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Multiobjective strategies for farms, 
using the Dominance-based Rough 
Set Approach

The objective of this work is to present how the decision 
support method IMO-DRSA, combining the Interactive 
Multiobjective Optimization (IMO) with the Dominance-
based Rough Set Approach (DRSA), can be efficiently ap-
plied in the agricultural sector, in order to determine op-
timal and sustainable planning strategies for farms. The 
method, elaborated by Greco, Matarazzo and Slowinski in 
2008, is a novelty in the multiobjective optimization sector. 
Through IMO-DRSA, we found an optimal multiobjective 
strategy related to the farm planning of our case study, 
conciliating four different objectives, one of economic and 
three of environmental nature. Concerning some practical 
problems for the application of the method in the agricul-
tural sector, availability and completeness of both environ-
mental and economic data represented a crucial aspect. 
Another important point concerned the level of subjectiv-
ity intrinsic in the method.

1. Introduction  

The objective of this work is to present how the decision support method 
IMO-DRSA, which combines the Interactive Multiobjective Optimization (IMO) 
with the Dominance-based Rough Set Approach (DRSA - Greco et al., 2001a, 
2002a), can be efficiently applied in the agricultural sector, in order to determine 
optimal sustainable planning strategies for farms. The method, elaborated by 
Greco, Matarazzo and Slowinski in 2008, is a novelty in the multiobjective optimi-
zation sector, because it follows patterns that are completely different from those 
used in the classical multiobjective methods. The Decision Maker (DM), by means 
of a simple and transparent interaction process with the analyst based on decision 
rules, selects the solution which expresses his preferences. At the same time, with 
this approach the environmental aspects connected to sustainable planning can be 
automatically introduced within the private management operated by the farmer.

The IMO-DRSA has been applied within a case study in the field of farm 
management; the final aim was to determine an optimal planning strategy for 
a farm, conciliating economic objectives with environmental ones. In farm man-
agement, it is fundamental to take into account multiple objectives, for reach-
ing optimal results in terms of farm planning and managing. These objectives 
have to consider not only the economic aspects related to farmer profitability, 
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but also those connected with environmental protection and sustainability1. In-
deed, sustainability of human activities is one of the most important concerns 
of the European Union (Bastianoni et al., 2010), and in the context of EU Ag-
ricultural Policy, farmers have to respect important fulfilment related to envi-
ronment preservation and contrasting pollution. (e.g. norms related to environ-
mental cross compliance, EU Reg. 2009 n. 73). For this reason, the decisions that 
a farmer has to take for the management of his farm are becoming more and 
more complex. 

Considering this general framework, the IMO-DRSA can be rather suitable for 
the application in the farm management sector, for its characteristics of simplicity 
and transparency, in comparison with the classical optimization methods. Indeed, 
the classical optimization methods2 generally require technical parameters, as 
weights, thresholds, trade off, that often are difficult to understand or determine 
for the DM (the farmer, in this context). 

In the Italian scientific research context, several applications of classical mul-
tiobjective optimization in the agricultural and forestry sector have been  per-
formed, since the very beginning of ‘90s, after a previous long period (between 
‘60s and ‘70s) in which farm planning had been essentially based on the maximi-
zation of the economic revenue of the farm, as unique objective to reach. Some 
examples of these kind of applications, aimed to represent in a more realistic 
way the complex structure of farms and thus considering multiple farmer objec-
tives, can be found in Ciuchi and Pennacchi (1990, Weighted Goal Programming 
- WGP), Marangon (1992, Multiobjective Programming), Bernetti et al. (1992, Inter-
active multiobjective analysis), Bazzani (1999, meanPAD). 

Several of these works considered both economic and environmental objec-
tives, trying to reach the better compromise among them. The work of Ciuchi and 
Pennacchi (1990), for example, used the WGP method, in which there is a unique 
function, composed of multiple different objectives, that in that case were minimi-
zation of costs, minimization of soil pollution by fertilizers and pesticides, minimi-

1 Sustainable economic development involves maximising the net benefits of economic develop-
ment, subject to maintaining the services and quality of natural resources over time (Pearce et 
al., 1988).

2 See Fishburn (1967) for the Multiple Attribute Utility Theory and Roy and Bouyssou (1993), 
Figueira et al. (2005), Brans and Mareschal (2005), Martel and Matarazzo (2005) for outrank-
ing methods; for some well known interactive multiobjective optimization methods requiring 
preference model parameters, see the Geoffrion-Dyer-Feinberg method Geoffrion et al. (1972), 
the method of Zionts and Wallenius – Zionts and Wallenius (1983) and the Interactive Sur-
rogate Worth Tradeoff method – Chankong and Haimes (1978), Chankong and Haimes (1983) 
requiring information in terms of marginal rates of substitution, the reference point method 
Wierzbicki (1980), Wierzbicki (1982), Wierzbicki (1986) requiring a reference point and weights 
to formulate an achievement scalarizing function, the Light Beam Search method Jaszkiewicz 
and Slowinski (1999) requiring information in terms of weights and indifference, preference 
and veto thresholds, being typical parameters of ELECTRE. methods.
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zation of water amount used for irrigation, minimization of labour and technical 
risk, in relation to a farm located in central Italy.

