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Abstract. We compare the drivers in Machine learning models and give insights into 
their strengths and weaknesses predicting rental prices. The study employs SHAP val-
ues to measure feature importance. The study aims to investigate linear regression, 
decision tree and XGBoost algorithms. The research is unique in its application of 
IML methods to a large dataset of over 2.4 million observations in the German rent-
al market and its application of comparative statistics using aggregate SHAP values. 
Main results are the superiority of XGB and LR showing higher SHAP values overall 
and thus explaining its lower predictive efficacy. DT models capture intricate interac-
tions among variables with fewer features, while XGB accommodates more variables, 
emphasizing its higher complexity and thus superior performance. The top ten features 
for DT and XGB models show significant overlap, indicating robust concordance. Spe-
cific features are identified that distinguish the models, suggesting that a more complex 
model, like XGB, handles dummy variables more adeptly.

Keywords: interpretable machine learning, SHAP, real estate.
JEL code: R3.

1. INTRODUCTION

Precisely forecasting and understanding the drivers of real estate rent 
is vital for various stakeholders like landlords, renters, investors, and real 
estate brokers. Hedonic pricing models, particularly linear regression (LR) 
of ordinary least squared regression (OLS), have been traditionally used but 
face challenges due to the complex nature of renting markets on the one 
hand (Krämer et al., 2021) and OLS’s underlying assumption like linear-
ity on the other (Malpezzi, 2003). Advanced statistical and machine learn-
ing (ML) techniques, including Artificial Neural Networks, Random Forest, 
and extreme gradient boosting (XGB), have gained interest in their ability 
to address OLS shortcomings. The advent of ML models in the field of real 
estate appraisal, driven by increased processing power and digitization (Breu-
er and Steininger, 2020; Piegeler and Bauer, 2021), offers more precise predic-
tions than traditional OLS regressions (Valier, 2020). However, ML models 
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are often perceived as “black boxes” posing challenges 
in comprehension compared to LR (Molnar, 2022; Surk-
ov et al., 2022). To address this, interpretable machine 
learning (IML) methods, also known as explainable arti-
ficial intelligence (xAI), provide a solution. These meth-
ods offer both global and local level explanations, ena-
bling a better understanding of ML models and specific 
predictions (Molnar, 2022).

The study aims to shed light on the drivers of Ger-
man residential rental prices within LR, decision tree 
(DT) and XGB algorithms using the IML approach of 
Shapley Additive exPlanations (SHAP) values to meas-
ure features’ importance on a comprehensive level and 
apply the results in various comparative approaches in 
order to get a hand on the mechanics driving each of the 
models. While literature has already proven the superi-
ority of XGB in the German real estate market (Stang et 
al., 2023) and Baur et al. (2023) have shown the useful-
ness of SHAP values in their work using a rather small 
data set of 30.000 observations, this paper is the first to 
apply the SHAP method on a truly mass appraisal data-
set with over 2.4 million observations for the German 
rental market. To ensure computational feasibility while 
preserving the robustness of model interpretability, we 
apply a systematic data reduction approach. Starting 
with over 2.4 million observations, we utilize Slovin’s 
Formula to determine an appropriate sample size, result-
ing in a reduced yet representative dataset of 2,946 
observations. Furthermore, Baur et al. (2023) leave it 
with the depiction of standard summary plots, while our 
paper applies a new method of aggregating SHAP val-
ues to compare groups of variables with each other and 
between models. Additionally, to the best of our knowl-
edge we are the first to show the working application of 
necessary data reduction method of Slovin’s Formula in 
real estate context without losing any power of explain-
ability in contrast to previously applies feature reduction 
methods. 

In a first step to show that our models behave in 
line with literature we first imply LR as baseline. Non-
linearity is introduced leading to the exploration of DT 
and XGB showing that XGB performs by far the best. 
In a second step, we apply SHAP values to each model. 
Their analysis tells that the LR model’s main predictor 
by far surpasses all other influencers while tree-based 
ML methods don’t show such a top “outperformer”. 
The results note further differences in variable impact 
between LR, DT, and XGB, with LR showing overall 
higher SHAP values. The analysis suggests that LR’s low-
er predictive efficacy is due to the granularity of individ-
ual influencing variables. Dummy variables have weaker 
predictive power in LR compared to DT and XGB. The 

significance of dummy variables increases with model 
complexity. Results show that DT captures intricate 
interactions among variables with fewer features, as it 
shows a significant number of features having an average 
absolute SHAP value of 0. In contrast, XGB, with supe-
rior performance, accommodates more variables, empha-
sizing the model’s capability of representing higher com-
plexity. Examining the top ten features for DT and XGB, 
there is a significant overlap, indicating a robust con-
cordance between the two tree-based models. 

The structure of this work is as follows. The second 
segment applies research on real estate pricing factors, 
articles on the implementation of machine learning algo-
rithms for predicting rental and housing prices and the 
evolution of xAI in the field. The third section examines 
the math behind the statistical prediction methods, the 
quality measurement, and the interpretation method 
of SHAP values. Data is described in the fourth part. 
Results are reported and explained in the fifth part.

2. LITERATURE REVIEW

This section provides a comprehensive review of the 
existing literature on the history of valuating fair pur-
chasing and rental prices. 

2.1 Hedonic pricing model

For a single property, individual evaluation tech-
niques are commonly employed, usually by a real estate 
expert. However, the process becomes more challenging 
and time-consuming when assessing multiple properties. 
Multiple Regression Analysis (MRA), also stated as Hass’ 
Hedonic Price Model (HPM) (Hass, 1922), has been the 
primary regression technique used in evaluation tasks. 
They were created to calculate the influence of a good’s 
particular qualities on its value or price, the so-called 
marginal prices. The total worth of a commodity may 
then be determined by adding all these marginal prices 
(Chau and Chin, 2002). The basic hedonic pricing func-
tion is as follows (Equation 1):

, with  (1)

where  stands for the  attribute’s value.
Sirmans et al. (2005) indicate that the hedonic mod-

el has multiple founding figures. Court (1939) was the 
first to apply the hedonic method to calculate car pric-
ing, while Lancaster (1966) and Rosen (1974) extended 
its application to real estate. Subsequently, a substantial 
body of literature has emerged, exploring the connec-



27Interpretable Machine Learning for the German residential rental market – shedding light into model mechanics

tions between property price, or rent and its features. 
In the context of real estate, property qualities serve as 
independent variables representing customer prefer-
ences, while the sale price or the rent is the dependent 
variable (Colwell and Dilmore, 1999). The MRA relies 
on the physical and geographic features of real estate, 
as supported by the theory of Hamilton and Morgan 
(2010).

According to Dubin (1988), there are three kinds of 
building attributes that often affect pricing in a hedonic 
model: structural, location, and neighborhood factors. 
Examples of such characteristics are size, the number of 
rooms, or the property’s age (structural), central busi-
ness districts or train station distance (location) and 
household income, crime rates, or urban planning ele-
ments (neighborhood factors), which reflect the area’s 
broader socioeconomic context (Can, 1992; Stamou et 
al., 2017). Since the distinction between location and 
neighborhood factors is not always clear, they are com-
monly considered jointly (Can, 1992; Des Rosiers et 
al., 2011; Stamou et al., 2017). The impact of these geo-
graphic factors has received a lot of attention in recent 
years. Interest-worthy factors within this group are 
mostly found in the environmental, infrastructural, and 
social domains. Dumm et al. (2016), Rouwendal et al. 
(2017), and Jauregui et al. (2019) examine the impact 
of proximity to water on property pricing with regard 
to factors in the immediate surroundings of a property. 
The pricing impact of local subsurface conditions like 
sinkholes or land degradation is demonstrated in stud-
ies by Below et al. (2015) and Dumm et al. (2018). There 
is also attention given to other concerns, such as the 
impact of distance to urban green areas (Conway et al., 
2010) or the presence of air pollution (Fernández-Avilés 
et al., 2012). Diverse research came to light considering 
the group of nearby infrastructure facilities and their 
effect on homes. Hoen and Atkinson-Palombo (2016), 
and Wyman and Mothorpe (2018) examine how adja-
cent electric infrastructure, such as wind turbines and 
power lines, affects real estate values. Chernobai et al. 
(2011), and Chin et al. (2020) all look at the accessibility 
of transportation amenities including highway and rail 
transit. Ahlfeldt et al. (2015) go into the same direction 
demonstrating the importance of workplace accessibility 
in a Spatial General Equilibrium Model.

