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Assessing the perception 
of urban visual quality: an 
approach integrating big data and 
geostatistical techniques

Human well-being is affected by the design quality of the 
city in which they live and walk. This depends primar-
ily on specific physical characteristics and how they are 
aggregated together. Many studies have highlighted the 
great potential of photographic data shared on the Flickr 
platform for analyzing environmental perceptions in land-
scape and urban planning. Other researchers have used 
panoramic images from the Google Street View (GSV) web 
service to extract data on urban quality. However, at the 
urban level, there are no studies correlating quality per-
ceptions detected by social media platforms with spatial 
geographic characteristics through geostatistical models. 
This work proposes the analysis of urban quality in differ-
ent areas of the Livorno city through a methodological ap-
proach based on Geographical Random Forest regression. 
The result offers important insights into the physical char-
acteristics of a street environment that contribute to the 
more abstract qualities of urban design.

1. Introduction

It is well known that people live well in environments that they recognize 
and perceive as pleasant, comfortable, and safe. Human well-being is influenced 
by the physical characteristics of the surrounding urban space and how they ag-
gregate with each other (Alexander et al., 1977; Lynch, 1960). European cities are 
generally built in different periods with distinctive architectural styles. The visual 
quality of the urban space for each era and for each zone of the city is influenced 
by different variables. In the various zones of the city, the visual quality of urban 
spaces can be explained by geographical and morphological macro-elements, such 
as coastlines, waterways or hills. These characteristics influence the visual quality 
of urban spaces in limited areas and not of the whole urbanized area.

According to Radovic (2003) the physical structure of the city implies “a com-
plex set of built elements, space and environment, units and assemblages, which 
united and connected in an integrated urban system, create the atmosphere and 
environment for the complex processing of urban life”. Therefore, visual percep-
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tion, understood as the subjective presentation of objective reality, has always 
been a complex and highly sensitive issue in the architectural and urban design 
process. Resources and visual effects play a dominant role in the identification of 
cultural, socio-economic, identity and communal values of the built environment, 
as the value and meaning of the built space is manifested predominantly through 
the subjective view of that space (Perovic & Folic, 2012).

Many studies have focused on researching visual perception using photo-
graphic data shared on social platforms (Alampi Sottini et al., 2018; Dunkel, 2015; 
Quercia et al., 2014; Zhou et al., 2015), others have used indicators to obtain infor-
mation on urban visual quality using panoramic images from the Google Street 
View (GSW) web service (Yin and Wang, 2016), but, at the urban level, there are 
no studies that correlate perceptions of visual quality detected by social media 
platforms with spatial geographic characteristics through geostatistical models.

Therefore, this paper proposes a geostatistical approach using Geographical 
Random Forest regression on the Tuscan city of Livorno. this has been analysed 
city because allows us to assess the visual quality of urban space in very diverse 
geographical areas. In fact, despite its relatively small size, the city of Livorno 
consists of a rather heterogeneous mosaic of neighbourhoods with peculiar char-
acteristics due to different construction periods. For this reason, it is an appropri-
ate study area to test a first version of the model to assess the visual quality of 
urban spaces.

The proposed methodological approach consists of 3 macro-phases: the first 
one aims at obtaining the indices that compose the urban visual quality perceived 
by users using photos shared on Flickr; the second one involves calculating the 
indicators that constitute the urban visual quality using data from both Google 
Street View, LiDAR data and geographic data; the last one consists in applying 
two geostatistical models a global random forest and a geographic random forest 
to differentiate the results for each neighbourhood of the city.

The objective of the study is to test the proposed methodological approach 
by understanding its strengths and weaknesses and to understand what meth-
odological aspects are needed for the spatial component in the regression models 
used. The final goal is to provide useful information not only to researchers but 
also to public and private sectors to develop projects, standards and guidelines to 
improve the visual quality of urban design in cities.

2. Literature review

Many scholars over time have focused on understanding what visual elements 
citizens positively perceive as they walk and experience their cities, in order to ob-
tain the indices that make up an image of spaces in which there was a constant 
observer-environment relationship (Lynch, 1960). The visual perception of ar-
chitecture and urban planning of cities throughout history has been studied by 
multiple theorists (Arnheim, 1977; Cullen, 1959; Ittelson, 1960; Lynch, 1960; Rossi, 
1966; Spreiregen, 1965; Stea, 1978; Winters, 1999), who not only indicated the im-
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portance of the human-environment relationship, but also the importance of cre-
ating images in the memory of the users themselves.

According to Ewing and Handy (2009; 2006), the visual quality of an urban de-
sign depends on physical characteristics such as the sidewalk width, street width, 
traffic volume, tree canopy, building height, and number of people. Gavrilidis et 
al. (2016) selected six urban landscape components for visual assessments and 
used a five-level Likert scale to visually evaluate each of the six landscape com-
ponents. Talavera-Garcia and Soria-Lara (2015) developed an alternative walk-
ing index called the quality of pedestrian level of service (Q-PLOS), based on the 
visual quality of urban design for pedestrians, and its relationship with walking 
needs. However, one major limitation with developing such urban design indica-
tors is that they require unfeasible or inefficient large-scale field observations in 
terms of time and cost. Recently, Yin and Wang (2016) explored the potential of 
big data and big data analytics with respect to the current approaches to mea-
suring streetscape features. By applying machine learning algorithms on Google 
street view (GSV) imagery, the authors objectively generated three measures for 
visual enclosures.