In the WGP, the Decision Maker must decide some “ideal targets” for each 
goal, and the method minimizes the difference between the ideal targets and the 
values reached, for the same goals, in the final optimal solution, which constitutes 
the best compromise among all the objectives. Moreover, the Decision Maker must 
decide a weight for each goal, according to his preferences. The topic of weight-
ing is one of the critical points of this, as of other classical optimization methods, 
because it is difficult to determine the ex ante importance of each objective in rela-
tion with the others. Another limit of the method is represented by the setting of 
the targets: fixing a lower or higher target significantly influences the final result.

Some examples of the classical optimization methods applied in the agricultur-
al sector at international level can be found in Bertomeu and Romero (1999), Xevi 
and Khan, 2005; Agrell et al., 2004; Zarghaami, 2006; Brumbelow and Georgakakos, 
2007; Kim et al., 2007; Sahoo et al., 2006.

In contrast with the classical methods, in IMO-DRSA farmers do not have to 
express preferences in terms of technical parameters. On the contrary, the prefer-
ence model based on decision rules of IMO-DRSA “speaks the same language” of 
the decision maker (Greco et al., 2001), representing his preferences in a logic and 
clear way. Through IMO-DRSA we expressed the farmer preferences by means of 
simple decisional rules, and we determined a strategy which conciliated a high 
income with low levels of nitrates lixiviation, soil erosion and water consumption. 
This represented the very first application of the method in this research field. 

Concerning the methodological procedure, in general the IMO-DRSA comple-
ments well any multiobjective optimization method that finds the Pareto optimal 
set or its approximation (for a systematic introduction to multiobjective optimiza-
tion, see Miettinen, 1999; for an updated state of the art of interactive multiobjective 
optimization see Ehrgott and Gandibleux, 2002; Ehrgott and Wiecek, 2005; Branke 
et al., 2008; Jaszkiewicz and Branke, 2008). The method is composed of two main 
stages that alternate in an interactive procedure. In the first stage, a sample of solu-
tions from the Pareto optimal set (or from its approximation) is generated. In the 
second stage, the DM indicates relatively good solutions in the generated sample. 
From this information, a preference model expressed in terms of “if ..., then ...” deci-
sion rules is induced using DRSA. These rules define some new constraints, which 
can be added to original constraints of the problem, cutting-off non-interesting solu-
tions from the currently considered Pareto optimal set. A new sample of solutions is 
generated in the next iteration from the reduced Pareto optimal set. The interaction 
continues until the DM finds a satisfactory solution in the generated sample. This 
procedure permits a progressive exploration of the Pareto optimal set in zones that 
are interesting for the point of view of DM’s preferences (Greco et al., 2008).

Some advantages can be underlined (discussed in the final part of the work), 
in comparison with the classical optimization methods, both from the point of 
view of the input information and of the output information. 

The work is structured as follows: after a brief description of DRSA and of 
IMO-DRSA, the case study is presented, reporting the construction of the multi-
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objective model for the example farm (by means of Multiobjective Programming 
- constraint method) and subsequently, the application of the IMO-DRSA to the 
model. Discussion of results and some conclusions complete the article.

2. The Method: Interactive Multiobjective Optimization guided by Dominance-
based Rough Set Approach (IMO-DRSA)

2.1 Basic concepts of the DRSA

The Rough Sets theory was introduced by Pawlak (Pawlak, 1982, 1991) and it 
constitutes a tool to describe a set of objects, for which the available information is 
possibly inconsistent or ambiguous (Boggia et al., 2014). The key idea of rough sets 
is approximation of one knowledge by another knowledge. In Classical Rough Set 
Approach (CRSA) (Pawlak, 1991), the knowledge to be approximated is a partition 
of U (where U is a finite set of objects) into classes generated by a set of decision 
attributes; the knowledge used for approximation is a partition of U into elemen-
tary sets of objects that are indiscernible by a set of condition attributes, that is, sets 
of objects having the same evaluations on these attributes. The elementary sets 
are seen as “granules of knowledge” used for approximation.

Given a subset of attributes P⊆Q, the indiscernibility relation with respect to 
P:

Ip = { (x,y) ∈ U x U :     f (x,q) = f (y,q) ∀ q ∈ P } (1)

represents the mathematical basis of classical rough sets theory.
In DRSA, where condition attributes are criteria and classes are preference-or-

dered, the knowledge to be approximated is a collection of “upward” and “down-
ward” unions of classes and the “granules of knowledge” are sets of objects de-
fined using dominance3 relation instead of indiscernibility relation. This is the 
main difference between CRSA and DRSA (For the extended mathematical rep-
resentation of the DRSA see Greco et al, 2001). The DRSA, in contrast with the 
classical rough sets approach, allows to consider preferences for attribute domains 
and for the set of decision classes thanks to the use of dominance relation. Moreo-
ver, it is important to note that CRSA enables to consider decisions which are “in-
consistent”, due to the limited discriminatory power of the criteria for the analysis 
or as a result of the hesitation of the Decision Maker (DM). Thus, in order to take 

3 The following dominance principle applies to multiple-criteria sorting problems: an object x  
dominating object y on all considered criteria (i.e. x having evaluations at least as good as y on 
all considered criteria) should also dominate y on the decision (i.e. x should be assigned to at 
least as good class as y). Objects satisfying the dominance principle are called consistent, and 
those which are violating the dominance principle are called inconsistent.
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into account the preferences of the DM and the inconsistency typical of decision 
problems, Greco et al (1999, 2001a, 2002) proposed the DRSA as an extension of 
CRSA.

