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Rural environment and landscape 
quality: an evaluation model 
integrating social media analysis 
and geostatistics techniques

The use of geo-tagged photographs seems to be a prom-
ising alternative for assessing the scenic beauty of the ag-
ricultural landscape compared to the traditional investiga-
tion based on expert and perceptual approaches. The aim 
of this study is integrating the cumulative viewshed calcu-
lated from geotagged photo metadata publicly shared on 
Flickr with raster data on geomorphology, historical sites, 
and the natural environment, using landscape ecology 
metrics and Geographically Weighted Regression model-
ling. Crowdsourced data provided empirical assessments 
of the covariates associated with visitor distribution, high-
lighting how changes in infrastructure, crops and envi-
ronmental factors can affect visitor’s use. This information 
can help researchers, managers, and public planners to de-
velop projects, plans and guidelines to increase the visual 
quality of the agricultural landscape.

1. Introduction

Humans benefit from the many services that rural ecosystems deliver wheth-
er it is food supply, clean water regulation or inspiration invoked by a beautiful 
landscape. The Millennium Ecosystem Assessment (MA, 2003) in the early 2000s 
popularized this concept as “ecosystem services”. The main reference for ecosys-
tem services assessment in public policies for rural landscapes remains the ecosys-
tem services cascade model defined by de Groot (2006). It classifies ecosystem ser-
vices into four classes, identifying for each class the ecosystem functions relevant 
for human needs: regulating or regulation services, supporting or habitat services, 
provisioning or production and cultural ecosystem services (CES). The Millenni-
um Ecosystem Assessment (MA, 2003) defined “cultural ecosystem services” as the 
nonmaterial benefits people obtain from ecosystems through spiritual enrichment, 
cognitive development, reflection, recreation, and aesthetic experiences.

In Europe, many agricultural landscapes are hot spots in the provision of CES 
(Pinto-Correia et al., 2006; Stenseke, 2009). These agricultural landscapes are often 
referred to as cultural landscapes, which are generally defined as landscapes man-
aged by traditional agricultural techniques, locally and historically adapted, by fa-
miliar and/or subsistence methods (IEEP, 2007). They often contribute to a unique 
aesthetic character and support a co-produced human-ecological system.

Over the past twenty years, much attention has been paid to maintaining 
spatial and economic synergies between ecosystem functions in rural areas in the 
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context of development planning. The promotion of tourism based on territorial 
characters and traditions is increasingly a winning strategy (Van Berkel and Ver-
burg, 2011) as it allows the generation of income outside the intensification of ag-
ricultural production and promotes the conservation of rural  landscape features 
(Buijs et al., 2006). Tourism attractions are related to people’s perception of aesthet-
ic beauty, cultural heritage, spirituality and inspiration (Brown, 2006). These char-
acteristics are non-material benefits related to land management and therefore not 
exclusive. Failure to provide sufficient incentives to maintain cultural landscapes 
can result in loss and/or degradation (Swinton et al., 2007). The quantification of 
cultural services provided by landscapes can therefore help to understand the op-
tions for future development that maintain and develop tourism resources. Values 
that emerge from cultural services are often estimated using stated preferences 
(e.g., van Berkel and Verburg, 2013; Plieningeretal, 2013). Moreover, a difficult in 
spatialisation of monetary values with proper detail (resolution) is highlighted in 
literature (Carvalho-Ribeiro et al., 2016). To cope with this troubles a series of al-
ternative methods in respect to economic analysis have been applied to quantify 
CES (see Fontana et al., 2013; Nahuelhual et al., 2013; Brown & Fagerholm, 2015; 
Saarikoski et al., 2016; Rovai et al., 2016; Pastorella et al., 2017; Dunford et al., 2018). 
The above researches have the merit of having laid the foundations for CES anal-
ysis allowing for subjectivity evaluation in participative processes.