However, there remains a methodological limit in the literature in regard to 
identifying an efficient model for relating the perception of well-being deriving 
from the visual quality of urban space to its physical and architectural characteris-
tics (as measured with the above-mentioned dimensions and indicators).

Lately, with the evolution of Internet, several approaches have been devel-
oped for using the so-called big data (Jin et al., 2010) made available by the “social 
media” platforms. 

The correlation between perceived urban landscape quality and the density 
of photo data shared on the Flickr platform has been demonstrated by numerous 
studies. Dunkel (2015) highlighted the usefulness of information associated with 
photos shared on for analyzing environmental perceptions in landscape and ur-
ban planning. Zhou et al. (2015) automated the detection of places of interest in 
multiple cities based on the spatial and temporal characteristics of Flickr images. 

Some authors used questionnaires as a complementary survey to the density 
of data shared on Flickr. Quercia et al. (2014) correlated the emotions stated by 
the questionnaires with the emotional perception of some paths in London. Simi-
larly, Alampi Sottini et al. (2018) in a research in Livorno used a questionnaire ad-
ministered via virtual reality headset based on differential semantics techniques 
and found a correlation between perceived emotion and snapshot point density 
of shared photographs. Recent studies have used panoramic images taken from 
Google Street View (GSV) web service to extract urban quality data. In a pio-
neering work, Naik et al. (2014) correlated the safety perception in the city with 
indices deriving from Gabor-like filters calculated on a sample of over 1 million 
Google Streetview. Doersch et al. (2012) used linear Support-Vector Machines to 
automatically extract representative architectural elements from Google Street 
View images in Paris and Prague. Steinmetz et al. (2019) used GSV to detect 40, 
mainly binary, micro-scale features, which influence the walkability of a city, and 
used them to create a tool to measure the visual quality of urban space. Zhou et 
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al. (2019) combined street view data with deep learning technologies and mapped 
residents’ perception of walkability in Shen Zhen, China.

Geographic information shared on the internet by different sources (social me-
dia platforms, geographic internet services such as google street view, etc.) is an 
important resource for studying the city’s characteristics, which explain the visual 
perception of urban quality. However, the plethora of existing studies leaves some 
important gaps. First of all, at the urban level, there are no studies that correlate 
the visual perception of quality detected by social media platforms with the geo-
graphical spatial characteristics through geostatistical models. These studies, wide-
spread in natural and rural environments (for a review see Oteros-Rozas, 2018), 
are difficult to carry out in cities as a single model cannot explain the importance 
of the features that define the quality of spaces throughout the urban surface.

While in natural and rural contexts, the statistical model Random Forest (RF) 
has been used in multiple researches due to its excellent performance (Genuer 
et al., 2008; Gromping, 2009; Probst et al., 2019; Strobl et al., 2008), in the urban 
context there are very few studies that manage to apply it, because a single mod-
el cannot explain the importance of the characteristics that define the quality of 
spaces throughout the urban area. 

The most interesting application has been adopted in the field of geography 
with Geographic Weighted Regression (GWR), which is an adaptation of linear re-
gression to be more suitable for spatial data (Fotheringham et al., 2003), 

and later with Geographic Random Forest (GRF), applying the same principle 
to RF (Georganos et al., 2019). GRF is a relatively recent concept used in the envi-
ronmental field, but it has great potential as it allows selecting the most meaning-
ful indicators for different areas of the city.

For these reasons, we proposed a methodological approach that combines two 
versions of the random forest (RF) model: traditional for predictive purposes and 
geographical for exploration purposes. 

3. Materials and methods

3.1 Study area

Livorno is a town in the region of Tuscany, in the central Italy. Until the sec-
ond half of the sixteenth century Livorno was only a small village around a cove. 
In the 16th century the Medici family contributed in a decisive way to the devel-
opment of Livorno and its port system with the intention of making it the main 
seaport of Tuscany. Bernardo Buontalenti was therefore commissioned to design 
a new fortified city around the original nucleus of Livorno, with an imposing sys-
tem of moats and bastions that gave the city a pentagonal shape (Figure 1 number 
1). A following expansion took place at the beginning of the XVII century with 
the realization of a new quarter called Venezia Nuova, because of the presence of 
many canals (Figure 1 number 2). The growth of the city outside the pentagonal 
walls began in 1700, with the duke Pietro Leopoldo (Figure 1 number 3). In the 
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nineteenth century Livorno became a destination for seaside tourism and an ele-
gant waterfront was created that transformed the ancient villages of Ardenza and 
Antignano into neighbourhoods (Figure 1 number 4). In the Fascist period Livor-
no became a city and an industrial port and this made necessary the construction 
of new residential quarters for workers called Sorgenti and Corea (Figure 1 num-
ber 5). In the middle of 1900 there was the last consistent urban expansion of the 
city with the creation of modern suburbs (Figure 1 number 6). 