The sets of objects to be approximated are called upward unions and down-
ward unions of classes, respectively:

Clt
≥= ClS

s≥t
∪

  
Clt
≤= ClS

s≤t
∪    with t=1, … , n;  (2)

The statement Clt
≥= ClS

s≥t
∪

 
means “x belongs to at least class Clt”, whereas 

Clt
≤= ClS

s≤t
∪  means “x belongs to class Clt” at most.

We say that object x dominates object y with respect to P⊆C, denoted by xDPy, 
if x is at least as good as y with respect to all q∈P. Given P⊆C and x∈U, the “gran-
ules of knowledge” used for approximation in DRSA are:
- a set of objects dominating x with respect to criteria from P, called P-dominat-

ing set:

D+
P(x) = { y ∈ U : yDPx } (3)

- a set of objects dominated by x with respect to criteria from P, called P-domi-
nated set:

D-
P(x) = { y ∈ U : xDPy } (4)

Thus, with respect to P⊆C, the set of all the objects belonging to Clt
≥ without 

any ambiguity constitutes the P-lower approximation of Clt
≥, denoted by P (Clt

≥), 
and the set of all objects that could belong to Clt

≥  constitutes the P-upper approxi-
mation of Clt

≥, denoted by P (Clt
≥):

P (Clt
≥) = { x ∈ U : D+

P(x) ⊆ Clt
≥ } (5)

P (Clt
≥) = 

x∈Clt
≥
∪ D+

P(x) = { x ∈ U : D-
P(x) ∩ Clt

≥ ≠ ∅ } (6)

Analogously, using the P-dominated set, the P-lower approximation and P-up-
per approximation of Clt

≤ can be defined as:

P (Clt
≤) = { x ∈ U : D-

P(x) ⊆ Clt
≤ } (7)

P (Clt
≤) = 

x∈Clt
≤
∪ D-

P(x) = { x ∈ U : D+
P(x) ∩ Clt

≤ ≠ ∅ } (8)

The P-boundaries (P-doubtful regions) of Clt
≥ and  Clt

≤ are defined as: 

BnP(Clt
≥) = P (Clt

≥) – P (Clt
≥) (9) 
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BnP(Clt
≤) = P (Clt

≤) – P (Clt
≤)  (10)

The dominance-based rough approximations of upward and downward un-
ions of classes can serve to induce a generalized description of objects contained 
in the information table in terms of ‘’if..., then...’’ decision rules, which can be cer-
tain decision rules (certain assignment of objects to ‘’at least class Clt’’ or to ‘’at 
most class Cls’’, respectively) or approximate (approximate assignment of objects to 
some classes between Cls and Clt , with s<t). Since each decision rule is a conse-
quence relation, by a minimal decision rule we understand such a rule that there is 
no other rule with a premise of at least the same weakness and a conclusion of at 
least the same strength.

The syntax of the possible types of certain decision rules is the following:
a) D≥ decision rules, obtained from lower approximations of Clt

≥: 

if   f (x, q1) ≥  rq1  and  f (x, q2) ≥  rq2  and ...  f (x, qp) ≥  rqp , then  x ∈ Clt
≥, (11)

where P = {q1, q2,...,qp } ⊆ C,  (rq1, rq2,...,rqp) ∈ Vq1 × Vq2 × ... × Vqp e t ∈ T.

b) D≤ decision rules, obtained from lower approximations of Clt
≤: 

if  f (x, q1) ≤  rq1  and   f (x, q2) ≤  rq2  and...  f (x, qp) ≤  rqp , then  x ∈ Clt
≤, (12)

where P = {q1, q2,...,qp } ⊆ C, (rq1, rq2,..., rqp) ∈ Vq1 × Vq2 × ... × Vqp e t∈ T. 

2.2 Basic concepts of the IMO-DRSA

Representation of preferences in terms of decision rules induced through 
DRSA can be fruitfully combined with an Interactive Multiobjective Optimization 
procedure, as proposed in Greco et al., 2008. An interactive procedure is composed 
of two alternating stages: computation stage and decision stage. In the computa-
tion stage, a subset of Pareto optimal solutions is calculated and presented to the 
DM (also called user). Then, in the decision stage, the DM is criticizing the pro-
posed solutions unless one of them is completely satisfactory. In the latter case, 
the procedure stops. Otherwise, the critic of the proposed solutions is used as 
preference information to build a preference model of the DM. This model is used 
to calculate a new subset of Pareto solutions, using optimal solutions in the next 
computation stage, with the intention to fit better the DM’s preferences. In some 
procedures, the preference model appearing between the decision stage and the 
computation stage is implicit, however, it is useful when it can be explicitly shown 
to the DM for his or her approval.