Many studies use crowd-sourced images in the analysis of CES, and we can 
group them into two categories. The first group focuses on the spatial and tem-
poral information of photos (Casalegno et al., 2013; Keeler et al., 2015; Gliozzo et 
al., 2016; Tieskens et al., 2017). The emphasis of these studies was on the location 
and the users who took and uploaded the photos. The Integrated Valuation recre-
ation model of Ecosystem Services and Tradeoffs (InVEST) applies the concept of 
photo-user-days (Redhead et al., 2016), which considers the total number of days 
the users took photos (at least one photo from a user) in each mapping (Wood et 
al., 2013). The InVEST recreation model started to be applied to several CES analy-
ses (Keeler et al., 2015; Sonter et al., 2016). The second group of studies aims to 
correlate the landscape context and the biophysical settings with the positions of 
georeferenced photos (Pastur et al., 2016; Tenerelli et al., 2016; van Zanten et al., 
2016; Oteros-Rozas et al., 2017), using geostatistical analysis methods derived from 
biology, such as the Maximum entropy models (MaxEnt). The researchers applied 
MaxEnt model to manage visitor impacts on natural resources, including human-
nature interactions (Braunisch et al., 2011), and off-piste recreational behaviour 
prediction (Coppes and Braunisch, 2013; Westcott and Andrew, 2015; Richards and 
Friess, 2015). The authors implemented MaxEnt model to the estimate CES corre-
lating the locations of Flickr geo-referenced photos with the environmental char-
acteristics of the territory (Yoshimura and Hiura, 2017; Walden-Schreiner, et al., 
2018). However, the models highlighted have two critical limits in the assessment 
of the visual quality of complex cultural rural landscapes.

On the one hand, the approaches based on the probabilistic models (MaxEnt 
and Negative Bernoulli distribution) consider only the territorial characteristics 
that occur in a single location or close to its spatial proximity. On the other hand, 
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the entire surrounding landscape influences photographic recovery (Van Berkel et 
al., 2018). In this regard, the calculation of the views is potentially useful to cap-
ture the perception of the landscape.

Moreover, the hypothesis at the basis of the two approaches is that the sta-
tistical relationship between explanatory variables of landscape quality and con-
centration of shared photos is constant in space. In complex landscapes, it seems 
reasonable to assume that there may be intrinsic differences regarding space that 
occur in terms of spatially variable parameters. In both cases, it seems preferable 
to use geostatistical techniques to describe and map these spatial variations as an 
exploratory tool to develop a better understanding of the relationships studied.

The aim of this paper is integrating the geotagged photo metadata publicly 
shared on Flickr with raster data on geomorphology, historic sites and the natural 
environment, using landscape ecology indexes and Geographically Weighted Re-
gression (GWR) modelling. Figure 1 shows the workflow of the approach.

Figure 1. Flow-chart of the work.
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2. Study area

The study area is located on the river basin of the Cecina River, located along 
the coast of Livorno and Pisa. Forest and crops make up the landscape. Today, 
the coastal strip is characterised by prevalent agriculture of plains (with arable 
crops and horticultural crops) and hills (with olive groves, promiscuous crops and 
specialised vineyards), and by widespread and concentrated urbanisation, par-
ticularly relevant in some places dedicated to summer tourism. Although it is a 
context of high anthropization, the coastal territory shows significant naturalistic 
areas of value linked to the presence of humid areas and back-dunal woods, on 
the one side, and continuous sandy coastal system of dune habitats and natural 
pine groves of domestic pine, on the other. Agro-forest-pastoral landscapes of 
high naturalistic value, crossed by the course of the Cecina River and by a dense 
hydrographic network, dominate the internal hilly territory. Vast sclerophyllous 
and broad-leaved thermophile woods alternate with traditional agricultural land-
scapes. On one of the hills lies the historic city of Volterra, surrounded by beauti-
ful scenic hills characterised by extensive agriculture (arable crops). About 50,000 
inhabitants live in Val di Cecina. The area covers more than 200,000 hectares, 43% 
of which is forest and 35% arable land. Figure 2 shows the study area.