We believe that Livorno is an appropriate study area for our methodology for 
the following reasons.
1) It is relatively small and this has allowed us to reduce computer processing 

time in the application of Deep Learning based models.

Figure 1. Study area.
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2) It presents a heterogeneous mosaic of neighbourhoods built in different eras, 
thus with peculiar characteristics.

3) Presents macro-spatial characteristics that are found in many other cities, such 
as waterfront. The perimeter of the study area only includes the urbanized 
territory of the municipality, as the topic of this study focuses on urban qual-
ity. Thus, industrial areas to the north of the city have been excluded, as well 
as some neighbouring areas that are too far from the city center, and those 
bordering rural areas.

3.2 Methods

The proposed methodology is synthetically divided into the following four 
macro phases. Each of them is characterized by specific micro phases detailed in 
subsequent sections.
1. Assessment of the perception of urban visual quality: the visual quality of ur-

ban spaces was obtained by calculating of the density map of the photo shoot-
ing points shared on Flickr (variable depending on the geostatistical model).

2. Calculation of the urban visual quality indicators: using different methodolo-
gies to obtain indices that built urban visual quality (dependent variables of 
the geostatistical model). 

3. Geostatistical model estimation: a global Random Forest (RF) model for predic-
tive purposes and a local Geographic Random Forest (GRF) model for explora-
tion purposes, to understand which are the most significant indices of urban 
visual quality for the whole city and which are the most important dimensions 
that characterize the visual perception of the different urban neighbourhoods.
Figure 2 shows a flowchart of the work.

3.2.1 Assessment of the perception of urban visual quality

Previous research showed that the information contained in the social plat-
form of Flickr can be used to assess the perceived quality of urban spaces. The 
download of the geographical coordinates of the photo shotting points shared on 
Flickr is characterized by the following steps.
1) Download through an R language program based on Flickr API the metadata 

of the shooting points of photos shared from 2005 to 2018. The downloaded 
data were: photo code, owner code, geographic coordinates, date, time, title, 
TAG description, geo_context parameter.

2) Selection of photos taken outdoors by setting the “geo_context parameter” in 
the API to “outdoors”.

3) Unification of all photos taken by the same user on the same date and with 
the exact coordinates. 

4) Selection of images not related to urban quality by filtering tags with specific 
keywords.

5) Selection of photos taken with daylight, using the Flickr API to know the date 
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and time of the shot. The time of sunset was calculated using the R {suncalc} 
library. 
The final geo-database of points was transformed into a density surface, using 

a kernel density estimation analysis (KDE) (Chen and Shaw, 2016).
To calculate the probability that a photo could be taken in a given location, we 

performed a kernel density analysis for the data, using the geographical locations 
of the photos. The kernel density was used to estimate the intensity of the points, 
by creating a smooth surface using a bivariate probability density function. The 
kernel estimator is defined as:

 (1)

Here, n is the total number of points, h is the bandwidth that determines the 
amount of smoothing, K is the kernel function, x is the location of the estimation, 
and xi is a known point location.

The kernel function K can have different forms. The triangular function we 
used in the analysis is given below:

 (2)

Figure 2. Flowchart of the work.



82 Veronica Alampi Sottini et al.

The case under study used a triangular Kernel with a bandwidth b = 50 m. 
The kernel was then overlapped with a 100-meter side hexagonal grid, chosen be-
cause of its topological and geometric properties (Feick and Robertson, 2015; Patil, 
et al., 2000). The size of the grid was identified by applying the Abstract Method 
(Stamps III, 2001) according to the number of blocks in the study area.

 (3)

where r is the radius of the grid, S is the total area of the area, NB is the number 
of blocks.

3.2.2 Calculation of the urban visual quality indicators

In the vast amount of literature on urban design quality and structural prop-
erties, we referred to the classification of the indicators proposed by Ewing and 
Handy (2009). According to their study, visual quality indicators were divided into 
the following five conceptual categories. 

(a) Visual enclosure. Outdoor spaces are defined and shaped by vertical ele-
ments, which interrupt viewers’ lines of sight. Christopher Alexander et al. (1977, 
p. 106) stated that «an outdoor space is positive when it has a distinct and definite 
shape, as definite as the shape of a room, and when its shape is as important as 
the shapes of the buildings which surround it». According to this definition, visual 
enclosure indicators are: sky view factor and enclosure index.

(b) Imageability. Kevin Lynch (1960, p. 9) defines imageability as the quality 
of a physical environment that evokes a strong image in an observer: “it is that 
shape, color, or arrangement which facilitates the making of vividly identified, 
powerfully structured, highly useful mental images of the environment”. 

(c) Human scale. Following Ewing and Handy (2009, p. 77), «Human scale 
refers to a size, texture, and articulation of physical elements that match the size 
and proportions of humans and, equally important, correspond to the speed at 
which humans walk. Building details, pavement texture, street trees, and street 
furniture are all physical elements contributing to human scale». 