For this, the preference model should be comprehensible and the treatment 
of preference information leading to the model should be intelligible for the DM. 
The decision rules stemming from DRSA fulfill both these requirements. The 
IMO-DRSA methodology is presented in the following. We assume that the inter-
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active procedure is exploring the Pareto optimal set of a multiobjective optimiza-
tion problem; however, it could also be an approximation of this set. The proce-
dure is composed of the following steps:
• Step 1. Generate a representative sample of solutions from the Pareto optimal 

set.
• Step 2. Present the sample to the DM.
• Step 3. If the DM is satisfied with one solution from the sample, then this is the 

compromise solution and the procedure stops. Otherwise continue.
• Step 4. Ask the DM to indicate a subset of “good” solutions in the sample (exem-

plary decisions).
• Step 5. Apply DRSA to the current sample of solutions sorted into “good” and 

“others”, in order to induce a set of ‘’if..., then...’’ decision rules.
• Step 6. Present the obtained set of rules to the DM.
• Step 7. Ask the DM to select the most important decision rules in the set.
• Step 8. Adjoin the constraints coming from the rules selected in Step 7 to the set 

of constraints imposed on the Pareto optimal set, in order to update the Pareto 
frontier zone interesting from the point of view of DM’s preferences.

• Step 9. Go back to Step 1.

For more details about the mathematical formulation of the method see Greco 
et al., 2008.

2.3 Characteristics of the IMO-DRSA in comparison with classical methods

The interactive procedure presented in Section 2.2 can be analyzed from the 
point of view of input and output information. As to the input, the DM gives 
preference information by answering easy questions related to sorting of some 
representative solutions. Very often, in multicriteria decision analysis, in general, 
and in classical interactive multiobjective optimization, in particular, the prefer-
ence information has to be given in terms of preference model parameters, such 
as importance weights, substitution rates and various thresholds. Eliciting such 
as information requires a significant cognitive effort on the part of the DM. It is 
generally acknowledged that people usually prefer to make exemplary decisions 
and cannot always explain them in terms of specific parameters. For this reason, 
the idea of inferring preference models from exemplary decisions provided by the 
DM is very attractive. 

The output result of the analysis is the model of preferences in terms of  “if..., 
then...” decision rules, which is used to restrict the Pareto optimal set in an it-
erative way, until the DM selects a satisfactory solution. This kind of preference 
model is very convenient for decision support, because it gives argumentation for 
preferences in a logical form and, therefore, it is intelligible for the DM. It “speaks 
DM’s language” without any recourse to technical terms, like utility, tradeoffs, sca-
larization functions, reference points, and so on. Moreover, the DM can identify 
the Pareto optimal solutions supporting each particular decision rule.
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All this makes that IMO-DRSA has a transparent feedback organized in a 
learning oriented perspective, permitting to consider this procedure as a “glass 
box”, contrary to the “black box” typical of many classical procedures, which give 
a final result without any clear explanation. Decision rules provide a well under-
standable link between the calculation stage and the decision stage. Due to this 
feature, the final decision does not result from a mechanic application of a certain 
technical method, but rather from a mature conclusion of a decision process based 
on active intervention of the DM.

3. Case Study

In this part, we report the application of the IMO-DRSA within the context of 
the agricultural sector.

3.1. Area investigated and data used

The case study concerns a single farm, located in a rural area of Central Italy, 
called “Alta Valle del Tevere Umbra”. In this area, which is a great hydro graph-
ic basin served by the Montedoglio dam, irrigated agriculture has been over the 
time a strength point for local economy; in particular, cereals and industrial cul-
tivations are the main products of this type of activity. Among them, tobacco still 
remains one of the most competitive crops to be cultivated.

Due to the type of agricultural activities and to the high amount of water, the 
area is relevant for the environmental point of view. The following typologies of 
problems can be outlined:
• Highly intensive cultivations must be avoided, especially those that cause high 

production of nitrates. An intensive cultivation of tobacco can lead to an excess 
of nitrates, with consequent lixiviation in the soil.

• An intensive use of the soil must be avoided, to prevent phenomena of erosion.
• An excessive consumption of water must be avoided. The good availability of 

water in the area cannot degenerate into an indiscriminate use. Water supply 
must not exceed the crops physiological requirement. Unfortunately, control of 
delivered quantities is quite absent in the area (Capone, 2008).

• The multipurpose nature of the basin has to be taken into account. The Monte-
doglio lake is a typical example of contemporary in-flow and out-flow uses. It 
provides water for agriculture and household uses, but also for ecosystems and 
recreational services.
Moreover, in the context of EU Environmental and Agricultural Policies, all the 

farmers have to respect important fulfillment related to environment preservation 
and contrasting pollution, according to the norms on cross compliance (EU Reg. 
2009 n. 73). In particular, each farmer has to respect some “mandatory management 
criteria” (indicated in the Annex II of the UE Regulation, which refers, among oth-
ers, to the Directive 86/278/CEE concerning the protection of environment and of 
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soil, and to the Directive 91/676/CEE concerning protection of water from nitrates 
pollution) and to maintain “good agronomic and environmental conditions”, reaching 
the main objectives of: prevention from soil erosion; protection of water from lix-
iviation and pollution; correct management and proper use of water resources (ar-
ticle n. 6 and Annex III of the same Regulation). From 2015 the new Regulation for 
crop compliance (EU Reg. 2013 n. 1306) will be effective, maintaining the manda-
tory management criteria for the same topics.