Figure 2. Study area.
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3. Methods

3.1 Demand for cultural ecosystem services

In our research, the geotagged photos were queried from the Flickr Appli-
cation Programming Interface using the statistical software program R. The raw 
database contained about 35,000 localizations of photos taken in the period 2005-
2017. The pictures containing in the tags the “agriculture”, “rural landscape”, 
“vineyard”, “olive”, “grassland”,  and the related words were filtered. Finally, spe-
cific filters were applied to avoid distortions due to photos repeated many times 
in a single location by a single photographer. The final database counted 11,296 
photographic points. The analysis of the spatial distribution of the Cultural ESs 
application was carried out through the following elaborations.

As a proxy for the demand for Cultural ESs, we develop an index using cu-
mulative viewsheds calculated from photographing positions. Visibility analysis 
is increasingly applied by landscape planners as well, being useful as a decision 
support system, since it deals with the best possible spatial arrangement of land 
uses and it assesses the visual impact of given features in the landscape (e.g., Bell, 
2001; Bryan, 2003; Hernández et al., 2004; Palmer and Hoffman, 2001). Perhaps the 
most popular concept used to explore visual space in a landscape has been the 
cumulative viewshed (Wheatley 1995; Ramos and Pastor, 2012), sometimes called 
total viewshed or intrinsic viewshed (Franch-Pardo, Cancer-Pomar and Napole-
tano, 2017). In general, cumulative viewsheds are created by repeatedly calculat-
ing the viewshed from various viewpoint locations and then adding them up one 
at a time using map algebra, in order to produce a single image. We defined and 
calculated each viewshed using a digital elevation model (DEM) of 10 m from a 
height of 165 cm and within a maximum radius of 5 km (Willemen et al., 2008; 
Chesnokova et al., 2017). The single viewsheds were added together to obtain a 
cumulative viewshed. The result was transferred into a hexagonal grid theme 
with a cell size of 1 km, with visibility attributes assigned to each cell. We chose 
the hexagonal grid because of its topological and geometric properties (Feick and 
Robertson, 2015). The maps of the indicators, such as the cumulative viewshed, 
were sampled using a hexagonal grid with a 1-kilometre side, resulting in 1,444 
statistical observations.

3.2 Potential supply of cultural ecosystem services

It is possible to map the potential supply of CES by analysing the relation-
ship between the demand area and its environmental factors as the demand map 
shows the visitors’ aesthetic preferences.

The analysis of the relationships between the visual quality of the landscape 
and its structural properties is an active area of research in the field of environ-
mental perception. The following visual quality indicators were selected, and, ac-
cording to Ode, Tveit and Fry (2008), divided into five conceptual categories: 
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1. indicators of complexity: number of different land covers per view, Shannon 
index.

2. indicators of naturalness: percentage area, edge density, and number of patch-
es of natural and semi-natural vegetation; percentage area, edge density, and 
number of patches of water bodies, Shannon index, number of patches, land-
scape shape index;

3. indicators of historicity: distance from historic villages; distance from historical 
roads;

4. indicators of coherence: percentage area, edge density, and number of patches 
of vineyards; percentage area, edge density, and number of patches of the olive 
grove; percentage area, edge density, and number of patches of arable land;

5. indicators of visual scale: elevation, the standard deviation of elevation, the 
range of elevation.
The indicators at points 1, 2 and 4 were calculated at landscape level using the 

Fragstats software. According to the standards legend Corine Land Cover level 2, 
we calculated the indicators of naturalness and complexity for each land use class. 
The indicator at point 3 derives from historical territorial geodatabases of the Tus-
cany Region. Finally the indicators at point 5 derive from our elaboration using 
the DEM of Tuscany Region. The initial set results to be composed of 78 explana-
tory variables.

To estimate the spatial distribution of the potential supply of Cultural SEs, a 
Geographically Weighted  Regression model was used with the cumulative views-
hed as the dependent variable and the potential offer indicators as independent 
variables. 