(d) Transparency. “Transparency refers to the degree to which people can see 
or perceive what lies beyond the edge of a street and, more specifically, the de-
gree to which people can see or perceive human activity beyond the edge of a

street.” (id., p. 78). 
(e) Complexity. “Complexity results from varying building shapes, sizes, mate-

rials, colours, architecture and ornamentation” (id., p. 79) but also “The presence 
and activity of people add greatly to the complexity of a scene” (id., p. 80). 

According to the above and also using additional indicator classifications 
found in the bibliography (Ewing et al. 2006; Gavrilidis et al. 2016; Talavera-Garcia 
and Soria-Lara, 2015; Yin and Wang, 2016), we selected the following quality indi-
cators in our study (Bernetti et al., 2020):
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(a) Visual enclosure: sky view factor; enclosure index.
(b) Imageability: pedestrian index; distance from churches; pavement index.
(c) Human scale: grass density, hedges density, trees density, green index, side-

walk index.
(d) Transparency: transparency index, distance from coast-line.
(e) Complexity: distance from commercials; distance from accommodation land 

use; distance from buildings with high architectural value.
Most of these indicators selected are based on data available on the Internet. 

The remaining were based on geodatabases made available by public administra-
tions. The methodologies used to calculate our indicators are the following:
– Deep learning segmentation was applied to the enclosure index, pedestrian 

index, cyclist index, road crowdedness index, building crowdedness index, 
and transparency index.

– Landscape ecology indicators for the grass density, hedges density and trees 
density.

– Kernel Density Estimation for urban points of interest (POIs) defined as commer-
cials, accommodations, buildings with high architectural value, and churches.

– Sky View Factor was applied to LIDAR data.
– GIS application for coastline distance.

3.2.2.1 Human Visual Indicators 

To efficiently detect the streetscape of the city of Livorno through images 
taken from the GSV platform, we sampled all the streets of Livorno with a point 
every 15 meters. Adopting a 60° field of view (FOV) (similar to human, Yin and 
Wang, 2016) to cover a 360° panoramic view of the surrounding environment, we 
downloaded 6 images with azimuth = 0, 60, 120, 180, 240 and 300 for each sam-
pled point. Sampling was carried out using procedures based on GRASS and R.

A segmentation procedure was applied to the images obtained. Segmenta-
tion of an image in digital image processing is the process of partitioning an im-
age into meaningful regions. It is used to obtain a more compact representation, 
to extract objects or as a tool for image analysis and allows you to partition digital 
images into sets of pixels. To segment the GSV images we employed a pre-trained 
network of MATLAB software based on the Deeplabv3 + network trained using a 
collection of images containing street level views obtained while driving (Brostow 
et al. 2009). To facilitate training, CamVid’s 32 original classes have been grouped 
into 11 classes as follows: “Sky”, “Building”, “Pole”, “Road”, “Sidewalk”, “Tree”, 
“Symbol Sign”, “Fence”, “Car”, “Pedestrian” and “Cyclist”.

Based on the theories and recent literature mentioned above, we proposed a 
method to evaluate four indicators related to the visual quality of urban design, 
and to calculate the indices for each GSV photo. The indices calculated were as 
follows (Bernetti et al., 2020).
1. Enclosure index (Encl), defined as the degree to which streets and other pub-

lic spaces are visually defined by buildings, walls, trees, and other elements. 
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Usually, people positively perceive an urban space when they are able to rec-
ognize a distinct shape defined by vertical elements that interrupt their view 
(Alexander et al., 1977). It was calculated using the following equation:

 (4)

where Bn is the number of building pixels; Tn is the number of tree pixels; Rd 
is the number of road pixels; Pv number of pavement pixels, and Polis is the 
number of road signs pixels.

2. Pedestrian and cyclist, index (Ped), defined as the degree to which people can 
see or perceive human activity: The perception of other people makes the en-
vironment more comfortable and safe.

 (5)

where Bc is the number of bicyclist pixels; Pd is the number of pedestrian pix-
els; and Car is the number of car pixels.

3. Transparency index (Trp), defined as the degree to which people can see what 
lies beyond the edge of a street or other public space. The wide view ensures 
that people can observe objects that are far away, allowing observers not only 
to recognize the world around them but also to feel safer moving around in 
the environment.

 (6)

Where Sky is the number of sky pixels and TotPix is the total pixel number in 
the image.

4. Green index (Green), defined as the extent to which the visibility of street veg-
etation can influence pedestrian psychological feelings. The therapeutic effects 
of natural environments is well-known and extensively reported in the litera-
ture. Several cities have been equipped with healing gardens and green roads 
for restoration from stress (Pouya et al., 2015).

 (7)

whereVeg number of vegetation pixels.
5. Sidewalk index (Sidewalk), defined as the extent to which the visibility of 

pavement and fences influences pedestrian psychological feelings:

 (8)

where Pav is the number of pavement pixels and Fenc is the number of fences 
pixels.
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3.2.2.2 Landscape ecology indicators

The indicators used in our analysis were the percent density of grassland, 
hedgerows, urban forest in each hexagon of the grid. The indicators were calcu-
lated using multispectral and lidar remote sensing data according to the method-
ology defined by Barbierato et al. (2019).

