitating access to
comprehensive food information, including declarations
from food supply chain actors, such as organic certifica-
tion, chemicals used and agricultural practises. Although
the technological potential of BCT has been demonstrat-
ed in previous studies (Kamilaris et al., 2019; Galvez et
al., 2018), there is still little research on consumer per-
ceptions and intentions. In particular, there is a need to
investigate how consumers evaluate BCT-enabled trace-
ability in combination with established constructs such
as trust, attitudes and perceived ease of use. In recent
literature, theoretical frameworks such as the Theory
of Planned Behaviour (TPB) have been used to analyse
consumer intentions to adopt blockchain in food sys-
tems. The studies by Dionysis et al. (2022) and Lin et al.
(2021), for example, highlighted the importance of sub-
jective norms and perceived behavioural control. How-
ever, the results regarding attitudes towards BCT were
inconclusive. Contini et al. (2023) emphasised the poten-
tial of BCT to increase trust, but their results show a dis-
crepancy between consumer trust in traditional certifica-
tions and the added value of blockchain traceability.

To fill this gap, this study investigates which factors
influence consumers’ intention to buy organic pasta with
blockchain-based traceability.

We conducted an online questionnaire with a sam-
ple of 190 Italian respondents to investigate their behav-
iour towards organic pasta, as it already plays an impor-
tant role in several practical applications of BCT. Using
the extended TPB model, we were able to identify the
factors that influence consumption. Constructs such as
attitude, subjective norms and perceived behavioural
control were complemented by trust in quality certifica-

tions and attitudes towards technology to increase the
predictive power of the model. Partial Least Squares
Structural Equation Modelling (PLS-SEM) was used to
analyse the relationships between the constructs and val-
idate the research hypotheses.

2. THEORETICAL FRAMEWORK AND
RESEARCH HYPOTHESES DEVELOPMENT

The Theory of Planned Behaviour (TPB) is a theo-
retical model from the field of psychology with par-
ticular significance for predicting and changing human
behaviour, especially in connection with the use of
technology (Ajzen, 2020; Fleif§ et al., 2024; Cudjoe et
al., 2023). The TPB postulated by Ajzen (1980) is based
on the assumption that individual behaviour depends
on three basic elements: the individual’s attitude, sub-
jective norms or social pressure and perceived behav-
ioural control. The TPB has been used in the consumer
decision-making literature in a variety of contexts (Lin,
2007), including in the context of food choice, where it
has been used to identify the motivational factors under-
lying the choice of one product over another (Nardi et
al.,, 2019; Sogari et al., 2024) and to predict consum-
ers’ behaviour and intentions towards organic products
(Armitage and Conner, 2001). The TPB is based on the
idea that a person’s behaviour depends on their intention
to perform that behaviour. Behavioural intention is the
result of the interaction of three factors:

1) Attitude (ATT): represents a person’s inclination
to perform a certain action. It is a person’s opinion
or judgement about adopting or performing a par-
ticular behaviour based on their values, beliefs and
previous experiences with that behaviour. A posi-
tive attitude leads to a greater likelihood of behaving
consistently with one’s intention.

2) Subjective norms (SN): refers to the influence of
other people’s thoughts and attitudes towards a par-
ticular behaviour. In other words, it is the social
pressure to perform or avoid a certain action, which
may result from the expectations, encouragement or
opinions of others.

3) Perceived Behavioural Control (PBC): refers to the
perception of a person’s ability to perform an action
or the perception of the difficulty or ease of a par-
ticular behaviour depending on certain factors.
Several studies have investigated consumers’ inten-

tion to buy products tracked with a blockchain-based

system. In the study by Dionysis et al. (2022), the factors
influencing the purchase intentions of coffee consum-
ers considering coffee products that can be tracked with
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a blockchain-based tracking system are analysed using
the TPB model. The original TPB model was extended
to include additional constructs such as trust, past habits
and environmental protection. The study contributes to
the literature by providing insights into the factors that
influence consumers’ purchase intentions and shows that
attitude towards coffee that is traceable with a block-
chain-based traceability system, subjective norm and
perceived behavioural control are positively associated
with purchase intention. The study by Lin et al. (2021)
also utilised the TPB to investigate the factors influenc-
ing Chinese consumers’ intentions towards blockchain
food traceability technology to ensure the food safety
and quality of Chinese organic food. The study proposed
an integrated conceptual framework combining two
established theoretical models: the TPB and the infor-
mational success model (ISS). The study found that atti-
tude and perceived behavioural control significantly and
positively influence intention to use blockchain adop-
tion, while subjective norms are positively but not signif-
icantly correlated with intention to use.

The work of Menozzi et al. (2015) analyses consumer
attitudes and behaviour towards traceable food to explain
the intention to buy traceable food using TPB. The
results show that the predictive power of the TPB mod-
el increases significantly when new variables are added:
habits, trust, past behaviours and socio-demographic var-
iables. The results show that attitudes and trust influence
the purchase intention for traceable food products.

Prisco et al. (2022) present an integrated approach
that combines the TAM (Technology Acceptance Model)
and the TPB (Theory of Planned Behaviour) and adds
as benefits the additional factors “efficiency and safety”,
“reduced costs” and “quality of customer service” per-
ceived by companies adopting blockchain technology.
The results show that attitude and perceived behavioural
control are the most important predictors of intention
to adopt blockchain, while perception of benefits is the
most important predictor of attitude. In addition, subjec-
tive norms were found to have a positive effect on behav-
ioural intention, while the effect of perceived ease of use
on attitude was not significant.

In their study, Liu et al. (2023) explored the asso-
ciation between consumer trust in agricultural and food
systems and the impact of certifications. Their results
showed a positive correlation between high consumer
trust and a preference for products with certificates of
origin and the use of BCTs. The influence of BCTs on
consumer purchasing decisions, especially for certified
food, is an important factor influencing demand and
thus the success of BCT-based systems. When investi-
gating the relationship between trust in the food system
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and certifications, it was found that a high level of trust
positively influences preferences for PDO and BCTs,
while it has a less pronounced effect on preferences for
organic certifications (Contini et al., 2023). The absence
of a notable interaction between the degree of trust in
the food system and the preference for organic certifi-
cation can be attributed to the finding that such a pref-
erence does not rely on the degree of trust in the food
system in general. Rather, it is determined by the align-
ment of values among the various actors involved in the
organic supply chain (Thorsee, 2015). This trust is rein-
forced by consumer satisfaction with the quality of the
products (Ladwein and Romero, 2021) and is linked to
the organic certification logo (Janssen and Hamm, 2012).

Based on the analysis of previous literature, the
TPB (Ajzen, 1991) was chosen as the conceptual model
for this study. However, this study aims to improve the
predictive power of the TPB. In addition to the origi-
nal items of the TPB, such as attitude, subjective norms
and perceived behavioural control, additional constructs
are introduced: trust in quality certification and atti-
tude towards technology. Based on the above literature
and theory, the following hypotheses are formulated. To
avoid verbosity, the indicators in the table are presented
in capital letters. See Table 1 for details.

3. DATA AND METHOD
3.1. Data collection

The data collection tool consists of an online ques-
tionnaire developed on the Qualtrics platform to explore
consumer intentions regarding organic pasta tracked
through an innovative traceability system. The design of
the questionnaire is based on the TPB presented in the
previous section. The TPB approach effectively identi-
fies factors influencing decision-making and perceived
risk, making it suitable for the focus of this study on
traceable products. The questionnaire aims to capture
the determinants influencing consumer preferences and
behaviour by incorporating the key TPB constructs. The
questionnaire was divided into several sections, each
designed to collect specific information related to the
objectives of the study.

1) Introduction: This section provided a general
overview of the study and ensured that participants kept
their responses confidential.

2) TPB constructs: This section explored partici-
pants’ intentions and the key dimensions of the TPB
model: attitude, subjective norms and perceived behav-
ioural control.

- The intention construct captures the likelihood
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Table 1. Hypotheses and paths

Hypotheses Path
H1: Subjective norms positively affects the intention to purchase pasta traced with blockchain technology (SN) SN-INT
H2: Perceived behavioral control positively affects the intention to purchase pasta traced with blockchain technology (PBC)  PBC-INT
H3: Attitude towards traceability positively affects the intention to purchase pasta traced with blockch2ain technology (ATT) ATT-INT
H4: Trust in quality certifications positively affects the intention to purchase pasta traced with blockchain technology (TQC) TQC-INT
H5: Attitude towards technology positively affects the intention to purchase pasta traced with blockchain technology (TEC) ~ TEC-INT

that consumers will consider purchasing pasta with

blockchain traceability once it is available.

- The subjective norms construct measures the influ-
ence of social factors, including family, academia,
media, and retail, on consumers’ decision to pur-
chase pasta with blockchain traceability.

- The construct of perceived behavioural control
assesses consumers perceptions of the ease or dif-
ficulty of accessing and using products with block-
chain traceability. This includes finding such prod-
ucts in shops and using the relevant technology,
which is critical to understanding potential barriers
to adoption.

— The attitudinal construct captures consumer per-
ceptions of the benefits associated with using block-
chain technology for food traceability and focuses
on aspects such as safety, transparency, authenticity
and production standards.

The design of these questions was guided by previ-
ous research such as Dang & Tran (2020), Dionysis et al.
(2022) and Menozzi et al. (2015) to ensure that all key
variables were comprehensively addressed. A 5-point
Likert scale was used, ranging from ‘strongly disagree’
to ‘strongly agree’,” so that participants could express a
nuanced opinion on each statement.

3) Consumer Trust in Quality Certification: Trust in
quality certification is an important factor that influenc-
es consumers’ confidence in the safety and authenticity
of products. This construct assesses the extent to which
consumers trust the quality certification information
provided by companies. This block focused on assessing
trust in organic food producers and sellers, drawing on
the work of Li et al. (2023).

4) Attitudes towards technology: The questions in
this section were organised based on the Technology
Readiness Index (TRI), a scale validated by Parasuraman
(2000). This index measures consumer attitudes toward
technology in four dimensions: Optimism (OPT), Inno-
vativeness (INN), Discomfort (DIS), and Insecurity
(INS). By including these dimensions, the survey was
able to assess how technological readiness influences
consumer acceptance of traceable systems. Respondents

rated their level of agreement on a 5-point scale, which
allowed for an in-depth analysis of their comfort and
adaptability to new technological applications.

5) Socio-demographic questions: In the last section,
demographic information such as age, gender, education
level and income were collected.

The scales for the TPB constructs and the Technol-
ogy Readiness Index were adopted from previous studies
to ensure their validity and reliability. The use of estab-
lished scales in the study ensured that the constructs
measured accurately reflected the concepts they were
intended to assess.

The online questionnaire was administered to a
sample of Italian respondents to gain insight into the
factors that influence consumer behaviour. The survey
was distributed online via the most popular social net-
working platforms (WhatsApp, Instagram and Face-
book) to maximise reach and engagement. These plat-
forms facilitated efficient data collection across all
social networks and allowed for broader geographic and
demographic representation. The survey was available
on social media platforms from 30 October 2023 to 28
February 2024. During this period, participants were
able to complete the questionnaire at their leisure. A
total of 251 responses were collected, of which 190 were
completed. A widely used procedure for estimating the
minimum sample size in PLS-SEMs is the “tenfold rule”
(Hair et al., 2011), which assumes that the sample size
should be greater than 10 times the maximum number
of inner or outer model terms that point to a latent vari-
able in the model. PLS-SEM is advantageous as it does
not impose strict assumptions about data distribution
and can provide reliable results even when working with
limited sample sizes by maximizing explained variance
and minimizing estimation bias (Russo & Stol, 2021).

A combination of a random and snowball system
was used to recruit participants. This approach was cho-
sen for its practicality, as it enabled the efficient collec-
tion of responses from easily accessible individuals and
facilitated the expansion of the research area and access
to larger social networks. The random sample initially
enabled rapid distribution of the survey, with the ques-
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Table 2. Latent variables and items in detail.

Giulia Maesano et al.

Variable

Items

1. When blockchain-traceable pasta becomes available, I intend to buy it

Intention (INT)

2. When blockchain-traceable pasta becomes available, I will look for it and consider buying it

3. When blockchain-traceable pasta is available, I am inclined to buy it

1. I would buy pasta tracked via blockchain technology because my partner, family and friends approve it

2. T would buy pasta tracked via blockchain technology because scientists are in favour

Subjective Norms (SN) .
avour

3.1 would buy pasta tracked via blockchain technology because the media (TV radio, social media) is in

4.1 would buy pasta tracked via blockchain technology because the food manufacturers and supermarkets

promote it

Perceived Behavioural Control
(PBC)

1. I feel able to find blockchain-tracked food products in shops easily
. I think it is easy to use apps or online tools to verify food traceability via blockchain

. I think it is easy for me to follow the food production chain thanks to blockchain

. With the use of blockchain, organic pasta traceability information is more secure

Attitude toward BCT (ATT)

. The origin of organic pasta tracked with blockchain traceability is always transparent

. Organic pasta with blockchain traceability will meet higher production standards

. Companies always comply with quality certification regulations

Trust toward Quality
Certifications (TQC)

. Companies provide consumers with transparent information on quality certification

. Quality-certified product information is always truthful

2
3
1
2
3. Organic pasta information with blockchain traceability is more authentic
4
1
2
3
1

. I am optimistic about the innovative impact of technology

(3]

Attitude toward Technology

(TEC) . . .
information security

. I feel at ease to become familiar with technology
3. I believe that the adoption of technology can generate a significant improvement in transaction and

4.1 find innovative technology to be mentally stimulating

tionnaire accessible and fillable online and a particular
focus on social media users.

3.2. Data analysis

The data analysis was conducted using the softwere
Stata 18.5. Structural equation modelling (SEM) was
used to examine the extended theoretical framework and
test the hypotheses. SEM combines various multivariate
analysis methods that facilitate the investigation of mul-
tiple interactions between several latent variables (Berki-
Kiss & Menrad, 2022). It is widely used in the social sci-
ences, especially in the field of psychology. In this study,
the partial least squares (PLS) structural equation model
(SEM) was utilised. PLS-SEM is a statistical tool that
has gained popularity among researchers who use it to
analyse empirical data and evaluate different relation-
ships simultaneously (Hair et al., 2019). The applications
of covariance-based SEM (CB-SEM) and partial least
squares SEM (PLSSEM) are complementary, rather than
competitive (Marcoulides & Saunders, 2006). PLS-SEM
is more effective than CB-SEM for analysing complex
cause-effect relationships between multiple latent vari-

ables (Sarstedt et al., 2016). In addition, PLS-SEM pro-
vides reliable results even with relatively small sample
sizes compared to covariance-based SEM. Furthermore,
Hair et al. (2011) suggested that PLS-SEM is the optimal
approach when research aims to identify causal relation-
ships with unidentified potential variables that influence
individuals’ multidimensional behaviour and intentions.
The process consists of two steps. These include the
structural model (inner model) and the measurement
model (outer model). The structural model evaluates the
development of theories and hypotheses, while the reli-
ability and validity of the constructs are evaluated using
the measurement model (Russo & Stol, 2021).

4. RESULTS

Table 3 contains the most important socio-demo-
graphic indicators. In the study sample, men (41%) and
women (48%) were almost equally distributed. The larg-
est age groups were 30-39 (33%) and 40-49 (29%), fol-
lowed by those over 60 (22%). The youngest group com-
prised only 16% of participants. It is noteworthy that
there were no people between the ages of 50 and 59.
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Table 3. Socio-demographic characteristics

Detail of respondents Perc(ﬁ/zl)t age
Male 41
Gender Female 48
Other genders 6
Prefer not to answer
19-29 16
30-39 33
Age 40-49 29
50-59 0
Over 60 22
Elementary school 0
Middle school 2
Education High school 14
College degree 31
Post-degree (master, PhD.) 53
Enterprise and public institution 31
Employee 46
. Not employed 7
Occupation
Unemployed 4
Retired 5
Student
0€ 18
From 0 to 10.000 € 33
From 10.001 to 26.000€ 27
?éi‘;‘:‘; ﬁ‘(’)ﬂth) From 26.001 to 55.000€ 7
From 55.001 to 75.000€ 4
From 75.001 to 120.000€ 2
>120.000€ 8

The survey participants have a high level of educa-
tion: the vast majority (84%) have a university or post-
graduate degree. Only a small percentage (14%) have a
high school diploma, and even fewer (2%) have complet-
ed middle school. None of the respondents reported hav-
ing completed primary school. Most respondents (46%)
were white-collar workers, followed by those working in
businesses and public institutions (31%). A smaller pro-
portion (16%) were unemployed and only 7% were stu-
dents. In terms of income, the majority of participants
(60%) reported an income of between €0 and €26,000.
A smaller percentage (21%) earned more than 26,001
euros. Interestingly, 18% of participants stated that they
had no income.

The measurement model was assessed on the basis
of convergent and discriminant validity. Convergent
validity refers specifically to the extent to which the indi-
cators of the variables accurately indicate and measure
them and to which other measures of the same vari-
ables correlate appropriately (Bani-Khalid et al., 2022).

To determine the convergent validity of the measure-
ment model, we assessed the loadings of the indicators,
the average variance extracted (AVE) and the composite
reliability (CR) as well as Cronbach’s alpha. According to
the literature, the values for Cronbach’s alpha and com-
posite reliability (CR), average variance extracted (AVE)
and the loadings of the indicators must be higher than
0.70, 0.70, 0.5 and 0.70, respectively (Khan et al., 2023;
Lin et al., 2021; Rubel et al., 2021). Accordingly, the load-
ings of the indicators were examined at in the first stage.
As shown in Table 4 in the final measurement model, all
indicator loadings exceed the threshold of 0.70. It means
that the construct explains over half of the variance of
the indicator. Therefore, acceptable item reliability is
provided. Moreover, Cronbach’s alpha and composite
reliability are typically used to evaluate internal consist-
ency reliability (Hair et al., 2019). As Table 4 shows all
composite reliability and Cronbach a values are higher
than 0.70, as it suggests that the elements of the same
latent variable are similar.

The total mean of the squared loadings of the items
associated with the construct is represented by the Aver-
age Variance Extracted (AVE) (Russo & Stol, 2021) was
used to evaluate convergent validity. The Table 4 dis-
plays that theaverage variance extracted (AVE) from
each latent variable is higher than 0.5. it means that the
construct explains more than half of the variance of its
items. In summary, Table 4 demonstrates that the stand-
ardized loadings, Cronbach’s alpha, CR, AVE are all
higher than the values recommended by the literature.
Therefore, convergent validity was confirmed based on
the results.

Discriminant validity shows the extent to which
the items represent the target construct and whether a
latent variable measures a separate construct (Russo &
Stol, 2021). In this study discriminant validity assessed
with the Heterotrait-monotrait ratio of the correlations
(HTMT). The Heterotrait-Monotrait ratio of correla-
tions (HTMT) is defined as the average of the corre-
lations between items measuring different constructs
(heterotrait correlations) relative to the geometric
mean of the average correlations for items measuring
the same construct (monotrait correlations) (Hair et
al., 2019). The result of Table 5 illustrates that all
Heterotrait-monotrait ratio of correlations (HTMT)
are below the threshold value of 0.90recommended by
(Hair et al., 2019), which confirms the sufficient dis-
criminant validity of the individual constructs. It can
therefore be concluded that the measurement model
fulfils the required criteria for validity and reliabil-
ity (reliability as well as convergent and discriminant
validity).
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Table 4. Reliability and validity tests.
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Latent Construct Items Standa.rdized Cronbach’s alpha CR AVE
loadings
INT1 0.898
Intention (INT) INT2 0.932 0.834 0.901 0.753
INT3 0.764
SN1 0.873
L SN2 0.858
Subjective Norms (SN) 0.869 0.910 0.717
SN3 0.814
SN4 0.840
PBC1 0.783
Perceived Behavioural Control (PBC) PBC2 0.892 0.814 0.890 0.731
PBC3 0.885
ATT1 0.882
Attitude toward BCT (ATT) ATT2 0841 0.893 0.926 0.757
ATT3 0.900
ATT4 0.856
TQC1 0.908
Trust toward Quality Certifications (TQC) TQC2 0.929 0.904 0.940 0.839
TQC3 0911
TEC1 0.916
Attitudes toward Technology (TEC) TEC2 0.929 0.916 0.947 0.856
TEC3 0.930

We evaluate the structural model in terms of vari-
ance explained (R2), effect size (f2), predictive relevance
(Q2), path coeflicient (B), and hypotheses testing. The
structural model is employed for the purpose of investi-
gating the impact of exogenous variables on endogenous
variables. The results of the hypotheses developed are
shown in Table 6. The adjusted R2 of 0.58 indicates that
subjective norms, perceived behavioural control, and
attitudes toward technology explain a substantial por-
tion of the variance in consumers’ intentions to purchase
traced pasta using blockchain technology.

Effect size (f2) was calculated to measure the mag-
nitude of the significant effects. As Cohen (1988) sug-
gested, in the structural model, f2 values of 0.02 indicate
small effects. 0.15 indicates medium effects, and 0.35
indicates large effects (Bani-Khalid et al., 2022). Table 5
shows that Subjective Norms have a medium effect size,
and Perceived Behavioural Control and Attitude toward
Technology have a small effect size.

In this step, the Q2 value is calculated to evaluate
the PLS path model’s predictive accuracy. The approach
relies on the blindfolding technique that eliminates indi-
vidual points from the data matrix. These omitted points
are then imputed using the mean, followed by estimating
the model parameters. Thus, the Q* does not exclusively
represent out-of-sample prediction; it reflects a combi-
nation of out-of-sample predictive ability and in-sample

explanatory power. The blindfold procedure predicts the
missing data points for each variable using these esti-
mated parameters as inputs. Small discrepancies between
the original and predicted values result in a higher Q2
value, indicating higher prediction accuracy (Hair et al.,
2019). Based on the result of Table 6, the Q2 value for the
endogenous latent construct is greater than zero.

The conclusions were drawn based on p-values (see
Table 6), which led to the decision to accept or reject the
hypotheses taken in the study.

To answer H1: “Subjective norms positively affects
the intention to purchase pasta traced with blockchain
technology”, the results show that SN have a statistically
significant positive effect on the INT to purchase block-
chain-traceable products. Therefore, the H1 is accepted.
The coefficient of 0.403 indicates that social influence
plays a significant role in shaping consumer behaviour.

To answer hypothesis H2 “perceived behavioural
control positively affects the intention to purchase pasta
traced with blockchain technology”, it was also found to
have a positive and significant effect on intention. How-
ever, the effect size (0.032) was smaller than that of SN.
Thus, H2 is accepted.

In response to H3 “Attitude towards traceability
positively affects the intention to purchase pasta traced
with blockchain technology”, contrary to expectations,
ATT did not significantly affect intention. The very low
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Table 5. Results of the discriminant validity - Heterotrait-monotrait
ratio of correlations (HTMT).

INT SN PBC ATT TQC TEC
INT
SN 0.782
PBC 0.762 0.680
ATT 0.690 0.695 0.856
TQC 0.404 0.494 0.487 0.389
TEC 0.730 0.563 0.798 0.772 0.270

coefficient and the high p-value (0.969) indicate that the
attitude towards blockchain-traceable products does not
directly influence the purchase intention in this context.
Therefore, H3 is rejected.

Hypothesis H4, “Trust in quality certifications posi-
tively affects the intention to purchase pasta traced with
blockchain technology”, was not supported, as indicated
by the non-significant coefficient (0.006) and high p-val-
ue (0.913).

To answer H5 “Attitude towards technology posi-
tively affects the intention to purchase pasta traced with
blockchain technology”, TEC has a significant and posi-
tive influence on purchase intention with a coefficient of
0.306. Therefore, the H5 is accepted.