For all these reasons, conciliation among economic and environmental objec-
tives is essential, also because mandatory, in terms of management of the single 
farms as in terms of territorial policies programming. 

To construct the case study, several information sources have been used; the 
principal was the RICA4 database (INEA, 2009), filtered for Umbrian Region. The 
farms located in the area Alta Valle del Tevere Umbra were extracted from the da-
tabase, and divided into homogenous groups, according to the main typology of 
crops cultivated. Subsequently, we selected a single farm having tobacco as domi-
nant cultivation; the choice of tobacco was due to its economic importance in the 
area. A detailed survey for this farm was performed, in order to collect specific 
farm data and to construct an interactive dialogue with the Decision Maker, i.e. 
the farmer. The characteristics of the farm were the following:
• surface: 61.79 hectares; 
• agricultural usable surface (SAU): 58.96 hectares;
• irrigated surface: 30.5 hectares;
• cultivations: durum wheat (13.6 ha), common wheat (10.84 ha), maize (2.7 ha), 

tobacco (27.8 ha), forest (0.95 ha); set-aside and other surface (5.9 ha).

3.2. The multiobjective model for the farm

According to the concerns connected with the area and with the Environmen-
tal UE Policy Compliance explained above, we took into account 4 main objectives 
to be optimized. One had economic characteristics, the three others environmen-
tal ones. In particular they were:
1. Maximization of gross revenue (Max GR –  euros).
2. Minimization of nitrates lixiviation (Min QLIX – kg of N/ha).
3. Minimization of soil erosion (Min QEROS – T of soil/ha).
4. Minimization of water consumption (Min QWAT –  m3 of water/ha).

The economic objective was connected with maintenance and also improve-
ment of productivity and efficiency inside the farm, while the environmental ob-
jectives were considered in relation to the environmental problems within the ter-
ritory and to the crop compliance management criteria. Indeed, farmers have to 

4 The RICA Database is elaborated by the National Institute of Agricultural Economics; it con-
tains microeconomic data about farms, collected with a unique methodology at European 
level.
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take into account environmental topics in order to ensure the sustainability of the 
territorial system in which they are involved; the internalization of environmental 
objectives in the model can be a solution to obtain their proper fulfillment.

Table 1 shows the economic and environmental data used for the analysis.

Table 1. Economic and environmental data used for the analysis.

Crop
Annual Gross 

Revenue  
(euro/ha)

Annual nitrates 
lixiviation  
(kgN/ha)

Annual soil  
erosion 
(T/ha)

Annual water 
consumption 

(m3/ha)

Durum wheat 63.23 17.56 0.024 0

Comm. wheat 141.36 17.56 0.024 0

Maize 362.84 62.40 0.007 2214.60

Tobacco 2837.12 54.61 0.073 3045.11

Barley -109.03 27.15 0.045 0

Sunflower -281.17 35.83 0.024 0

Melon 9140.42 54.83 0.115 1112.71

Alphalpha -158.57 10.53 0.006 2169.42

All the values in the model are referred to 1 hectare of soil, considering one year of production

According to collected data, the initial levels for the four objectives were:
• annual revenue: 82243.87 euros;
• annual nitrates lixiviation: 2115.80 kg of N;
• annual soil erosion: 2.63 t; 
• annual water consumption: 90633.48 m3. 

The following elements were introduced in the model:
a) Variables5: 

X1 − Durum wheat; X2 − Common wheat; X3 − Maize; X4 − Tobacco; 
X5 −  Barley; X6 − Sunflower; X7 − Melon; X8 − Alphalpha. 

b) Objectives functions: 
Max = GR6; Min QLIX; Min QEROS; Min QWAT.

c) Restrictions:
•  Total availability of soil (corresponding to the farm agricultural usable sur-

face).

5 Besides the principal crops of the farm, other crops generally cultivated within the area were 
introduced in the model, in order to be able to hypothesize potential changes in the cultural 
system of the farm, in relation to the fixed objectives.

6 Gross Revenue was calculated as the difference between the production value  and the total 
costs of the farm (including costs about seeds, fertilizers, costs for water supply, costs for rent 
of equipment, costs of labour).
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• Assignment of maximum 30 hectares for crop.
• Monthly necessity of labour for the strictly principal cultivation phases, for 

each crop.

In order to obtain the frontier of efficient solutions, the multiobjective pro-
gramming – constraint method (Kuhn and Tucker, 1951) was applied (using soft-
ware Lingo 8.0, 2002). The first passage of the multiobjective optimization consist-
ed in optimizing each objective function separately determining, for each single 
optimization, the value of the optimized objective and the values of the other ob-
jectives. Table 2 reports the results of this passage.