The prospect of simple access to early childhood 
education and training in the form of local kindergar-
tens or schools, as per Theisen and Emblem (2018), is 
also a price-determining factor for residential properties, 
according to these studies. Additionally, Goodwin et al. 
(2020) show that the existence of property ownership 
groups has price-determining impacts.

Despite concerns about multicollinearity and out-
lier samples negatively affecting performance, the MRA 
remains widely recognized and considered a standard 
approach in real estate price investigations (Ünel and 
Yalpir, 2019). However, some authors have highlight-
ed potential issues with the MRA, suggesting that its 
straightforward nature may lead to biased or underesti-
mated predictions, particularly when dealing with non-
linear data patterns (Connellan and James, 1998; Hui et 
al., 2007; Suparman et al., 2014; Wang and Li, 2019).

2.2 Evolution of machine learning methods

With the increased processing power, ML tech-
niques have become valuable complements to hedonic 
models for real estate valuation tasks, leveraging their 
predictive abilities. While parametric hedonic models 
represented preliminary by OLS are commonly used for 
inferential tasks (Pérez-Rave et al., 2019), ML algorithms 
offer enhanced predictive performance and have gained 
popularity in real estate literature. These methods excel 
in recognizing non-linear structures and have become a 
hot academic topic in HPM research.

Tree-based models, originally introduced by Morgan 
and Sonquist (1963), have become fundamental in ML. 
These models have evolved since Quinlan’s (1979) DT 
algorithm. To overcome overfitting issues in single DTs, 
ensemble learning approaches, like gradient boosting, 
have been applied (Prajwala, 2015). Gradient boosting, 
proposed by Breiman (1997) and first applied to regres-
sion trees by Friedman (2001), constructs multiple small 
decision trees from random subsamples of the dataset 
using residual-like metrics from prior trees. The study 
by Singh et al. (2020) demonstrates the success of gra-
dient boosting trees in real estate valuation. The XGB 
method, developed by Chen and Guestrin (2016), is a 
computationally efficient variation of gradient boosting 
trees. It outperforms other tree-based ensemble meth-
ods, as shown in applications by Kumkar et al. (2018), 
Sangani et al. (2017), Kok et al. (2017) and Guliker et al. 
(2022). Stang et al. (2023) apply this approach to a hous-
ing data set of 1.2 million observations across Germany 
and come to the result that XGB is far superior to OLS 
in this market.

In addition to tree-based models, other non-paramet-
ric methods like Support Vector Machines, Artificial Neu-
ral Networks, and Gradient Boosting have shown great 
promise in real estate research. Studies by Chun Lin and 
Mohan (2011), Kontrimas and Verikas (2011), Yoo et al. 
(2012), Antipov and Pokryshevskaya (2012), McCluskey et 
al. (2012), Yilmazer and Kocaman (2020), Awonaike et al. 
(2022) and many others demonstrate the success of these 
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techniques over linear regression models in various real 
estate markets, both economically developed and develop-
ing countries. For example, Forys (2022) compares pros-
pect results of OLS vs. ANN in Poznan, Poland, while 
Deaconu et al. (2022) investigates Generalize Linear Mod-
el (GLM) vs. ANN in Cluj-Napoca, Romania.

So far not only the comparison of OLS and ML 
methods has become a common research field in real 
estate literature. Moreover, Zurada et al. (2011), Mayer et 
al. (2019), Cajias et al. (2021) and Tekin and Sari (2022) 
discuss the performance between different ML methods 
in real estate research. Al-Qawasmi (2022) gives a good 
and comprehensive overview of the ML real estate litera-
ture between 2017 and 2020 and shows that regression 
models in form of neural networks, random forests, sup-
port vector machines, and pruned model trees are the 
most frequently employed algorithms. Despite the exist-
ing amount of literature, Alsawan and Alshurideh (2022) 
state in their systematic literature review that the area 
is still in its infancy and needs further study in order to 
become dominant in real estate assessment in the future.

2.3 Black Box and Explainable Artificial Intelligence

One building block for ML models on the way to 
becoming more dominant is the field of so-called xAI. 
As described in the previous section researchers have 
examined various ML algorithms, focusing on their pre-
dictive capability for market pricing models. According 
to Athey and Imbens (2019) the emphasis in machine 
learning literature has primarily been on evaluating out-
of-sample performance, neglecting a traditional focus of 
the statistics and econometrics literature—the capacity 
for inference. Ensuring model transparency is essential 
for understanding the contribution of input data charac-
teristics to predictions. In the context of residential rent-
al and property markets worldwide as well as in Germa-
ny, where fair pricing and decision-making are crucial, 
interpretability of ML models has become a rich topic in 
the field of study.

Feature selection approaches using correlation coef-
ficients (Beimer and Framcke, 2019; Yilmazer and Koca-
man, 2020) or multicollinearity analysis (Chen et al., 
2017) were employed, but they offer limited insight into 
feature variables’ impact on rent and property price pre-
diction. The same applies to the multivariate exploratory 
data analysis (Khosravi et al., 2022). Several studies in 
real estate have combined predictive and inferential goals 
using ML techniques. For instance, the “incremental 
sample with resampling” method utilizes random forests 
to forecast property prices and then employs a paramet-
ric hedonic model based on selected variables from the 

ML algorithm (Pérez-Rave et al., 2019). They use random 
forests to forecast real estate values on a variety of sub-
samples. If a feature is included in the final prediction 
rule of the Random Forests for 95% of the subsamples, 
the variable is considered important. The final inferen-
tial analysis is based on a parametric hedonic model that 
solely uses the variables that the ML algorithm chose. 
The informative quality of residuals from LR and ML 
models is further examined by Pace and Hayunga (2020). 
They discover that spatial information is still preserved 
in the residuals of ML models after employing regression 
trees. Although single trees are simple to comprehend 
and have a visual representation of their decision rule, 
they have poor predictive accuracy and are frequently 
unstable because to their great sensitivity to changes in 
the data or tuning parameter. Krämer et al. (2023) also 
make use of sub-sampling on the spatial level by training 
OLS, Generalized Additive Models, XGB and Deep Neu-
ral Network on various levels showing that it has a sig-
nificant impact on performance. While the above meth-
ods provide insight into which variables are important 
for the trained model, however, the developers do not 
yet gain insight into the mechanics of the model. Hence, 
the research field of IML shifted from circumventing the 
issue of unreadable black box models to improving read-
ability of fully trained models.

Literature suggests model-specific and model-agnos-
tic techniques for interpretability, where model-agnostic 
techniques have the clear advantage of being applica-
ble to various ML algorithms and hence, provide com-
parable results (Molnar, 2022). Model-specific ones on 
the other hand are restricted to one specific ML model 
form. By demonstrating how input variables contribute 
to overall model predictions, explainability of the models 
helps analysts understand what factors the models con-
sider when estimating real estate prices (Konstantinov 
and Utkin, 2021; Samek, 2020).