5. DISCUSSION

This study provides empirical evidence on the
determinants influencing consumers’ intention to pur-
chase blockchain-enriched products, with a focus on
pasta. The results highlight important factors influenc-
ing consumer behaviour and offer practical implications
for marketers and policy makers seeking to promote the
adoption of blockchain technology in the food indus-
try. These include subjective norms, perceived behavio-
ral control, and attitudes toward technology, which sig-
nificantly influenced consumers’ purchase intentions for
blockchain-traceable organic pasta. The results confirm

Table 6. Result of the hypothesis testing.

that technology readiness is an important determinant
of consumers’ willingness to purchase pasta with block-
chain-based traceability. Result indicates that consumers
who have a positive attitude towards technological inno-
vation are more likely to have the intention to purchase
blockchain-traceable products. This is consistent with
the Technology Readiness Index (TRI), which postulates
that optimism and familiarity with technology can facili-
tate the adoption of new technological solutions (Par-
asuraman, 2000). The significance of this relationship
suggests that fostering a positive attitude towards the
benefits of technology, such as increased transparency
and safety in the food supply chain, may encourage con-
sumers to adopt products that utilise blockchain trace-
ability. This emphasises the importance of education and
technological awareness in marketing strategies. This
result is consistent with the findings of Lin et al. (2021),
who also found a positive correlation between consum-
ers’ technology readiness and their willingness to pur-
chase technology-enabled products. The positive impact
of TEC suggests that individuals with an optimistic atti-
tude towards the benefits and simplicity of technological
products are more willing to accept products that incor-
porate blockchain for traceability. This finding empha-
sises the importance of technological awareness and
educational initiatives. Concrete examples of educational
initiatives include awareness campaigns to educate the
public on how blockchain improves food traceability and
safety; interactive digital tools, such as mobile apps or
QR codes on packaging, that allow consumers to access
transparent supply chain data; and workshops and
online courses aimed at consumers and food profession-
als to improve understanding and trust in blockchain-
based certifications.

This result provides a valuable opportunity for com-
panies to develop marketing campaigns that emphasise
the transparency, security and innovation of blockchain
technology. In this way, companies can gain consumer
trust and encourage adoption. For example, educating
consumers about how blockchain technology guarantees
authenticity and traceability could appeal to technologi-

Hypothesis No. Relationship Coeflicient p-Value Decision R’ a Q? P
H1 SN -> INT 0.403 0.000™" confirmed 0.439 0.216
H2 PBC -> INT 0.187 0.017** confirmed 0.032
H3 ATT-> INT 0.003 0.969 unconfirmed 0.582 0.000
H4 TQC -> INT 0.006 0.913 unconfirmed 0.000
H5 TEC -> INT 0.306 0.000*** confirmed 0.099

Note: ** p < 0.05, *** p < 0.01.
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cally people who value innovation and transparency in
their food.

The study found that ATT does not have a sig-
nificant impact on purchase intent. This result may be
explained by the specificity of blockchain technology,
where consumers may not fully understand or prioritise
the benefits even if they have a positive attitude towards
it. Alternatively, external factors such as lack of trust
could also have a stronger influence on purchasing deci-
sions, thus obscuring the effect of attitude. This result
is in line with the findings of previous studies by Dang
& Tran (2020) and Prisco et al. (2022), which found
that general attitudes towards a product do not always
translate into purchase behaviour, especially in contexts
where consumers do not fully understand or appreciate
the perceived benefits. However, this finding contradicts
the results of Dionysis et al. (2022), who postulated that
a positive attitude towards traceability and transparen-
cy in the food industry is a good predictor of purchase
intention. The divergence in results may be attributed
to contextual differences or the presence of features of
blockchain technology that consumers have not yet fully
understood. Even if consumers are in favour of the con-
cept of traceability, this does not necessarily mean that
they are motivated to buy pasta with blockchain trace-
ability. This suggests a disconnect between attitudes and
actions, with consumer attitudes not always translating
into actual purchasing behaviour. Further research could
explore how this gap can be bridged by linking block-
chain traceability to more directly perceived benefits
such as food safety, quality assurance and environmental
sustainability.

PBC was identified as an important predictor of pur-
chase intention, suggesting that consumers who believe
they have the ability and resources to identify and uti-
lise blockchain-traceable pasta products are significantly
more likely to express a purchase intention. This result
is consistent with the TPB framework, which states that
consumers who feel able to find and use blockchain
traceable products are more likely to have the intention
to purchase them. This finding emphasises the impor-
tance of ease of access and use for technology-driven
innovations such as blockchain. Improving the level of
control perceived by consumers through intuitive appli-
cations and clearer information can increase the likeli-
hood of adoption. Moreover, the finding is consistent
with the results of studies by Lin et al. (2021), Dang &
Tran (2020), Dionysis et al. (2022) and Prisco et al.
(2022), which have shown that PBC plays a central role
in influencing consumer intentions, especially in the
context of new technology adoption. The significant role
of PBC suggests that ease of access and use are key fac-
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tors for consumers. If consumers perceive blockchain-
traceable pasta as easily accessible and verifiable, they
are more likely to express interest in purchasing it.
Therefore, companies should prioritise the development
of user-friendly and accessible blockchain-based tracea-
bility solutions. One possible solution is the development
of straightforward applications or digital resources that
allow consumers to effortlessly verify the traceability
of products, improving their perceived control over the
purchasing process. Despite the inconsistency of SN as a
predictor in different studies, the results of this research
context show its importance. This result is consistent
with the theory of planned behaviour, which postulates
that the approval and support of significant others, e.g.
family, friends and social networks, can strongly influ-
ence a person’s behavioural intentions (Ajzen, 1991).

This suggests that opinions, recommendations and
social pressure from peers, family, media and credible
authorities are critical to consumers’ intention to pur-
chase pasta with blockchain traceability. This finding
contradicts the discrepancies observed in other studies,
but highlights an important aspect of social influence
on consumer behaviour. The importance of subjective
norms in this study suggests that social acceptance and
approval can be effective in driving the adoption of prod-
ucts with blockchain traceability. Incorporating social
evidence, such as endorsements from influencers, experts,
and food industry leaders, into marketing strategies
could effectively generate consumer interest. In addition,
the implementation of educational initiatives that spread
knowledge about the benefits of blockchain technology,
supported by authoritative figures such as scientists and
food safety professionals, could help to reinforce societal
expectations of purchasing such products.

Finally, the hypothesis that trust in quality certi-
fications directly influences consumers’ intention to
buy products with blockchain traceability was not con-
firmed. This result indicates that trust in existing qual-
ity certifications does not necessarily lead to a higher
purchase intention for blockchain-traceable products.
One possible explanation for this is that while consum-
ers trust conventional quality certifications, they do not
perceive traceability via blockchain as directly linked
to these traditional certifications or do not see it as an
added value. The lack of significant results could also be
due to a knowledge gap or a lack of perceived relevance
between quality certifications and blockchain technol-
ogy. This result is in line with the result reported by
Contini et al. (2023). They also found that trust in tra-
ditional quality certifications is not necessarily trans-
ferable to new technological applications. This can be
attributed to the fact that there is no recognisable link in
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consumers’ minds between blockchain traceability and
existing quality measures. The lack of emphasis on the
role of trust suggests that consumers may not perceive
blockchain technology as a natural extension of existing
quality certification systems. An alternative explanation
is that respondents may have a high level of trust in tra-
ditional certifications, but do not perceive the value of
blockchain technology as being enhanced by them. This
emphasises the need for clear communication about how
blockchain can complement and enhance quality certi-
fication by providing additional layers of transparency
and authenticity beyond traditional systems.

6. CONCLUSION

This study provides new insights into the factors
that influence consumers’ intention to buy blockchain-
labelled pasta. The study highlights that while attitudes
towards the technology positively influence consumer
purchase intentions, general attitudes towards products
with blockchain traceability and trust in existing quality
certifications were not found to be significant predictors.
This suggests that successful marketing strategies should
focus on educating consumers about the benefits of
blockchain, simplifying the user experience, and lever-
aging social influences to drive adoption of blockchain-
based traceability.

These findings have important implications for both
policy makers and producers in the agri-food sector. For
policy makers, the study suggests that blockchain tech-
nology can be an important tool to combat food fraud
and ensure food safety and quality. There is therefore
a need for supportive policies and regulations that pro-
mote the adoption and implementation of blockchain
throughout the food supply chain. Governments can
incentivize blockchain adoption to improve trust in food
certifications through targeted policies and financial
support. First, governments could launch consumer edu-
cation initiatives, such as awareness campaigns and digi-
tal tools, to improve public understanding of how block-
chain enhances food safety and authenticity. Finally, reg-
ulators could develop clear and enforceable standards for
blockchain traceability, ensuring that certified products
meet high standards of transparency and accountability.

For producers, the results of this study can help
develop effective marketing and communication strate-
gies to promote products with blockchain traceability.
By emphasising benefits such as authenticity, traceability
and sustainability, producers can gain consumer trust
and increase the appeal of products with blockchain
traceability.

While blockchain can potentially increase trust in
existing quality signals, the challenge is to effectively
communicate its benefits to consumers. By recognising
the importance of social norms, attitudes towards tech-
nology and perceived behavioural control, stakeholders
can promote transparency, accountability and sustain-
ability in the agri-food industry, creating a more efficient
and competitive environment.

Although we acknowledge the limitation of our sam-
ple size, the use of PLS-SEM ensures the robustness of
our results, as this method is suitable for studies with
relatively small samples (Hair et al., 2011; Sarstedt et al.,
2016). This method allows us to work with small sample
sizes, maximize explained variance, and minimize esti-
mation bias (Russo & Stol, 2002). Moreover, the combi-
nation of snowball and random sampling is effective for
data collection, it is important to recognise the inherent
limitations of these techniques. First and foremost, there
is the possibility of selection bias in non-probability
sampling. For future studies, it would be beneficial to
consider the use of random sampling to minimise bias.
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Abstract. This study aims to examine the current state of awareness regarding Agri-
culture 4.0 (A4.0) among Italian agricultural enterprises and to analyse variations in
adoption levels, expressed needs, perceived benefits, challenges and barriers to digitali-
sation. Drawing on data from a descriptive survey conducted among Italian farms in
2024, this study presents findings from 1,248 respondents. The results indicate varying
levels of adoption of A4.0 solutions, with monitoring systems and connected vehicles
being the most widely implemented. The primary drivers for A4.0 adoption include
farm management, operational control, and the enhancement of production efficien-
cy, all of which are associated with significant perceived benefits. However, challenges
such as limited interoperability and skill shortages hinder A4.0 implementation, while
financial and structural constraints remain major barriers for farms seeking to transi-
tion to A4.0. This study offers valuable insights to inform policymakers, industry stake-
holders, and researchers in fostering a more effective and inclusive digital transforma-
tion in the Italian agricultural sector.

Keywords: Agriculture 4.0, smart farming, digital agriculture, survey.

1. INTRODUCTION

Agriculture 4.0, also known as “digital agriculture”, “smart farming” or
“smart agriculture”, is defined as the integration of advanced digital technol-
ogies — such as the Internet of Things (I0T), robotics, Artificial Intelligence
(AI), and Big Data analytics - into the agricultural sector (Fragomeli et al.,
2024). This concept is grounded in the broader framework of Industry 4.0,
which is responsible for the transformation of manufacturing processes (Da
Silveira et al., 2021). Agriculture 4.0 (hereby A4.0) represents a significant
departure from both traditional and precision agriculture by leveraging auto-
mated, interconnected, and data-driven systems (Sharma et al., 2022).
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The transition to digitalised agricultural systems
is increasingly considered as pivotal for addressing the
global challenges facing society today. Rapid population
growth, urbanization, industrialization, loss of arable
land, freshwater scarcity, and environmental degradation
have escalated concerns regarding food security (Abbasi
et al., 2022). To meet the rising global demand for food,
agricultural practitioners must enhance productivity
while minimising pressure on natural resources such as
water, land, and energy (Sharma et al., 2022).

This highlights the urgent need for efficient, data-
driven agricultural practices that optimise resource
usage and improve productivity (Fragomeli et al., 2024).
Moreover, agriculture is both a major contributor to
greenhouse gas emissions and a sector vulnerable to the
impacts of climate change (Sott et al., 2020). Integrating
digital technologies offers the potential to mitigate the
environmental footprint of agricultural practices while
bolstering farmers’ resilience to climate change (Bal-
asundram et al., 2023).

Technologies such as robotics, smart irrigation and
IoT sensors can promote more sustainable agricultural
practices by reducing emissions, optimising resource
use, and enabling real-time monitoring of crop condi-
tions (Assimakopoulos et al., 2024). The environmental
benefits of A4.0 are closely tied to economic advantages,
as digital solutions improve operational productivity,
reduce resource waste, and generate cost savings (Zul
Azlan et al., 2024). Additionally, from a social perspec-
tive, the digitalisation of agriculture empowers farmers
by providing better decision-making tools and improv-
ing working conditions (Zhai et al., 2020).

According to Papadopoulos et al. (2024), for
instance, recording and mapping technologies, com-
bined with guidance and controlled traffic farming tech-
nologies, could lead to reductions of up to 80% in fer-
tiliser use. Furthermore, VRT (Variable Rate Technolo-
gies) could achieve a 60% decrease in fertiliser consump-
tion and an 80% reduction in pesticide use, while also
potentially boosting yields by 62%. Additionally, robotic
systems and smart machines could reduce labour by
97% and diesel consumption by 50%.

Thus, A4.0 represents a transformative approach that
addresses environmental, economic, and social chal-
lenges, contributing to the development of more sustain-
able and resilient agricultural systems (Maffezzoli et al.,
2022b).

Despite the promising role that A4.0 solutions
could play in mitigating sustainability challenges while
improving productivity, their uptake remains limited
and fragmented (Osrof et al., 2023). Literature relates the
uneven adoption rate to different factors.
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Recent empirical contributions confirm that farm-
ers’ intentions to adopt new solutions go beyond purely
economic considerations and are shaped by a combina-
tion of personal attitudes and perceived obstacles. For
instance, Giampietri et al. (2020) emphasize the role of
farmers’ trust, experience and knowledge in the adop-
tion of risk management practices, highlighting the
importance of transparency about costs and benefits in
adoption incentivization. Menozzi et al. (2015) highlight
the relevance of farmers’ attitudes and perceived control
in adopting sustainable farming practices, stressing the
need for better communication and collaboration within
the agricultural supply chain to increase A4.0 adoption.

Meanwhile, data from farm-level surveys show
how age, gender, education and farm size remain sig-
nificant influencing factors for choices regarding, for
example, climate change adaptation strategies (Ony-
enekwe et al., 2023).

Despite the ongoing discussions in the literature
regarding the factors that favour or hinder the spread of
A4.0, the influence of specific contexts, as countries and
types of farms and farmers, remains a compelling area
of investigation (Fragomeli et al., 2024; Da Silveira et al.,
2023). Therefore, the authors emphasise the need for a
country-specific investigation on: i) farmers’ awareness
of A4.0; ii) the main challenges and barriers in the adop-
tion as well as iii) the sustainability benefits perceived.
We believe that building a comprehensive knowledge
around the gap between A4.0 technologies, their prom-
ised technical advantages and the actual implementation
along with the feasibility of realising the related sustain-
ability benefits, is fundamental to inform key decision
makers (e.g., policy makers). This knowledge can help in
shaping proper strategies which place farmers and their
context-specific needs at the centre.

To this end, a survey was conducted targeting Ital-
ian farms to assess the current level of digitalisation in
the agricultural sector, with a specific focus on the key
dimensions influencing the adoption and implementation
of A4.0 solutions. The following research questions were
formulated to explore the state-of-the-art of A4.0 in Italy:
- RQI: What is the level of adoption and awareness of

A4.0 solutions in Italy?

- RQ2: What are the primary factors driving agricul-
tural enterprises to adopt A4.0 solutions?

- RQ3: To what extent have the achieved benefits
aligned with the expressed needs?

- RQ4: What are the most significant hindering fac-
tors to farmers’ adoption of A4.0 solutions?

This study reveals that, while A4.0 awareness is high,
adoption is uneven, with greater uptake of A4.0 solu-
tions such as monitoring systems and connected vehi-

Bio-based and Applied Economics 14(4): 101-119, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17382



Agriculture 4.0: Technological adoption, drivers, benefits and challenges in Italy. A descriptive survey 103

cles. Adoption is mainly driven by improvements in farm
management rather than operational efficiency.

Benefits generally meet or exceed expectations, par-
ticularly in optimizing technical inputs and water use,
which yield both economic and environmental gains.
Social sustainability effects remain debated, with some
evidence of labor market benefits, though concerns per-
sist over potential job displacement.

Despite the benefits, adoption is hindered by chal-
lenges such as interoperability, lack of skills, uncertain
return on investments and limited technical support.
Financial and structural barriers - especially for small
farms - and poor connectivity in remote areas further
constrain A4.0 uptake. This study recommends target-
ed policy support, training, and agrifood supply chains
stakeholder collaboration to overcome these barriers and
accelerate digital transformation in Italian agriculture.

The remainder of the paper outlines as follows: the
first section develops a review of the existing literature
on main A4.0 solutions and applications along with the
factors connected to their spread, section 2 presents a
literature review covering the evolution of technologies
in agriculture, the main driving technologies and their
applications, challenges and benefits. Section 3 explains
the methodology adopted, while results are described
in section 4. Finally, sections 5 and 6 discuss the main
results and draw conclusions from the authors’” work.

2. LITERATURE REVIEW
2.1. The evolution of agricultural technologies

Over the years, agriculture has evolved through dis-
tinct technological phases, progressing from Agriculture
1.0 to Agriculture 4.0 (Zhai et al., 2020). Traditional agri-
culture, Agriculture 1.0, relied heavily on manual labour
and animal power. The transition to Agriculture 2.0 began
in the 19th century with the introduction of mechanised
farming and steam engines, which significantly increased
the efficiency of agricultural activities. This second phase
was also characterised by an extensive use of chemical fer-
tilizers and pesticides, leading to environmental degrada-
tion and resource overexploitation. In the 20th century,
Agriculture 3.0 emerged, leveraging advancements in com-
puting and electronics to automate processes and enhance
precision, also reducing dependency on chemicals. Today,
A4.0 marks the era of smart farming, integrating digital
technologies to create highly interconnected and data-driv-
en agricultural systems (Fragomeli et al., 2024).

These innovations enable farmers to make real-
time, data-informed decisions, improving productivity,
sustainability, and resource efficiency while minimising

environmental impact. Several terms are used to denote
A4.0, such as “digital agriculture”, “smart farming” and
“smart agriculture” (Albiero et al., 2020).

As outlined by Sponchioni et al. (2019) and Maffez-
zoli et al. (2022b), Agriculture 4.0 can be defined as the
evolution of precision farming, realised through the auto-
mated collection, integration, and analysis of data from
the field, equipment sensors, and other third-party sourc-
es. While precision farming serves as a management sys-
tem that aims at optimising crop production inputs at the
field level (Bongiovanni and Lowenberg-Deboer, 2004;
Pierce and Nowak, 1999; Gebbers and Adamchuk, 2010),
A4.0, facilitated by the smart and digital technologies
inherent in Industry 4.0, transforms previously isolated
data silos into actionable knowledge, supporting farm-
ers in decision-making both within their enterprises and
across the broader agrifood supply chain. This shift from
traditional to digital systems ultimately aims to enhance
cost efficiency and profitability, fostering the transition to
more sustainable agricultural systems from an economic,
environmental and social perspective.

Recent advancements in A4.0 are marked by emerging
trends that are shaping the future of farming, with a par-
ticular focus on enhancing efficiency, sustainability, and
resilience. A key forthcoming development is the transi-
tion toward Agriculture 5.0, which extends the founda-
tions of A4.0 by incorporating human-centric, sustainable,
and resilient principles derived from Industry 5.0 (Abbasi
et al., 2022). This shift refines the collaboration between
humans and machines, aiming to improve efficiency while
reducing environmental impact through circular economy
strategies (Fragomeli et al., 2024). Alongside this evolu-
tion, digital twin technology has gained prominence as a
tool for optimising agricultural operations (Peladarinos et
al., 2023; Escriba-Gelonch et al., 2024), creating real-time
virtual replicas of farms that enable monitoring, predic-
tive analytics, and improved system integration (Polymeni
et al.,, 2023). By simulating real-world agricultural pro-
cesses, digital twins can support decision-making in areas
such as crop growth, soil composition, and climate adapt-
ability (Peladarinos et al., 2023). At the same time, the
increasing challenges posed by climate change have accel-
erated the adoption of climate-smart agricultural (CSA)
practices, which focus on building resilience against envi-
ronmental concerns, reducing greenhouse gas emissions,
and ensuring long-term food security through adaptive
resource management (Balasundram et al., 2023).

2.2. Key technologies and applications

There are various ways to categorize the key tech-
nologies driving A4.0, as different literature studies high-
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light several aspects of innovation in the field. Internet
of Things (IoT) enables the connection of agricultural
devices and machinery, allowing real-time monitoring
and automation of farm operations (Assimakopoulos et
al., 2024; Abbasi et al., 2022). Sensors and wireless sen-
sor networks collect critical data on soil conditions,
weather, and crop health, supporting precision farm-
ing (Ahmed et al., 2024). Artificial Intelligence (AI) and
Machine Learning process large datasets to optimise
resource use, detect plant diseases, and predict yields,
making farming more data-driven and efficient (Ahmed
et al., 2024; Balyan et al., 2024). Al-driven systems are
increasingly capable of autonomous decision-making,
on-farm reinforcement learning, and real-time adapta-
tion, significantly transforming how decisions are made
at the farm level (Khanna et al., 2024). Robotics and
automation include autonomous machines and drones
that assist in tasks such as planting, harvesting, and
spraying, reducing labour dependency and increasing
precision (Ahmed et al., 2024; Balyan et al., 2024). Data
analytics and Big Data play a crucial role in processing
vast amounts of information collected from farms, offer-
ing insights for better decision-making (Abbasi et al.,
2022). Cloud and edge computing ensure that agricul-
tural data is processed efficiently and securely, reducing
latency and enabling real-time responses in smart farm-
ing systems (Abbasi et al., 2022). Blockchain technology
enhances transparency and traceability in the agricultur-
al supply chain by securely recording transactions and
ensuring data integrity (Ahmed et al., 2024).

While the technologies discussed above form the
foundations of A4.0, they are not typically deployed in
isolation. Instead, they are combined into integrated
digital solutions, translating technological capabilities
into practical tools for farming and therefore addressing
different agricultural needs. Such integrated solutions
include Decision Support Systems (DSS) (Araujo et al.,
2021), monitoring systems (Dayioglu and Turker, 2021),
mapping solutions (Karunathilake et al., 2023), Variable
Rate Technologies (VRT) (Dayioglu and Turker, 2021),
connected vehicles (Karunathilake et al., 2023), telem-
etry systems (Papadopoulos et al., 2024), robotics and
drones (Araujo et al., 2021). These solutions are further
described in the methodology section, where their iden-
tification, based on a review of scientific and grey litera-
ture, forms a key step of the survey design. Investigating
adoption at the solution level, rather than at the level of
individual technologies, better reflects how farmers actu-
ally implement digital tools in practice.