3.3 Geographically Weighted Regression model for cultural ecosystem services

To investigate the presence of spatial variability in the relationships between 
the dependent variable (cumulative viewshed) and the explanatory variables (po-
tential supply of CES), we implemented a spatial statistical approach using Geo-
graphically Weighted Regression (GWR) (Fotheringham et al., 2002). Classical sta-
tistical methods, such as multivariate regression, assume that the same relation-
ship occurs everywhere in space and, thus, they generate a global average value 
valid for the entire data set, even though, in reality, it can not be valid anywhere. 
Geographical methods can capture spatial variability, which is one of the main at-
tributes able to explain local differences, and can solve the problem linked to one 
global average value by calibrating in each position a separate model that consid-
ers only the data of the neighbourhood closest to the point of analysis. Moreover, 
the data are weighted according to their geographical distance from each local re-
gression point so that the closer they are to the point of analysis the more impor-
tant they are. The result is a set of local models, one for each point, that capture 
any spatial variability in the relationships.

The first “law” of geography states that “everything is related to everything 
else, but near things are more related than distant things” (Tobler, 1970). This is 



Rural environment and landscape quality 49

the key concept of spatial data analysis and is related to the concept of spatial cor-
relation.

GWR is a local spatial statistical technique used to analyse and map spatial 
non-stationarity, i.e., the measurement of relationships among variables that may 
differ at different locations. Unlike conventional regression, which produces a 
single regression equation to summarize global relationships among the explana-
tory and dependent variables, GWR provides a calibration of separate regression 
equations for each observation of dataset, consisting of a dependent (response) 
variable y and a set of k independent (explanatory) variables xk, k=1 … m, and of 
n observations with known geographical coordinates. Each equation is calibrat-
ed using a different weighting of the observations contained in the dataset. The 
equation for a typical GWR model is (Fotheringham et al., 2001, Fotheringham et 
al., 1998):

yi(u) = β0i(u,v) + β1i(u,v)x1i + … + βmi(u,v)xmi

As GWR generally (but not necessarily) assumes that Tobler’s first law is veri-
fied to a given dataset, the calibration of the GWR model requires a decision re-
garding the size of the subset of n observations to be included in the neighbour-
hood of the predicted values. This is referred to as the bandwidth size for estimat-
ing the local regression parameters (Brunsdon et al., 1998). Thus, the  weighting 
scheme is that the values near to point i have more influence in the estimated re-
gression values than values located far away from that same point (Fotheringham 
et al., 2001). In this study we adopt the Gaussian kernel type that weights con-
tinuously and gradually decreases from the centre of the kernel but never reaches 
zero. The kernel shape is defined by the following equation, which takes into ac-
count only the nth nearest neighbours:

wij = exp
−dij

2

b2

where i is the regression point index; j is the locational index; wij is the weight val-
ue of observation at location j for estimating the coefficient at location i; dij is the 
Euclidean distance between i and j; b is a bandwidth size defined by a distance 
metric measure.

Bandwidths for GWR models can be user-specified or found via some auto-
mated (e.g., cross-validation) procedure provided some objective function exists. 
Different methods are  proposed to define the finest bandwidth value or the ap-
propriate value of n (Hurvich et al., 1998; Akaike, 1974; Fotheringham et al., 2003).

Many studies have applied GWR in human and political geography (Mansley 
and Demšar, 2015; Brunsdon et al., 1996; Fotheringham et al., 2013), as well as in 
physical geography and ecology (Atkinson et al., 2003; Clement et al., 2009; Har-
ris et al., 2010; Jetz et al., 2005), proving the suitability of this tool to provide an 
explanatory approach in spatially varying relationships (Páez et al., 2011). For the 



50 Veronica Alampi Sottini et al.

evaluation of CES, Tenerelli et al. (2016) used a GWR method to study the relation-
ship between the geo-tagged images account and the landscape settings, whose 
spatial variation may affect the cultural service. Schirpke et al. (2018) used a GWR 
model to analyse how spatial and temporal patterns correlate spatially explicit 
indicators and crowd-sourced information from social media. The estimation of 
the GWR models was carried out through the GWmodel library of the statistical 
program R (Gollini et al., 2013; Lu et al., 2013). Fotheringham and Park (2018) in-
vestigates both spatial and temporal elements of the apartment pricing process by 
modelling the determinants of apartment prices. Riccioli et al. (2018) analysed and 
tested the spatial non-stationarity of the relationship between ungulates and hu-
man activities.