Based on their breadth, the XAI techniques may 
be divided into two main groups: global and local 
approaches. Global explanations provide a comprehen-
sive description of the model and its key factors, while 
local explanations analyze individual predictions (Delga-
do-Panadero et al., 2022).

Permutation Feature Importance (PFI) is employed 
as a global model-independent tool for feature selection 
in machine learning, with researchers like Adadi and 
Berrada (2018) and Fisher et al. (2019) using it to iden-
tify significant input variables and train regressors. Lor-
enz et al. (2023) and Krämer et al. (2023) apply PFI to 
analyze factors influencing rental prices in German cit-
ies, highlighting the impact of variables such as living 
area, building age, and proximity to city centers. The 



29Interpretable Machine Learning for the German residential rental market – shedding light into model mechanics

text also notes alternative methods like default feature 
significance and drop-column importance but emphasiz-
es the reliability and practicality of PFI, particularly in 
scenarios with changing input factors.

The SHAP approach is used to provide a local expla-
nation to the regressors’ predictions (Lundberg and Lee, 
2017; Sundararajan and Najmi, 2020). Allard and Hag-
ström (2021) use SHAP values to show that location-
based features are the most important for various ML 
models while bathroom and kitchen conditions were less 
important than they expected. The authors suggested 
that valuable pricing information must also be found in 
the house offering text descriptions. Shen and Springer 
(2022) followed that suggestion and utilized ML to cre-
ate measures of uniqueness in residential real estate 
based on written advertisements. The findings suggest 
that an increase in uniqueness is associated with a rise in 
sale prices. Alfano and Guarino (2022) also went in this 
direction and investigated the text structures in internet 
house sales influencing house prices. They find that the 
text structure and specific keywords related to invest-
ment, panorama, and cultural heritage positively impact 
house prices, while verbs, punctuation, and keywords 
associated with transport and tourism do not contrib-
ute to price variation. While Alfano and Guarino (2022) 
use OLS, Baur et al. (2023) combined their approach 
with modern ML and xAI methods. They trained vari-
ous statistical models not only on numerical variables but 
also on textual input from real estate market offers and 
applied SHAP values to show that offer descriptions play 
an increasing importance with growing prices.

SHAP values have the big disadvantage that their 
calculation is computationally very intensive and there-
fore only feasible with corresponding working memory 
capacity (Iban, 2022). Therefore, they are only applica-
ble to relatively small data sets. Baur et al. (2023) mere-
ly look at 13 features for data set size of about 30,000 
observations. Iban (2022) therefore suggests a combining 
approach of PFI and SHAP. Krämer et al. (2023) circum-
vent the issue by applying accumulated local effects plots 
(ALE) to identify the individual influence on pricing. 
The major drawback is the lack of local interpretability, 
which SHAP values are feasible of.

To the best of our knowledge this paper is the first 
that applies the data reduction technique called Slovin’s 
Formula in the real estate ML context. Instead of reduc-
ing the number of features of our dataset, which leads to 
a loss of explainability, we reduce the number of obser-
vations before training SHAP values to handle computa-
tional power issues. In section 5, we prove that the appli-
cation is valid in our use case and we do not lose any 
power of explanation.

3. METHODOLOGY

We provide a brief overview of the most important 
methods and metrics we use to forecast rental prices and 
to analyze the forecast. We start with prediction meth-
ods and then present the quality criterion and the pro-
cedure for interpreting the methods. In order to provide 
clarity on the overall methodological framework adopted 
in this study, Figure A1 in the Appendix presents an out-
line of the steps involved in our analysis.

3.1 Prediction Methods

Ordinary Least Squared
In the realm of machine learning, the go-to base-

line model often employed is linear regression. When it 
comes to forecasting continuous dependent variables like 
housing prices, the simple OLS model is the method of 
choice. In Equation 2, we express the outcome as:

 (2)

Here,  signifies the estimated dependent vari-
able for observation , while  represents the true  
independent variables for that observation.  provides 
us with estimates for respective coefficients.

This model excels when the relationship between 
explanatory and independent variables is linear. Beyond 
its simplicity and strong predictive capabilities, it offers 
the unique advantage of facilitating an in-depth explora-
tion of data relationships (Isakson, 2002). With OLS, we 
can scrutinize aspects such as heteroskedasticity, error 
term autocorrelation, interactions between independent 
variables, collinearity, the presence of high-leverage out-
liers, and whether the actual relationship between vari-
ables is indeed linear (Mark and Goldberg, 2001). This 
makes linear OLS a valuable starting point for gaining 
profound insights into the data.

However, as we delve deeper into complex, high-
dimensional real estate datasets, we find that these 
models come with their limitations. From simple linear 
regression, we move on to relax the linearity assumption. 
We introduce quadratic and interaction terms, leading to 
Equation 3:

 (3)

For each variable , we introduce the respec-
tive quadratic term  and an interaction term  



30 Severin Bachmann

 with respective other variables, creating 
a non-linear relationship between independent and 
dependent variables. The formulation herein encap-
sulates a scenario wherein both quadratic and inter-
action terms are systematically incorporated for each 
feature within our dataset. Owing to computational 
constraints, practical implementation necessitates an 
evaluation of extensions that yield optimal predictive 
enhancements, with subsequent inclusion limited to 
those deemed most influential. With this model we will 
check for performance improvement in comparison to 
the linear OLS in section 5 (Results) to find the most 
accurate baseline model.

Decision Tree
In our quest for comprehensive investigation, we 

turn to a foundational tree-based method. Specifical-
ly, the Decision Tree (DT) emerges as a potent tool for 
unravelling intricate patterns while remaining remark-
ably intuitive (Pace and Hayunga, 2020). The strength of 
DT lies in its ability to capture nonlinear relationships 
and interactions, making it more than a simple algo-
rithm. We can think of a regression tree as a hierarchical 
series of if-else conditions at its core. It effectively parti-
tions data into distinct subgroups, providing predictions 
for each subset, often represented by the average within 
that group. This division unfolds through a series of split 
decisions, with feature variables selected and their spaces 
divided until a specific criterion, like minimizing predic-
tion errors, is most significantly affected (James et. al, 
2013). DTs aim to minimize the residual sum of squares 
(RSS), as given by Equation 4:

 (4)

Here,  denotes the mean response for training 
observations within the  segment . However, due to 
the computational impracticality of exploring every pos-
sible feature space partition into  segments, a practical 
method is employed, known as recursive binary split-
ting. Starting from the root node, data is divided at the 
feature and point that maximally reduces the RSS. This 
process iteratively continues, branching into subgroups 
with each split. Without external constraints, the pro-
cess persists until the tree precisely describes the train-
ing data, creating a leaf node for each observation result-
ing in zero bias. This pursuit of low bias, however, leads 
to high variance when applied to new data, rendering 
Tree methods ineffective for prediction unless complex-
ity is mitigated and generalization introduced (James et 
al., 2013). To introduce such a predetermined threshold, 
Equation 4 is extended as follows:

 (5)

In Equation 5, we observe the continued minimiza-
tion of RSS, as in Equation 4, with the addition of the 
pruning parameter  and the absolute value of , rep-
resenting the number of terminal nodes or in other 
words a subtree, as . The parameter  balances 
the trade-off between subtree’s complexity and its fit to 
training data. For  and  the subtree equals 
the original tree generated by Equation 4. Increasing  
leads to a smaller subtree, because the tree size increases 
our function to be minimized. Hence, pruning aims to 
strike a balance between reducing bias and keeping the 
number of nodes to a minimum. Achieving the optimal 

 value necessitates the application of cross-validation 
techniques.