As with key technologies and solutions, the applica-
tions of A4.0 have been categorised in different ways,
reflecting the broad range of domains in which digital
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technologies can support agricultural practices. Water
and irrigation management involves smart irrigation sys-
tems, IoT-based sensors, and climate monitoring tools
to optimise water use, ensuring efficient irrigation and
drought adaptation (Ahmed et al., 2024; Javaid et al,,
2022). Soil and crop health monitoring utilizes remote
sensing, drones, and Al-driven diagnostics to assess soil
fertility, detect diseases, and manage agrochemical and
fertilizer use with precision (Yousaf et al., 2023). Predic-
tive analytics for climate adaptation and yield forecast-
ing apply Machine Learning and Big Data analytics to
anticipate weather patterns, pest outbreaks, and crop pro-
ductivity, helping farmers make data-driven decisions to
mitigate risks (Kumar Kasera et al., 2024). Autonomous
machinery and robotics enhance efficiency by using auto-
mated tractors, drones, and harvesting robots to perform
tasks such as soil preparation, planting, and harvesting
with minimal human intervention (Oliveira et al., 2021).
Controlled-environment agriculture includes green-
house cultivation, hydroponics, and aquaponics, which
optimise growing conditions and reduce dependency on
natural weather cycles, ensuring year-round food produc-
tion (Maffezzoli et al., 2022b). Livestock monitoring and
regulation employs wearable sensors, automated feeding
systems, and Al-based health tracking to improve animal
welfare, optimise breeding, and prevent diseases (Ahmed
et al., 2024). Finally, supply chain optimisation focuses
on product tracking, storage management, and food
processing, incorporating blockchain and automation to
enhance traceability, reduce waste, and streamline logis-
tics from farm to consumer (Kumar Kasera et al., 2024).

To summarise, these technological solutions,
applied in a diverse range of domains, can result in a
set of improvements for farmers. Such improvements,
later investigated through a survey, encompass differ-
ent dimensions. A4.0 solutions can support farmers with
improved forecasting capabilities and improved farm
management and control; support planning and sched-
uling activities, while also facilitating and streamlining
workforce processes; optimise the use of technical inputs
(water, pesticides, fertilizers), enhance efficiency and
reduce losses due to pests and diseases. Finally, through
monitoring and measurement, they enable increased
awareness on farm operations and improve the quality of
agricultural products.

All these enhancements can lead to substantial eco-
nomic, environmental and social benefits.

2.3.Sustainability benefits

A4.0 yields significant economic, social, and envi-
ronmental benefits, thereby fostering a profound trans-
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formation of the agricultural sector. Economically, it
enhances resource use efficiency by optimising the
application of water, fertilizers, and pesticides, reducing
waste, and increasing agricultural yields. This leads to
greater profitability for farmers and more cost-effective
farming practices (Zul Azlan et al., 2023; Abbasi et al,,
2022). Additionally, the automation and digitalisation of
farm operations, such as harvesting, sowing, and irriga-
tion, result in time and cost savings, improving opera-
tional efficiency (Pradel et al., 2022). The introduction
of predictive models and real-time data analysis can
help farmers forecast adverse conditions like disease
outbreaks or extreme weather, thereby improving the
resilience of agricultural systems and ensuring produc-
tion even in challenging circumstances (Zul Azlan et
al., 2023). From an environmental standpoint, smart
farming practices significantly reduce agriculture’s eco-
logical footprint. Precision agriculture technologies,
Al-driven crop monitoring, and automated machinery
facilitate the efficient use of resources, leading to reduced
fuel consumption, lower greenhouse gas emissions, and
improved water conservation (Cambra Baseca et al.,
2019). Moreover, the deployment of technologies such as
drones and IoT-based environmental monitoring systems
supports soil health management, optimises nutrient use
efficiency, and strengthens climate resilience (Abbasi
et al., 2022). By minimising waste and promoting envi-
ronmentally responsible practices, A4.0 emerges as a
key driver of sustainable agricultural development (Zul
Azlan et al., 2023).

From a social perspective, A4.0 plays a crucial role
in enhancing the well-being of rural communities, agri-
cultural workers, and consumers. By promoting more
efficient and sustainable farming practices, A4.0 strength-
ens food security, mitigates food shortages, and reduces
waste (Jin et al., 2020). Furthermore, the integration of
advanced technologies equips farmers with improved
decision-making tools, contributing to higher living
standards by lowering labour costs and enhancing work-
ing conditions (Da Silveira et al., 2021). Additionally, A4.0
enhances product quality and traceability, ensuring food
safety and addressing consumer concerns (Zul Azlan et
al., 2023). The integration of advanced digital monitor-
ing technologies can in fact support the verification of
environmental and social standards along the food sup-
ply chain (Meemken et al., 2024). These systems not only
strengthen sustainability management but also offer new
avenues for accountability and trust in food systems.
However, they further raise important questions about
equity and data access, which merit further attention
as digital monitoring expands (Meemken et al., 2024).
Despite such promising social benefits, scholars have also

drawn attention to the danger of overly optimist nar-
ratives that see these innovations as universal solutions.
Klerkx et al. (2020) emphasize the need to account for
the social and ethical implications of A4.0 transitions,
particularly in terms of labor displacement, rural depop-
ulation, power concentration, and the marginalization of
alternative, potentially more accessible technologies.

In fact, while A4.0 promises numerous benefits, its
impacts are not unilaterally positive. Muhl et al. (2022)
stress how digital agriculture may reinforce existing
inequalities and that social issues like food insecurity,
often driven by broader social injustices, will not be
solved by technological development alone. The sustain-
ability debate thus calls for an inclusive and responsi-
ble approach to the use and development of these tech-
nologies, ensuring accessibility across different contexts
(Muhl et al., 2022).

2.4. Challenges and barriers

The adoption of A4.0 technologies is hindered by a
range of significant challenges and barriers, as highlighted
by (Assimakopoulos et al., 2024, Da Silveira et al., 2021;
Da Silveira et al., 2023; Fragomeli et al., 2024). An inter-
esting classification of challenges is provided by Lezoche
et al. (2020), where a distinction is made between organi-
zational, social and technological challenges. Among
organization challenges, one of the most frequently asso-
ciated with A4.0 adoption is the high cost connected to
the technology adoption, including the initial investment
required for the implementation of the components, the
ongoing maintenance costs, and the cost of skilled labour
(Da Silveira et al., 2023). These financial challenges are
particularly burdensome for small-scale farms, which
often lack the necessary capital or access to financing
options to invest in such innovations (Assimakopoulos et
al., 2024). Additionally, from a more social perspective,
the complexity of modern agricultural technologies and
the advanced skills required for their operation present
further obstacles (Fragomeli et al., 2024). These barriers
are not unique to the Italian context; similar challenges
have been widely observed in other regions, particu-
larly among smallholder farmers. For instance, Mhlanga
et al. (2023) highlight the digital transformation obsta-
cles in African agriculture, where factors such as limited
infrastructure, insufficient digital literacy, lack of fund-
ing mechanisms, and farmer resistance significantly con-
strain adoption. In general, farmers with limited techno-
logical proficiency - especially older individuals or those
with lower levels of formal education - may struggle to
integrate digital tools into their daily operations (Assima-
kopoulos et al., 2024). It can be stated that, beyond costs,
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adoption is shaped by a complex interaction of operator
characteristics (such as age, education, and digital skills),
farm-level attributes (including size, income, and speciali-
zation), and the perceived attributes of the technologies
themselves — such as their trialability, ease of integration,
and perceived utility (Khanna et al., 2024).

From an organizational perspective, uncertain regu-
latory aspects and complex legal frameworks often hin-
der adoption (Lezoche et al., 2020), highlighting the role
of manufacturers and governmental bodies as critical in
mitigating these challenges.

Looking at technological challenges, a further bar-
rier is often recognized in inadequate infrastructures,
particularly in rural areas, where poor internet connec-
tivity and restricted access to technical support networks
hinder the full utilization of digital technologies (Da
Silveira et al., 2023; Fragomeli et al., 2024). Moreover,
farmers already managing extensive daily responsibilities
may perceive these new technologies as overly time-con-
suming or complex, together with concerns about lack
of interoperability and issues about data security and
privacy (Lezoche et al., 2020). Moreover, many farmers
report a lack of accessible training programs, technical
guidance, and support services, which prevents them
from fully understanding and implementing digital tools
(Da Silveira et al., 2023).

These financial, educational, infrastructural, and
institutional barriers underscore the multifaceted
challenges associated with adopting A4.0 technolo-
gies. Addressing these issues through targeted policies,
improved infrastructure, and comprehensive training
initiatives is essential for promoting widespread and
equitable adoption of digital farming solutions.

3. RESEARCH METHODOLOGY

The primary objective of this research is to assess
the current state of digitalisation within the Italian agri-
cultural sector, with a specific focus on different key
dimensions that shape the adoption and implementation
of A4.0 technologies. To evaluate the state-of-the-art of
A4.0 in Ttaly, the following research questions have been
formulated:

- RQI: What is the level of adoption and awareness of

A4.0 solutions in Italy?

- RQ2: What are the primary factors driving agricul-
tural enterprises to adopt A4.0 solutions?

- RQ3: To what extent have the achieved benefits
aligned with the expressed needs?

- RQ4: What are the most significant hindering fac-
tors to farmers’ adoption of A4.0 solutions?
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To address these research questions, the study exam-
ines the following dimensions:

Adoption and awareness of A4.0 solutions: assessing
the extent to which identified A4.0 solutions have been
implemented across the sector and the level of awareness
that Italian farms have regarding these technologies.

Drivers of digitalisation: identifying the factors moti-
vating farms to explore and implement the proposed
A4.0 solutions, highlighting key needs and expectations.

Benefits achieved: evaluating the advantages
achieved through the adoption of A4.0 solutions with
regards to the specific needs expressed.

Challenges encountered by farmers adopting A4.0
technologies: examining obstacles that farms encoun-
tered during the adoption and implementation process
of A4.0 solutions.

Inhibiting factors for non-adopting farmers: investi-
gating the underlying reasons for the hesitation or ina-
bility of non-user farmers to adopt A4.0 solutions.

The last two categories are drawn from the literature
on “challenges and barriers”, which typically does not
distinguish between adopters and non-adopters. How-
ever, based on the authors’ experience and discussions
with farmers and technology providers, this distinction
was deemed necessary to better reflect the obstacles
faced by Italian agricultural enterprises in uptaking and
using A4.0 solutions.

To address these objectives systematically, the
research followed a structured methodology comprising
the following steps:

Sample development. The research referenced
data from the 7th General Census of Agriculture of the
Italian National Institute of Statistics (ISTAT)! to iden-
tify a representative sample of Italian agricultural enter-
prises. The sampling framework accounted for criti-
cal variables, including farm size, production type, and
geographic distribution, ensuring a diverse and com-
prehensive representation of the Italian agricultural sec-
tor. The sample was drawn from three perspectives: (1)
geographic distribution: Italian farms were grouped in
four main regions to capture macro-regional variations
in farms geographical distribution (Table 1). (2) Primary
crop production: Italian farms have been classified based
on their primary agricultural products, determined by
the proportion of Utilised Agricultural Area (UAA) allo-
cated to specific cultivations (Table 2). (3) Farm size:
Italian farms have been categorised according to their
UAA size, allowing for an analysis of adoption patterns
by operational scale (Table 3). A proportionate stratified
random sampling approach was employed, whereby the

! https://www.istat.it/statistiche-per-temi/censimenti/agricoltura/7-cen-
simento-generale/
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total population, as defined by ISTAT, was divided into
mutually exclusive strata. Each stratum was sampled in
proportion to its representation within the overall popu-
lation. Within each stratum, participants were selected
using a random sampling method.

Identification of a set of A4.0 solutions. A tailored
set of A4.0 solutions was developed in alignment with
the operational characteristics of the agricultural sec-
tor based on an analysis of scientific and grey literature
on this topic (Aradjo et al., 2021; Dayioglu and Turker,
2021; Karunathilake et al., 2023; Papadopoulos et al.,
2024). This set comprises the following A4.0 solutions:

DSS - Decision Support Systems, that assist farm-
ers in decision-making by optimising management and
agronomic choices based on field data, environmental,
weather and soil data, and information provided by the
farmer. These systems can directly provide both man-
agement and agronomic advice to the users.

Monitoring systems, enabling the monitoring, often
remotely and automatically, of environmental conditions
or other parameters related to crops.

Mapping solutions, allowing the mapping of soil
and crops, providing spatial variability in soil, crop, and
hydrological characteristics, among others. These spa-
tialised datasets can be used for various purposes such
as variable rate input applications, agronomic decision-
making support, and operational management.

Variable Rate Technology (VRT) solutions that enable
field operations and the distribution of inputs based on
the spatial variability detected in the field and the needs
of the soil and crop systems.

Connected vehicles, i.e. digitally connected machin-
ery that is equipped with integrated digital technologies,
such as assisted driving, precision navigation systems,
and auto-steering systems.

Telemetry systems and solutions for vehicle and
equipment monitoring, that can locate, monitor and pro-
vide assisted control of agricultural machinery, including
auto-steering systems and telematic solutions for fleet
monitoring, predictive maintenance, and machinery effi-
ciency improvement.

Robotics, i.e. solutions involving autonomous
machinery capable of movement, decision-making, and
performing specific tasks and crop operations with little
or no operator intervention.

Drones, i.e. solutions and services involving the use
of drones for mapping crops and land through cameras
and sensors, monitoring crop health, and applying prod-
ucts or biological control agents.

For the purpose of this research, Farm Management
Information Systems (FMIS) have been excluded from
the analysis, as they are classified as enabling technolo-

gies rather than core components of the A4.0 paradigm.

As Industry 4.0 evolves and digital technologies con-

tinue to expand and mature into practical solutions for

farmers, it becomes crucial to distinguish between core
components of the paradigm and enabling technologies.

While enabling technologies play a vital role in support-

ing A4.0, they are considered complementary rather than

fundamental elements of the paradigm itself.

Survey design and implementation. An online survey
was developed and distributed targeting farms identified
through the sampling framework. The online format was
chosen for its cost-efficiency, ease of administration, and
ability to minimise errors associated with manual data
collection, as also reported by van Selm and Jankowski
(2006) and Maffezzoli et al. (2022a).

This survey consisted of seven sections:

1. General information, collecting foundational and
demographic details about the respondent and their
agricultural enterprise.

2. A4.0 awareness and implementation, assessing the
level of familiarity and the extent of adoption of the
proposed set of A4.0 solutions.

3. Needs, benefits, and challenges, exploring the specif-
ic needs driving the adoption of A4.0 solutions, the
benefits achieved, and the challenges encountered
during their implementation.

4. Data management capabilities, evaluating the farms’
ability to collect, store, analyse, and utilize data
effectively to inform decision-making processes.

5. Digital skills, assessing the competences and level of
expertise of farm operators in relation to A4.0 solu-
tions.

6. Investments, reviewing past investments, current
expenditures, and anticipated future investments in
A4.0 solutions.

7. Inhibiting factors, identifying the barriers and con-
straints preventing or limiting the adoption of A4.0
solutions.

The full set of questions included in each section of
the survey is provided in Appendix A, located at the end
of this manuscript.

Data collection. Data collection was conducted from
September 2024 to December 2024. The process yielded
a total of 1,248 valid responses, providing a robust data-
set for detailed analysis. Tables 1, 2 and 3 report the
sample of responses collected according to the critical
sampling variables and table 4 provides a summary of
the main descriptive statistics on collected data.

The tables presented below highlight a discrepancy
between the sample distribution and that of the overall
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Table 1. Total population and sample size and their distribution
across Italian regions (number of farms).

Pop. size  Pop. size Sample size Sample size
distr. distr. (%) distr. distr. (%)
North-west 113,972 10% 304 24%
North-east 187,429 16% 319 26%
Centre 179,230 16% 328 26%
South and Islands 652,392 58% 297 24%
Total 1,133,023 100% 1,248 100%

Table 2. Total population and sample size and their distribution
across primary crop productions (UAA - Utilised Agricultural Area).

Pop. size P.op. size Sam;?le size siszaenél[i)ifr.
distr. distr. (%) distr. (%)
Cereal crops 3,054,288 34% 31,923 19%
Vineyards 742,926 8% 92,693 56%
Fruit crops 444,805 5% 7,310 4%
Fodder crops 2,564,217 28% 3,469 2%
Olive cultivation 1,114,593 12% 4,723 3%
Vegetable crops 445,966 5% 4,490 3%
Legumes 85,007 1% 132 0.1%
Citrus fruits 149,863 2% 21,353 13%
Industrial plants 477,091 5% 562 0.3%
Total 9,078,756 100% 166,655 100%

Table 3. Total population and sample size and their distribution
across farms’ size (number of farms).

Pop. size Pop. size Sample ‘Sam;.)le
distr.  distr. (%) size distr. size distr.
(%)
0 hectares 12,499 1% 23 1%
Up to 0.99 hectares 228,481  20% 19 2%
From 1 to 1.99 hectares 209,662 18% 61 5%
From 2 to 2.99 hectares 128,381 11% 55 4%
From 3 to 4.99 hectares 147,320 13% 123 10%
From 5 to 9.99 hectares 160,133 14% 209 17%
From 10 to 19.99 hectares 109,545 10% 262 21%
From 20 to 29.99 hectares 45,118 4% 104 8%
From 30 to 49.99 hectares 41,167 4% 109 9%
From 50 to 99.99 hectares 32,487 3% 120 10%
From 100 onwards 18,230 2% 163 13%
Total 1,133,023  100% 1,248  100%

population, resulting in an overrepresentation of farms
located in Northern Italy and an underrepresentation
of those in the South and Islands. This imbalance may

Cosimo Pacciani et al.

Table 4. Summary of main descriptive statistics of collected data.

Unit Mean Median  Std Min  Max
Farm size Ha 2221 38.,50 1,718.21 0 40,000
Farm annual EUR
turnover
Less than €50,000 share  0.35
Between €50,000
and €250,000 share 038
Between €250,000
and €500,000 share —0.12
Between €500,000
and €1,000,000  Share 006
Over €1,000,000 share  0.09
Employees no. 369 1175 660 0 950
in farm
A40 solutions 268 400 165 0 8
adopted in farm
Total amount spent
on A4.0 solutions EUR
by farm
Less than €5,000 share  0.23
Between €5,000
and €15,000 share  0.17
Between €15,000
and €30,000 share  0.13
Between €30,000
and €50,000 share  0.09
Between €50,000
and €75.000 share  0.08
Between €75,000
and €100,000 share 0.07
More than
€100,000 share  0.23

introduce a geographical bias into the analysis. Moreo-
ver, the average Utilised Agricultural Area (UAA) of the
sampled farms, amounting to 22 hectares, is notably
higher than the national average of 11.1 hectares report-
ed by ISTAT?, indicating a sample skewed toward more
structured and capital-intensive farming operations. The
sample also includes a disproportionately large share of
vineyard farms, a sector typically associated with higher
profitability and investment capacity, which may further
influence the study’s results.

However, these deviations do not necessarily com-
promise the validity of the findings. The research pri-
marily aims to investigate the adoption and perceived
benefits of A4.0 solutions, an area where more structured
and technologically advanced farms are expected to play
a pioneering role (Giua, 2022). Consequently, focusing

2 https://www.istat.it/it/files/2022/06/censimento_agricoltura_gismondi.pdf
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on more innovative and capitalised enterprises allows for
a more detailed understanding of current trends, chal-
lenges, and potential impacts, which can serve as a refer-
ence point for the broader agricultural sector as it transi-
tions toward digitalisation.

Prior to presenting the results of the survey data
analysis, the authors provide a table outlining the key
descriptive statistics of the collected dataset.

The descriptive statistics in the table above highlight
that farm size distribution is skewed. This asymmetry is
commonly observed across many countries, as both very
large and very small farms coexist, often with signifi-
cantly different spending capacities, as also noted by the
OECD (Bokusheva and Kimura, 2016).

4. RESULTS
4.1. A4.0 awareness and adoption level

The initial findings of this analysis focus on the cur-
rent levels of adoption of A4.0 solutions among survey
respondents. A summary of these results is presented in
Figure 1. To assess awareness of A4.0 solutions, a four-
point scale was employed, ranging from low to high
familiarity, following the approach outlined by Maffez-
zoli et al (2022a). This scale effectively distinguishes var-
ying levels of awareness and facilitates cross-tabulation,
allowing for the identification of patterns across differ-
ent respondent groups. The four levels of awareness are
defined as follows: (a) Unknown, representing a com-

Monitoring systems
Connected vehicles

Mapping solutions

Telemetry systems and solutions
for vehicle and equipment monitoring

Decision Support Systems (DSS)

Variable Rate Technology (VRT) solutions
Drones

Robotics

0% 10%

H In use

Figure 1. Agriculture 4.0 awareness level. Sample: 1,248 respondents.

20%

m Used in the past, not anymore

plete lack of familiarity, indicating no awareness of the
existence of the proposed solution; (b) Known, denoting
limited familiarity and implying that the respondent has
heard of the solution, but possesses only a superficial
understanding; (c) Used in the past, not anymore, indi-
cating theoretical familiarity and suggesting that the
respondent has a solid understanding of the solution
despite no longer using it; and (d) In use, representing
practical familiarity, meaning the respondent not only
knows about the solution, but also employs it.

The data reveal varying levels of adoption and
awareness of A4.0 solutions. Key findings show that
approximately 26% of respondents implement monitor-
ing systems and connected vehicles, making these among
the most widely adopted A4.0 solutions. Meanwhile,
20% of respondents adopted mapping solutions and 19%
employed telemetry systems and solutions for vehicle and
equipment monitoring.

Adoption rates for Decision Support Systems (DSS)
and Variable Rate Technology (VRT) solutions are nota-
bly lower, at 7% and 6% respectively. Robotics and drones
show the lowest adoption rate, standing at only 3%, like-
ly due to constraints related to cost, technical expertise,
or perceived necessity.

Disaggregated data by farm size reveal that only 23%
of farms with less than 10 hectares of UAA have adopted
at least one A4.0 solution. Similarly, among farms with
annual revenues below EUR 50,000, the adoption rate
stands at 21%. However, adoption increases substan-
tially with scale: 66% of farms with a UAA between 100
and 199.9 hectares have adopted A4.0 technologies, and

30% 40% 50% 60% 70% 80% 90% 100%

Known Unknown
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this figure rises to 82% for farms exceeding 200 hec-
tares. A comparable trend is evident with respect to eco-
nomic size, where adoption reaches 74% among farms
with annual revenues between EUR 500,000 and EUR
1,000,000, and rises further to 81% for those with rev-
enues above EUR 1,000,000.

In contrast, our findings do not reveal substantial
differences in A4.0 adoption based on the age or edu-
cation level of farm managers. The only exception is
among managers over the age of 65, who show a lower
adoption rate (30%). Similarly, post-graduate degree
holders are the only educational group exhibiting high-
er-than-average adoption rates (48%).

With regard to agricultural production types, enter-
prises primarily engaged in cereal cultivation report higher
adoption rates of A4.0 solutions (49%), alongside vineyard
and fodder farms (both at 43%). The relatively higher A4.0
adoption among cereal and fodder producers can be attrib-
uted to the extensive nature of these cropping systems,
which can be particularly well-suited to the application of
A4.0 solutions in optimizing operations over wide areas.
Conversely, vineyard enterprises, typically characterized
by higher revenue margins, tend to possess greater finan-
cial capacity to invest in innovation, thereby facilitating the
uptake of digital solutions and innovative technologies.

4.2. Needs expressed and benefits perceived from A4.0
implementation

To comprehensively analyse the key drivers that
motivated respondents to adopt and implement A4.0 solu-
tions, this study focuses on the specific needs expressed

Enhance forecasting capabilities

Improve farm control and management processes
Reduce losses due to diseases, pests, and infestations
Optimize the planning and scheduling of activities
Increase awareness on farm activities and operations
Optimize the use of technical inputs

Enhance the efficiency of machinery and equipment
Streamline and optimize worforce processes
Maximize water-usage efficiency

Improve the quality of the final agricultural product

0%

Cosimo Pacciani et al.

by farmers. These needs reflect both strategic and opera-
tional priorities, ranging from farm management and
control to the optimisation of input consumption.