The GWR approach uses a moving window weighting technique, where lo-
calised models are at target locations. Here, for a single model in a specific tar-
get location, we weight all neighbouring observations according to a certain 
distance-decay kernel function and then locally apply the model to the weight-
ed data. The bandwidth controls the size of the window over which this local-
ised model might apply. A fundamental element in GW modelling is the spatial 
weighting function (Fotheringham et al., 2002) that quantifies (or sets) the spatial 
relationship or spatial dependency between the observed variables.  There are 
three critical elements in structuring this weighting system: (i) the type of dis-
tance, (ii) the kernel function and (iii) its bandwidth. According to Gollini et al. 
(2013), we adopted the Euclidean distance with a bi-square kernel. Having the 
data set organised on a regular hexagonal tessellation, we set an adaptive kernel 
bandwidth that to include the N hexagons closest to the observation/calibration 
hex. When an objective function exists (e.g., when the model can predict it), we 
can find an optimal bandwidth, using cross-validation and related approaches. 
We can find an optimum kernel bandwidth for GW regression by minimising 
some diagnostic models of adaptation, such as a leave-one-out cross-validation 
(CV) score (Bowman, 1984), which represents the accuracy of the model predic-
tion; or the Akaike Information Criterion (AIC) (Akaike, 1973), which represents 
the parsimony of the model (i.e., a compromise between prediction accuracy 
and complexity). Once we calibrated our local model, we evaluated the spatial 
variability in the relationships through a visual representation of the parameter 
estimate surfaces. The surfaces were cross-mapped with the local t-values for 
each parameter estimate to identify areas where the relationships are significant. 
We also mapped the local percentage of explained deviance to identify areas 
where the model is performing better (percentage of explained deviance higher 
than the average) or worse, and we relate these patterns with the most signifi-
cant local parameter estimates. Finally, we tested the spatial distribution of the 
local and global residuals both through visual representation and using Moran’s 
I measure of spatial autocorrelation.  The level of spatial autocorrelation can be 
investigated visually by mapping the standardised residuals for both models as 
well as calculating measures of spatial autocorrelation, such as  Moran’s I (Good-
child, 1986; Moran, 1950).
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4. Results

The first step in the GWR procedure was to test the multicollinearity between 
the variables using Spearman’s correlation rank. We kept all the variables as they 
showed a Spearman’s correlation lower than 0.7. In the end, we considered a final 
set of 9 variables. Figure 3 shows the map of the explanatory variable (cumulative 
viewsheds) and Figure 4 the 6 maps of the independent variables.

Table 1 shows the results for the global Generalized Last Squares (GLS) model. 
The results suggest that all parameter estimates are significant except the patch 
richness value. The explained deviation is only about 41%, with an AICc coeffi-
cient of 17,389. The model significance is assessed by the F-Statistic. The F-Statistic 
is trustworthy only when the Koenker’s studentized Breusch-Pagan (KBP) statis-
tic is not statistically significant (Breusch and Pagan, 1979; Koenker, 1981). In this 
case, the KBP statistic is significant (cfr. Tab. 1). Furthermore, the KBP statistic de-
termines whether the explanatory variables in the model have a consistent rela-
tionship to the dependent variable, both in geographic space and in data space. 
When the model is consistent in geographic space, the spatial processes represent-
ed by the explanatory variables behave the same everywhere in the study area 
(the processes are stationary). When the model is consistent in data space, the 
variation in the relationship between predicted values and each explanatory vari-

Figure 3. Maps of cumulative viewsheds (explanatory variable).
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able does not change with changes in explanatory variable magnitudes (there is 
no heteroscedasticity in the model). We performs the Breusch-Pagan test for het-
eroskedasticity on the least squares fit of the spatial models using the procedure 
bptest.sarlm of the statistical program R (Bivand et al., 2018). The significance of 
the KBP statistic indicates heteroscedasticity and/or non-stationarity of the model; 
this model is, therefore, a good candidate for Geographically Weighted Regression 
analysis.