Extreme Gradient Boosting
Extreme Gradient Boosting (XGB) is a tree-based 

ensemble learning technique. The goal of ensemble 
learning algorithms is to combine multiple “weak learn-
ers”, often represented as individual decision trees, to 
create a single, robust learner. This approach can be 
expressed mathematically as follows (Equation 6):

 (6)

In this equation,  represents the response variable, 
 is the feature space and  signifies the total number 

of individual trees. The weak learners denoted as   
are trained sequentially in the boosting ensemble learn-
ing technique.  is used as a discount factor to account 
for the weaker learners. As the process unfolds, each 
subsequent model learns from the mistakes of its prede-
cessors. To minimize the model’s loss, gradient boost-
ing employs a gradient descent process by adding more 
trees. XGB excels at automatically identifying complex 
patterns, such as nonlinear relationships or higher-order 
interactions, within extensive datasets. It requires less 
manual fine-tuning compared to parametric and sem-
iparametric models like OLS, but it requires extensive 
computational power (Hastie et al., 2001).

3.2 Quality Criterion

Root Mean Squared Error
Root Mean Squared Error (RMSE) is a widely used 

statistical measure in various fields. In housing price 
estimation literature it serves as the most applied meas-
urement. Since the focus of this paper is the inspection 
of ML models, we focus on this specific measure know-
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ing that there are many more usable quality criteria out 
there. It quantifies the accuracy of a predictive model 
by measuring the average magnitude of the errors or 
the differences between the actual observed values and 
the values predicted by the model. It is expressed in the 
same units as the data being analyzed. A lower RMSE 
indicates a more accurate model. Mathematically, the 
RMSE is calculated as follows (Equation 7):

 (7)

where  is the actual observed value,  is the predicted 
value and n is the total number of data points. RMSE is 
particularly useful when we want to compare the perfor-
mance of different predictive models or assess the good-
ness of fit for regression models. It provides a single, eas-
ily interpretable value that quantifies the model’s overall 
accuracy and is widely used in machine learning, statis-
tics, and data analysis to evaluate the quality of predic-
tions or forecasts. It tends to magnify significant errors 
due to the squared term, making it sensitive to outliers.

3.3 Interpretable models and SHAP values

Machine learning often operates without full trans-
parency, leading to a lack of insight into the underly-
ing logic behind predictions. To address this, a growing 
field of research on interpretable machine learning has 
emerged in recent years. IML aims to improve trust in 
algorithmic conclusions by offering understandable and 
mathematically grounded theories (Adadi and Berra-da, 
2018; Carvalho et al., 2019; Linardatos et al., 2021).

One way to understand the inner workings of ML 
models is to employ interpretable ML models. These 
models, like parametric models, impose constraints on 
complexity, facilitating inferential analysis. For example, 
DTs with a depth limit to three splits can provide a com-
plete understanding of how they arrive at predictions 
(Molnar, 2020). Limiting model complexity, while main-
taining predictive performance, can sometimes deprive 
ML models of their full potential (Breiman, 2001). As a 
solution, model-agnostic interpretation techniques have 
been developed, allowing the separation of predictive 
capabilities from the interpretative framework. Unlike 
interpretable models, model-agnostic tools do not con-
strain themselves to specific ML techniques, making 
them versatile for various learners.

Interpretation techniques can be categorized into 
two main types: those emphasizing feature relevance 
and those focusing on feature impacts. Feature relevance 
techniques identify which feature contributes the most 
to a prediction, while feature impact techniques explain 

how a single characteristic influences the forecast. These 
techniques serve as essential tools for understanding the 
components of ML models and their global behavior 
(Hastie et al., 2009).

SHAP Values
One way to measure a feature’s impact is the use of 

SHAP values. Developed by Lundberg and Lee (2017) 
they are a concept from cooperative game theory that 
has gained popularity in the field of ML and xAI. SHAP 
values provide a way to distribute the contribution 
of each feature or input variable to a model’s predic-
tion. They offer a powerful and intuitive framework for 
understanding how the presence and value of each fea-
ture affects a model’s output (Lundberg and Lee, 2019; 
Molnar, 2022).

Considering a model that takes a set of input fea-
tures we want to determine the contribution of each fea-
ture to the model’s prediction. For simplicity, we assume 
we have a binary classification model, and the output is 
represented by a function (Equation 8):

 (8)

where N is the number of input features, and  repre-
sents all possible subsets of features. In binary classifica-
tion, R can be {0, 1}. The SHAP value is calculated as the 
average contribution of a feature across all possible fea-
ture combinations. It can be expressed as (Equation 9):

 (9)

where:  is the SHAP value for feature ,  is the 
model’s prediction when using the feature subset S. S is 
a subset of features excluding feature .  is the 
prediction when including feature i as well.  
represents the number of ways to choose  elements 
from the set of N elements (Grybauskas et al., 2021). 
This all-encompassing approach allows SHAP values to 
provide a more realistic picture of model behavior than 
other xAI methods, considering combinations, inter-
actions and dependencies for every single observation 
(Duell et al., 2021; Kumar et al., 2020). SHAP values 
have gained popularity in various applications, includ-
ing feature importance analysis, model interpretability, 
and explainability. They can be used to answer questions 
like, “How much does each feature contribute to the pre-
dicted outcome” and “What is the impact of changing a 
feature’s value on the model’s prediction?”. This inter-
pretability and transparency make SHAP values a valua-
ble tool for understanding machine learning models and 
their decision-making processes.
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Slovin’s Formula
In practice, calculating SHAP values for complex 

machine learning models can be computationally so 
expensive that practical implementation is not possible. 
To address this issue, we apply Slovin’s Formula. This 
method is used in statistics to determine the appropri-
ate sample size for a population, often used in market 
research and social science studies (Ryan, 2013). It is 
particularly employed when the population size is large, 
and the researcher wants to take a representative sam-
ple without studying the entire population. Due to com-
putational constraints, we reduce the dataset size using 
Slovin’s Formula in line with existing literature and sup-
posing to not confusing results (Merrick and Taly, 2020). 
The formula goes as follows (Equation 10):

 where  (10)

where SF is the required sample size, N is the total pop-
ulation size and error is the desired level of precision. It’s 
important to note that Slovin’s Formula assumes a ran-
dom sampling method and a simple random sample. If 
the sampling method is not random or if the population 
has specific characteristics, other sampling methods or 
adjustments might be needed.

4. DATA ANALYSIS

4.1 Introduction of datasets

We acknowledge the potential disparities between cit-
ies and submarkets within a country when it comes to real 
estate pricing. In this context, Blackley et al. (1986) provide 
compelling empirical evidence of the diversity in pric-
ing across different cities. Dunse and Jones (2002) explain 
the existence of housing submarkets within the same city, 
attributing it to factors such as search costs, transaction 
costs, imperfect information, and a limited supply1.

Our data deliverer, the Research Data Center (FDZ) 
Ruhr at RWI offers a unique dataset (RWI-GEO-RED) 
on German real estate prices, acquired from Immobil-
ienScout24. This dataset includes information on real 
estate purchase and rent prices and various character-
istics that influence them. It is updated monthly and 
covers the period from January 2007 to June 2022. The 
dataset is divided into four separate categories: houses 

1 As we show in our literature review (section 2) the segmentation of 
real estate markets into submarkets is predominantly driven by the 
influence of location. Location-specific attributes, such as proximity to 
central business districts, transportation hubs or other neighborhood 
characteristics play a crucial role in shaping real estate values. 

for sale, houses for rent, flats for sale, and flats for rent. 
ImmobilienScout24 is the largest online platform for real 
estate in Germany. They claim a self-reported market 
share of about 50% of all real estate listings in Germany 
(Schaffner and Thiel, 2022).