Urban vegetation cover was identified through normalized difference vegeta-
tion index (NDVI) analysis, taking into account only healthy vegetation extracted 
based on NDVI values greater than or equal to 0.2 (Rodgers III et al., 2009).

The result was presented as a Boolean map with a resolution of 1 m (similar 
to LiDAR data), in which the value of 0 indicated the absence of vegetation, and 
a value of 1 indicated its presence. The results were spatialized on the hexagonal 
grid. As urban green areas are characterized by various types of vegetation with 
different ecologic and perceptive functions, we distinguished these types accord-
ing to their height values.

To obtain the height of the vegetation, we made an overlay operation between 
the NDVI binary map and a normalized digital surface model generated from LI-
DAR data. The result of this operation was a raster map divided into three height 
classes. The first class (from 0 to 0.40 m) represented grass, the second (from 0.40 
to 3 m) was classified as hedges, and the third (greater than 3 m) was classified as 
trees.

The indicators we used were the percentages of green landscapes of class i (Pi) 
with i = {grass, hedges, trees}. The former allowed us to understand the percent-
age of plant cover of each grid hexagon. The operation is as follows:

 (9)

In the above, NDVIj,i is the j-th pixel in the NDVI raster map classified on class 
i, and H is the total hexagon area.

3.2.2.3 Kernel density estimation (KDE) of the urban points of interest (POIs)

We have identified commercial, housing, churches and buildings of high archi-
tectural value as urban Points of Interest (POI). The location of the POIs was taken 
from the OpenStreetMap (OSM) database. 

We calculated the territorial density of the POIs using a KDE procedure. KDE 
has been widely used in POI data analysis (Li et al. 2013). Lian et al. (2014) dem-
onstrated that through KDE, it is possible to identify areas of influence of POIs, as 
related to areas of activity of the users. The POIs derived from OSM were imple-
mented in density maps by applying a triangular KDE with a bandwidth of 500 
m. The results were spatialized on the hexagonal sampling grid.

In according to Chan et al. (2021), the equation is the following: 

 (10)
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where b and dist(q,pi) denote the bandwidth of the triangular kernel function and 
Euclidean distance, respectively.

3.2.2.4 The sky-view factor

Sky-View Factor (SVF) indicates the portion of the sky that is visible from an 
observation point. The higher the SVF, the greater the heat loss to the atmosphere. 
Sky-View Factor (SVF) is a widely used parameter to describe urban climatology 
at high resolution scales, several studies have employed SVF as a parameter of ur-
ban design quality (Lindberg and Grimmond, 2010; Nasrollahi and Shokri, 2016; 
Yang et al. 2007). We calculated SVF through Quantum GIS software with the ur-
ban multi-scale environmental predictor (UMEP) plug-in (Lindberg et al. 2017) 
by superimposing reconstructing through Lidar data the 3D model of the city of 
Livorno.

3.2.2.4 GIS application to calculate coastline distance

The coastline distance is an index was calculated with Qgis software using the 
public administration geodatabase data. The coastline, with its promenade repre-
sents a significant geographical macro-characteristic for the visual perception of 
the local quality of the urban space.

3.2.3 Geostatistical model estimation

The regression models used the Flickr photo density indicator as the depen-
dent variable, and the urban design quality indicators as independent variables. 
For this purpose, we combined two versions of the random forest (RF) model: tra-
ditional and geographical.

The RF regression model has some advantages over traditional statistical 
methods: it allows to treat complex relationships between predictors that can arise 
with large amounts of data, and is able to process nonlinear relationships between 
predictive variables. The main limitation is the difficulty in the direct interpreta-
tion of the results, since the explicit ensemble model is represented by hundreds 
(sometimes thousands) regression trees. To overcome this difficulty, Friedman 
(2001) proposed the use of partial dependence plots, allowing for visualization of 
a suitable RF model through its mapping from feature space to prediction space. 
Welling et al. (2016) proposed a new methodology called “forest floor” using fea-
ture contributions (FC), a method to decompose trees by splitting features and 
then performing projections. The advantages of the forest floor approach over the 
partial dependence plots are that the interactions are not masked as averaging. As 
a result, interactions that are not visualized in a given projection can be located. 
Forest floor was implemented in the {foresFloor} library in the statistical program-
ming language R (Team, 2015).
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Even though RF is a well-functioning and generalizable algorithm, the vast 
majority of its implementations are not spatialized. Georganos et al. (2021) pro-
posed a geographical implementation of the RF, called the geographical RF (GRF), 
as a disaggregation of RF in the geographical space in the form of local sub-mod-
els.

The equation for a typical GRF model is:

 (11)

In the above, βm,i(ui,vi) is the non-linear prediction of an RF model calibrated 
on location i and ui, vi are the coordinates, e is an error term and xi…xn are the in-
dependent variables (indices). The area in which the sub-model operates is called 
the neighborhood (or kernel), and the maximum distance between a data point 
and its kernel is called the bandwidth (Brunsdon, 1998). The bandwidths for geo-
graphical models can be user-specified, or can be determined via automated pro-
cedures (e.g., cross-validation), provided an objective function exists (Akaike, 1973; 
Fotheringham, 2018; Hurvich, 1998). With the data set organized on a regular hex-
agonal tessellation, we set an adaptive kernel bandwidth to include the N hexa-
gons closest to the observation/calibration hexagon. We estimated the bandwidth 
using the Akaike information criterion. 