Figure 2 reveals a substantial level of awareness
among respondents regarding the broad and multifaceted
nature of the A4.0 paradigm. Rather than being perceived
merely as an extension of precision agriculture - whose
primary goal is to deploy technological solutions in the
field to optimise input consumption and reduce costs -
A4.0 appears to be increasingly recognised as a compre-
hensive framework for enhancing overall farm manage-
ment and control, with positive effects along the overall
agrifood supply-chain. This paradigm shift suggests that
farmers view A4.0 not only to refine specific agricultural
practices, but also as an integral component in fostering a
more efficient and data-driven agricultural enterprise.

Among the ten most frequently expressed needs
related to farm management and control, the most
prominent include enhancing forecasting capabilities
(41%), particularly in areas such as disease outbreaks,
crop requirements, plant growth and yield projections,
improving control and management processes within the
farm enterprise (38%) with a focus on better decision-
making and operational efficiency, optimising the plan-
ning and scheduling of agricultural activities (32%) and
increasing awareness of ongoing farm activities and oper-
ations (31%). Similarly, in relation to the optimisation
of input consumption, respondents identified key areas
where A4.0 solutions could bring significant improve-
ments, including optimising the use of technical inputs
such as fertilisers and agrochemicals (28%) and enhanc-
ing the efficiency of machinery and equipment utilisation
(26%), contributing to both cost reductions and opera-

5% 10% 15% 20% 25% 30% 35% 40% 45%

Figure 2. Needs expressed by respondents. Sample: 511 respondents who adopted at least one of the proposed Agriculture 4.0 solutions.

Respondents could choose a maximum of 5 options.
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Enhance forecasting capabilities

Improve farm control and management processes
Reduce losses due to diseases, pests, and infestations
Optimize the planning and scheduling of activities
Increase awareness on farm activities and operations
Optimize the use of technical inputs

Enhance the efficiency of machinery and equipment
Streamline and optimize worforce processes
Maximize water-usage efficiency

Improve the quality of the final agricultural product
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Figure 3. Benefits perceived by respondents. Sample: 511 respondents who adopted at least one of the proposed Agriculture 4.0 solutions.

tional sustainability. Furthermore, respondents expressed
the need to streamline and optimise workforce processes
(26%), ensuring that operators can perform tasks with
efficiency and effectiveness, and to maximize water-
use efficiency (24%), which is particularly critical in the
context of recent meteorological events in Italy: in 2024,
the country experienced heavy rainfall in the northern
regions, while facing severe droughts in the south?.
Furthermore, respondents reported adopting A4.0
solutions for additional objectives, including reduc-
ing losses due to diseases, pests, and infestations (35%),
a critical aspect of maintaining both yield stability and
crop health, and improving the quality of the final agri-
cultural product (20%) to meet regulatory requirements.
Figure 3 illustrates the perceived benefits derived
from the adoption of A4.0 solutions, as evaluated in
relation to the specific needs previously expressed by
respondents. The findings indicate that, on average, the
implementation of A4.0 technologies resulted in out-
comes that aligned with initial expectations for most
adopters (74% on average). Additionally, a subset of
respondents (8% on average) reported that the benefits
they experienced exceeded their initial expectations.
These results suggest that most farmers who invest-
ed in A4.0 solutions perceived their adoption as a suc-
cessful means of addressing their agricultural needs,
with reported benefits generally meeting anticipated
outcomes. However, a smaller proportion of respond-

* Agro-meteorological Monitoring INDices (AgroMIND) map
on Agricultural Drought (SPEI6) (https://wonderful-bush-
09061f403.5.azurestaticapps.net/AgroMIND.html)

ents indicated that the benefits they obtained were either
below their expectations (14% on average) or entirely
absent (4% on average), highlighting potential limita-
tions in implementation effectiveness, technology adop-
tion challenges, or contextual constraints that may have
hindered the full realisation of expected advantages.

Furthermore, the analysis reveals that the perceived
benefits were more pronounced in activities related to
the optimisation of input consumption compared to
those associated with farm management and control.
Specifically, an average of 11% of respondents reported
experiencing benefits that exceeded their expectations
in the domain of input consumption optimisation. In
contrast, only an average of 4% of respondents indicated
that benefits surpassed expectations for farm manage-
ment and control activities. This suggests that A4.0 solu-
tions may be particularly effective in enhancing input
efficiency, resource utilisation, and operational stream-
lining, whereas their impact on broader management
and control functions may be more variable or depend-
ent on additional contextual factors.

Moreover, Italian farmers who have already adopt-
ed A4.0 solutions exhibit a significantly higher propen-
sity to invest further in these technologies compared to
non-adopters. Specifically, 20% of current users reported
their intention to invest more than EUR 50,000 in A4.0
technologies within the next year, whereas only 3% of
non-users indicated an equivalent investment plan. Fur-
thermore, 27% of adopters expected to allocate between
EUR 5,000 and EUR 30,000, compared to just 18%
among non-adopters. Notably, 55% of non-users were
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unable to estimate their future investments, in contrast
to only 26% of current users. These findings suggest that
A4.0 adopters, having already perceived benefits (often
exceeding expectations) are more inclined to pursue
further technological advancement and exhibit a clearer
strategic orientation toward digital transformation.

4.3. A4.0 implementation challenges and factors inhibiting
A4.0 adoption

This study also aims to assess the challenges
encountered by respondents who have adopted at least
one of the proposed A4.0 solutions, as well as the barri-
ers faced by those who either could not or chose not to
adopt any of these solutions.

Figure 4 presents the challenges encountered by
farms that have implemented A4.0 solutions. The find-
ings indicate that one of the most significant issues
- reported by 36% of respondents - is limited or non-
existent interoperability among the adopted solutions.
Many farmers, indeed, struggle with integrating differ-
ent digital tools within their existing farm management
systems, leading to inefliciencies and operational diffi-
culties (Khanna et al., 2024).

Following interoperability concerns, other nota-
ble challenges include the lack of appropriate skills to
effectively utilise A4.0 solutions (30%) and the perceived
inadequacy of return on investment (26%), suggesting
that respondents may not see immediate or sufficient
financial benefits from their A4.0 investments, poten-
tially discouraging further technological adoption. Fur-
thermore, 26% of respondents indicate insufficient or
unreliable technical assistance, which further limits A4.0
effectiveness together with operational challenges (20%)
and inadequate connectivity (16%).

Limited or non-existent interoperability
Lack of appropriate skills and expertise
Inadequate return on investment

Insufficient or unreliable technical assistance
Operational challenges

Inadequate or unavailable connectivity

No issues detected or identified

Other

0% 5%
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Interestingly, only 6% of respondents reported that
they did not face any challenges during A4.0 implemen-
tation. This finding suggests that most adopters have
encountered at least some difficulties in integrating and
implementing A4.0 solutions, emphasising the need for
targeted interventions to enhance system compatibility,
improve user experience and provide better support mech-
anisms for farmers transitioning to digital technologies.

Figure 5 illustrates the key barriers that have pre-
vented farms from adopting A4.0 technologies. One of
the most frequently cited limitations is farm size, with
68% of respondents indicating that their farms are too
small to justify investment in A4.0 solutions. This is not
surprising, as Table 3 shows that in the Italian context,
most farms (77%) are small or medium-sized.

Further constraints concern the possible exploita-
tion of A4.0 solutions, with 59% of respondents believ-
ing that they would not fully exploit these solutions and
50% stating that their current agricultural technologies
and management practices adequately meet their busi-
ness needs, thereby reducing the perceived necessity of
implementing A4.0 solutions.

Financial concerns also play a significant role, as
45% of respondents believe that the anticipated benefits
do not justify the required investment, while 41% strug-
gle to see the potential economic advantages of incorpo-
rating digital tools into their operations. Additionally,
financial constraints further limit adoption, with 38% of
respondents citing their inability to spread investment
costs over time and 36% highlighting the difficulty of
sharing these costs across multiple enterprises. Bureau-
cratic challenges also emerge as a deterrent, as 36% of
respondents report difficulties in accessing financial
incentives due to stringent requirements and adminis-
trative burdens, while 22% point to restricted access to
credit lines as a further impediment.

10%  15%  20% 25% 30% 35% 40%

Figure 4. Challenges encountered by respondents. Sample: 511 respondents who adopted at least one of the proposed Agriculture 4.0 solu-

tions. Respondents could choose more than one option.
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Figure 5. Inhibiting factors faced by respondents. Sample: 737 respondents who have not adopted any of the proposed Agriculture 4.0 solu-

tions.

While digital skills were identified as a notable
challenge among those who have already adopted A4.0
solutions, they appear to be a less pressing concern for
non-adopters: only 25% of respondents cited a lack of
necessary competencies as a barrier, while an equal pro-
portion stated that their collaborators also lacked the
required skills. Such discrepancy in how digital skills are
perceived between adopters and non-adopters reflects an
experience gap in A4.0 implementation: non-adopters
seem to not yet acknowledge the digital skills challenge
because they have not engaged with A4.0 deeply enough,
whereas adopters have firsthand knowledge of the diffi-
culties and their impact on agricultural activities. Fur-
thermore, 24% of non-adopters indicated that they did
not know where to access basic information about A4.0
solutions, underscoring the need for better dissemina-
tion of knowledge and educational resources.

Beyond financial and technical barriers, several
other factors have contributed to the reluctance to adopt
A4.0 technologies. A lack of applicability to specific agri-
cultural production areas was cited by 34% of respond-
ents, suggesting that certain farming sectors or opera-
tional models do not align with the capabilities offered
by the proposed A4.0 solutions. Connectivity issues also
play a role, with 18% of respondents identifying poor
internet access as a constraint, particularly where digi-

tal infrastructure may be insufficient. Additionally, con-
cerns related to data security and privacy were reported
by 15% of respondents, indicating a degree of hesitation
regarding the management and protection of sensitive
farm data in digital systems.

These findings highlight the multifaceted nature
of the barriers impeding A4.0 adoption, encompassing
economic, technical, infrastructural, and informational
challenges. Addressing these concerns through targeted
policies, financial support mechanisms, improved access
to training, and enhanced digital infrastructure could
facilitate broader adoption and ensure that a wider range
of farms can benefit from the efficiencies and advance-
ments offered by A4.0 solutions.

5. DISCUSSION

This study examines the adoption and aware-
ness levels of Agriculture 4.0 (A4.0) solutions, the driv-
ers influencing technological adoption, the benefits
obtained, as well as the challenges faced by A4.0 users
and the inhibiting factors expressed by A4.0 non-adop-
ters. A comprehensive understanding of these aspects
is essential for policymakers, researchers, and industry
stakeholders to identify obstacles and develop strategies
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aimed at facilitating the widespread integration of digital
technologies in the agricultural sector. Such integration
holds the potential to enhance productivity, efficiency,
and sustainability within Italian agriculture.

The findings indicate that while there is widespread
awareness of A4.0 solutions among Italian farmers, adop-
tion levels vary significantly. These discrepancies are
closely associated with the structural characteristics of
farming enterprises, particularly the size of the Utilised
Agricultural Area (UAA) and the level of annual turno-
ver. Existing literature has consistently highlighted that
the uptake of digital agricultural technologies is contin-
gent upon several structural and socio-economic factors,
including farm scale, crop specialization, farmer age,
and educational background (Giua, 2022). At the nation-
al level, our results corroborate this evidence, demon-
strating that adoption rates tend to increase proportion-
ally with both the physical and economic size of farms.
This trend is further reflected in specific production
types - such as cereals, fodder crops, and vineyards -
where the extensive nature of the former two may neces-
sitate technological support, while the relatively higher
revenue margins typical of vineyard operations may
facilitate investment in A4.0 solutions. Certain solutions,
such as monitoring systems and connected vehicles,
have achieved higher acceptance, whereas others remain
unexploited. The primary motivation for adopting A4.0
solutions is predominantly associated with macro-level
farm management improvements, including enhanced
forecasting capabilities and more effective control and
management processes, rather than in-field operation-
al efficiencies, such as optimising technical inputs and
increasing machinery and equipment efficiency.

The analyses presented in this manuscript, which
focus on the Italian agricultural sector, are broadly
aligned with the findings of international research. For
instance, as reported by the United States Department
of Agriculture?, in 2023, 27% of U.S. farms or ranches
employed A4.0 solutions for crop management. Among
the most widely adopted A4.0 solutions for crop manage-
ment were automated guidance systems (covering 58% of
planted acres), yield mapping (44%), Variable Rate Tech-
nology (37%), soil maps (22%) and drones and satellite
imagery (7%) (United States Government Accountability
Office, 2024%). Similarly, in Germany, a survey conduct-
ed on Bavarian farmers reported that the most widely
adopted digital tools included weather and pests forecast
models and apps (38%), digital field records (21%), auto-
mated steering systems (21%), maps from satellite data

* https://downloads.usda.library.cornell.edu/usda-esmis/files/
h128nd689/4j03fg187/1237k64f/fmpc0823.pdf
® https://www.gao.gov/assets/d24105962.pdf
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(14%), with an overall adoption rate estimated around
62% of the sampled agricultural enterprises (Gabriel and
Gandorfer, 2023).

This study also underscored the benefits of A4.0
solutions, which were generally perceived as aligning
with expectations, with some exceeding initial anticipa-
tions. This suggests a largely successful implementation
among adopters. Notably, the areas where respondents
reported the greatest benefits surpassing expectations
were related to the optimisation of technical inputs and
water management. Consistent with the findings of Zul
Azlan et al. (2023), Abbasi et al. (2022), and Pradel et al.
(2022), A4.0 solutions have demonstrated the potential to
assist farmers in reducing input and water consumption,
thereby generating both economic advantages through
cost reduction and environmental benefits. Regarding
the potential social sustainability benefits, Italian farm-
ers have identified “streamline and optimise workforce
processes” among the ones more in line with expecta-
tions, with a small share of farmers pointing out that
A4.0 solutions disappointed their expectations. The
broader social sustainability implications of this per-
ceived benefit remain debated in literature. Some stud-
ies suggest a positive evolution in the agricultural labour
market, potentially improving farmers’ livelihoods and
creating new employment opportunities (e.g., Rotz et al.,
2019). Other contributions, instead, underline the need
for specific studies on the yet unexplored consequences
on the agricultural labour market originated from the
optimisation of farming activities, potentially reduc-
ing the demand for unskilled workers (Rotz et al., 2019;
Rose et al., 2021).

Nevertheless, despite the perceived benefits of A4.0
solutions, their implementation remains constrained by
several challenges. These include interoperability issues,
lack of adequate skills, return on investment concerns
and technical assistance limitations, which hinder cor-
rect A4.0 solutions implementation and their benefits.
In addition, several financial and structural constraints
emerge as significant deterrents for non-adopters.
Among these, the lack of trust in A4.0 solutions appears
to be the most critical barrier. This skepticism is often
linked to a perceived low utility of A4.0, a belief that
existing tools are sufficient to meet current needs, dif-
ficulties in assessing the potential benefits, and the gen-
erally small size of agricultural enterprises - factors that
collectively slow digital adoption in Italian agriculture.
Economic and financial obstacles seem to be less rele-
vant: these include doubts about the feasibility of invest-
ments that depend on cost-sharing over time or across
multiple farms, as well as limited access to incentives -
often constrained by bureaucratic complexity (Cisilino
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and Licciardo, 2022). These financial constraints pose a
fundamental challenge particularly for small and medi-
um-sized farms that may lack the capital required for
initial investments in A4.0 solutions. This issue is fur-
ther exacerbated by the uncertainty surrounding return
on investment, making it difficult for farmers to justify
the adoption of these solutions without clear and meas-
urable long-term economic benefits. In contrast, tech-
nical challenges appear to be less influential: only a
minority of non-adopters cite inapplicability to specific
production processes, lack of technical skills, or insuf-
ficient expertise as reasons for avoiding A4.0 solutions.
Moreover, connectivity issues emerge as a challenge for
non-adopters, especially in marginal areas and on hills
across Italian regions, thus limiting the implementation
of A4.0 solutions, as highlighted by Sozzi et al. (2021). As
also emphasised by Fragomeli et al. (2024) and Da Silvei-
ra et al. (2023), such obstacles significantly impede the
broader adoption of A4.0 solutions by limiting both the
willingness and ability of farmers to integrate these tools
into their production systems. Furthermore, as high-
lighted by Gonzales-Gemio and Sanz-Martin (2025), the
inequality in access to A4.0 solutions could hinder the
adoption of sustainable agricultural practices. Digital
platforms and monitoring solutions, for instance, have
the potential to substantially enhance the efficiency of
carbon farming initiatives and contribute more broadly
to agricultural sustainability.

These findings are consistent with an analysis pub-
lished by the General Secretariat of the Council of the
European Union®, which emphasizes that - compared to
other sectors - the pace of digital adoption in agriculture
has been slower. This lag is attributed to several interre-
lated factors, including inadequate infrastructure, sub-
stantial upfront investment requirements, a widespread
lack of digital skills, and the inherent complexity of the
agricultural sector. The latter includes considerable vari-
ability in climate conditions, soil types, crop systems,
and farming practices, all of which pose additional chal-
lenges to the effective implementation of A4.0 solutions.

The findings of this study are also aligned with
emerging academic literature on the barriers to A4.0
adoption within the Italian agricultural sector. For
example, Addorisio et al. (2025), based on interviews
with Italian farmers, underscore the critical role of
stakeholder cooperation and targeted training initia-
tives in addressing key impediments to adoption. These
include limited interoperability among A4.0 solutions,
insufficient digital competencies, and a lack of adequate
technical support. Similarly, Giorgio et al. (2024) explore

¢ https://www.consilium.europa.eu/media/shxiaxmo/2024_971-art-agri-
culture-11-02-25.pdf

perceived advantages and challenges associated with dig-
italisation in Northern Italy. Reported benefits include
enhanced environmental sustainability, improved input
efficiency, reduced labour requirements, and lower oper-
ational costs. However, the study also identifies persis-
tent barriers such as limited digital skills, inadequate
data management practices and issues with interoper-
ability. These findings suggest that policies should not
only support equipment acquisition, but also promote
the development of farmers” human capital.

Addressing these challenges through targeted policy
interventions, comprehensive training initiatives, and
improved system interoperability could substantially
enhance A4.0 adoption rates, thereby ensuring that a
broader range of agricultural enterprises benefits from
the efficiencies and advancements offered by digital
innovations. Moreover, collaboration among policymak-
ers, technology providers, and industry stakeholders is
crucial in fostering an ecosystem that supports seamless
integration, mitigates adoption barriers, and maximizes
the impact of digital agricultural innovations.

CONCLUSIONS

This study offers valuable empirical insights into the
current state of Agriculture 4.0 (A4.0) adoption in Italy,
shedding light on drivers influencing the uptake of A4.0
solutions, the perceived benefits, the challenges met by
farmers who adopted A4.0 solutions and the barriers
that prevented other agricultural enterprises from adopt-
ing A4.0 solutions. By disaggregating results according
to critical variables related to farms (size, primary crop
production and geographical localisation), this research
contributes to a more nuanced understanding of how the
A4.0 paradigm is taking root within the Italian agricul-
tural sector. These findings provide a strong empirical
foundation for informing public policy, guiding invest-
ment strategies and designing initiatives that are tailored
to the needs of diverse farming profiles.

Specifically, the results highlight the importance of
structural variables such as farm size, crop production
and turnover in shaping adoption patterns, suggesting
that public support mechanisms should be differentiated
accordingly. Small farms, which tend to face greater bar-
riers in terms of investment capacity and technical know-
how, may benefit from targeted subsidies, tax incentives,
and digital infrastructure improvements, particularly in
under-served rural regions. Moreover, the limited adop-
tion of certain A4.0 solutions underscores the need for
broader outreach, technical assistance and knowledge
transfer mechanisms to ensure that innovation diffuses
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beyond a small subset of more-structured farms. Train-
ing programs should also be adapted to the varying levels
of digital literacy across the sector, with modular content
suited to both entry-level and experienced users.

Moreover, by identifying which types of farms might
be most likely to adopt A4.0 solutions and which barri-
ers inhibit the uptake of digital tools, technology pro-
viders can refine their product design, marketing strat-
egies, and sales services. Companies may, for instance,
enhance interoperability and user-friendliness to address
common usability challenges.

A promising avenue for future research would
involve a comparative analysis of the levels of A4.0 adop-
tion, associated needs, benefits, challenges, and barri-
ers identified in this study with those observed in other
European countries and beyond.

Another potential research direction could focus on
examining the impact of A4.0 solutions on economic,
environmental, and social sustainability to comprehen-
sively assess the costs and benefits of A4.0 implementa-
tion. This analysis could, in turn, contribute to bridging
the gap between adopting and non-adopting agricultural
enterprises.

Nonetheless, these contributions should be consid-
ered in light of the following methodological limitations
arising from the survey administration method and the
sample distribution compared to the reference popula-
tion. As with all Computer-Assisted Web Interviewing
(CAWTI) methods, this online survey may exclude indi-
viduals without internet access or those less comfortable
with technology. Additionally, self-selection bias could
skew the results, as participants are likely to be those
with an interest in the topic or familiarity with online
surveys. Consequently, adoption rates of A4.0 solutions
reported in this study may be overestimated, while the
perceived benefits and willingness to invest further in
digital technologies could reflect the attitudes of a small-
er group of more innovation-oriented farmers. Address-
ing these limitations in the future research would
require efforts to reach less digitally-involved segments
of the Italian agricultural sector to enhance the external
validity of the findings.

Moreover, the discrepancy between the sample size
distribution and the population size distribution leads
to an overrepresentation of farms in the North and an
underrepresentation of those in the South and Islands,
potentially introducing a geographical bias. Further-
more, the average UAA (Utilised Agricultural Area) of
the sampled farms (22 hectares) is significantly higher
than the figure reported by ISTAT” (11.1 hectares), sug-

7 https://www.istat.it/it/files/2022/06/censimento_agricoltura_gismondi.
pdf
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gesting a selection of more structured agricultural enter-
prises. Additionally, the greater representation of the
vineyard sector, which is characterised by higher-than-
average profitability and greater spending capacity, could
influence this study’s findings.

This study was carried out within the Agritech
National Research Center and within the Smart Agri-
Food Observatory - Politecnico di Milano & Univer-
sity of Brescia and received funding from the European
Union Next-GenerationEU (Piano Nazionale di Ripresa
e Resilienza (PNRR) - Missione 4 Componente 2, Inves-
timento 1.4 - D.D. 1032 17/06/2022, CN00000022). This
paper reflects only the authors’ views and opinions, nei-
ther the European Union nor the European Commission
can be considered responsible for them.
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Abstract. Agricultural practices face growing challenges, including climate change,
resource constraints, meeting sustainability goals and food security. This study exam-
ines stakeholder perspectives on smart farming technologies and their integration
into policy frameworks. A mixed-method approach, using triangulation of qualitative
and quantitative data, combines an online survey (targeting experts from academia,
industry, and policymaking) distributed through the Agritech project network and
face-to-face interviews (engaging key stakeholders with in-depth knowledge of agricul-
tural policy and technology implementation). Key findings reveal significant optimism
about the potential of smart technologies to enhance efficiency, sustainability, and pro-
ductivity in agriculture. However, widespread adoption is hindered by barriers such as
high initial investment costs and a lack of technical knowledge. The study identifies
policy gaps and provides actionable recommendations, including financial incentives,
capacity-building initiatives, and improved infrastructure, to support the integration of
these technologies. The findings underscore the critical need for adaptive policies that
align with the evolving landscape of agricultural innovation, ensuring equitable access
and long-term sustainability.