The dataset has a significant number of observa-
tions, enabling the analysis of small-scale housing mar-
kets. Users submit information about their real estate 
listings. The listed price should be understood as an 
offering price, not a binding transaction price. While 
listing prices may differ from actual transaction prices, 
they are widely accepted as a valid proxy in real estate 
research when selling prices are not available. Several 
studies demonstrate that listing prices provide a reliable 
indication of market trends and property valuation, par-
ticularly in markets with low negotiation flexibility or 
in cases where listing prices closely reflect seller expec-
tations (Knight et al., 1998; Yavas and Yang, 1995). In 
the German residential rental market, the self-reported 
nature of listing prices combined with the competitive 
dynamics of urban housing markets minimizes the gap 
between listing and realized prices (Schaffner and Thiel, 
2022). Moreover, prior research using similar datasets 
has shown that listing prices effectively capture key mar-
ket dynamics and enable robust analysis (Lorenz et al., 
2023; Krämer et al., 2023). 

Advertisers can also include additional property-
specific details to enhance their listings and potentially 
secure a favorable sale or rental price. The structural 
characteristics of properties encompass details such as 
property type, year of construction, year of moderniza-
tion, living area, lot size, quality grade, condition, and 
the presence of features like a kitchen, parking spot, bal-
cony, terrace, bathroom, or elevator. ImmobilienScout24 
does not verify this information but cleans the data from 
implausible values (Schaffner and Boelmann, 2018).

To address potential price variations within local 
housing markets, we use the 1x1km grid information, 
which the RWI generates and applies to the whole Ger-
man landscape. These grid cells maintain consistency 
over time and are evenly distributed across all of Ger-
many. The grid level adheres to the EU directive’s stand-
ardized European projection system, INSPIRE, ensuring 
that data on the same projection can be merged.

We combine the real estate data set with the RWI-
GEO-GRID, also provided by the FDZ Ruhr at RWI. 
This dataset is based on the same 1×1 km raster. As far 
as our knowledge goes, the RWI-GEO-GRID is unique 
due to its combination of socio-economic data and spatial 
resolution for Germany (Breidenbach and Eilers, 2018).

The dataset provides a wide range of information 
for each grid cell, including details about households 
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(e.g. household structure, children, unemployment rates, 
purchasing power etc.), demographics, mobility (car 
capability, car brands, and car segments), and building 
development (e.g. information on different house types). 
Additionally, the dataset comprises composition data like 
the number of households, the number of commercial 
enterprises, the number of houses (including pure com-
mercial buildings), and the number of residential build-
ings (excluding pure commercial buildings).

We combine these two datasets and reduce RED to 
rental apartment data. Since our research focuses specifi-
cally on urban rental markets, predominantly consisting 
of rental apartments, we excluded single-family homes, 
semi-detached houses, and terraced houses from our anal-
ysis. Our dataset covers the period from 2009 to 2021. 

The key variable of interest is the monthly rent per 
square meter (sqm). Each data point represents a real 
estate property listed on the respective platform, so that 
in summary, our analysis covers a wide range of property 
characteristics and geographic factors, providing a com-
prehensive view of the German residential rental market.

4.2 Preprocessing

Before working with the data, we must apply several 
preprocessing steps. Since all ML methods benefit from 
an abundance of valuable data, we aim to generate a 
dataset with zero missing values.

First, we remove features that are not relevant to our 
studies like geographical variables other than municipal-
ity information, incidental costs, warm rent, and vari-
ous variables tracking the offers success on the platform 
like clicks, hits or maturity days. Second, to focus on the 
largest high-price markets, we drop all city observations 
except Berlin, Hamburg, Munich, Cologne, Frankfurt, 
Stuttgart and Düsseldorf. Afterwards, we drop columns 
with more than one-third of the missing data.

Subsequently, we address missing values in a contex-
tually appropriate way. Some of the categorical features 
like elevator, balcony, garden, cellar etc. can either be 
“yes”, “no” or “missing”. As we stated above, the land-
lords provide the information voluntarily. Since they 
have an interest in not hiding information that qualifies 
for a higher rent, it is reasonable to assume missing val-
ues meaning no information provided to be equivalent 
to “no”. Grounds for this procedure come from psycholo-
gy literature like Katzenbeisser and Petitcolas (2016) and 
Huang and Yu (2014). We are aware of other handling 
techniques for missing values, but each of these leads to 
a conscious incorporation of information loss.

Additionally, we notice an inconsistency between 
the variables parking lot price and parking lot. There 

are cases where the parking lot is a missing value while 
the parking lot price is larger than zero. We assume that 
there is a parking lot available if landlords call up a price 
and drop the parking lot price due to many missing val-
ues (>33 %). Finally, we have 164.084 observations where 
the year of construction is missing while providing a 
year of modernization. In those cases, we take the year 
of modernization as the year of construction and drop 
the year of modernization due to a missing value ration 
above 33%.

For all variables in the GRID data set that have 
a percentage share as measuring variable we exclude 
respectively one feature from a group to exclude multi-
collinearity.

Finally, we perform some statistical data cleansing. 
For the continuous variables basic rent and living space 
we drop the 99.99%- and the 0.01%-percentile to exclude 
strongest outliers. For the year of construction, we have 
dropped the implausible and missing values. The pre-
processing process leaves us with a dataset of 2.411.094 
observations and 151 features including rent per sqm as 
our dependent variable.

Concerning the calculation of SHAP values and giv-
en the computational limitations associated with calcu-
lating SHAP values on a large dataset of over 2.4 million 
observations, we apply Slovin’s Formula (see Equation 
10) to determine an optimal sample size that balances 
prevision and representativeness. Using a commonly 
accepted error margin of 0.02 (Harfitalia and Pujang-
koro, 2022), the formula provides a reduced dataset set 
of 2,946 observations. We verify the representativeness of 
the reduced dataset by comparing SHAP results between 
the reduced dataset and a randomly selected large data-
set of 100,000 observations for the XGB model. The 
comparison indicates no significant differences (ch. 5.2), 
ensuring that the reduced dataset remains robust for our 
analysis. This reduced sample size enables efficient com-
putation of SHAP values for the remaining models. 

4.3 Variable description and descriptive statistics

Due to the large number of variables, we depict a 
comprehensive view in Table A1 (Appendix). Here we 
group the variables into the categories price informa-
tion, object features, energy and structure information, 
regional information, time, neighborhood information, 
building development, household and population infor-
mation. For every group variable we give a summariz-
ing description, the elements of the features as well as 
statistical category of the element. We notice a strong 
predominance of dummy variables with both two-values 
and multi-value characteristics. All categorial variables 
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we make processable by one-hot encoding. We also fac-
tor in the year and month of the valuation to capture 
temporal trends and seasonality (e.g. year_2010 and 
month_2)

Table 1 presents the descriptive statistics for the 
non-percentage continuous features. The average month-
ly rent is 11.35 euros per sqm, with an average living 
area of 75.29 sqm and 2.52 rooms. The average apart-
ment is on the second floor or third floor (mean: 2.53) 
and is approximately 56 years old.

Table 2 displays all existing manifestations of 
our dummies with the respective number of observa-
tions and the average rent per sqm for those expres-
sions. We mark the feature expressions that lead to 
the highest mean rent. For our binary dummies the 
data behaves as anticipated: features such as the pres-

ence of elevators, basements and balconies are associ-
ated with higher rents (green mark), whereas assisted 
living, listed building and public housing lead to lower 
rents (red mark). Interestingly, the object equipment 
labeled as ‘simple’ shows the highest mean rent (orange 
mark), which may indicate that the explanatory power 
of object condition variables is limited or potentially 
confounded by other factors. For multinary dummies 
such as floor level or heating type we observe that 
higher-quality or more desirable categories (e.g. higher 
floor levels or modern heatings systems) are associated 
with increased rents, while lower-quality options (e.g. 
ground floor or outdated heating systems) align with 
lower average rents. This supports the notion that mul-
tinary dummies generally capture intuitive and expect-
ed patterns in pricing behavior. 