To avoid overfitting problems, we used two distinct approaches. We set a large 
number of trees (500), with 5 variables each and maximum number of terminal 
node trees in the forest equal to 4 (Cutler et al. 2012; Fotheringham and Park, 
2018; Scornet, 2017). We then extracted three sub-datasets from the original data-
set: a training set (70% of total observations), used for learning the RF model; a 
validation set (15% of total observations) for verification of model parameters and 
a test set (15% of total observations) evaluation of model performance. Unlike RF, 
we used the GRF as a purely exploratory (rather than predictive) tool. GRF is a lo-
cal decomposition of the RF and, therefore, the results can be mapped using the 
entire data set without training/test divisions (for better visualization), to study 
the local importance of the individual indicators and the performance distribu-
tions of the local models. The global and geographical RF models were calculated 
using the R library {randomForest} and {SpatialML} packages, respectively. The 
procedures are available as supplementary material.

4. Results

4.1 Assessment of the perception of urban visual quality

The raw database contained approximately 23,063 photo localizations taken in 
the period from 2005–2017, and the final filtered database contained 11,008 obser-
vations. Figure 3 shows a dependent variable map based on the KDE Flickr photo 
index.
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The index recorded a maximum value of 26.07 photo/m2 with an average val-
ue of 3.33 photo/m2, a median value of 0.93 photo/m2, and first and third quartiles 
of 0.27 and 2.94 photo/m2, respectively. Thus, the data had a very asymmetrical 
frequency distribution.

4.2 Calculation of the urban visual quality indicators

Using the Googleway library, we downloaded 17,196 geo-tagged images, relat-
ing to 2,866 sampling points acquired in 2018. Figure 4 shows an example of the 
segmentation process.

Figure 3. Map of the dependent variable.
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Figure 5 shows the maps of the indices calculated via the segmentation of the 
GSV images.

Figure 6 shows the maps of the three landscape indices. Figure 7 shows the 
density indices of the buildings intended to influence the perceived quality of the 
urban environment. Lastly, Figure 8 shows the two geographical indices linked to 
the “visual enclosure” and “transparent” dimensions.

Figure 4. Example of segmentation process.

Figure 5. Maps of the indices calculated through the segmentation of the GSV images.
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4.3 Random forest (RF) models

The first step in the RF algorithm was to test for multicollinearity between 
variables using Spearman’s degree of correlation. We kept all variables that 

Figure 6. Maps of landscape ecology indices.

Figure 7. Maps of density indices.

Figure 8. Maps of sky view factor (SVF) and of distance from coastline.
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showed Spearman’s correlation below 0.7, a limit used in the literature in ap-
plying random forest models using GIS (Chen et al., 2018; Kamusoko & Gamba, 
2015). Variance Inflation Factor (VIF, Table 1) analysis also shows that there is no 
multicollinearity among the independent variables, as all VIFs are less than 10 
(Kim, 2019). Table 1 shows the VIF values for each index.

The final set of 12 variables is the following: 
a) Visual enclosure: enclosure index.
b) Imageability: pedestrian index; churches density.
c) Human scale: hedges density, trees density, green index, sidewalk index.
e) Transparency: transparency index, distance from coastline.
e) Complexity: commercial land use density; accommodation land use density; 

density of buildings with high architectural value.
The global (non-geographical) RF model had a McFadden pseudo R-square 

value of 0.911 for the training set, 0.56 for the testing set, and 0.566 for the vali-
dation set (Table 2). These results can be considered satisfactory on a general 
level. The most important predictors, in decreasing order of the percent increase 
in mean squared error (% increase in MSE) and node purity, are shown in Table 
2. The variable that contributes most to explaining the perception of urban visu-
al quality in the global model is the distance from the coastline, followed by the 
commercial land use density and the hedges density.

Figure 9 illustrates the partial dependency plots for each predictor. The par-
tial dependency diagram shows the marginal effect that a predictor has on the 
expected result of a model. A partial dependency graph can show whether the 
relationship between the dependent variable and the predictor is linear, mo-
notonous or more complex. Most of the graphs show non-linear relationships of 
the dependent variable in relation to the predicted perception of urban quality. 

Table 1. Variance Inflation Factor.