In the next step, we first built an entirely local GWR model. The result of 
the bandwidth optimization suggested an optimal bandwidth of 86 cells (i.e. for 
each of the 1,444 cells, a local model was calibrated using data from the nearest 
86 cells). The adaptation of the model was much improved compared to the lo-
cal model (Table 3) with an average 78.6% of deviance explained (i.e. a significant 
increase from the global model) and with an AICc of 15.773. The improvement in 
the quality of the model from global to local shows that there is indeed a spatial 
variability in the data and that it is essential to unravel it.

According to Lu et al. (2015), we performed a model specification exercise to 
find an independent variables subset for our GW regression. To support this pro-
cedure, we implemented a pseudo stepwise procedure, going in a forward direc-
tion. The following four steps, where the results are displayed using plots with 
the AICc values of each model, describe this procedure:

Figure 4. Maps of independents variables.
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1. Calibration of all possible bivariate geographically weighted regressions by se-
quential regression of a single independent variable to the dependent variable.

2. Detection of the best performing model that produces the minimum AICc, 
and permanent incorporation of the corresponding independent variable in 
subsequent models.

3. Sequential introduction of a variable of the remaining group of independent 
variables for the creation of new models with the independent variables per-
manently included, and determination of the following permanently included 
variable from the best fitting model that has the minimum AICc.

4. Reiteration of step 3 until the model includes permanently all independent 
variables.
These steps were performed using the package GWmodel of the statistical 

software R (Lu e al, 2014). Figure 5 shows a circle view of the 45 geographically 
weighted regressions (numbered 1 to 45) that result from the stepwise procedure. 

In the figure, the dependent variable is located in the center of the chart and 
the independent variables are represented as nodes differentiated by shapes and 
color. The first independent variable permanently included is “distance from his-
toric villages”, the second one is “edge density of naturals”, the third one is “per-

Table 1. Generalized Last Square model.

Coefficients Estimate Std. Error t value Pr(>|t|)  

Intercept 164.6 12.25 13.432  < 2e-16  ***

DEM standard deviation -1.07 0.2207 -4.847 .000001390000  ***

Distance from hystoric village -0.005395 0.0004906 -10.998  < 2e-16  ***

Edge density of natural areas -0.3562 0.08907 -4 .000066700000  ***

Patch richness -2.231 1.57 -1.421 .155000000000

Percent of urban areas 1.851 0.4493 4.119 .000040300000  ***

Percent of arables 0.6574 0.1298 5.064 .000000463000  ***

Percent of vineyards 5.74 0.424 13.536  < 2e-16  ***

Percent of olive grow 2.023 0.3581 5.648 .000000019500  ***

Number of natural patches -6.67 1.083 -6.159 .000000000948  ***

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
Residual standard error: 99.3 on 1434 degrees of freedom
Multiple R-squared: 0.4221
Adjusted R-squared: 0.4185 
F-statistic: 116.4 on 9 and 1434 DF,  p-value: < 2.2e-16 
Diagnostic information
Residual sum of squares: 14139488
Sigma(hat): 99.02258
AIC:  17389.26
AICc:  17389.44
Koenker (BP) Statistic 39.543, df = 9, p-value = 9.194e-06
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centage of arable land” and the last one is “numbers of patches”. Moreover, figure 
5 shows the corresponding AICc values for the same fits. The two graphs together 
explain the model performance when we introduce an increasing number of vari-
ables. As can be expected, AICc values continue to fall until all independent vari-
ables are included. The results suggest that it is worth continuing with all eight 
independent variables.

To interpret the spatial relationships resulting from GWR, we represented the 
local parameter estimate surfaces, and we analysed the spatial distribution of local 
coefficients and their relative significance levels (Figure 6 and 7).

In general, the parameters are not significant in the south-east area of the ter-
ritory under study, characterised by low photo density (see also Figure 3). We no-
tice that there are two distinct areas. In the north-west area (the area around the 
city of Volterra), the standard deviation of the elevations, the distance from his-
toric villages, the percentage of olive groves, the density of margins from natu-
ral areas and the percentage of arable land are significant. In the East area, close 
to the coast, the DEM standard deviation, the distance from the historic villages, 
the margins density of the natural areas, the percentage of area affected by ar-
able land, vineyards and olive groves and the number of natural patches are sig-
nificant on a vast area.  About the signs of the coefficient, the distance from the 
historic villages and the standard deviation of the DEM are both negative in the 
two areas characterized by the highest concentration of photos. For the dependent 
variables of landscape ecology instead, the signs of the coefficient are different in 
the two areas. The perception of the landscape of Volterra is positively correlated 
to the percentage of olive groves, and the edge density of natural areas, while it is 

Table 2. Results of Geographically Weigthed Regression model.