Keywords: Agritech, technology adoption, European agricultural policy, sustainability,
stakeholders’ perspectives.

1. INTRODUCTION

The global agricultural sector faces increasing challenges in balanc-
ing productivity, sustainability, and environmental responsibility. Climate
change and resource constraints are putting increasing pressure on agricul-
tural systems, whereas food security remains a multifaceted challenge that
goes beyond production. Ensuring stable access to affordable, nutritious food
also depends on market structures, distribution networks, and social inclu-
sion (FAO, 2021). While technological innovation can support more efficient
and sustainable production, it must be embedded within broader strategies
that address systemic barriers to food security (FAO, 2021; IPCC, 2023).
Given the limitations of arable land and the growing demand for sustaina-
ble food production, smart agriculture technologies are gaining recognition
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as a key driver of transformation. These technologies,
encompassing sensor-based systems, IoT' configurations,
AT applications, and renewable energy solutions, offer
advanced tools for precision farming, real-time monitor-
ing, and resource optimization (Basso and Antle, 2020;
Finger et al., 2019; Knierim et al., 2019). However, their
adoption remains low and uneven despite their poten-
tial, primarily due to high initial costs, limited technical
knowledge, and inadequate infrastructure (Akimowicz
et al., 2021). These barriers are particularly pronounced
for small and medium-sized farms, which often lack the
necessary resources and institutional support to imple-
ment such technologies effectively.

Recent research by Menozzi et al. (2023) also high-
lights that farmers’ decisions to engage in sustainability
practices are shaped not only by economic incentives but
also by behavioral drivers, such as perceived control and
peer influence. In the case of digital agriculture, these
behavioral aspects, especially regarding trust in digi-
tal systems and ease of use, are equally important and
deserve policy attention.

Complementing this view, Giampietri et al. (2020)
emphasize the role of trust in intermediaries and insti-
tutional transparency in shaping farmers’ willingness
to adopt CAP-subsidized risk management tools. While
their study addresses instruments like insurance and
mutual funds, our work extends this behavioural fram-
ing to digital agriculture, where trust also involves con-
fidence in data systems and algorithm-based decision-
making. While these behavioral dynamics were not the
primary focus of our empirical study, they provide a val-
uable conceptual lens through which to interpret stake-
holder concerns around adoption.

A well-structured policy environment is critical in
facilitating the adoption of smart agriculture technolo-
gies. Policies that support financial incentives, train-
ing programs, and rural infrastructure development
can significantly enhance accessibility and encourage
broader implementation among diverse farming opera-
tions (Détang-Dessendre et al., 2018). While existing
frameworks, such as the Common Agricultural Policy
(CAP), the Green Deal, and the Farm to Fork Strategy,
emphasize the role of innovation in agricultural sustain-
ability, they exhibit notable gaps in addressing key adop-
tion barriers. For instance, the CAP’s current funding
mechanisms primarily benefit large-scale farms with
greater financial capacity, leaving smallholders with lim-
ited access to grants and subsidies necessary for adopt-
ing high-cost digital technologies (Lovec et al., 2020).
Additionally, despite the Green Deal and Farm to Fork
Strategy highlighting the need for sustainable agricul-
ture, they fall short in prioritizing investments in rural
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digital connectivity, an essential component for integrat-
ing smart technology, particularly in remote agricultural
regions (Ehlers et al., 2022). There is a need for proactive
and adaptive policy approaches that address both finan-
cial and technical barriers while fostering stakeholder
collaboration and long-term sustainability.

This study aims to examine stakeholder perspectives
on the adoption challenges and opportunities of smart
agriculture technologies and identify policy interven-
tions that can facilitate their broader integration. Using
a mixed-method approach, the research combines quali-
tative interviews with key stakeholders and a quantita-
tive online survey to gather diverse insights on the pol-
icy landscape, adoption barriers, and potential solutions.
The analysis applies triangulation between the qualita-
tive and quantitative findings to strengthen the inter-
pretation of results and ensure that policy recommenda-
tions are grounded in multiple sources of evidence. The
findings contribute to the existing literature by bridging
the gap between technological advancements and policy
implementation, providing evidence-based recommenda-
tions to enhance the diffusion of technology in agricul-
ture.

This study is part of the Agritech project, a national
research initiative funded by the Italian National Recov-
ery and Resilience Plan (PNRR) that brings together
universities, research institutions, and industry stake-
holders to foster innovation in precision agriculture, A,
and sustainable farming. Conducted within Spoke 3,
which focuses on policy frameworks and governance for
smart agriculture adoption, this research builds on prior
project activities that mapped key actors in the innova-
tion ecosystem and developed targeted engagement strat-
egies (AGRITECH, 2023). The stakeholder database,
created in the framework of the project, enabled the dis-
tribution of our questionnaires through a trusted and
well-informed network, ensuring policy-relevant insights
from diverse, experienced participants across academia,
industry, and policymaking.

The paper first describes the methodological frame-
work, detailing the qualitative and quantitative data
collection and analysis approaches. It then presents key
findings, highlighting stakeholder perspectives on the
benefits and challenges of smart agriculture technolo-
gies. The discussion explores the broader implications
for policy and practice, focusing on the need for strate-
gic policy interventions to overcome adoption barriers.
Finally, the study concludes with recommendations for
future research and actionable policy measures to foster
a more supportive environment for smart agriculture
innovation.
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2. METHODOLOGY
2.1. Overview

To comprehensively assess stakeholder perspectives
on smart agriculture technologies, this study employed
a mixed-method approach, integrating qualitative and
quantitative data collection techniques. This methodo-
logical choice is well-suited for exploring complex issues
such as technology adoption in agriculture, as it allows
for in-depth insights from expert stakeholders while
also capturing broader trends in the sector (Creswell
& Clark, 2017; Fielke et al., 2020). The combination of
qualitative interviews and a structured online survey
aims to strengthen the study’s analytical depth by trian-
gulating stakeholder perceptions across different back-
grounds and levels of expertise.

Given the exploratory aim of this research and consid-
ering the quantitative sample size, the survey quantitative
data primarily serve to identify general trends and percep-
tions rather than provide statistically robust conclusions.
This quantitative approach is complemented by the quali-
tative interviews, which offer deeper, context-rich insights.
By combining both qualitative and quantitative data, we
follow an established methodological practice known as
triangulation, enhancing the reliability and validity of our
findings through cross-verification (Fetters et al., 2013).

The review of the existing literature revealed that
previous research has often examined technology adop-
tion in agriculture from either a purely economic or
behavioral perspective. The focus of this study is to inte-
grate policy dimensions and directly involve stakehold-
ers from multiple sectors, including academia, technol-
ogy providers, policy institutions, and farmers’ associa-
tions. This holistic approach, which explicitly links tech-
nological innovation with policy development, represents
a novel contribution to the existing body of literature.

The study focused on stakeholders in Italy. While
Emilia-Romagna, one of Italy’s most technologically
advanced agricultural regions, was the starting point
of the stakeholders’ mapping, the survey distribution
and interviews also involved participants from other
key agricultural areas such as Puglia, Lombardia, and
Veneto. This broader geographical engagement allowed
the research to capture a more representative view of the
national smart agriculture policy landscape.

Both qualitative and quantitative components of the
study shared a common core of thematic focus, center-
ing on:

- The barriers and drivers of smart agriculture tech-
nology adoption.

- The role of existing policies in shaping adoption tra-
jectories.

- The perceived needs for policy innovation to facili-
tate broader uptake.

These dimensions were used both to frame the
design of the survey and interviews and to guide the
interpretation of findings in the results and discussion
sections. Rather than formal hypotheses, they function
as thematic pillars for an exploratory investigation into
how policy, behavior, and technology interact in the cur-
rent agricultural innovation landscape.

This methodological design aims to ensure a holis-
tic assessment of the policy landscape surrounding smart
agriculture technologies, while providing valuable insights
for both academic discourse and policy formulation.

2.2. Qualitative data collection

The qualitative phase focused on gathering compre-
hensive insights from experts with extensive knowledge
of smart agriculture technologies and policies. It was
essential to understanding the barriers and opportuni-
ties surrounding the adoption of these technologies. A
semi-structured interview format was used to ensure a
structured approach, allowing for a mix of predefined
questions and open-ended discussions. This approach
provided a comprehensive view of stakeholder experi-
ences, enabling the identification of key themes related
to technology adoption and policy needs.

In-depth qualitative interviews were conducted with
carefully selected experts in smart agriculture technolo-
gies and policy. These interviews were designed to elicit
rich, detailed insights from highly experienced individu-
als. Although the final sample comprised five (5) par-
ticipants, The decision to proceed with these interviews
was taken based on the principle of thematic saturation,
that is, the point at which no substantially new insights
emerge from additional interviews (Guest et al., 2006).
Given the specificity and expertise of our respondents,
the interviews provided consistent and robust informa-
tion across key themes. This approach aligns with accept-
ed qualitative research standards, where small, purpo-
sively selected samples are typical and appropriate for
exploratory, expert-based investigations (Creswell, 2013).

The questionnaire was designed based on the Agri-
cultural Knowledge and Innovation System (AKIS)
framework, which highlights the importance of multi-
actor collaboration in agricultural innovation. It was
structured into five main sections: (1) the respondent’s
background and expertise, (2) their perspectives on
smart agriculture technologies, (3) challenges related to
adoption, (4) awareness and evaluation of current poli-
cies, and (5) recommendations for improving policy sup-
port. This structured design ensured that responses cov-
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ered both technical and policy-related dimensions, mak-
ing this phase a crucial foundation for the overall study.

Participants were selected through a purposive sam-
pling approach, ensuring that only individuals with sig-
nificant expertise and direct involvement in the field
were included. The selection process was based on a
stakeholder mapping exercise carried out earlier in the
Agritech project. Experts were identified from three key
groups: public sector representatives involved in agricul-
tural policy, academic researchers specializing in preci-
sion agriculture and rural policy, and industry profes-
sionals working with smart agriculture technologies
and farmer cooperatives. This targeted selection process
ensured a diverse yet highly relevant sample, strengthen-
ing the credibility of the findings.

Interviews were carried out face-to-face whenever
possible, allowing for detailed discussions and clarifica-
tions. In cases where in-person meetings were not feasible,
remote interviews were held. Five key experts participated
in this qualitative survey. Thematic and textual analy-
sis was used to process the responses, identifying recur-
ring themes and key insights. The results from this phase
informed the refinement of the quantitative survey in the
next stage of data collection, ensuring that the study cap-
tured both broad trends and in-depth perspectives.

2.3. Quantitative data collection

The second data collection phase involved an online
questionnaire to capture broad stakeholder perspectives
on smart agriculture technologies, their adoption, per-
ceived benefits, policy awareness, and associated chal-
lenges. This structured survey was designed to comple-
ment the qualitative insights gathered in the first phase
by providing quantifiable data to identify patterns and
validate expert opinions. The integration of both qualita-
tive and quantitative methods was an attempt to ensure
a comprehensive and balanced understanding of the key
factors influencing the adoption of smart agriculture
technologies.

The online questionnaire was adapted from the
qualitative questionnaire, and structured into multiple
sections, each addressing a critical aspect of technol-
ogy adoption and policy implications. The first section
focused on general respondent information, including
their professional background, sector of activity, and geo-
graphic location, allowing for an analysis of how perspec-
tives varied across different stakeholder groups. The sec-
ond section examined familiarity and involvement with
smart agriculture technologies, prompting respondents
to indicate their level of knowledge and direct engage-
ment with specific technologies, such as robotics, IoT, Al
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renewable agri-systems, and spectral technologies. The
third section examined the perceived contributions of
these technologies, evaluating opinions on their potential
to improve agricultural productivity, resource efficiency,
environmental sustainability, and labor optimization.

A key component of the questionnaire was its focus
on policy awareness and barriers to adoption. Respond-
ents were asked whether they were aware of existing pol-
icies that support smart agriculture technologies, provid-
ing insights into the effectiveness of current policy com-
munication and identifying gaps where improved dis-
semination of information might be needed. Addition-
ally, the survey investigated major obstacles preventing
the widespread adoption of these technologies, including
financial constraints, technical knowledge gaps, regula-
tory barriers, and infrastructure limitations. The final
section solicited policy recommendations, encouraging
respondents to suggest changes to existing policies or
propose new policy instruments that could facilitate the
integration of smart agriculture technologies into main-
stream agricultural practices.

The questionnaire was strategically distributed
across multiple channels to ensure a high-quality and
representative dataset. It was shared within the Agr-
itech project network, reaching academics and research-
ers with expertise in agricultural policy, technology, and
innovation. It was also circulated among stakeholders
from the previously established project stakeholders’ net-
work, including policymakers, industry representatives,
farmers’ associations, and technology developers, poten-
tially reaching over 90 persons. This distribution strat-
egy was designed to maximize diversity in respondent
backgrounds while maintaining a high level of expertise
in the responses collected.

The sampling approach was purposive, targeting
individuals with direct experience and informed per-
spectives on adopting smart agriculture technologies.
Rather than aiming for a large random sample, the focus
was on obtaining high-quality responses from knowl-
edgeable stakeholders whose input could provide valu-
able insights into policy needs and adoption challenges.
A total of 35 responses were collected, and after apply-
ing validity criteria, 20 responses were retained for final
analysis. While this sample size may appear modest for a
quantitative survey, it is consistent with expert-elicitation
methods in policy and innovation research, where depth
of knowledge and professional insight are prioritized
over statistical representativeness (Baker et al., 2013).

The criteria for inclusion ensured that responses
were complete, internally consistent, and provided by
individuals with relevant expertise in the field of smart
agriculture. Validity was assessed based on complete-

Bio-based and Applied Economics 14(4): 121-133, 2025 | e-ISSN 2280-6172 | DOI: 10.36253/bae-17356



Agritech policy landscape: Insights from relevant stakeholders on policy issues and strategic plans in Italy 125

ness, consistency, and relevance to the research topic.
Responses that were incomplete, contained inconsisten-
cies, or came from participants with no clear connec-
tion to smart agriculture were excluded. Both the online
questionnaire and the qualitative interviews were con-
ducted in parallel in the same period of time.

Rather than claiming statistical generalizability,
the primary goal of the quantitative data is to highlight
general patterns, stakeholder perspectives, and areas
needing policy attention. These quantitative insights are
therefore exploratory and are critically supported and
contextualized through the qualitative findings obtained
from in-depth expert interviews, ensuring that the inter-
pretations are robust and contextually meaningful.

While the sample size of five qualitative interviews
and 20 valid quantitative responses may appear lim-
ited, it is justified by the methodological rigor applied
in the selection and analysis processes. The qualitative
interviews were conducted with carefully selected key
stakeholders representing different sectors of agricul-
ture, including policy, research, and industry, ensuring
expert-driven insights. Thematic saturation was reached,
as no significantly new themes emerged in later inter-
views, suggesting that the core challenges and opportu-
nities had been effectively captured (Baker et al., 2013).

For the quantitative survey, although the response
count is modest, it reflects targeted participation from
experienced stakeholders within the Agritech project
network and a pre-established stakeholder database. The
respondents’ expertise ensured high-quality, informed
perspectives, making the findings valuable for under-
standing adoption trends and policy needs. Future
research could expand the sample size to further validate
the findings.

2.4. Data analysis

The analysis of the collected data followed a struc-
tured multi-step approach, integrating both qualitative
and quantitative methodologies to ensure a comprehen-
sive interpretation of stakeholder perspectives on the
adoption of smart agriculture technology and policy
needs. Given the mixed-methods nature of the study, dif-
ferent analytical strategies were applied to the qualita-
tive and quantitative datasets to maximize the depth and
reliability of insights.

The qualitative data obtained from face-to-face inter-
views were manually analyzed using a combination of tex-
tual synthesis and thematic analysis. This approach was
chosen to extract detailed insights from expert responses
while maintaining the depth and context of qualitative
feedback. In particular, thematic analysis involved iden-

tifying recurring patterns in the responses related to
technology adoption, policy gaps, financial constraints,
and regulatory needs (Kiger & Varpio, 2020). While the
analysis was primarily descriptive, it provided structured
insights into the challenges and opportunities surround-
ing each specific smart technology developed in the Agr-
itech project. The responses were synthesized into key
themes aligned with the study’s focus, ensuring stakehold-
ers’ perspectives on technology diffusion, policy barriers,
and suggested interventions were effectively captured.

To ensure a structured interpretation of the quali-
tative data, insights were categorized into two main
dimensions. The first focused on technology-specific
insights, where each smart technology of the Agritech
project, namely: IoT, AI, sensor-based systems, and
robotics, was examined separately. Responses highlight-
ed perceived benefits, adoption challenges, and policy
needs unique to each innovation. The second dimen-
sion analyzed the broader policy environment, capturing
stakeholder views on existing policy frameworks, gaps in
regulatory support, and recommendations for improving
policy measures. This approach ensured that the quali-
tative findings were systematically organized, aiming to
understand stakeholder perspectives.

Given the exploratory purpose and the sample size,
the quantitative data obtained from the online survey
were analyzed in XLSTAT using basic descriptive sta-
tistical methods (frequencies, percentages, and cross-
tabulations) to highlight general trends and stakeholder
perceptions regarding smart technology adoption, rather
than conducting in-depth statistical tests. Frequency dis-
tributions were used to summarize categorical variables
such as familiarity with specific technologies, perceived
benefits, policy awareness, and adoption challenges.
Cross-tabulations were applied to compare stakeholder
perspectives across different professional sectors. Addi-
tionally, mean and standard deviation calculations were
used to analyze responses on Likert-scale questions,
assessing attitudes toward policy effectiveness, invest-
ment challenges, and knowledge dissemination needs.

The findings from the quantitative analysis provided a
broad overview of key trends in technology adoption and
policy perceptions. These insights were cross-referenced
with the qualitative findings to ensure that the study’s con-
clusions were supported by both in-depth expert opinions
and a wider range of stakeholder perspectives.

3. RESULTS

The presentation of results follows the dual structure
of our research design, distinguishing between general
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(cross-cutting) trends observed across stakeholders from
the online survey (Section 3.1) and technology-specific
insights derived from expert qualitative interviews (Sec-
tion 3.2).

3.1. Cross-cutting perspectives on smart technology adop-
tion

3.1.1. Geographic distribution and professional sectors of
the online survey

The geographic distribution of online respondents
shows a balanced representation from Italy’s major agri-
cultural regions (figure 1), with the highest representa-
tion from Emilia Romagna (46%), followed by Puglia
(36%), and smaller contributions from Lombardia and
Veneto (9% each). This distribution indicates a blend of
perspectives from key agricultural areas, offering insights
into potential regional variations in technology adoption
and policy needs within the smart technologies sector.

In terms of professional sectors, the respondents rep-
resented a broad spectrum within the agricultural and
smart technologies domains (figure 2). Approximately
33.33% of participants were involved in agricultural
technology, including roles related to software develop-
ment and research in precision agriculture. Another
33.33% came from academic backgrounds, emphasizing
the importance of research-driven insights in advancing
smart technologies solutions. Direct farming operations
accounted for 12% of respondents, ensuring representa-
tion of the practical, on-ground perspective crucial to
understanding adoption barriers. The remaining partici-
pants were involved in diverse areas, including profession-
al training, technological transfer, manufacturing, and
viticulture. This multifaceted representation highlights
the need for cross-sectoral collaboration to create compre-
hensive and inclusive smart technology adoption policies.

The level of involvement with specific smart agricul-
ture technologies varied among online respondents (fig-

H Emilia Romagna
Puglia
H Lombardia

m Veneto

Figure 1. Geographic distribution of stakeholders.
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W Agricultural technology companies

Academic Research

M Direct Farming Operations

H Others

Figure 2. Professional Sector of the stakeholders.

m Autonomous and Robotic Systems
w loT Technologies

Artificial Intelligence / Machine Learning
and Modelling

W Sensor-based technologies/ Remote
Sensing/Geospatial technologies

31,82%

Nature-based/Innovative Renewable
Agri-Systems / Water, soil, wastewater,
and nutrients reuse / Organic Agriculture

Novel Spectral Interface Technologies

Figure 3. Key stakeholders’ familiarity with Agritech project inno-
vative technologies.

ure 3). Sensor-based technologies emerged as the most
familiar, with 31.82% of respondents indicating famili-
arity. Autonomous systems, Al, IoT, and nature-based
renewable systems each garnered attention from 13%-
18% of respondents, reflecting a broad interest in diverse
smart agricultural innovations. Novel spectral interface
technologies were the least familiar, with only 4.55% of
respondents indicating involvement or interest, which
could be attributed to limited applications or high imple-
mentation costs.

Online Respondents identified several primary con-
tributions of smart technologies to the agricultural sec-
tor (figure 4). The leading perceived benefit was resource
waste reduction, cited by 25.81% of participants as a
crucial advantage. Closely following was the poten-
tial for reducing environmental impact, highlighted by
22.58% of respondents as a key benefit. Improved crop
yields were also a prominent contribution, recognized
by 19.35% of participants as a fundamental outcome of
adopting smart technologies. Enhanced pest, as well as
disease detection and increased labor efficiency were
both identified as significant benefits, with each select-
ed by 16.13% of respondents. Interestingly, none of the
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Reduction of environmental impact
Increase in labor efficiency
Enhanced pest/disease detection
Reduction of resource waste
Improved crop yields

Figure 4. Contributions of innovative technologies to the agricul-
tural sector, according to key stakeholders.

respondents chose the “Others” option, suggesting that
the primary contributions listed were comprehensive
enough to cover stakeholders’ perceptions of the benefits
of smart technologies.

3.1.2. Policy awareness and integration

The survey revealed varied levels of policy aware-
ness among respondents. A substantial portion, 50%,
expressed uncertainty regarding whether smart agricul-
ture technologies are acknowledged within existing policy
frameworks, suggesting a need for clearer communication
on policy provisions. In contrast, 37.50% of respondents
believed that relevant policies do exist, while 12.50% indi-
cated an absence of any supportive policy. Several specific
frameworks were noted among those who confirmed pol-
icy awareness, including PAC 2023-27, Agenda 2030, and
precision farming policies. Additionally, respondents men-
tioned partial policy alignment with broader frameworks
such as the Green Deal, Farm to Fork, and Soil and Bio-
diversity Strategies. This feedback highlights a fragmented
policy environment where existing frameworks recognize
the importance of innovation in agriculture but lack spe-
cific support for smart agriculture technologies.

Survey participants identified significant barriers
impacting the adoption of smart agriculture technolo-
gies, primarily focusing on high initial investment costs
and limited technical knowledge. 45% of respondents
cited each of these factors, emphasizing the need for
financial strategies and educational initiatives to address
these challenges. Additionally, 10% of respondents not-
ed limited infrastructure as an obstacle, highlighting
the importance of developing robust infrastructure to
support connected technologies like IoT. None of the
respondents considered regulatory barriers an issue, sug-
gesting that financial and knowledge-based obstacles are
the most immediate concerns. These findings imply that
while policies supporting smart agriculture technologies
exist, they are not tailored to alleviate farmers’ specific

challenges, particularly small and medium-sized opera-
tions with limited capital and expertise.