Index VIF

Pedestrian 7.877074

Trees density 6.611743

Hedges density 5.297603

Green index 4.918989

Enclosure index 4.048282

Sky view factor 3.995972

Sidewalk index 3.779627

Commercial land use density 3.765017

Churches density 3.586181

Coast distance 2.728047

Density of building with high architectural value 2.482175

Accommodation land use density 1.697885
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For example, the graph shows that the effect of coastline on quality perception 
is geographically localized. In fact, the curve decreases rapidly to zero less than 
1 km from the sea.  Similarly, an increase in the density of churches and build-
ings with high architectural value is associated with an increase in urban quality 
perception. Interestingly, some variables seem to have partial dependency plots 
with two distinct segments. For example, the green index, edge density, sidewalk 
index, and transparency index have a decreasing trend followed by an increas-
ing trend, and this can be explained by the fact that the presence of these two 
variables has positive effects on the perception of the visual quality of a city, but 
only beyond a certain threshold value. Another interesting result is obtained in 
the case of the enclosure index. The partial dependence graph shows that the 
perception of urban spaces is correlated to two cases: null or very low enclosure 
index values (typically in the promenade) and enclosure index values equal to 
about 5-7 (typical of the central areas of the city). Beyond this value, the observa-
tions (represented by small colored circles) are very scattered and, therefore, the 
model does not give reliable indications.

We tested the spatial distribution of the global model residues and found a 
Moran index of 0.53, indicating the presence of spatial autocorrelation. This justi-
fied the use of a local GRF model to identify the variations in the importance of 
the predictors in space. 

Table 2. Results of the non-geographical random forest (RF) regression model.

Predictor   % IncMSE Node Purity

Coast distance 103.04 30,090.52

Commercial land use density 50.82 12,289.57

Hedges density 27.81 7,133.00

Density of building with high architectural value 26.75 5,904.94

Trees density 20.90 5,216.73

Green index 13.19 4,918.20

Transparency index 17.56 3,770.87

Sidewalk index 6.57 3,171.20

Enclosure index 10.59 3,117.37

Pedestrian index 8.16 2,752.35

Churches density 4.30 1,319.50

Accommodation land use density 6.44 1,236.92

Residual Sum of Squares 7551.707

Pseudo R-squared Training set 0.91

Pseudo R-squared Validation set 0.56

Pseudo R-squared Testing set 0.57

Moran index Global model 0.53
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The results of the bandwidth optimization suggested an optimal bandwidth of 
95 cells (i.e., for each of the 2,517 cells, a local RF model should be calibrated using 
data from the nearest 95 cells). The use of the GRF model reduced the spatial au-
tocorrelation of the residues, with a Moran index of 0.17, and a pseudo R-square 
value equal to 93%. Figure 10 and 11 and Table 3 show respectively the geographi-
cal variation, boxplots and the statistics of the purity index of the indicators. The 
geographic model is therefore overall consistent with the global model. The re-
sults of the geographic model confirm the importance of the explanatory variables 
in terms of purity index for all positions. The R square improves from 0.91 to 0.93.

Notably, there is a strong degree of spatial interaction between each predictor, 
whereas the importance of each predictor varies consistently through space. At 
the level of individual geographic location, we obtain very diverse results relative 
to the ranking of the importance of the variables. The importance of the predic-

Figure 9. Plots for the random forest (RF) variables. Panel titles designate which variable is being 
plot along the x-axis: (CoastDist) distance from coastline, (ComDen) Commercial land use densi-
ty, (Green) Green index, (ArchDen) Density of buildings with high architectural value, (Hedges) 
Hedges density, (Sky) Transparency index, (Encl) Enclosure index, (Trees) Trees density, (Ped) Pe-
destrian index, (VisPav) Sidewalk index, (ChDen) Churches density, (AccDen) Accommodation 
density. Panel titles also include the R2 (leave-one-out goodness of fit) of the average feature 
contribution line (denoted in black). The color gradient is applied in all panels along the distance 
from the coastline, passing through red-yellow-green-blue with increasing distance.
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tors is generally highest in areas with a greater density of photos, but with impor-
tant variations among the predictors, especially in relation to the north-south gra-
dient of the study area. Interestingly, both transparency variables seem to be more 
important near the coastline. Moreover, the two imageability indices appear to be 
strongly more predictive over the historical center of the city. Similarly, the rest of 
the predictive variables formulate unique spatial patterns.

More specifically, comparing Figure 2 with Figure 10, we can see how the 
different neighborhoods of Livorno show importance of the dimensions of ur-
ban quality strongly differentiated. The Buontalenti neighborhood has high val-

Figure 10. Geographical variation of predictors of the geographic RF (GRF) model.
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Figure 11. Boxplot of purity index of predictors in geographical RF (GRF) regression model.

Table 3. Results of the geographical RF (GRF) regression model.