Table 1. Key statistics for non-percentage continuous variables.

rent per sqm year of construction living space floor number of rooms

count 2,410,690 2,410,690 2,410,690 2,410,690 2,410,690
mean 854.78 1,966.72 75.24 2.53 2.52
std 617.21 41.18 35.24 2.23 1.02
min 8 1,000 9 -1 0.5
25% 458 1,937 53.11 1 2
50% 680 1,972 69 2 2
75% 1,053 2,000 89.30 3 3
max 14,479 2,025 457 45 10

Table 2. Dummy variables, frequency and relation to rent per sqm.

Variable Characteristic No. Share Avg. rent per sqm

elevator Yes 930,637 38.6% 12.97
No 1,480,053 61.4% 10.33

balcony Yes 1,724,974 71.6% 11.44
No 685,716 28.4% 11.12

assisted living Yes 30,100 1.2% 10.03
No 2,380,590 98.8% 11.36

listed building Yes 309 0.0% 11.18
No 2,410,381 100.0% 11.35

fitted_kitchen Yes 1,256,478 52.1% 12.77
No 1,154,212 47.9% 9.80

public housing Yes 54,115 2.2% 6.87
No 2,356,575 97.8% 11.45

guest toilet Yes 453,060 18.8% 12.83
No 1,957,630 81.2% 11.00

garden Yes 335,059 13.9% 12.22
No 2,075,631 86.1% 11.21

cellar Yes 1,531,950 63.5% 11.67
No 878,740 36.5% 10.79

(Continued)
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Variable Characteristic No. Share Avg. rent per sqm

parking lot Yes 720,013 29.9% 13.12
No 1,690,677 70.1% 10.59

wheelchair_accessible Yes 113,257 4.7% 16.75
No 2,297,433 95.3% 11.08

equipment Normal 548,668 22.8% 9.96
Not specified 976,665 40.5% 10.23

Simple 20,527 0.9% 8.89
Sophisticated 737,686 30.6% 13.07

simple 127,145 5.3% 16.31
energy efficiency class APLUS 7,186 0.3% 16.54

A 15,481 0.6% 16.09
B 28,176 1.2% 15.87
C 17,873 0.7% 13.6
D 19,994 0.8% 12.78
E 15,691 0.7% 12.58
F 8,891 0.4% 12.68
G 3,245 0.1% 13.01
H 1,343 0.1% 14.4

Not specified 2,292,810 95.1% 11.2
energy certificate type Energy use 679,335 28.2% 11.16

Energy demand 408,212 16.9% 13.56
Not specified 1,323,143 54.9% 10.76

type of heating Cogeneration/combined heat and power plant 10,238 0.4% 14.89
District heating 141,310 5.9% 13.16
Electric heating 3,334 0.1% 13.61
Floor heating 109,573 4.5% 16.99
Gas heating 73,138 3.0% 12.87

Heating by stove 10,243 0.4% 9.53
Night storage heaters 7,215 0.3% 10.75

Not specified 363,918 15.1% 11.42
Oil heating 18,193 0.8% 12.26

Self-contained central heating 260,355 10.8% 10.26
Solar heating 673 0.0% 14.83

Thermal heat pump 6,952 0.3% 16.22
Wood pellet heating 2,522 0.1% 16.69

Central heating 1,403,026 58.2% 10.78
property condition Completely renovated 308,617 12.8% 10.81

Dilapidated 29 0.0% 11.90
First occupancy 177,326 7.4% 15.50

First occupancy after reconstruction 202,966 8.4% 12.16
Like new 255,311 10.6% 14.28

Modernised 180,418 7.5% 10.69
Needs renovation 18,717 0.8% 7.61

Not specified 504,750 20.9% 10.31
Reconstructed 156,398 6.5% 11.08

Well kempt 587,774 24.4% 10.18
By arrangement 18,384 0.8% 8.78

Note: green marks indicate dummy values of 1 increases rent per square meter; red the opposite behavior; orange shows the highest value 
of the squared rent among several categorical characteristics.

Table 2. (Continued).
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Figure 1 displays the price development presented 
by the monthly average rent over the observation period 
as well as the general price level displayed by the Har-
monised Index of Consumer Prices (HICP) published 
by the Deutsche Bundesbank. For both factors we see a 
constant growth being drastically more rapid for the rent 
prices. While the HICP moved from 91.1 to 127.2, aver-
age rent more than doubled from 91.1 to 192.76. Figure 2 
lays focus on the yearly percentage change of both vari-
ables again making clear rents strongly outpace common 
price developments. But there are periods when rent price 
growth falls behind the HICP change. We see that around 
2011 and 2014. Even more evident is the period from 2021 
onwards, where the common price level is poised to exceed 
rents in the midterm. Figure 3 looks at prices over time 
periods across cities. By far the most expensive city over 
the whole period is Munich, followed by Frankfurt am 
Main and Stuttgart, which has seen a tremendous price 
increase from 2016 onwards. The remaining cities move in 
the same price range although Berlin is coming from a far 
lower starting point and has made a strong ascent.

In summary the data behaves as we would expect 
from a real estate dataset of the seven biggest cities in 
Germany and there were no conspicuous inconsisten-
cies. Finally, the dataset was split into an 80% training 
set and a 20% testing set.

5. RESULTS

5.1 Prediction results

Although not the focus of our predictive study, 
residuals are an essential aspect, as they guide us in 
model improvements and ensure robust, reliable predic-
tions. The literature on real estate price forecasts mod-
els, which focuses on model performance applies various 
residual metrics besides RMSE. And although they use 
metrics like Mean Absolute Error (MAE), Mean Squared 
Error (MSE), R-squared or Adjusted R-squared, RMSE 
is widely used for its comparability, error magnifica-
tion and standard practice. Given its properties, RMSE 
provides a single, interpretable measure of model error 
in the same units as the predicted variable, making it 
particularly useful for communicating results to diverse 
stakeholders. While other metrics like MAE emphasize 
absolute deviations and R-squared measures goodness-
of-fit, RMSE effectively balances by penalizing larger 
errors more heavily, offering insight into model perfor-
mance under typical use scenarios. Consequently, for 
the purpose of our study, relying solely on RMSE is both 
practical and justified. 

Table 3 summarizes the RMSE for all training and 
testing results. We initiate our analysis by training a 
standard OLS model. The RMSE for the training set is 
2.96, while it is 2.95 for the test set. Subsequently, we 
apply statistical filters to address potential overfitting 
caused by superfluous variables. We apply correlation-

Figure 1. Rent per sqm and Harmonised Index of Consumer Prices 
(HICP) from 2009–2022.

Figure 2. Yearly percentage change of rent per sqm and HICP.

Figure 3. Rent per sqm of cities from 2009-2022.
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based feature selection, k-best method, and low variance 
filters, but none demonstrate an improvement in the 
OLS model.

To introduce non-linearity, we incorporate squared 
and interaction terms based on univariate analysis. Squar-
ing minimally improves the model (RMSE: 2.90 (train), 
2.89 (test). So does including interaction terms, but to an 
even lower degree (RMSE: 2.94 (train), 2.94 (test)). Boot-
strapping, aiming to make linear regression comparable 
to modern machine learning algorithms, does not yield 
improvements (RMSE: 2.95 (train), 2.95 (test)). Due to the 
at most marginal improvement through non-linearity, we 
retain simple OLS as our baseline model.