Participants offered a range of recommendations
for policy adjustments that could facilitate the adoption
of specific smart agriculture technologies. For autono-
mous and robotic systems, respondents suggested finan-
cial incentives, such as non-repayable grants, and the
diddemination of broader information to raise aware-
ness. IoT technologies were identified as requiring tar-
geted training programs, while AI and machine learning
would benefit from a structured data-sharing framework
and technical support to aid users in navigating com-
plex algorithms. Sensor-based technologies require poli-
cies that focus on transforming raw data into actionable
information, enabling farmers to make informed deci-
sions based on real-time insights. For renewable agri-
systems, respondents suggested training vouchers and
regulatory adjustments to support organic and sustain-
able practices. These policy recommendations emphasize
the importance of tailoring support mechanisms to the
distinct requirements of each smart agriculture technol-
ogy, thus enhancing both accessibility and usability.

Online survey respondents prioritized several key
research questions to guide future policy development
regarding smart agriculture technologies. Approximately
44.44% of participants identified “How can government
policies foster innovation in agriculture?” as the most
pressing question, signaling strong interest in govern-
ment’s direct role in driving technological advancements.
Equally prioritized was “How can smart agriculture tech-
nologies be integrated into the existing agricultural sys-
tem?” indicating that the practicalities of implementing
new technologies within current systems are of critical
concern alongside policy considerations. The importance
of understanding the impact of existing policies on the
adoption of smart agriculture technologies was also not-
ed, with 11.11% ranking it as the primary concern and
44.44% ranking it as the second most important concern.
Lastly, the collaboration between government and pri-
vate sector stakeholders was noted as an area for future
exploration, even if with lower priority. The diversity of
opinions on this question suggests a balanced focus on
government-led and collaborative initiatives.

The online survey also identified key stakehold-
ers essential to the development of smart agriculture
technologies policy, including farmers and academia
(each cited by 25% of respondents), smart technologies
companies (17.86%), public agencies, and large retailers
(14.29% each). This distribution underscores the neces-
sity of engaging diverse participants to create policies
that address practical needs, market demands, and tech-
nological feasibility.
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3.2. Technology-specific insights

The qualitative data gathered from the qualitative
expert interviews provide a deeper understanding of
stakeholder perspectives on specific smart agriculture
technologies, their potential contributions, and the bar-
riers that may hinder their adoption. The insights gained
through these interviews underscore the diversity of
challenges and recommendations within the smart agri-
culture technologies domain, offering nuanced perspec-
tives that supplement the survey findings.

3.2.1. Perspectives on robotic systems

Stakeholders frequently highlighted the trans-
formative potential of robotic systems in addressing
labor shortages, a pressing issue particularly in labor-
intensive areas such as fruit and vegetable production.
Robotic technologies allow for precise management of
tasks, from field crop monitoring to harvesting, which
can significantly improve efficiency while reducing
reliance on manual labor. This technological preci-
sion supports a shift toward sustainable practices, as
robots can optimize resource allocation, minimize
wastage, and even carry out tasks with environmen-
tal sensitivity in mind. However, stakeholders pointed
out that the high costs associated with robotic systems
pose substantial barriers to adoption, especially for
small and medium-sized farms. The financial outlay
required for these technologies and their technical
complexity presents a formidable challenge for farm-
ers without specialized knowledge or resources to sup-
port this transition.

To address these issues, stakeholders suggested
targeted financial incentives, such as non-repayable
grants or tax relief for farms adopting robotic systems.
Furthermore, they advocated for broader policy adjust-
ments to ease the learning curve associated with these
technologies. Suggestions included on-site training
programs, community equipment-sharing initiatives,
and educational workshops that demystify the use of
robotics in farming. From a policy perspective, inter-
viewees indicated that while overarching strategies like
the Green Deal and Farm to Fork acknowledge the
importance of agricultural innovation, they lack spe-
cific provisions to support the adoption of robotics. By
expanding precision farming policies to include robot-
ics, policymakers could foster a more comprehensive
approach to integrating these technologies into agri-
cultural systems.
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3.2.2. IoT for resource optimization

IoT technologies were recognized by stakeholders
as essential for optimizing resource use, particularly in
water management. By integrating IoT-enabled devic-
es, farmers can collect real-time data on soil moisture,
crop health, and environmental conditions, allowing for
precise irrigation adjustments that conserve water and
reduce costs. Beyond individual farm benefits, stakehold-
ers noted that the data generated by IoT systems could
support broader agricultural analytics, improving fore-
casting and resource management on a regional or even
national level (Weersink et al., 2018).

Despite these advantages, stakeholders expressed
concerns over the cost and interoperability of IoT sys-
tems, which can make adoption challenging, particularly
for smaller farms. The lack of standardized protocols for
data sharing among different IoT devices presents anoth-
er barrier, as farmers often require an integrated view of
data across multiple devices and systems. To address these
issues, stakeholders recommended policy interventions to
promote data-sharing standards and compatibility proto-
cols to enable seamless integration across IoT platforms.
Additionally, they advocated for reducing bureaucratic
complexities surrounding IoT implementation, which
could encourage more farms to adopt IoT configurations
and benefit from their potential efficiencies.

3.2.3. Sensor platforms and remote sensing technologies

Sensor technologies, particularly those designed for
unmanned or automated configurations, were identified
as having significant potential to enhance agricultural
efficiency. These technologies allow for precise manage-
ment of resources like water and nutrients and provide
real-time monitoring that supports effective disease con-
trol and overall crop health management. For example,
by using soil moisture sensors, farmers can optimize
irrigation schedules, reducing water use without com-
promising crop quality. Additionally, the environmental
benefits of sensor-based systems are considerable, as they
minimize the need for excess inputs, thereby lowering
the environmental footprint of agricultural operations.

However, stakeholders noted that sensor platforms
face barriers similar to those of other advanced technolo-
gies, including high installation costs, technical limita-
tions, and the need for specialized training. Furthermore,
respondents pointed out that the absence of a unified data
platform for sensor integration complicates data inter-
pretation, making it challenging for farmers to convert
raw data into actionable insights. To support the adop-
tion of sensor technology, stakeholders suggested policy
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adjustments that include infrastructure investments, such
as broadband expansion to rural areas and establishing
public-private partnerships for data platform development.
These initiatives could facilitate real-time data aggregation
and analysis, allowing farmers to maximize the benefits of
sensor platforms for sustainable agriculture.

3.2.4. Role of artificial intelligence and machine learning in
agriculture

Artificial Intelligence (AI) and Machine Learn-
ing (ML) technologies hold transformative potential for
agriculture, enabling real-time analysis and predictive
insights that enhance decision-making and resource
allocation. Al-driven applications allow farmers to moni-
tor crop health, predict yield outcomes, and optimize
input use, making farm management more efficient and
responsive. Stakeholders believe that Al could streamline
processes across the agricultural value chain, from plan-
ning and planting to harvest and market delivery, there-
by adding value at each production stage.

Despite this promise, Al adoption in agriculture is
restricted by several challenges. First, the high costs asso-
ciated with AI solutions can be prohibitive, particularly
for smaller operations. Second, data interoperability pre-
sents technical challenges, as different AI applications
often require diverse data inputs that may not be read-
ily compatible with each other. Lastly, stakeholders high-
lighted the complexity of using AI solutions, which often
require advanced technical knowledge that may be inac-
cessible to many farmers. Recommendations for policy
interventions included establishing open data systems,
which could facilitate data sharing across AI platforms,
and government-supported training programs that simpli-
fy the use of AL Additionally, respondents advocated for
technical support mechanisms to help farmers navigate Al
applications and fully realize their potential benefits.

3.2.5. Nature-based solutions and renewable agriculture

Stakeholders emphasized the growing importance
of nature-based solutions, such as water and soil reuse,
nutrient recycling, and organic farming practices, as
essential components of sustainable agriculture. These
renewable systems reduce environmental impact by
reducing reliance on synthetic inputs and fostering a
more balanced relationship between agriculture and the
environment. Nature-based solutions promise healthier
soils, improved crop resilience, and long-term sustain-
ability, making them an attractive alternative for farmers
aiming to minimize their ecological footprint.

However, the transition to renewable agri-systems
is not without challenges. Stakeholders noted that high
initial investment costs, limited expertise, and regula-
tory inconsistencies are significant barriers. To address
these challenges, respondents recommended that policies
provide financial incentives, such as subsidies for transi-
tioning to organic farming and grants for infrastructure
investments. Training programs focused on sustainable
farming practices and more robust certification systems
were also suggested to ensure market recognition of
organic and nature-based products. By supporting these
transitions, policymakers can promote a more sustainable
agricultural model that aligns with environmental goals.

3.2.6. Novel spectral interface technologies

While novel spectral interface technologies, includ-
ing microwave and THz radiation applications, were
less familiar to many respondents, some stakeholders
acknowledged their potential for non-invasive agricul-
tural monitoring. These technologies allow for detailed
analysis of crop health, soil composition, and other
critical indicators without physical contact, which could
prove valuable for precision agriculture. However, the
application of spectral technologies faces unique chal-
lenges, including high costs, safety concerns related to
radiation use, and the need for specialized expertise to
interpret complex data.

Stakeholders recommended targeted policy interven-
tions to address these challenges. Suggestions included
funding for research focused on agricultural applica-
tions of spectral technologies, safety standards to ensure
that radiation use does not pose health risks, and farmer
training programs to build competence in spectral data
interpretation. Additionally, respondents expressed inter-
est in exploring integrating spectral data with AI, which
could improve data analysis and support more efficient
agricultural decision-making.

4. DISCUSSION

The findings of this study reinforce the well-doc-
umented potential of smart agriculture technologies to
address pressing challenges in the agricultural sector,
such as resource efficiency, climate adaptation, and sus-
tainability. These technologies, when the right conditions
are met, also play a growing role in building food system
resilience by improving productivity and reducing losses,
particularly under climate stress, as reported by Gemtou
et al,, (2024). Despite this potential, adoption remains lim-
ited due to financial, technical, and infrastructural con-
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straints. These results align with previous research, which
emphasizes that economic barriers and knowledge gaps
are among the most significant obstacles to the adoption
of technology in agriculture (Basso & Antle, 2020; Finger
et al., 2019). However, the findings also highlight a critical
gap in policy awareness, which has received less attention
in the existing literature but emerged as a key concern
among stakeholders in this study.

One of the particularities of this research lies in its
mixed-methods approach, which combines qualitative
depth with exploratory quantitative insights. While the
number of responses in the survey is modest, the align-
ment between the survey trends and the interview nar-
ratives provides a form of triangulation that enhances
the robustness of the results. This integration allowed us
to validate emerging patterns, ensuring that the insights
are not reliant on a single data source but are reflected
across multiple forms of stakeholder engagement (Fet-
ters et al., 2013; Creswell & Plano Clark, 2017). The tri-
angulation design was particularly valuable for assessing
the adoption barriers and policy dynamics around smart
technologies, where numerical trends were consistently
reinforced by expert perspectives.

This convergence of evidence across the two meth-
ods strengthens confidence in the relevance of the
results. One of the most striking of these results is the
widespread lack of clarity regarding the role of existing
policies in supporting smart agriculture technologies.
Many respondents expressed uncertainty about whether
current frameworks, such as the Common Agricultural
Policy (CAP) 2023-2027, the Green Deal, and Farm to
Fork, sufficiently address the specific needs of techno-
logical adoption in agriculture. This reflects findings
from previous studies indicating that while sustainability
and innovation are often mentioned in high-level poli-
cies, their implementation at the farm level is often frag-
mented and unclear (Candel, 2022; Rose et al.,, 2021). A
key implication of this study is that policymakers must
improve communication strategies to ensure that farm-
ers, technology developers, and other stakeholders are
well-informed about existing policy instruments and
funding opportunities.

This lack of clarity is also linked to a broader issue
of trust and how farmers perceive these policies. For
instance, Giampietri et al. (2020) show that trust in
intermediaries plays a critical role in adoption of CAP-
subsidized risk management tools. Our findings suggest
that in the context of smart farming, this trust must
extend to digital service providers and data systems,
highlighting the need for transparency, digital literacy,
and certification mechanisms that can build farmers’
confidence in technological tools.

Ahmed Moussaoui et al.

Consistent with earlier research (Long et al., 2016;
Weersink et al., 2018), this study also confirms that high
initial investment costs remain a fundamental barrier
to technology adoption. This is particularly problematic
for small and medium-sized farms, which struggle to
access capital for automation, Al-driven decision support
tools, and IoT-enabled monitoring systems. The explora-
tory quantitative results highlighted the widespread
concern about financial and technical barriers, and like-
wise, these survey insights were strongly supported by
qualitative findings, where experts repeatedly empha-
sized similar barriers such as high upfront costs, limited
access to financial resources, and difficulties accessing
technical support. This cross-analysis between survey
data and expert interviews strengthens the validity of
our observations and highlights the need for targeted
policy responses that directly address these barriers.
While financial incentives, such as grants, tax credits,
and low-interest loans, are already part of some policy
frameworks, stakeholders expressed concerns that these
incentives are often complex, difficult to access, or insuf-
ficient to offset adoption costs. Policymakers should con-
sider simplifying administrative procedures for funding
applications and targeting financial assistance toward
the most impactful technologies identified in this study,
such as sensor-based monitoring, Al-driven decision-
making, and precision irrigation systems.

Additionally, as reinforced by both datasets, cost-
sharing and infrastructure emerged as cross-cutting
themes, underscoring their significance regardless of
methodological lens. Stakeholders recommended public-
private partnerships to support cost-sharing initiatives,
particularly for expensive infrastructure investments,
such as rural broadband expansion. These findings
reinforce recent discussions on the role of co-financing
mechanisms and innovation clusters in mitigating the
risk associated with technology adoption for farmers
(Ehlers et al., 2022).

A consistent finding across both data sources was
the importance of technical knowledge and training in
shaping adoption outcomes, consistent with previous
studies (Charatsari & Lioutas, 2013; Lovec et al., 2020).
Smart agriculture technologies often require specialized
skills, yet many farmers have limited access to training
programs that could help them integrate these innova-
tions effectively. Stakeholders emphasized the need for
structured, hands-on training initiatives that focus on
technology usability, data interpretation, and integration
into existing farming systems.

This highlights an important policy gap: while some
funding exists for technology development, there is often
insufficient investment in farmer education and capacity
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building. Policymakers should consider expanding agri-
cultural extension services to provide in-person training,
online courses, and demonstration farms where farmers
can experience the benefits of digital agriculture first-
hand. Knowledge transfer partnerships between research
institutions and farming communities could also play
a crucial role in reducing this barrier. This aligns with
Menozzi et al. (2023), who emphasize that perceived
behavioural control and attitudes are pivotal in shaping
adoption decisions, especially when practices are unfa-
miliar or technically demanding. Similarly, our respond-
ents stressed the difficulty of using AI or IoT platforms,
reinforcing the need for support measures that go
beyond finance to include training, usability, and peer-
to-peer learning networks.

The study also highlights infrastructure limita-
tions, particularly concerning internet connectivity in
rural areas. Technologies such as IoT-based monitor-
ing, remote sensing, and Al-driven decision support
tools rely on high-speed internet and cloud comput-
ing, yet many agricultural regions lack the necessary
broadband infrastructure. This issue is consistent with
prior research, which emphasizes that the digital divide
between urban and rural areas is a significant barrier to
the diffusion of technology (Ehlers et al., 2022).

A broader finding from this study is that smart agri-
culture policies must be adaptive, responsive, and inclu-
sive. Stakeholders reported that existing policies often
fail to differentiate between the needs of different types
of farmers, particularly smallholders versus large-scale
agribusinesses. One-size-fits-all policy approaches may
not be effective in promoting equitable adoption, sug-
gesting the need for targeted support mechanisms.

Additionally, stakeholder engagement must be pri-
oritized in policy design and implementation. The find-
ings of the qualitative survey suggest that many policy
frameworks lack farmer representation in the decision-
making process, leading to misalignment between policy
objectives and on-the-ground realities. To improve this,
policymakers should, according to the key expert stake-
holders, incorporate participatory approaches, such as
co-design workshops, multi-actor innovation networks,
and regional consultation forums.

While this study aims to provide valuable insights
into the adoption barriers and policy needs of smart
agriculture technologies, using triangulation, combin-
ing exploratory survey findings with detailed expert
interviews, to provide a balanced and credible approach,
in an attempt to make the insights more robust, certain
limitations should be acknowledged. The sample size,
particularly for the qualitative interviews, was relatively
small, which may limit the generalizability of some find-

ings. Additionally, the reliance on self-reported data
introduces the possibility of response biases, as par-
ticipants’ perceptions may not always reflect objective
realities. However, it is important to note that the study
purposefully targeted key stakeholders, namely: policy
experts, researchers, and technology developers, identi-
fied through a structured stakeholder mapping within
the Agritech project. As such, the participants likely rep-
resent some of the most informed individuals on smart
agriculture policy and technology in Italy, enhancing
the relevance and depth of the insights gathered. Future
research should explore larger and samples to validate
these findings across different agricultural systems and
geographic regions. Comparative studies examining pol-
icy effectiveness in multiple countries could offer deeper
insights into best practices for supporting smart agricul-
ture adoption.

5. CONCLUSION AND POLICY IMPLICATIONS

This study highlights the importance of policy frame-
works in facilitating the adoption of smart agriculture
technologies while revealing key barriers hindering their
widespread implementation. The results emphasize stake-
holders’ strong optimism regarding these technologies’
role in improving agricultural efficiency, sustainability,
and resilience. However, the study also identifies three
major obstacles: high investment costs, technical knowl-
edge gaps, and inadequate infrastructure, all of which
must be addressed through targeted policy interventions.

A critical takeaway from this research is the neces-
sity for policy alignment and accessibility. While exist-
ing frameworks acknowledge innovation, a discon-
nect exists between policy provisions and stakeholder
awareness. This highlights the need for simplified
policy regulations, better communication strategies,
and stronger engagement with the farming community.
Policies should be designed to be practical, transparent,
and adaptable, ensuring that they effectively support
farmers and technology adopters in different agricul-
tural settings.

Another key implication is the urgent need for finan-
cial instruments tailored to the realities of smart agricul-
ture, Such as differences in farm sizes, digital readiness
and access to broadband infrastructure, among others.
Policies must focus on incentives such as subsidies, tax
relief, and low-interest loans to lower the entry barri-
ers for farmers, particularly small and medium-sized
operations. At the same time, public-private partnerships
should be expanded to create co-financing models that
distribute investment risks across multiple stakeholders.
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The role of education and technical training also
emerges as a fundamental aspect of successful adoption.
Smart agriculture technologies require specialized skills
that many farmers currently lack. To address this, agri-
cultural extension services should integrate digital train-
ing programs, on-field demonstration projects, and men-
torship initiatives. Collaboration between universities,
policymakers, and industry leaders can create structured
knowledge-sharing platforms that provide ongoing sup-
port to farmers.

Finally, this study underscores the importance of an
inclusive and adaptive policy-making approach. Engag-
ing diverse stakeholders, from farmers to technology
developers and policymakers, is essential for crafting
policies grounded in real-world needs. Multi-actor gov-
ernance structures, such as stakeholder consultation
groups, regional innovation hubs, and participatory pol-
icy platforms, should be institutionalized to ensure that
agricultural policies evolve in tandem with technological
advancements.

In conclusion, smart agriculture technologies rep-
resent a transformative opportunity for the agricultural
sector; however, their full potential can only be realized
with robust, well-coordinated, and forward-thinking poli-
cies. Policymakers can accelerate the transition toward a
more sustainable, productive, and resilient agricultural
system by addressing financial constraints, bridging the
knowledge gap, expanding digital infrastructure, and
improving stakeholder engagement. Beyond economic and
technological advancements, the successful integration
of these innovations has profound implications for long-
term sustainability and global food security. By improving
resource efficiency, reducing environmental degradation,
and enhancing adaptive capacity to climate change, smart
agriculture technologies contribute to more resilient food
systems that can meet the demands of a growing popu-
lation. However, ensuring equitable access to these tech-
nologies is essential to prevent the widening of disparities
between large-scale and smallholder farmers. Future pol-
icy efforts should focus on fostering inclusive innovation,
integrating sustainability goals into technology adoption
strategies, and aligning digital agriculture with broader
climate and food security policies. By doing so, agricul-
tural technologies can evolve in ways that not only drive
economic growth but also ensure environmental sustain-
ability and food system resilience.
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Abstract. Agri-food global value chains (GVCs) face growing pressure to enhance
productivity and environmental sustainability, with technological innovation playing
a critical role. In this context, start-ups have emerged as key innovation developers.
This study provides a qualitative, exploratory analysis of the technological character-
istics of 114 digital agriculture (DA) start-ups in Argentina. We have characterized
their solutions and proposed implications for the industrial dynamics in agricultural
input markets. Our analysis implies that most DA innovations tend to be comple-
mentary to existing technological packages rather than being disruptive. While these
start-ups introduce innovative solutions, they currently seem to hold limited capac-
ity to challenge the market dominance of large multinational agricultural input firms.
By exploring the intersection of innovation and market structures, this study provides
valuable insights into the evolving industrial dynamics of ag-input markets in agri-
food GVCs. The findings offer strategic implications for start-ups, incumbents, and
policymakers.

Keywords: start-ups, digital agriculture, innovation, industrial organization.

1. INTRODUCTION

Over the past decades, agri-food systems have undergone profound
transformations driven by accelerated urbanization, technological change,
and novel production techniques, resulting in significant gains in both pro-
ductivity and food availability (Barrett et al., 2022; FAO, 2017; Reardon et al.,
2019). However, global agri-food value chains (GVCs) continue to face sub-
stantial challenges related to addressing multiple imperatives: increasing food
production for a growing global population, supporting agricultural-depend-
ent emerging economies in their development trajectories, implementing
more sustainable and efficient production practices that align with new social
and environmental standards, and developing resilience to climate change
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impacts (Cerutti et al., 2023; Crippa et al., 2021; Yang et
al,, 2024).

In response to increasing pressure, we have seen in
recent years the development of a large set of technolo-
gies aimed at enhancing the resilience of GVCs to poten-
tial shocks and steering them toward more sustainable
trajectories (Costa et al., 2022; Wang et al., 2021). Unlike
a few decades ago, when innovations were mainly con-
centrated in the R&D departments of large companies,
today many innovations in this field are rooted in small
technology-based companies and start-ups, known as
agrifoodtech start-ups (Klerkx & Villalobos, 2024; Mac
Clay et al., 2024). These companies, increasingly recog-
nized as key players in the transformation of GVCs, offer
solutions across the entire agri-food value chain, from
upstream activities such as farming inputs and agricul-
tural production, through food processing and distribu-
tion, all the way to downstream segments that connect
with the end consumer. Among this large set of agri-
foodtech start-up companies, a specific group is focused
on providing digital agriculture (DA) solutions to the
upstream segment of the value chain (McFadden et al.,
2022, 2023; Wolfert et al., 2023), contributing to enhance
farm-level data analysis, decision-making, and automa-
tion through technologies such as artificial intelligence,
the Internet of Things (IoT), big data, robotics, sensors,
remote sensing, platform technologies and blockchain,
among others (Klerkx et al., 2019; Klerkx & Rose, 2020;
Lezoche et al., 2020)".