Predictors
Purity index

Min Max Mean StD

Coast distance 0.79 2,232.39 315.11 423.52

Commercial land use density 0.00 2,604.24 192.20 361.75

Hedges density 0.52 1,455.72 170.86 244.55

Density of buildings with high architectural value 0.46 1,309.07 164.82 217.50

Trees density 0.21 732.39 113.42 133.36

Green index 0.00 2,291.88 112.93 253.59

Transparency index 0.34 668.38 108.33 131.80

Sidewalk index 0.33 1,024.51 106.14 139.69

Enclosure index 0.26 567.36 89.84 103.71

Pedestrian index 0.28 595.58 86.61 102.20

Churches density 0.00 605.35 48.26 89.82

Accommodation land use density 0.00 639.11 31.33 66.19

Statistical parameters of Geographical Random Forest 

Residual Sum of Squares (Predicted) 5895.932

Pseudo R-squared % 93.058

Moran index 0.17
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ues of the purity index for all indices related to the human scale. The Venezia 
Nuova neighborhood is characterized by a multidimensional urban quality with 
high importance of the Visual Enclosure, Imageability and Complexity indices. 
In the neighborhoods outside the pentagonal city the urban quality is corelated 
to the indices of transparency near the promenade, similarly to the neighbor-
ing neighborhood of Ardenza, which is also characterized by the importance of 
the indices of human scale density of hedges and density of trees. The modern 
neighborhoods have only a few indices with significant importance values: side-
walk, density of churches and density of architectural value. Finally, the Sargenti 
and Korea neighborhoods show low urban quality with no indices with appre-
ciable importance.

5. Discussions

We combined two different RF models: a global model for predictive purposes 
and a local model for exploration purposes, to select the most significant indica-
tors for different areas of the city of Livorno. The study here offers important in-
formation on the geometric, physical and environmental variables of an urban en-
vironment that contribute to more abstract qualities. The significant characteristics 
had the expected relationships with the other findings present in the literature, 
although many others proved to be statistically not significant despite initial ex-
pectations. of city design. 

For instance, Figure 12 shows some case studies referring to the different pe-
riods of historical expansion of the city. The zone of the pentagon of Buontalenti 
(see also Figure 1) is characterized by a greater correlation between perceived ur-
ban quality and the presence of urban greenery (both trees and hedges). The per-
ception of the quality of the spaces in the Old Venice (Figure 1 and 12) is instead 
related to the commercial density index and the enclosure index. Therefore, in 
this part of the city it may be appropriate to implement urban projects for the 
redevelopment and maintenance of the facades and to improve the visual quality 
of the shops. The neighbourhoods outside the pentagon of Buontalenti (Figure 1 
and 12) do not reveal urban quality elements such as to influence the perception 
of spaces. On the other hand, the neighbourhoods of modern expansion (Figure 
1 and 12), despite having an urban layout similar to the previous one, appear 
to have a higher perceived quality due to the widespread presence of modern 
buildings but of architectural value. Finally, as regards the Ardenza zone (Figure 
1 and 12), the analysis confirms the correlation between the perceived quality of 
public spaces and the characteristic indicators of the seaside promenade: distance 
from the coastline and the presence of urban greenery (trees and hedges). The 
results of this study can be used in different of ways. Municipal planners and ad-
ministrators can achieve a more detailed and complete understanding of an ur-
ban environment. The map can provide good support for the definition of urban 
planning policies.
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6. Conclusions and future developments

The proposed approach is able to provide useful information to identify and 
evaluate the geometric, physical and environmental characteristics of public spac-
es that most determine the perceived urban visual quality at the planning scale.

We believe that our study has helped to demonstrate that the perceived qual-
ity of the city is influenced by many physical, geometric and environmental vari-

Figure 12. Some case studies of indicators correlated with urban quality.
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ables in a complex way. From a general point of view, data shared by social media 
combined with data deriving from Google’s Internet services and remote sensing 
data can provide a useful tool to improve our understanding of the relationship 
between humans and the urban environment.

Another advantage is the ability of using publicly available data with a much 
lower cost if compared to a traditional analogous survey through questionnaires. 
A survey through questionnaires can evaluate a greater number of subjective vari-
ables, for example linked to the sentiment that arouses perception. However, this 
study clearly has some limitations.

The method has been tested on a small city and this allowed to have accept-
able processing times, but for larger cities there are two possible solutions that 
will be implemented in the future development of the research. The first is to tile 
the study area; since the methodology is based on a local geographical model, 
this should not affect the estimation of the model parameters. A second solution 
would be to use a reduced sample of images downloaded from GSV. The pros and 
cons of the two hypotheses will have to be evaluated. In the future both methods 
will be applied in Florence to verify their advantages and limitations.

Furthermore, other limitations are related to the characteristics of social media 
data. Social media are not only about young people, but it seems that only this 
social group is actively involved, older people may be mostly recipients of content 
and not its creators. Moreover, the Flickr platform does not allow to obtain social 
and personal information about the individual user in order to segment visual 
preferences by age groups and other social variables.

An additional weakness is that the presence of autocorrelation was tested only 
by Moran’s index calculation. Further investigations will be needed to test for the 
presence of spatial heterogeneity through measures of similarity between asso-
ciations of values (covariance, correlation or difference) and associations in space 
(contiguity), including Lagrange multiplier tests (LM-lag and LM-error). The re-
sults of these tests could allow us to compare the results obtained through GRF 
models with other spatial regression models, such as the Spatial Lag Model (SLM) 
or the Spatial Error Model (SEM).

After all, the results of the methodology can help to implement more efficient 
sample designs, stratifying the city in relation to the importance of the indicators 
used as independent variables, thus reducing the sample size and therefore the 
costs. The synergistic implementation of the two methodologies will constitute 
a first future development of this research to give useful information to help re-
searchers and managers to develop projects, standards and guidelines to improve 
urban visual quality in the cities.
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