The range of variation of the four objectives is reported in Table 3.

Table 2. Optimization of the objectives functions separately (by Lingo 8.0).

Single 
Optimization

GR 
(Euro)

Lixiviation 
(kg N)

Erosion 
(T)

Water  
(m3)

Max Gross 
Revenue 156682.87 3392.74 3.14 147822.80

 Min Lixiviation 0 827.19 0.88 65164.62

 Min Erosion 5750.75 2123 0.38 129217.42

Min Water 
Quantity 0 1357.45 1.42 0

Obviously, taking into account each objective separately, the achievement of the optimal 
result for one of the objectives implies absolutely non optimal results for all the others (e.g. 
maximization of the only GR causes the highest possible values of lixiviation, erosion, and 
water consumption, while minimization of the only lixiviation or minimization of the only 
water consumption cause a null GR). Therefore, the separated optimization of the objectives 
clearly shows the conflict among them, in particular among the economic objective and the 
environmental ones.  

Table 3. Range of variation of the four objectives.

Objectives MIN MAX

Gross Revenue (Euro) 0 156682.87

Lixiviation (kg N) 827.19 3392.74

Erosion (T) 0.38 3.14

Water Quantity (m3) 0 147822.80

The second passage was parameterization. We performed six different param-
eterizations: in particular, what we made was to put the environmental objectives 



106 L. Paolotti, S. Greco, A. Boggia

in form of constraints, letting them change within their variation range, while maxi-
mizing the gross revenue; subsequently, we put the gross revenue as a constraint, 
letting it change within its variation range, while minimizing each environmental 
objective separately. The progressive variation in the constraints values, within each 
parameterization, gave as result different values for the four objectives functions, 
and a different assignment in terms of surface to the crops introduced in the model.

This series of parameterization allowed us to obtain a consistent number of 
Paretian efficient solutions. From this set, we selected the first 20 solutions, to be 
subject to the DRSA, reported in Table 4. The 20 efficient solutions considerably 
differed in terms of objectives values and in terms of crop surfaces. The choice of 
the optimal solution, expecting to be a good compromise conciliating all the objec-
tives, would have been be quite difficult without using a proper method support-
ing the DM; this is true especially in this case, in which the DM is a farmer, i.e. 
not expert in mathematical models and optimization methods.

3.3 The application of the IMO-DRSA

The DM analyzed the first 20 efficient solutions and indicated a subset of 
“good” solutions in the sample. The choice of good solutions clearly depended on 
the DM preferences in that moment. In particular, he indicated as “good” those 
solutions giving values for him satisfactory in terms of objectives levels (e.g. quite 
high gross revenue, according to his preferences, or quite low value for one of the 
environmental objectives). Table 4 represents in grey the procedure of preferences 
elicitation of the DM.

The DRSA was applied to the current sample of solutions sorted into “good” 
and “others” (step 5 of IMO-DRSA); therefore, the DM preferences were trans-
formed into decision rules (Table 5). The obtained set of rules was presented to 
the DM, that subsequently was asked to select the most important decision rule in 
the set. The DM, according to his preferences, selected the rule n. 1. 

The constraints coming from the rule selected (GR ≥ 106630.20 and QLIX ≤ 
3066.40) were adjoined to the set of constraints imposed on the Pareto optimal set, 
in order to update the Pareto frontier zone interesting from the point of view of 
DM’s preferences.

At this point, we constructed a new multiobjective model with the addition of 
the new constraints, and induced a new set of efficient solutions by means of an-
other process of parameterization, analogous to the first one. The crops involved in 
the model were the same than before (melon and tobacco always present; durum 
wheat, common wheat and maize depending upon the solution considered; only 
in one solution introduction of barley). From the so restricted efficient frontier, 13 
solutions were selected, to be presented to the DM, who indicated another time, 
according to his preferences, the solutions considered “good” (Table 6 ). The DRSA 
was applied to the current sample of solutions sorted into “good” and “others”, in 
order to induce a new set of decision rules, represented in Table 7. The obtained set 
of rules was presented to the DM, who preferred this time the rule n. 13. 
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The selected rule was supported only by the solution n. 5; it means that this 
was the unique solution able to respect the restrictions proposed by the rule. 
Therefore, the interactive process finished with the finding of the optimal solu-
tion, i.e. the solution number 5.

4. Discussion 

The optimal solution seems to be a good compromise for the concilia-
tion of the four considered objectives. Indeed, it proposes a high gross revenue 
(116822.41 euros, while the maximum possible value is 156682.87), very low levels 
of lixiviation and water consumption with respect to the maximum possible val-
ues (1930.45 kg of N while the maximum is 3392.74, and 60000 m3 of water while 
the maximum is 147822.79), and a level of erosion not very low, but however, in-
ferior to 3 tons (2.89 tons of soil erosion, while the maximum possible is 3.14). The 
comparison between the values of the objectives functions in the selected solu-
tion, and the maximum possible values are reported in table 8.