 Min. 1st Qu. Median 3rd Qu. Max.

Intercept -170.47 11.225 68.895 204.27 981.7019

DEM standard deviation -92.992 -0.38785 0.011412 0.29064 8.81

Distance from hystoric village -0.15695 -0.016151 -0.0052386 -0.00028583 0.0765

Edge density of natural areas -4.4125 -0.17754 -0.0033543 0.052348 2.7686

Patch richness -28.059 -1.8661 -0.086415 1.3978 54.715

Percent of urban areas -27.009 -0.085966 0.6723 2.3271 27.3817

Percent of arables -5.9141 -0.077748 0.02702 0.58779 14.0546

Percent of vineyards -33.376 -0.5068 0.074384 1.6036 22.7161

Percent of olive grow -13.962 -0.43454 -0.015489 0.47527 17.3402

Number of natural patches -25.306 -2.1949 -0.18176 0.30492 21.8281

AICc : 16274.47
AIC: 15773.28
R-square value:  0.8462371
Adjusted R-square value:  0.786029
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Figure 5. Model view of the stepwise specification procedure.
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Figure 6. Maps of spatial distribution of local coefficients.

Figure 7.  Maps of spatial distribution of significance levels.



Rural environment and landscape quality 57

negatively correlated to the patch richness and the percentage of vineyards. In the 
area near the coast, the perception of the landscape is positively correlated to the 
patch richness, to the percentage of arable land and it is inversely proportional 
to the density of margins and the number of patches of natural areas. In general 
terms, therefore, the GWR highlights the presence of highly differentiated areas 
relating to the appreciation of the characteristics of the landscape.

To analyse the local variability of the relationships between the photo count-
ing and the explanatory variables, we mapped the local percentage of explained 
deviance. Figure 8 shows the explained deviance, highlighting that it is every-
where higher than in the global model.

5. Discussion and conclusion

The implemented models confirmed the importance of agricultural cultiva-
tions for the value of the landscape and allowed to obtain a spatial evaluation of 
the consistency of the externalities produced by agriculture, with obvious benefits 
for the choices of territorial government and rural development.  

Furthermore, Flickr provides a free, up-to-date, and high spatial and tempo-
ral resolution information source. However, as our analyses revealed, each crowd-

Figure 8. Map of  explained deviance.
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sourced database has limitations in terms of spatial data quality and sampling 
bias. The results of the spatial analysis of the photographic series indicate specific 
models of visit preferences and how the perception of the agricultural landscape 
is influenced both by the complementary characteristics of the rural landscape 
and by the agronomic choices at different scales of analysis. The spatial distribu-
tion of visit preferences provides an indicator of the social benefits of agriculture, 
allowing a local analysis of the areas providing services and addressing the lack of 
quantitative indicators.

Our explanatory analysis allows the identification of areas of interest in which 
land use planning and management strategies of the agricultural ecosystem 
should take into account the actual provision of non-material benefits related to 
the landscape. The analysis performed supports setting landscape planning pri-
orities by providing an understanding of how changes in specific environmen-
tal settings can influence the supply of landscape in certain areas. Therefore, the 
proposed method represents a significant first step in informing stakeholders and 
policymakers about priority areas. A further improvement of this study is to con-
duct interviews and surveys with questionnaires to visitors. It would allow us to 
evaluate the benefits and the different values   relating to the landscape. Validating 
these data sources and addressing uncertainty in data deriving from social media 
represents an important area of future research as as it is necessary before crowd-
sourced data achieves acceptance for use in protected area planning and manage-
ment, and for quantifying and qualifying the characteristics and values of cultural 
ecosystem services in rural areas.
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