We further explore complexity by training a decision 
tree model with pruning to avoid overestimation. Hyper-
parameter tuning identifies optimal parameters as a max-
imal depth of 9 and minimal splits of 3, resulting in an 
RMSE of 2.74 for the training set and 2.75 for the test set.

Lastly, we employ an XGB model without hyperpa-
rameter tuning, yielding an impressive result of 2.08 for 
the training set and 2.12 for the test set. These findings 
align with established literature on ML in real estate mar-
ket domain, as discussed in literature review in section 2.

5.2 SHAP analysis – preprocessing

As described in the data section (4.2), we reduce the 
dataset using Slovin’s Formula (Equation 10), ensuring 
computational feasibility without compromising rep-
resentativeness. This sample size facilitates a detailed 
SHAP analysis while maintaining the validity of our 
finding. This leaves us with a sample size of 2,946 obser-
vations. SHAP values for XGB, even with reduced data, 
demonstrated consistent feature importance. Table 4 
shows the evaluation of the deviations between the cal-
culated SHAP values of the reduced data set, and a ran-
dom sample set of 100,000 observations. The average 
absolute deviation between respective features is just 
0.001, the largest difference is 0.02. Overall, we find only 
16 out of 150 features that show any deviation at all, 
and of these, the deviation is only 0.01 for 13 of those 
features. The results confirm the chosen data reduction 
methodology to be valid and reliable, so that we use it as 
the basis for all subsequent applications of SHAP values.

5.3 SHAP analysis – results

This section provides a detailed description of the 
insights and findings based on SHAP evaluation, culmi-
nating in a bullet-point overview at the end of the sec-
tion. Figure 4 delineates that the LR model predomi-
nantly derives its predictive outcomes from the variable 
denoting the percentage of households with a German 
head (German (%)). The associated SHAP value of 4.73 
markedly surpasses the subsequent significant inf lu-
ence, namely, the count of residential buildings (houses) 
(1.47). The discernible discrepancy between these two 
pivotal variables is comparatively diminished within 
the context of the decision tree. The foremost variable, 
namely, the share of the Muslim population (non-Euro-
pean Islamic (%)) (1.18), is marginally separated by a 
mere 0.06 from the second-ranking variable, denoting 
the city of Munich (1.12). Furthermore, the subsequent 
features contribute more significantly relative to the 
primary variable in comparison to the LR model. This 
observation also holds true for the XGB model, where 
the differential impact between the leading two features 
is quantified at 0.23 (1.01 vs. 0.78).

Additionally, the findings indicate a noteworthy dis-
parity in SHAP values, with those associated with LR 
generally exhibiting substantially greater magnitudes than 
those observed for DT and XGB models. Table 5 presents 
the cumulative mean SHAP values (Conceição, 2023), 
unequivocally illustrating the pronounced preponderance 
of LR SHAPs (LR: 36.01; DT: 6.94; XGB: 11.06). In con-
junction with our understanding that LR demonstrates 
inferior predictive efficacy, we can deduce that this sub-
optimal performance stems from the inherent granularity 
of individual influencing variables or in other words LR 
tends to overshoot in predicting the target variable.

Furthermore, an insightful revelation from the 
SHAP analysis is the comparatively diminished signifi-

Table 3. Estimation results for train and test datasets over models.

LR Dt XGB

RMSE
train 2.90 2.74 2.08
test 2.89 2.75 2.12

Table 4. Deviation analysis between Slovin’s-Formula-reduced and 
large dataset.

Mean Diff. (abs.) 0.001
Max Diff. (abs.) 0.02
No. non-zeros 16
No. 0.01-Diff. 13

Table 5. Cumulative mean of absolute SHAP values.

LR DT XGB

SHAP sum 36.01 6.94 11.06
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cance of dummy variables in LR as opposed to the other 
models. Table 6 provides a summation of the mean abso-
lute SHAP values, accompanied by the percentage allo-

cation of dummy and remaining SHAPs for each respec-
tive model (Conceição, 2023). This dual representation 
ensures comprehensive coverage of 100%. Notably, the 
proportion of dummy variable SHAPs is least prominent 
for LR (27%), experiencing a 5-percentage point incre-
ment for DT (32%) and further escalating by an equiva-
lent magnitude for XGB (37%). Consequently, we observe 
an augmentation in the significance of dummy variables 
with escalating model complexity. This outcome aligns 
with intuition, given that dummy variables, character-
ized by binary states, possess inherently weak predictive 
prowess in comparison to continuous influencing vari-
ables, particularly in the absence of permissible interac-
tion terms. It is pertinent to highlight that both DT and 
XGB, owing to their multilayered structure, facilitate 
multiple interactions among diverse explanatory varia-
bles. This structural attribute allows the relatively coarse 
predictive influence of a dummy variable to undergo 
refinement through its interrelation with other variables.

Another salient feature discerned from the SHAP 
values is the notable disparity in the number of variables 
that play no role in the model, presenting a distinctive 
characteristic across models. Table 7 reveals that the 
count of features with an average absolute SHAP value 
of 0 is markedly elevated for the DT model at 104, in 
stark contrast to LR model (22) and the XGB model (25). 
This observation implies that DT, despite outperform-
ing LR in predictive power with a lower RMSE, relies on 
fewer variables for its predictions. This would typically 
suggest a potential compromise in performance; how-
ever, the DT compensates by capturing more intricate 
interactions among relevant variables.

In contrast, a comparable number of variables are 
deemed relevant for the XGB model. Given its superior 
performance, one can infer that the allowance for higher 
complexity in form of more tree layers enables the inclu-
sion of more features, thereby enhancing performance 
through the utilization of even deeper trees. This is sub-

Figure 4. SHAP summary plot for top 10 features. 

Table 6. Cumulative mean of absolute SHAP values according to 
variable type.

LR DT XGB

Dummy Variables 9.76 (27%) 2.20 (32%) 4.13 (37%)
Non Dummy Variables 26.25 (73%) 4.74 (68%) 6.93 (63%)

Table 7. Number of features with non-zero SHAP value average.

LR DT XGB

No. Zero-SHAPs 22 104 25
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stantiated by Table 5, which illustrates that the sum of 
the average influence for XGB is nearly double that of 
DT (11.06 vs. 6.94).

The final insight directs our attention back to Fig-
ure 4, portraying the top ten most important features for 
each model. Examination of these top ten features for 
DT and XGB reveals a striking overlap. To enhance clar-
ity, Table 8 employs colored markers to denote this over-
lap. Green signifies features present in the same rank for 
both models, while orange indicates features within the 
top ten but not in the same rank. The absence of color 
denotes variables that do not appear in the other mod-
el’s top ten. The prevalence of green and orange fields 
underscores the robust concordance between the two 
models. Notably, the four features lacking counterparts 
endorse the notion that a more complex model adept-
ly accommodates dummy variables. This distinction 
arises as DT relies on two additional continuous vari-
ables (male aged 65-75 (%) and Spanish Portuguese (%)), 
whereas XGB achieves a similar effect through the inclu-
sion of the two dummy variables, equipment normal and 
equipment not specified.

To summarize our results on model interpretability, 
our comparative analysis across LR, DT, and XGB mod-
els unveiled five compelling conclusions:
1. Variable Importance:

 – LR heavily relies on a single major variable, 
while ML models exhibit a broader perspective.

 – Dummy variables gain importance with model 
complexity.

2. SHAP Magnitudes:
 – LR SHAP values are higher, yet its performance 

is inferior to ML models.

3. Dummy Variable Significance:
 – Dummy variable importance increases with 

model complexity, especially evident in DT and 
XGB.