In recent years, Latin America has witnessed rap-
id growth in the number of start-ups focused on food
and agriculture, particularly in Brazil and Argentina,
which account for 51% and 23% of these companies in
the region, respectively (Bisang et al., 2022; Vitén et al.,
2019). In particular, the dynamism of Argentina in this
field can be attributed to a combination of factors. Exter-
nally, the country ranks as the world’s third-largest net
food exporter (World Bank, 2024). Internally, the agri-
industrial sector explains 23.1% of the GDP and gener-
ates around 23% of private-sector employment (Ram-
seyer et al., 2024). Moreover, Argentina has pioneered
in the adoption of agricultural technologies in the past,
such as no-till farming (Peiretti & Dumanski, 2014; Sco-
poni et al., 2011) and genetically modified seeds (Qaim
& Janvry, 2005; Qaim & Traxler, 2005), demonstrat-
ing a tradition of technological openness among farm-
ers. Farmers are, on average, young (average age of 44
years) and highly educated (around 45% of farmers in
Argentina have completed undergraduate or graduate

! This paradigm of accelerated innovation in the digital agriculture field
is also known in the literature as Agriculture 4.0, Agri-food 4.0 or the
Fourth agricultural revolution.
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studies), which favors the adoption of technology (FAO
et al.,, 2021). Additionally, the availability of qualified
professionals and entrepreneurial capacities seems to be
fostering the development of agrifoodtech start-ups in the
country (Lachman et al., 2022; Lachman & Lépez, 2022;
Navarro & Camusso, 2022).

However, beyond the promises and enthusiasm cur-
rently driving the innovative practices of these start-ups,
there are critical aspects of political economy that deter-
mine the long-term fate of a technological innovation,
which should not be overlooked (Hackfort, 2024; Prause
et al., 2021). The scaling and success of a technological
package do not depend exclusively on its intrinsic poten-
tial, as market and industrial dynamics will necessarily
shape this process. Agricultural input markets currently
exhibit high levels of concentration and market power,
with a reduced group of companies wielding influence
over commercial and technological trends (Fairbairn &
Reisman, 2024; Mac Clay et al., 2024; Sauvagerd et al.,
2024). Under this scenario, the promised transformation
in agriculture risks being slowed down (or eventually
thwarted) by incumbent strategies (Béné, 2022).

Despite a growing body of research analyzing the
potential of new technologies in agri-food GVCs (Finger,
2023; Herrero et al., 2020, 2021; Meemken et al., 2024),
little attention has been given to the dynamics of techno-
logical innovation within them, especially in developing
countries, in which the development and commercializa-
tion of innovations pose additional challenges (Alam et
al., 2023; Macchiavello et al., 2022). Overall, this work
seeks to provide a preliminary perspective on how young
start-up companies may reshape the market dynamics
of the agricultural input industry and the implications
for its future evolution. The main objective of this paper
is to provide an exploratory analysis of whether digital
agriculture (DA) start-ups have the potential to disrupt
the industry structure in global agricultural input mar-
kets by challenging the dominant position of estab-
lished multinational firms, particularly in the upstream
segment of the value chain. We approach this question
through a case study of Argentina, a relevant context
due to its dynamic entrepreneurial ecosystem and strong
presence of global agribusiness actors (Lachman et al.,
2022; World Bank, 2024). We do this by characterizing
the technological solutions offered by DA start-ups oper-
ating upstream at the farmer level?, and by exploring
how these solutions interact with the current technologi-
cal standards set by incumbent companies in the agri-
cultural input industry. The rationale behind focusing
on the DA segment is that digital solutions have particu-

2 We exclude companies offering solutions exclusively at the midstream
or downstream level.
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larly drawn the attention of agricultural input suppliers
(such as seed, agrochemical, fertilizer, and machinery
manufacturers) who view DA as a transversal technol-
ogy across various activities in agricultural production
(Lezoche et al., 2020). These companies also foresee DA
as a potential enhancer of their current technological
platforms in seed, crop protection, crop nutrition, and
agricultural machinery segments (Fairbairn & Reisman,
2024; Kenney et al., 2020; Prause, 2021).

The remainder of this paper is structured as follows.
In section 2, we describe the current industry structure of
the agricultural input industry and the strategic actions
incumbents are taking in the face of accelerating innova-
tion in DA. In section 3, we present our conceptual frame-
work, discuss the literature on interactions between estab-
lished firms and start-ups in the context of accelerated
technological change, and outline our two main analyti-
cal dimensions. In section 4, we present our methodologi-
cal approach, and in section 5, we present the results of
our analysis. In section 6, we discuss our results, explor-
ing the central topic of the paper: whether DA start-ups
change industrial dynamics in ag input markets. Overall,
our analysis shows that most of the solutions developed by
Argentine start-ups tend to be predominantly complemen-
tary to the existing technological packages, and this may
represent an opportunity for dominant firms to strength-
en their position either by acquiring or investing (as a way
of technological exploration) in early-stage start-ups to
incorporate those solutions into their own technological
platforms. The last section of the paper presents conclu-
sions and implications for different stakeholders.

2. THE AGRICULTURAL INPUT INDUSTRY IN
THE FACE OF THE DIGITAL TRANSITION

Over the last three decades, concentration in agri-
food GVCs has increased simultaneously in industries
such as crop seeds, agrochemicals, fertilizers, agricul-
tural machinery, and animal health and breeding prod-
ucts (Clapp, 2021; Fuglie et al., 2012; MacDonald, 2017;
MacDonald et al., 2023). The path towards increasing
market share has happened (mainly) through mergers
or acquisitions (M&As), consolidating a small number
of megacompanies that have led to GVCs’ reconfiguring?.

3 Examples include the 2015 merger of Dow and DuPont, resulting in
Corteva Agriscience; ChemChina’s acquisition of Syngenta in early
2016; and Bayer’s subsequent purchase of Monsanto. This sector,
already highly concentrated and dominated by the “Big Six” since the
early 2000s, is now controlled by four major firms - Bayer, Corteva,
Syngenta, and BASE. Something similar happens in the agricultural
machinery sector, in which the four leading companies control around
half of the market sales.

The implications of growing concentration in agricul-
tural input markets and (its consequent increase in mar-
ket power) have been explored in the literature by vari-
ous authors, including Fuglie et al. (2012), IPES (2017),
Deconinck (2020), Clapp (2022), and Béné (2022). Fug-
lie et al. (2012) note that the increase in market power
resulting from this concentration can lead to higher
input prices for producers. Furthermore, consolidation
often limits options, favoring products that are more
profitable for large companies (Clapp, 2021).

However, within the current technological para-
digm driven by information and communication tech-
nologies (ICTs), DA solutions have sparked debate over
whether this market dynamic of concentration can be
disrupted. In the field of DA, many innovations originate
from start-ups and small to medium-sized technology-
based firms (Klerkx & Villalobos, 2024; Manganda et al.,
2024). Over the last decade, we have witnessed a highly
dynamic scenario of the creation of these types of firms,
rooted in innovation ecosystems, which redefine rela-
tionships among traditional sector actors and introduce
new business models based on digitalization and data
access (Basso & Antle, 2020; Rotz et al., 2019).

Large incumbent companies that control the agri-
cultural input markets are shifting toward incorporat-
ing digital solutions into their portfolios and adapting
their business models to approach farmers with a more
integrated, smart-farming approach. This is a limiting
factor to start-ups’ potential to disrupt industry struc-
tures. Incumbent companies are now pivoting from
selling products to offering more integrated solutions,
using digital tools within broader systems to incorpo-
rate data analytics, decision support, and automation,
while strengthening oligopolistic dynamics by establish-
ing collaborative and interconnected digital platforms,
which may limit the access of new players (Sauvagerd et
al., 2024). Seed and crop protection companies such as
Bayer, Corteva, Syngenta, and BASF have developed pro-
prietary platforms that enable farm-level decision-mak-
ing based on real-time environmental and agronomic
data. These systems, such as Bayer’s FieldView or BASF’s
xarvio exemplify the shift towards offering service-based
solutions that create data lock-ins and potentially rede-
fine customer relationships (Jiang, 2021; Trivedi, 2022).
Fertilizer firms are also going in the same line. Com-
panies like Nutrien and Yara, for instance, use digital
platforms to monitor field-level input application and
promote practices related to precision fertilization, while
large animal pharma incumbents have recently advanced
in the acquisition of precision tools for livestock man-
agement and monitoring (e.g., Merck Animal Health
acquired QuantifiedAg and Zoetis acquired Performance
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Livestock Analytics). Crop protection and nutrition com-
panies are also investing in digital marketplaces that
streamline the process of selling to farmers and create
digital channels as a complementary solution to tradi-
tional distribution channels (for example, Yara and Syn-
genta are investors in the Argentine marketplace Agrofy).

Farm machinery manufacturers, including Deere &
Co., CNH Industrial, Kubota, and AGCO, are investing
in precision agriculture and smart machinery (Birner et
al., 2021; Paolillo, 2022). These companies are integrat-
ing sensors and telemetry to improve the performance of
their products, with a focus on automation and interop-
erability. They also offer services that enhance the value
of the data collected by machinery. Moreover, commod-
ity trading companies such as Cargill, ADM, and Louis
Dreyfus are using digitalization to improve the transpar-
ency and traceability of their value chains. They provide
digital tools to farmers to facilitate selling and adopt dig-
ital platforms to enhance their sourcing process.

Collectively, these actions indicate a systemic trend:
dominant input firms are not only adapting to digital
agriculture but also seeking to shape its institutional and
commercial architecture. Based on the C4 concentra-
tion ratio (ETC Group & GRAIN, 2025), we summarize
in Appendix 1 the initiatives of top companies in each
significant segment related to DA. These are the actors
most likely to influence the direction and structure of
digital agriculture.

Considering the actions these companies are taking
towards DA, the critical question that emerges is wheth-
er the evolving patterns of innovation and the novel
technological solutions associated with DA that small
firms are developing have the potential to disrupt the
recent trend of market concentration in aginput indus-
tries or whether they will entrench existing patterns of
consolidation further.

3. CONCEPTUAL FRAMEWORK

3.1. Interactions between incumbents and start-ups in the
context of technological change

The features of new technologies and their relation-
ship to incumbent firms’ current technological standards
not only influence production but also shape market
dynamics, including strategy configuration, leadership,
and governance (Mac Clay & Sellare, 2025). This is espe-
cially relevant in a context in which the cost of techno-
logical building blocks has been drastically reduced over
the last decades, due to increases in computing capacity
(Lundstrom & Alam, 2022) and reductions in genome
sequencing costs (Song et al., 2023). What was once an

Julidn Arraigada, Pablo Mac Clay

exclusively internal process for large firms is now being
reconfigured as a distributed innovation process, with
smaller players entering the scene. Start-ups (and small-
to medium-sized firms) hold greater ability and flexibil-
ity to explore emerging technologies first, in many cases
with disruptive potential.

Start-ups can adapt quickly and flexibly to new busi-
ness opportunities and are more likely to align incen-
tives among entrepreneurs, investors, and employees
(Bendig et al., 2022; Dushnitsky & Yu, 2022). In con-
trast, incumbents tend to focus on exploiting existing
capabilities (Freeman & Engel, 2007). Thus, as start-ups
have more dynamic rates of innovation, this may imply
an opportunity for incumbents to outsource part of their
R&D process by making corporate investments, acquir-
ing start-ups, or forming partnerships within an open
innovation framework, in interactive contexts such as
business or innovation ecosystems (Berthet et al., 2018;
Bogers et al., 2018).

While these advantages give start-ups some disrup-
tive potential, their ability to challenge dominant indus-
try positions can be mitigated by the response of incum-
bent firms, which are in control of the value chain and
have the ability to set governance rules, as well as prior-
itize technology standards (Clapp & Ruder, 2020; Fair-
bairn & Reisman, 2024). Many novel technologies exhibit
low marginal costs once they become commercially scal-
able but require substantial investments in the develop-
ment phase (Zilberman et al., 2022). Start-ups often lack
the necessary operational and financial resources, as well
as market access, distribution channels, and brand recog-
nition. Thus, for start-ups, partnering with large, estab-
lished firms may be necessary not only to secure funds
for technological development but also to secure future
access to markets once the technology is viable. By inter-
acting with start-ups, incumbents may be able to exploit a
window of technology to incorporate promising solutions
while reducing failure costs (Dushnitsky & Lenox, 2005).
The possibility of engaging in open innovation processes
is also critical for redefining corporate identity in rapidly
evolving contexts (Waflenhoven et al., 2025).

This interaction between incumbents and start-ups
may also give incumbent firms a way to control tech-
nological pathways, which is especially relevant in the
context of high market concentration, as it happens in
agricultural input industries (Béné, 2022). By invest-
ing in, acquiring, or entering into research partnerships
with start-ups and emerging companies, these incum-
bents might find a way to control the type of technology
that reaches the market (or even the pace of innovation).
Moreover, some innovations tend to be systemic, requir-
ing adaptations from different members of the value chain
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to be successful. In these cases, some industry incumbents
need to step up and take leadership, promoting these
technologies as the new standard, potentially leading to
winner-take-all scenarios (Harryson & Lorange, 2024;
Klerkx & Rose, 2020; Sauvagerd et al., 2024).

3.2. Dimensions of analysis: materiality and functional
integration of innovations

To assess the extent to which emerging DA start-ups
offering solutions to farmers in the upstream segment of
GVCs can disrupt and reshape the highly concentrated
agricultural input markets (as described in the previous
section), this paper characterizes start-ups technolo-
gies and examines how they interact with the currently
incumbent-led technological paradigm. We proceed
along two analytical dimensions. First, we explore the
materiality and mode of deployment of technological
change, distinguishing between embodied and disem-
bodied innovations, as proposed in the agricultural eco-
nomics literature by Sunding and Zilberman (2001) and
Dosi et al. (2021). Simply put, embodied innovations are
those that are integrated into physical capital or machin-
ery (i.e., technologies whose adoption requires invest-
ment in tangible equipment). Embodied digital tools are
incorporated into physical agricultural equipment, such
as selective-spraying modules, drones for crop monitor-
ing, variable-rate technologies, and animal-based devices
(e.g., ruminal boluses that track internal health indica-
tors). These technologies often require capital investment
and technical know-how for operation (Birner et al.,
2021; van der Velden et al., 2024).

Disembodied innovations, on the other hand, refer
more to software and information technologies and
do not depend exclusively on physical devices, being
relatively placeless. These technologies could be imple-
mented without significant changes to capital goods and
can be deployed without necessarily being tied to a par-
ticular machine or location (although they may require
physical devices like computers or smartphones to
work). These types of disembodied innovations include
tools such as cloud-based advisory platforms, farm man-
agement apps, weather and pest forecasting systems, and
data analytics services that support informed decision-
making.

However, this distinction between embodied and
disembodied innovations is insufficient to analyze the
solutions provided by start-ups comprehensively. Sev-
eral authors (Birner et al., 2021; Lavarello et al., 2019)
emphasize the importance of classifying solutions
according to their relationship with existing products
and services, reflecting the functional integration type.

Lavarello et al. (2019) argue that, unlike previous tech-
nological revolutions characterized by technological
substitution and the entry of new players, DA is associ-
ated with leveraging complementarities between new
enabling technologies and existing technological trajec-
tories. Birner et al. (2021) suggest that product substitut-
ability in DA can be seen as a factor that reduces mar-
ket concentration, as substitutes tend to foster the entry
of new players and competition. Therefore, this analysis
incorporates a second fundamental dimension that dis-
tinguishes between substitute and complementary goods.
Substitute goods can lower entry barriers and stimulate
competition by enabling the replacement of traditional
technologies (e.g., a spraying drone replacing a con-
ventional sprayer). On the other hand, complementary
goods may eventually strengthen the position of domi-
nant market players by optimizing existing technologies
and reinforcing dependence on established infrastruc-
tures (i.e., IoT sensors that enhance the efficiency of tra-
ditional irrigation systems) (Besanko et al., 2012).

A synthesis of our bi-dimensional conceptual frame-
work is shown in Figure 1. This framework considers
(i) the distinction between embodied and disembodied
innovations (materiality of the innovation) and (ii) the
classification of goods into substitutes and complements
(the functional integration of the innovation). The com-
bination of these dimensions results in a matrix with
four quadrants, providing an analytical tool to explore
the transformative potential of these innovations on the
concentration of agricultural input markets.

4. DATA AND METHODS
4.1. Database building

The first point in our analysis is to identify and sys-
tematize a comprehensive list of agrifoodtech start-ups in
the country. We first start with this more comprehensive
concept (which includes solutions at the farmer level as
well as at the mid- and downstream segments), and we
then narrow down to DA start-ups, which constitute the
main objective of this paper. We have not found fully
harmonized and updated databases that collect system-
atic information on agrifoodtech start-ups. For this pur-
pose, we combined industry reports with a selection of
public sources, including news, press releases, and web-
sites, until a comprehensive database was established.
We started collecting available information from previ-
ous research studies and surveys conducted between
May and July 2022 (Soler et al., 2022) and between July
and October 2023 (Navarro et al., 2024). We comple-
mented this information using Crunchbase, a database
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Figure 1. Categories of analysis. Classification of start-ups. Source: Own elaboration based on Sunding and Zilberman (2001), Lavarello et

al. (2019), and Birner et al. (2021).

of innovative ventures increasingly used for academic
research (Dalle et al., 2017). This information was also
combined with ad hoc web searches and consultations
with experts and stakeholders in the local entrepreneur-
ial ecosystem.

While the term “start-up” lacks a universally accept-
ed definition (Connolly et al., 2018; Klerkx & Villalo-
bos, 2024), for this study, we define start-ups as busi-
ness ventures characterized by two key elements: (a) an
innovative approach underpinned by intensive research
and development activities; and (b) scalability potential,
reflected in business models which tend to be replicable
across multiple markets and the promise of exponen-
tial growth for investors (Escartin et al., 2020; Vergara
& Barrett, 2025). For instrumental purposes, we define
Argentine agrifoodtech start-ups as companies founded
and operating in Argentina that develop technologies
in agriculture and food and have achieved (or are close

to) at least a minimum viable product by October 2024.
While there is no undisputed temporal criterion for
defining start-ups (i.e., companies not exceeding a cer-
tain number of years), we include in our analysis com-
panies founded in 2010 or later, considering that it was
in early 2010s when concepts like Climate-Smart Agri-
culture, Digital Agriculture, and Agriculture 4.0 began
to gain systematic attention in the literature (Alam et al.,
2023; FAO, 2010). We acknowledge this is a pragmatic
operationalization, that combines the innovativeness
profile, product readiness and year of foundation does
not fully capture other relevant dimensions of a start-up
company, such as the funding stage (whether the com-
pany has already received pre-seed or seed funding, or it
is more advanced into series A, B, etc.), governance and
ownership structure, or the realized scalability or inter-
nalization potencial. Thus, our criteria should not be
read as a definitive taxonomy for selecting or identifying
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start-ups, but rather as a practical shorthand for build-
ing an initial database.

As a first step, and to ensure comprehensive cover-
age and consistency with previous studies, we adopted
an inclusive classification encompassing companies
developing both agricultural-specific innovations and
those implementing improvements across the entire
value chain, including processing, logistics, marketing,
and traceability. This is why, in this stage, we use the
broader agrifoodtech denomination and we later move
to specific DA companies. Our systematic search meth-
odology yielded a database of 239 Argentine agrifoodtech
start-ups. For each company, we compiled data on their
description, primary value proposition, and core tech-
nology applied. Around three-quarters of these compa-
nies initiated operations after 2016.

4.2. Identifying and classifying DA start-ups

As a second step, we leverage this database to identify
start-ups offering farmer-centered solutions in the field
of DA in the upstream segment. The literature provides
various proposals to classify the solutions developed by
start-ups working in agriculture and food (AgFunder,
2024; Herrero et al., 2020, 2021; Mac Clay et al., 2024;
McFadden et al., 2023), but due to the dynamic nature of
the sector, no typology has yet achieved universal adop-
tion. To distinguish between start-ups that provide DA
solutions and those that do not, we classify the start-
ups according to the criteria proposed by Mac Clay et
al. (2024), which adopt a comprehensive agri-food value
chain approach?, allowing us to capture those companies
specifically providing DA solutions to farmers (rather
than to mid- and downstream segments of the value
chain). This preliminary step is essential to contextual-
ize DA start-ups within the value chain, evaluate their
relative significance and visibility compared to other
solutions, and understand their role within the broader
innovation landscape in Argentina’s agri-food sector. For
instrumental purposes, DA solutions are defined as those
within the categories of “Precision agriculture, smart
farming, and agricultural robotics” and “Digital Agribusi-
ness Marketplaces™, as outlined by Mac Clay et al. (2024).

4 This typology comprises eleven different solutions, categorized by
their position in the value chain.

° The authors in this work consider a broader category, which is
“E-commerce and delivery solutions”. Within this category, the authors
include both apps specifically related to farmers’ digitalization, as well
as other apps linked to food distribution to the final consumer (for
example, delivery apps). This second group of solutions is unrelated
to what we define as digital agriculture, so for practical purposes, we
divide the category into two to specifically capture “Digital Agribusiness
Marketplaces’, and the rest we indicate as “Other”.

To further characterize the remaining start-ups oper-
ating in the DA field, we apply the typology presented by
McFadden et al. (2023), which categorizes digital solu-
tions into three groups: (i) “Data and Data collection”,
(i) “Decision Support” and (iii) “Equipment and input
adjustment based on data”. Examples in the first category
include data obtained from yield monitoring equipment,
sensors, and images captured by drones, aircraft, or satel-
lites. Decision support tools include digital maps or other
visualizations of georeferenced data, mobile applications,
and other analytical tools that provide management rec-
ommendations. Technologies in the third category pri-
marily include guidance systems, automatic steering,
and variable-rate applicators. The purpose of this clas-
sification is not to perform a selection (as was done in
the previous step), but to provide an initial characteri-
zation of DA start-ups, using a standard criterion com-
monly applied in various reports on the subject. Finally,
we characterize the subgroup of DA start-ups based on
their primary technological features, following the typol-
ogy introduced in the previous section (Figure 1). This
framework classifies DA start-ups into four distinguisha-
ble categories: (a) embodied and substitute, (b) embodied
and complementary, (c) disembodied and substitute, and
(d) disembodied and complementary. A summary of the
categories is presented in Table 1.

Based on this final classification, which reflects key
technological attributes, we hypothesize about the poten-
tial of these start-ups to challenge the dominant posi-
tion of large multinational companies in the agricultur-
al input segment of agri-food GVCs. Given the nascent
nature of these start-ups and the technologies they offer,
our analysis adopts an exploratory perspective. We out-
line ideas on how and to what extent each of the four
groups of innovations identified in Figure 1 could drive
changes in the industrial dynamics of highly concentrat-
ed input markets.

5. RESULTS: CHARACTERIZING
ARGENTINE START-UPS

5.1. Initial identification of DA start-ups

In this section, we present the classification of the
group of 239 agrifoodtech start-ups identified in Argen-
tina. We begin by identifying the subset of DA solu-
tions that constitutes the core of our analysis, based on
the categories presented by Mac Clay et al. (2024) (the
details of this classification are shown in Appendix 2).
Within the upstream segment, Precision agriculture,
smart agriculture, and agricultural robotics solutions
account for 41% of the total companies. These start-ups
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Table 1. Technological classifications used in the analysis.