Also in comparison with the initial farm situation, referring to the objectives 
levels, choosing the optimal solution allows to have satisfactory results; indeed, 
it allows to have a consistent increase of the annual revenue (from 82243.87 to 
116822.41 euros), a good decrease in nitrates lixiviation (from 2115.80 to 1930.45 kg 
of N in one year) and in water consumption (from 90633.48 to 60000 m3 of water 
in one year). The only parameter that is subject to a slight increase in the optimal 
solution, in comparison with the initial situation, is soil erosion, passing from 2.63 

Table 5. First set of decision rules, obtained from the preferences elicitation of the DM.

1) If GR ≥ 106630.20 and QLIX ≤ 3066.40, then the solution is good.  (Rule supported by 
solutions n. 4, 5, 6, 10, 16, 17, 20)

2) If GR ≥ 126276 and QLIX ≤ 3318.66, then the solution is good.  (Rule supported by 
solutions n. 5, 6, 11, 16, 17)

3) If GR ≥ 106630.20 and QEROS ≤ 2, then the solution is good.  (Rule supported by solutions 
n. 10)

4) If GR ≥ 126276 and QEROS ≤ 2.4, then the solution is good.  (Rule supported by solutions  
n. 11)

5) If GR ≥ 106630.20 and QWAT ≤ 134648.50, then the solution is good.  (Rule supported by 
solutions n. 4, 5, 6, 10, 16, 17, 20)

6) If GR ≥ 126276 and QWAT ≤ 138889, then the solution is good.  (Rule supported by 
solutions n. 5, 6, 11, 16, 17)

For each rule, the solutions that support it are indicated. The DM considered the rule n.1 as the 
more interesting, because in his opinion it allows for a satisfactory value of gross revenue, and 
contemporary for a consumption of water inferior to the maximum possible value.
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to 2.89 t per year. However, it is only a small increase in the value, clearly due to 
the compensation among objectives that generally occurs in order to have a good 
compromise solution.

In terms of trade off among the different objectives, choosing this option in-
stead of the one that maximizes the only economic objective, the farmer renounc-
es to an additional revenue of 40000 euros (725.5 euros/ha per year), but having at 
the same time a decrease in nitrates lixiviation of about 1462 kg, a decrease in the 

Table 7. Second set of decision rules induced from the DM preferences model.

1) If GR ≥ 143759 and QLIX ≤ 2295.46 then the solution is good.  (Rule supported by solution 
n. 2)   

2) If GR ≥ 134906.2  and QLIX ≤ 2173.79 then the solution is good.  (Rule supported by 
solution n. 3)  

3) If GR ≥ 125931.7 and QLIX ≤ 2052.12 then the solution is good.  (Rule supported by 
solution n. 4)   

4) If GR ≥ 116822.4  and QLIX ≤ 1930.45 then the solution is good.  (Rule supported by 
solution n. 5)   

5) If GR ≥ 143759 and QEROS ≤ 3.37 then the solution is good.  (Rule supported by solution 
n. 2)    

6) If GR ≥ 134906.2 and QEROS ≤ 3.21 then the solution is good.  (Rule supported by solution 
n. 3)   

7) If GR ≥ 125931.7  and QEROS ≤ 3.05  then the solution is good.  (Rule supported by 
solution n. 4)  

8) If GR ≥ 114494.5  and QEROS ≤ 2.2 then the solution is good.  (Rule supported by solution 
n. 8)  

9) If QWAT ≤ 49527.23  then the solution is good.  (Rule supported by solution n. 10)    

10) If GR ≥ 143759  and QWAT ≤ 90000 then the solution is good.  (Rule supported by solution 
n. 2)   

11) If GR ≥ 134906.2  and QWAT ≤ 80000 then the solution is good.  (Rule supported by 
solution n. 3)   

12) If GR ≥ 125931.7  and QWAT ≤ 70000 then the solution is good.  (Rule supported by 
solution n. 4)  

13) If GR ≥ 116822.4  and QWAT ≤ 60000 then the solution is good.  (Rule supported by 
solution n. 5)   

The DM chose the rule n. 13, because in his opinion it allows for a very satisfactory value of 
gross revenue, and contemporary for a consumption of water very low with respect to the 
maximum possible value.
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erosion level of 0.25 tons, and a decrease in water consumption of about 87.823 m3 
of water.

Concerning the typology of crops and the related surface, the optimal solution 
involved 4.84 hectares of durum wheat, 30 hectares of common wheat, 17.16 hec-
tares of tobacco, and 6.96 hectares of melon.

With respect to the real situation in the farm, the hypothesis formulated by 
the model proposed:
• the reduction of about 10 hectares of the surface cultivated with tobacco. To-

bacco, even if is a very profitable crop, implies an important consumption of 
water and it has high coefficients of erosion and lixiviation (it is the crop with 
the highest consumption of water, the worst in terms of erosion, and the worst in 
terms of lixiviation after maize). For this reason, the assignment of a big surface 
to tobacco does not conciliate with the achievement of satisfactory values for the 
environmental objectives.