4. Model Complexity and Relevant Variables 
 – A kind of U-shape relationship exists between 

model complexity and the number of relevant 
variables.

 – Top features for tree-based ML models (DT and 
XGB) are strikingly similar.

5. Number of Variables Playing a Role:
 – DT relies on fewer variables with high predic-

tive power, whereas XGB embraces complexity, 
incorporating more features for enhanced per-
formance.

Our meticulous analysis not only highlights the 
strengths and weaknesses of each model but also pro-
vides valuable insights into the nuanced interplay 
between model complexity, variable significance, and 
predictive accuracy. With a focus on practical applica-
tions and alignment with existing literature, this study 
offers a compelling blueprint for leveraging advanced 
modeling techniques in real estate market analysis. The 
results are not just numbers; they are a gateway to a 
deeper understanding of the intricate relationships that 
govern real estate dynamics, unlocking new possibilities 
for informed decision-making in the ever-evolving mar-
ket landscape.

6. CONCLUSIONS

In this comprehensive analysis of predictive modeling 
for real estate market forecasting, our findings highlight 
the strengths and limitations of various techniques. Tra-
ditional linear approaches, such as OLS, prove to be sub-
optimal, with non-linearity introduced through squared 
and interaction terms failing to significantly improve pre-
dictive performance. DT models offer a notable improve-
ment, particularly when pruned to avoid overestimation, 
but it is the XGB that emerges as the most promising, 
aligning with existing literature in real estate markets. 
The SHAP analysis provides valuable insights into the 
interpretability of these models, revealing patterns in vari-
able importance and the impact of model complexity on 
the significance of dummy variables. 

Beyond the technical findings, this study also offers 
practical insights into the drivers of rental prices in the 
German residential market. These results can provide a 
valuable foundation for public policy discussions, particu-
larly in addressing housing affordability and urban plan-
ning challenges. For instance, the identified key features 

Table 8. Top 10 features for DT and XGB.

Rank DT XGB

1 non-European Islamic (%) non-European Islamic (%)
2 Munich Munich
3 unemployment rate unemployment rate
4 year of construction living space
5 fitted kitchen year of construction
6 male aged 65-75 (%) fitted kitchen
7 living space equipment normal
8 female aged 30-35 (%) female aged 30-35 (%)
9 commercial properties equipment Not specified
10 Spanish Portuguese (%) commercial properties

Note: colored markers are utilized to represent the overlap between 
the top 10 features between DT and XGB models. Green indicates 
features sharing the same rank, orange features within the top ten 
but with differing ranks, and no color features not appearing in 
other top 10.
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influencing rental prices can guide government initiatives 
aimed at regulating rents or improving housing market 
transparency. While the primary aim of this paper was 
methodological, the results themselves offer actionable 
insights that warrant further exploration, particularly in 
collaboration with public institutes and stakeholders.

For future research deeper investigations into the 
implications of these results, especially regarding policy 
impacts and regional disparities, can enrich the field. 
Exploring the interaction between identified predictors 
and broader socioeconomic trends as well as extending 
the application of interpretable machine learning mod-
els to other real estate contexts, can further enhance the 
utility of these findings. By sharing this analysis with 
public governments or non-profit organizations, we align 
with the broader mission of contributing to societal well-
being through impactful research.
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APPENDIX

Figure A1. Global Methodological Framework. Note: The methodology begins with data acquisition and preprocessing, where data is col-
lected from two sources and subjected to rigorous cleaning and preparation steps to ensure quality. The prepared dataset is then used to 
train three models: Ordinary Least Squares (OLS), Decision Tree (DT) and Extreme Gradient Boosting (XGB). Each model is evaluated 
using Root Mean Squared Error (RMSE). Subsequently, feature reduction is employed applying Slovin’s Formula, to manage computational 
constraints while retaining representativeness. Finally, model interpretability is achieved through the application of Shapley Additive Expla-
nations (SHAP) values, providing insights into feature importance and inner workings of each model.

https://www2.deloitte.com/us/en/insights/industry/financial-services/explainable-ai-in-banking.html
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Table A1. Total feature overview.

Category Variable Description Analyis element within attribute Variable type

RED

Price information rent per sqm Exclusive rent per squared 
meter Euro per sqm Contiuous

Object features year of construction Year that object was built Integer (Number of year) continous
living space Living area Number of square meters continous

floor Floor on which object is 
located Integer between -1 and 45 continous

number of rooms Number of rooms Integer between 0.5 and 10 continous
elevator Elevator in object Existence: Yes/No categorical (dummy)
balcony Balcony at object Existence: Yes/No categorical (dummy)
assisted living Assisted living for the elderly Existence: Yes/No categorical (dummy)
listed building Protected historic building Existence: Yes/No categorical (dummy)
fitted kitchen Kitchenette in object Existence: Yes/No categorical (dummy)

public housing Public housing – certificate of 
eligibility is needed Existence: Yes/No categorical (dummy)

guest toilet Guest toilet in object Existence: Yes/No categorical (dummy)
garden (Shared) garden available Existence: Yes/No categorical (dummy)
cellar Cellar in object Existence: Yes/No categorical (dummy)

parking lot Garage/ parking space 
available Existence: Yes/No categorical (dummy)

wheelchair 
accessible Accessible, no steps Existence: Yes/No categorical (dummy)

equipment Facilities of object Existence: Not specified, Normal, Sophisticated, 
Deluxe, Simple categorical

Energy and 
structure 
information

energy efficiency 
class Energy Efficiency Rating Existence: Not specified, D, E, B, C, A, G, F, 

APLUS, H categorical

energy certificate 
type

Type of Energy Performance 
Certificates (EPCs)

Existence: Not specified, Energy use 
[Energieverbauchskennwert], Energy demand 
[Energiebedarf ]

categorical

type of heating Type of heating

Energy Generation Systems
· Gas heating
· Oil heating
· Thermal heat pump
· Electric heating
· Cogeneration/combined heat and power 

plant
· Wood pellet heating
· Solar heating
Energy Delivery Systems
· Central heating
· Self-contained central heating
· Heating by stove
· District heating
· Night storage heaters
· Floor heating

categorical

(Continued)
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Category Variable Description Analyis element within attribute Variable type

property condition Condition of object

New Buildings
· First occupancy
· Like new
· First occupancy after reconstruction
Existing Buildings
· Completely renovated
· Modernised
· Well kept
· Not specified
· Reconstructed
· Needs renovation
· By arrangement
· Dilapidated

categorical

Regional 
information gid2015 Municipality identifier (AGS, 

2015)
Existence: Berlin, Hamburg, Munich, Cologne, 
Frankfurt, Stuttgart, Düsseldorf categorical

Time period year Beginning of ad, year Integer (Number of year) continous
month Beginning of ad, month Integer (Number of month) continous

GRID
Neighborhood 
information

Number of 
households Absolute number Integer continuous

Number of 
commercial 
enterprises 

Absolute number Integer continuous

Number of houses 
(including pure 
commercial 
buildings)

Absolute number Integer continuous

Number of 
residential buildings 
(excluding pure 
commercial 
buildings) 

Absolute number Integer continuous

Building 
Development House type Percentage per household % percentage

Household Purchasing power In Euro Euro continuous
Household structure Percentage per household % percentage
Children Number per household % percentage

Unemployment rate Share of the unemployed 
in the population % percentage

Ethno Percentage of households % percentage
Foreigners Percentage of households % percentage
Payment default Percentage of households % percentage

Population  Gender and age 
structure

Share of inhabitants w.r.t. sex 
and 17 age groups % percentage

Population structure Absolute number of 
inhabitants % percentage

Table A1. (Continued).
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