Julidn Arraigada, Pablo Mac Clay

Mac Clay et al. (2024)

Own Conceptual

McFadden et al. (2023) Framework

Start-ups providing Digital Agriculture (DA) solutions (including precision agriculture,

smart farming, and farm robotics and digital agribusiness marketplaces)

Other Solutions

Data and Data Complementary &

Collection embodied
Decision-Making Complementary &
Support disembodied

Data-driven Equipment
and Input Adjustments
Substitute &
disembodied

Substitute & embodied

focus on developing solutions such as real-time data
collection, satellite images and drones, farm manage-
ment software, precision livestock technologies, and
digital advisory services. DA start-ups have the potential
to transform agricultural input markets since the vast
amount of data they generate can be utilized not only by
farmers to optimize decisions but also by other start-ups
to improve their technologies. At the same time, there
is a group of companies defined as Digital Agribusiness
Marketplaces (7% of the total number of companies)
which contribute to farmers’ digitalization by connect-
ing them with input suppliers and clients, and provid-
ing services related to price discovery. These two groups
form the core of what is defined, for the purpose of
this paper, as DA. As the analysis shows, around half of
start-up companies in Argentina are oriented toward the
upstream segment, providing digital services for farms.
A possible explanation for this is related to the distinct
agricultural profile of the country and the importance
of primary production both for the internal productive
structure and the export markets (World Bank, 2024).
From this first classification step, we retain 114 com-
panies from the initial set of 239, which constitute our
DA group (the full list of these companies is presented
in Appendix 3). We will now focus on this subset of DA
start-ups, which are the main object of this paper. As a
first characterization, we apply McFadden et al. (2023)
classification typology. As shown in Figure 2, we see a
predominance in the categories of Data and data collec-
tion (37.7%)° and Decision-making support’” (56.1%). This
reflects a focus on solutions that are primarily oriented
towards collecting information and optimizing the deci-
sion-making process. Technologies related to data collec-
tion and decision support are among the most adopted
by Argentine farmers. According to Borbiconi et al. (Bor-

¢ Examples of companies in this category are Aseagro, Caburé, Control
Campo, Nandi; Vistaguay or Pastech.

7 Examples of companies in this category are Albor, Auravant, Eiwa or
Sima.

biconi et al., 2024), half of the farmers in Argentina use
technologies that facilitate data collection. Puntel et al.
(2022) note that remote sensing and mapping solutions
have an adoption rate of between 60% and 80%. The
Data-driven Equipment and Input AdjustmentsS category
accounts for only 6.1%, indicating a lower representa-
tion of these solutions, which are more related to farm-
ing automation. This is also in line with adoption data.
For equipment and inputs, registered rate adoptions
are lower among Argentine farmers (except possibly for
GPS, which is adopted mainly due to its integration into
machinery). Variable-rate technology adoption ranges
between 30% and 40% (Borbiconi et al., 2024; McKing-
sey & Company, 2024; Puntel et al., 2022).

5.2. Characterization of DA start-ups according to their
technological features

After mapping and characterizing DA start-ups’
profiles based on McFadden et al. (2023), we categorize
them now using our own analytical framework, outlined
in Figure 1. As a starting point, and based on the value
proposition of the 114 start-ups that constitute our object
of study, we list the specific solutions these companies are
providing and label them in terms of both dimensions:
the materiality and the functional integration of the
innovation. This is presented in detail in Table 2. In each
row, we explain the criteria behind classifying a solution
as embodied or disembodied (materiality) and as comple-
mentary or substitute (functionality). For example, a farm
digital advisory platform is disembodied in nature, as it
does not require dedicated hardware (beyond a comput-
er or smartphone), but is complementary, as it integrates
data from different sources. On the other hand, a spray-
ing drone is embodied, considering that these are physi-
cal devices equipped with sensors, spraying systems, and

8 Examples: Deepagro, Campo Preciso, UCO Drone or Agrovants.
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Table 2. Classification of start-ups (materiality and functional integration) according to the main solution they provide.

Solution

Materiality

Functional integration

Start-ups

Custom tech solutions

Digital agribusiness marketplaces

Digital platforms enabling
sustainable and regenerative
agriculture

Farm digital advisory platform

Farm Management Software

Livestock digital advisory
platforms

Livestock identification with Al

Livestock management software

Disembodied: These are software- Complementary: They enhance

based and digital developments
without a dedicated physical
component, focusing on data,
analytics, and management.
Disembodied: Software-based
platforms without a dedicated
physical hardware component.
They operate online and are

accessible via computers or mobiletransact entirely online.
devices, meaning their value lies in

the digital services they provide.
Disembodied: Operate through
digital platforms and services
without physical hardware.

Disembodied: Software and apps
that process agricultural data via

digital channels, without requiring integrating data from other

dedicated hardware.

Disembodied: Digital applications Complementary: These software

that collect, process, and analyze
agricultural data for farm
management. It operates entirely
through computers, tablets, or
smartphones, without requiring
a dedicated physical hardware
component to function.

Disembodied: Software and digital Complementary: Provide

existing agricultural processes
by digitizing, optimizing, and

Agrosty, AgroToolbox, Integra

Labs, Kan Territory Magoya,
Sendevo

integrating operations rather than

replacing them.

Substitute: These platforms replaceAgriRed, Agro24, Agrofy, Bipolos,
traditional, in-person agricultural Enbaca, Flashagro, GenGanar,
buying and selling channels by =~ HaciendaGo, La Rotonda, Malevo,
enabling producers and buyers to Mercado Agrario, Modo Agrario,
Muu Mercado Digital Ganadero,
Pacta, Qira, Rastro Agropecuario,
Wymaq

Cacta, Edra, Eirt, Puma, Ruuts,
Ucrop.it

Complementary: Support
sustainability and traceability by
providing data and validation
tools, improving decision-making
rather than replacing production
processes.

Complementary: Support and
improve farming decisions by

Agroapp, AgroBrowser,
Agroconsultas, Agrohub, Agrology,
Agro Aprilis, Avansys, Bold, Bright
technologies, enhancing efficiency Data Analytics, Caburé, CROPilot.
without replacing existing tech, Dymaxion Labs, EcoDrip,
practices. Eiwa, Fauno, iAgro, Kilimo, Kuna,
Nutrixya, OKARATech, PreSeeds,
Rastros, Satellites On Fire,
Terratio, UrsulaGIS, Vistaguay,
Yield Data

AgroPro, Auravant, Culti,
Hi-Terra, Inteliagro, Lievrex,
Nandd, Riante, SaiLO, Sima,
SmallData

enhance decision-making,
optimize resource allocation,

and improve efficiency in farm
operations. It complements
existing processes, machinery,
labor, and agronomic practices by
providing better coordination and
data-driven management tools.

Nandi, RumIA, Uniagro soft

platforms accessible via computers management support and advisory

or mobile devices.

Disembodied: Based on software
and Al vision systems, not
dependent on physical devices.

Disembodied: Digital systems and Complementary: Strengthen

applications that collect, process,
and analyze data for livestock
management without tangible
hardware.

tools that optimize livestock
production without substituting
existing practices.

Substitute: Replaces traditional ~ IDanimal

identification methods (tags,

marks) with digital recognition

powered by artificial intelligence.

Avismart, Cattler, Cowdoo
livestock production by enabling (Raices), FieldData, Finca
traceability, data-driven

management, and efficiency,

without replacing existing

practices.

(Continued)
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Table 2. (Continued).

Solution Materiality Functional integration Start-ups
Real-time monitoring of air qualityEmbodied: Requires physical Complementary: Provide AR-PUF, Indegap
with sensors sensor devices installed in the environmental data that improves
environment. management and risk prevention,

supporting agricultural operations
rather than replacing them.

Real-time monitoring of climate ~Embodied: Weather stations are Complementary: Offer real-time AgroTrack, Canopilogger, Climate

with weather stations tangible devices capturing and  climatic information that supports Sense, MKL Agro, Mixon, Pampe.
transmitting data. planning and decision-making  ro, Smartium
without replacing production
processes.
Real-time monitoring of fodder = Disembodied: Service based Complementary: Improve Forrager
with satellites on satellite imagery and data fodder management by providing
analytics, delivered digitally objective and continuous
without requiring specific information without substituting
hardware. production.
Real-time monitoring of grass withEmbodied: Combine sensors and Complementary: Optimize Pastech
sensors and satellites smart devices installed in the field pasture management by
with satellite data. supplying precise and integrated
information, enhancing existing
practices.
Real-time monitoring of livestock Embodied: Depend on physical Complementary: Strengthen Agrocheck, Control Campo
water systems with sensors devices and sensors installed in  existing infrastructure by enabling
water systems. monitoring, alerts, and efficient
use of resources.
Real-time monitoring of Embodied: Sensors and hardware Complementary: Improve Acronex, Minnow, Corvus
machinery with sensors integrated into agricultural existing equipment with real-time (AGDP), DVL Satelital
machinery. traceability, control, and efficiency,
without replacing the machinery
itself.
Real-time monitoring of silobags Embodied: Physical sensors Complementary: Support and ~ Wiagro
with sensors placed in silobags to track storage enhance storage systems by
conditions. providing data to prevent losses

and improve conservation.
Real-time monitoring of soil with Embodied: Depend on physical Complementary: Complement  Agrosense, Briste, Clarion
Sensors sensors installed in the soil. agronomic practices with real-time

data on nutrients, humidity, and

soil conditions.
Real-time monitoring of water =~ Embodied: Requires physical Complementary: Add control, ~ Hidromotic Ingenierfa, Ponce
systems with sensors devices and automation systems in efficiency, and automation to water

irrigation or water infrastructure. systems, without substituting the
infrastructure itself.

Smart devices and robotics for ~ Embodied: Physical devices Complementary: Enhance animal Bastd, Cattle Trace (Onsen
livestock and robotic systems applied to ~ husbandry with monitoring, Ingenierfa), Dale Vaquita,
livestock management. automation, and precision Digirodeo, El Ojo del Amo, Huella
management, while keeping Software, Magno, Novimetrics
traditional production practices.
Smart devices for sprayers Embodied: Physical devices Complementary: Improve DeepAgro
integrated into spraying precision and reduce input use by
machinery. optimizing existing sprayers rather
than replacing them.
Solutions for smart data and Disembodied: Provide digital Complementary: Strengthen Innova Space, Satellogic, Vertrev
connected devices platforms and connectivity (e.g., agricultural systems by enabling
satellite data, IoT integration) communication, data access, and
without field hardware. interoperability of devices.
(Continued)
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Solution Materiality

Functional integration Start-ups

Embodied: Physical devices
equipped with sensors, spraying
systems, and autonomous
navigation technology. Their

Spraying drones

Substitute: They replace
traditional spraying equipment,
such as tractor-mounted sprayers,
by performing the same task

Agrovants, Servidrone, UCO
Drone

operation depends on the physical and reducing reliance on older

machinery itself.

machinery for spraying operations.

Source: Own elaboration based on the two dimensions presented in Figure 1.

Total number of Argentine agrifoodtech start-ups

Classification
Mac Clay et al. (2024)

114 (48%)

Data and Data
Collection

Decision-Making
Support

Classification
Mc Fadden et al. (2023)

43 (38%) 64 (56%)

Startups providing Digital Agriculture (DA) solutions

239 startups (100%)

Other solutions

125 (52%)

Data-driven Equipment
and Input Adjustments

7 (6%)

o Complementary Complementary Substitute &
wn & Embodied & Disembodied Embodied
conceptual
framework

32 61 3

(28.1%) (53.5%) (2.6%)

Substitute &
Disembodied

18
(15.8%)

Figure 2. Summary of the classification and characterization process.

autonomous navigation technology, and are substitutes in
their functional nature (as they cover the same function
as traditional spraying equipment).

When we examine this analysis as a whole, the first
point to highlight is that Argentine digital agriculture
start-ups notably gravitate towards complementary solu-
tions, that enhance the efficiency of existing technology
platforms without replacing current production tools.
As shown by Figure 2, among the 114 digital agriculture
start-ups, approximately 80% offer complementary solu-
tions. In the group of embodied complementary solu-
tions (28.1% of total companies), we find devices for
soil monitoring, precision irrigation systems, and tech-
nologies to optimize agricultural input requirements.
One example is DeepAgro, which offers a device (called
sprAl) that enhances the spraying process through an
Al-based system capable of weed recognition, enabling
more efficient use of machinery. They have recently
incorporated a large language model system that ena-
bles better task tracking and facilitates inquiries regard-

ing equipment efficiency (Martinez, 2025). The recent
partnership between DeepAgro and a local agricultural
machinery manufacturer illustrates the complementary
nature of this solution (La Nacién Campo, 2024). Other
examples include cases like Cattler or Digirodeo, which
offer smart devices for livestock management, Wia-
gro, which provides sensors for monitoring silobags or
Agrosense, offering devices for soil monitoring.

A second group (53.5% of the companies in DA)
provides disembodied complementary solutions, such
as digital farm management tools and data analysis
platforms. This category includes software companies
such as Eiwa, Agrology, or iAgro, which help farmers
integrate data collected from their agricultural machin-
ery, telemetry systems, geographic information systems,
and accounting software. The goal is to support more
efficient farm management and data-driven decision-
making. These tools offer a more precise and integrated
visualization of information, and in some cases, provide
management recommendations based on data analy-
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sis. However, they are complementary solutions in the
sense that, despite the value they offer, they still rely on
the generation of primary data from other equipment or
software. Some firms in this category are even forming
alliances with telecommunications companies to ensure
connectivity in the field, which is crucial for data col-
lection and the integration of cloud-based equipment
(Vazquez, 2024).

Conversely, substitute solutions, which replace
entirely current products, processes, or tools, are mar-
ginal within the DA landscape in Argentina. Only 2.6%
of DA companies correspond to embodied substitutes.
We can mention the case of companies such as UCO
Drone, Servidrone, and Agrovants, which offer drones
for crop spraying services. This practice helps avoid loss-
es caused by crop or soil damage resulting from ground-
based equipment, while also allowing spraying in areas
that are otherwise inaccessible and achieving greater
overall precision. With improvements in the load capac-
ity of drones (from approximately 10 liters to nearly 50
liters, increasing efficiency by hectares per hour), many
farmers in Argentina are beginning to replace some
ground-based applications with drones (Razzetti, 2025).
However, this trend is still in its early stages.

Finally, among the group of companies offering dis-
embodied substitute solutions (15.8% of total), we find
agricultural marketplaces, such as Agrofy or Agrired,
which facilitate both the purchase of inputs (such as crop
protection products and fertilizers) and even the sale
of agricultural production. These marketplaces aim to
disintermediate the value chain by enabling farmers to
bypass traditional local distributors and purchase direct-
ly. Although still in its early stages, this trend clearly
shows potential to substitute the conventional channels.
In Argentina, only about 20% of farmers regularly pur-
chase online, although those who have done so express
an intention to continue using the online channel (Bor-
biconi et al., 2024).

6. DISCUSSION: CAN DA START-UPS
CHANGE INDUSTRIAL DYNAMICS
IN THE AG-INPUT MARKETS?

As outlined in the conceptual framework, the inter-
actions between incumbents and start-ups in the context
of technological change can have multiple facets, allow-
ing more flexibility to technological exploration and
enabling open innovation and deeper inter-firm link-
ages. This analysis focuses specifically on whether the
technological profile of DA start-ups provides a sufficient
foundation for transforming existing market dynamics,
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challenging the market positions of established domi-
nant firms. Drawing on our previous classification of
DA start-ups in Argentina in Section 5, we propose an
exploratory and conceptual analysis to examine whether
the technological characteristics of these start-ups pos-
sess transformative potential for the industrial organiza-
tion of agricultural input markets, or whether they will
reinforce the market power dynamics that have prevailed
in the sector over the past thirty years (as described in
Section 2). Given the current lack of sufficient empirical
evidence on this topic, the ideas presented in this analy-
sis should be regarded as an exploratory exercise.

At first glance, the predominance of complemen-
tary solutions and the low representation of substitute
technologies appear to limit their capacity to disrupt
the current balance of power. Large companies can pre-
emptively acquire start-ups, integrating innovative tech-
nologies while maintaining market dominance. Further-
more, start-ups developing complementary technologies,
whether embodied or disembodied, often depend on the
infrastructure, data, or distribution channels of large
companies, which limits their independence and ulti-
mately strengthens the position of the incumbents.

Dominant multinational companies are leveraging
complementary technologies to transition from input-
based business models to platform or solution-based
models. For example, a crop protection company that
previously offered herbicides or pesticides is now offer-
ing systemic and integrated solutions to achieve weed
and pesticide-free farms, thereby minimizing the need
for agrochemicals. While greater precision in product
application could be a driver of a sales reduction of these
companies’ core products, digital tools enable companies
to integrate solutions and shift their value creation mod-
el. This transition offers comprehensive agronomic man-
agement solutions that complement traditional product
sales. Another example could be the case of an agricul-
tural machinery company, which in the past obtained
revenue mainly from the sale of products (i.e., tractors)
and today seeks to offer a service of real-time data analy-
sis of the field to maximize the efficiency of the planting
process. In both cases, companies leverage smart tech-
nologies to transform product sales into recurring ser-
vice or subscription revenue streams.

Conversely, substitute solutions may represent a
more evident opportunity to generate a disruptive mar-
ket impact. The development of substitute solutions,
such as autonomous machinery, could facilitate the entry
of new players, breaking the entry barriers imposed by
large companies and diversifying the agricultural input
market. However, their low representation among Argen-
tinian start-ups suggests the existence of significant
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entry barriers, including prohibitive scaling expenses,
limited access to capital, and challenges in establish-
ing and managing physical infrastructure. Aware of the
threat posed by these specific innovations, large com-
panies may adopt defensive strategies to safeguard their
leadership position and neutralize the impact of innova-
tions that could challenge their value propositions.

Our analysis is in line with previous evidence on the
topic. Lavarello et al. (2019) observe that digital technolo-
gies tend to reinforce existing technological trajectories
rather than disrupt them. Sauvagerd et al. (2024) show
that despite many new digital solutions coming from
small companies, the strategies of large incumbents tend
to consolidate an oligopolistic landscape in these new
platforms. Mac Clay et al. (2024) show that incumbent
firms in the agricultural machinery, seed, and crop pro-
tection fields are employing corporate venture strategies
to invest in digital agriculture platforms that may allow
an upgrade in their own services and operations. In fact,
these corporate venture strategies show that even when
incumbent firms develop their own digital branches, they
still seek complementarities in solutions developed by
start-ups. There are several examples in this line, such
as BASF and Yara investing in Ecorobotix’, a company
utilizing AI for autonomous crop protection, Syngenta
investing in Greeneye'?, an Al-driven precision spraying
solution, or Bayer investing in EarthOptics'!, a precision
agriculture company focused on soil health, to mention
a few. The rapid acceleration of technological innova-
tion and the proliferation of digital solutions have led to
a fragmented landscape, making it virtually impossible
for any single firm to develop all the necessary capabili-
ties internally. This has led to the need for external explo-
ration of complementary capabilities. In a similar line,
Rotz et al. (2019), Hackfort (2021), and Clapp and Ruder
(2020) explain the political economy behind the develop-
ment of digital solutions and how multinational compa-
nies tend to prioritize the development of technological
lines that are aligned with their own interests and may
lead them to higher benefit capture.

Additionally, the type of innovations developed by
DA start-ups, whether embodied or disembodied, also
influences their potential to disrupt concentration in the
agricultural input industry. While embodied solutions
directly impact agricultural production, their ability to
alter concentration dynamics is limited. The “physical”

? https://press.ecorobotix.com/238233-ecorobotix-raises-52m-in-new-
funding

10 https://www.syngentagroupventures.com/news/news-release/green-
eye-technology-raises-funding-round-22m

! https://earthoptics.com/news-insights/earthoptics-secures-27-6-mil-
lion-series-b-funding

nature of these innovations requires scale, production
processes, physical infrastructure - and consequently
capital - as well as the necessary channels to distribute
these products, all of which constitute a set of entry bar-
riers for smaller firms. In contrast, disembodied solu-
tions offer a different field of action with greater poten-
tial to disrupt industrial concentration dynamics. These
technologies enable greater flexibility in terms of scala-
bility and accessibility, as start-ups could offer their solu-
tions to a wide variety of actors, providing them with a
potentially global reach.

A key element in this discussion is technological
compatibility. Birner et al. (2021) state that interoper-
ability between various digital tools and agricultural
machinery can influence market concentration. If start-
ups develop technologies that are not compatible with
the dominant systems, they may face difficulties in
scaling up and attracting users. Conversely, promoting
standards that ensure interoperability could reduce entry
barriers but also reinforce the dominant position of large
companies, that hold a first-mover advantage in terms of
the existing technological infrastructure. Finally, access
to information and the use of big data emerge as addi-
tional factors that may strengthen concentration dynam-
ics. This raises questions related to the ownership and
governance of such data. Digital technologies generate
vast amounts of data, which, if exclusively controlled by
large agricultural input companies, could further consol-
idate their advantages by optimizing processes, reducing
costs, and adjusting prices.

As a final point in this section, we mention a caveat
to our analysis. While we have focused exclusively on
the technological characteristics of the solutions offered
by start-ups, other factors may help reshape market
dynamics. Further factors also require careful consid-
eration, especially given the complex nature of the prob-
lem we are studying, such as incumbent firms’ strategies
and business reactions, access to venture capital (which
shapes start-up scaling potential), and regulatory frame-
works that influence value chain dynamics from produc-
er to consumer.

7. CONCLUSIONS

This paper provides a preliminary assessment of the
potential of DA start-ups to transform market dynam-
ics in the agricultural input segment of agri-food GVCs,
challenging dominant firms’ current positions as indus-
try leaders. For this purpose, we have characterized the
technological features of 114 DA start-ups in Argentina (a
country with increasing momentum in start-up creation),
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based on two technological dimensions (embodied/disem-
bodied technologies and complementary/substitutive). Our
analysis reveals that most Argentine start-ups offer comple-
mentary solutions to existing technological packages. They
enhance and optimize the production tools already avail-
able to farmers but are unlikely to replace them. This, in
turn, presents an opportunity for dominant firms to inte-
grate these technologies into their own innovation pipe-
lines (through start-up acquisitions, strategic alliances, or
investments via corporate venture capital), thus reinforc-
ing the oligopolistic dynamics that have shaped the sector
over the past 30 years. In this sense, despite the promise
that start-ups bring to the market through new technolo-
gies, our preliminary analysis suggests that their disruptive
potential concerning the industrial dynamics of the agri-
cultural input market remains somewhat limited.

Based on these findings, this study offers insights
for various stakeholders. Large firms are compelled to
develop open innovation capabilities. Collaboration
with external actors becomes imperative to leverage the
potential of new technologies and maintain competitive-
ness in a globalized and dynamic market. At the same
time, ICTs have lowered the barriers to entry in agri-
food markets, enabling new players to introduce digital
innovations. Meanwhile, start-ups need to acknowledge
that generating solutions and innovations is a process
distinct from scaling, commercializing, and distributing
these solutions in the market — a domain still dominated
by large firms.

The above discussion underscores that start-ups
alone do not appear sufficient to reverse industry con-
centration in agri-food agricultural input markets. This
scenario demands innovative public policies that foster
a more inclusive environment, combining public invest-
ment in R&D with regulatory frameworks to mitigate
concentration risks. Additionally, measures are needed
to facilitate technological interoperability, and address
the infrastructure and financing challenges that start-
ups face in order to enhance their competitiveness.

This study represents a preliminary effort to explore
the role of DA start-ups in the transformation mar-
ket dynamics, adopting a prospective viewpoint, which
is suitable given the early and rapidly evolving stage of
innovation in agriculture. As such, rather than offer-
ing conclusive impact assessments, we aimed to map
out emerging trends and highlight possible directions
of change in market dynamics and value chain mor-
phology. Our work, exploratory in nature, reflects the
novelty of the DA field, which implies limitations in the
availability of longitudinal data. Our findings provide
a foundation for future research, particularly as more
empirical evidence becomes available. Dynamics such as
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investments, acquisitions, mergers, and strategic allianc-
es would be valuable avenues of exploration. At the same
time, it is necessary to intensify efforts to promote sys-
tematization and ensure the public availability of market
data, sales figures, and market shares. This would ena-
ble the development of studies with a more quantitative
focus. Additionally, examining the dynamic evolution
of the market and incorporating factors such as regula-
tions, public policies, and the adoption of technology by
farmers would open new perspectives on better under-
standing the forces shaping the structure of this ever-
changing sector and achieving a more comprehensive
understanding of the phenomenon.
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