• The reduction of about 9 hectares of the surface cultivated with durum wheat, 
and the increase of about 19 hectares of the surface cultivated with common 
wheat. Wheat is a crop that does not imply water consumption, and with low 
levels of lixiviation and erosion. The preference in the model for wheat, with re-
spect to other not irrigated crops (i.e. barley and sunflower) is due to the higher 
revenue obtainable through wheat, and also to the inferior coefficient of lixivia-
tion in comparison to sunflower, and to the lower coefficients of lixiviation and 
erosion in comparison to barley. Wheat is also preferred to alphalpha because it 
has a higher revenue, and because it does not need water at all. The durum is 
preferred to the common variety, because of the higher revenue. The maximum 
possible surface (30 hectares) is entirely exploited in the model. 

• The elimination of maize. Maize is the third crop in terms of economic conve-
nience, but it needs a high quantity of water, and it has the highest coefficient of 
lixiviation. For this reason, it does not conciliate at all with the achievement of 
satisfactory values for the environmental objectives.

• The introduction of melon. Melon is in absolute the most profitable crop present 
in the model. Moreover, even if it needs irrigation, its consumption of water is 
quite low, inferior to that of tobacco. For this reason, it was introduced in the 
optimal solution. However, only 6.96 Hectares were introduced; this is probably 

Table 8. Comparison among values of objectives functions in the solution, and maximum 
possible values.

Objectives Optimal 
solution Max value

Gross Revenue (Euro) 116822.41 156682.87

Lixiviation (kg N) 1930.45 3392.74

Erosion (T) 2.89 3.14

Water Quantity (m3) 60000 147822.80
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because the coefficients of lixiviation and erosion are quite high, therefore, a not 
big surface can be destined to melon, in order to have a right conciliation of eco-
nomic and environmental objectives. 

• Barley, sunflower and alphalpha did not appear in the optimal solution. Barley 
and sunflower are not convenient from the economic point of view; moreover, 
they have high coefficients of lixiviation and erosion. Alphalpha, even if has the 
lowest coefficients of lixiviation and erosion, is not economically convenient, and 
moreover, it implies a high consumption of water. 

5. Conclusions

Through this work, we illustrated how the decision support method IMO-
DRSA, combining the dominance based rough sets approach with multiobjective 
optimization, can be efficiently applied to farm management and planning, in the 
optic of conciliating economic purposes with environmental protection. This was 
the very first application of the method in this research field.

Through IMO-DRSA, we found an optimal multiobjective strategy related to 
the farm planning of our case study, conciliating four different objectives, one of 
economic and three of environmental nature. Being the economic objective obvi-
ously in conflict with the others, and being the frontier of efficient solutions very 
broad, the choice of the best solution, combining all the objectives, would have 
been difficult without an effective decision support system. 

This kind of approach presented, in comparison with classical decision sup-
port methods, some strengths points that concerned both input and output infor-
mation. Concerning the input, the DM gave preference information by answer-
ing easy questions related to sorting of some representative solutions. In this way, 
elicitation of preferences in terms of weights, substitution rates, thresholds, and 
so on, and the related significant cognitive effort on the part of the DM were 
avoided. The output result of the analysis was the model of preferences in terms 
of  “if..., then...” decision rules, which was used to restrict the Pareto optimal set in 
an iterative way, until the DM selected a satisfactory solution. This kind of prefer-
ence model gave argumentation for preferences in a logical form and it was intel-
ligible for the DM, without need of recourse to any technical term. Moreover, the 
DM could identify the Pareto optimal solutions supporting each particular deci-
sion rule (glass box). Finally, the decision rules were based on ordinal properties 
of objective functions only, avoiding scalarization, and they could be computed in 
a few seconds by means of specific algorithms (Greco et al., 2001b; Greco et al., 
2002b). The computation time grows while increasing the number of objectives, 
but not the number of Paretian efficient solutions.

Concerning some practical problems for the application of the method in the 
agricultural sector, availability and completeness of both environmental and eco-
nomic data represent a crucial aspect. Environmental data are often difficult to 
find, while economic data are taken from past or expected farm balances, there-
fore, they not ever are completely realistic.
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Another important point concerns the level of subjectivity intrinsic in the 
method. The decision maker, in this case the farmer, choices the “good solutions” 
in a subjective way, basing his preferences on his opinion and knowledge. Other 
choices, based on different opinions and made from other farmers, could lead to 
distinct results. Moreover, a not impartial preference towards economic objectives 
could be present, not considering in a proper way the environmental concerns. 
However, this weakness belongs to all the classical multiobjective methods, in 
which the DM must decide weights or thresholds in an arbitrary way.

In relation to this aspect, a mitigation of the problem could be reached insert-
ing the use of IMO-DRSA within a consulting service for farmers; in this way 
choices would be made by experts of the agricultural and environmental sectors, 
that could guide the farmer in the decisional process.

Finally, an application at the territorial level would be interesting. In this 
case, more farms characterizing a territory would be involved in the process, 
given some objectives aimed to reach sustainable development of that territory. 
The results of the analysis could be used to implement territorial specific poli-
cies. The decision maker in this case would be not the single farmer, but multi-
ple decision makers (for DRSA involving most DMs see Greco et al., 2006; Greco 
et al., 2011) would be involved, i.e. politicians commissioned to design territorial 
policies.
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