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A decision support system for 
assessing the perception and 
acceptance of WTs in high-value 
landscapes: The case of Chianti 
Classico (Italy)

Renewable energies are fundamental to future develop-
ment. Such technologies reduce air pollution and improve 
air quality; however, they can generate other types of en-
vironmental problems, which must be investigated. The  
location of structures is one of these problems, which in-
volves visual impacts and is a primary factor affecting 
public reaction. Our work was concerned with the visual 
impact and the alterations to the landscape made by wind 
turbines. The main goal was to establish the factors and at-
tributes of a wind farm that determine the perception and 
aesthetic preferences of people, with a particular emphasis 
on representatives of Generation Y. This group was cho-
sen because they represent the most dynamic, innovative, 
and creative social group. Thus, we proposed some design 
strategies to reduce the visual impact of wind turbines.
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1. Introduction

1.1. General Problem

Innovative technologies are developed to reduce emissions and slow global 
warming by climate change caused largely by CO2 emissions from human-relat-
ed energy production, population growth, and consumption patterns. One of the 
CO2 neutral energy generation technologies is wind power production. The wind 
is a renewable energy source that can be used nearly worldwide and is limited 
only by atmospheric conditions and the capacity and spatial extent of electricity 
networks.

1.2. Literature Review

The visual impact is difficult to assess quantitatively in an objective way. A 
wind turbine (WT) that can be seen from a location does not itself comprise an 
adverse impact because visibility is not the same as a sensed visual impact. Leav-
ing aside works that analyzed the visual impact of WT installation locations “a pri-
ori” (Ladenburg et al., 2013; Wróżyński et al., 2016), many authors take into account 
the intervisibility from countries and villages in the territory (Hurtado et al., 2004). 
Möller (2006) summarized land use or population counts for cumulative num-
bers of visible WTs. Rather than quantifying absolute exposure, this established a 
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benchmark for comparison. Georgiou and Skarlatos (2016) calculated the views-
hed from primary roads. 

Many authors have verified that the sensitivity of people to the placement 
of WTs in landscapes with high-aesthetic quality is greater (de Vries et al., 2012; 
Molnarova et al., 2012). For our study, the locations sensitive to the impact of WTs 
are the cultural landscapes with the highest visual value. Therefore, for the assess-
ment of the visual impact of the energy facilities, an objective method of assessing 
the aesthetic value of the landscape is required.

The most widely used technique for assessing the visual impact of WTs is the 
insertion through photomontage in photographic images (see o.a., Betakova et al., 
2015; Maehr et al., 2015; Arnberger et al., 2018). Few studies have evaluated the 
visual impact of an existing or future wind farm infrastructure using virtual re-
ality VR (Ruotolo et al., 2013; Yu et al., 2017). VR offers an excellent opportunity 
for environmental impact studies (Iachini et al., 2012; Maffei et al., 2013; Ruotolo et 
al., 2013). VR allows the presentation of a multisensory environment with incorpo-
rated auditory and visual components and allows an experience highly similar to 
that of real life. By allowing people to experience a wind farm environment and 
explore their perceptions, VR technology can provide unique data with which to 
optimize the numbers, types, and positions of WTs (Wan et al., 2012). The use of 
360° interactive photographs and videos through the VR headset allows interac-
tive and immersive visualization of the space that surrounds the interviewee ap-
proximating the real experience in space. Generally, the assessment of the visual 
impact of WTs is conducted by eliciting a rating from an interviewee (see o.a., Yu 
et al., 2017). However, the use of evaluations through questionnaires can be biased 
because of strategic responses caused by prejudices or favorable attitudes (Cass 
and Walkker, 2009; Warren et al., 2005). In our work, we used the eye-tracking 
technique combined with VR to conduct an unbiased assessment of the percep-
tions regarding WTs in the landscape. 

Finally, a few authors (Strazzera et al., 2012; Mariel et al., 2015) have attempted 
to analyze the trade-offs between the two main social benefits, landscape conser-
vation and the reduction of carbon emissions, to provide policy land for the best 
choice of technical alternative in terms of the number and size of WTs in a wind 
energy facility installed in a specific territory.

1.3. Purpose of the Research

The purpose of our study was to create a prototype of a spatial decision sup-
port system that integrates models of visual impact detected with VR and eye-
tracking, landscape value models based on data shared on social media, and mod-
els of carbon footprints in a GIS environment to identify the technical characteris-
tics of wind energy facilities that represent the best compromise between emission 
reduction and conservation of the landscape. The spatial decision support system 
will be tested in an area with a high-landscape value in Tuscany (Italy), the appel-
lation of the Chianti Classico area. This goal of this study was to analyze the per-
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ception of the cultural landscape, with a particular emphasis on representatives of 
Generation Y (so-called millennials, which are a population cohort born between 
1980 and 2000), in the context of the development of wind energy identified 
through the location of wind power plants. In a recent study, Rogatka et al. (2017) 
found that generation Y will be the most sensitive social group both to landscape 
conservation and to climatic and energy issues.

The decision support system was implemented through the following phases:
a) Identification of locations with high-landscape value through data shared on 

social media platforms.
b) Evaluation of the energy productivity derived from a set of wind farms of dif-

ferent size and power.
c) Evaluation of the perception and acceptance of WTs through an eye-tracking 

experiment using landscape simulations administered via VR to a sample of 
subjects.

d) Formulation of a multi-objective analysis model for the choice of the best com-
promise between energy production and perceived landscape impact.

2. Methodologies

2.1. Landscape Evaluation

For the identification of locations of cultural landscapes with high-visual val-
ue, we used the method of spatial density of shared photos on the Flickr social 
media platform. Wood et al. (2013) showed that evidence of actual visitation could 
be predicted using the density of geotagged Flickr photos. Levin et al. (2017, p. 
122) found strong and significant correlations between all crowdsourced data 
and visitation statistics, demonstrating the potential to use crowdsourcing data 
to characterize the social and perceived importance of protected areas and as a 
proxy for visitation statistics. The geographical distribution of the geotagged pho-
tos can provide useful information for determining the most attractive locations 
in the territory. In the literature, several methods have been proposed to analyze 
the geographical concentration of information from social networks. We used a 
density analysis to outline areas of high-photo concentration. The point data were 
transformed into a density surface using an analysis of Kernel Density Estimation 
(KDE) (Chen and Shaw, 2016) with an Epanechnikov kernel with a bandwidth 
chosen to maximize the point process likelihood cross-validation criterion (Loader, 
1999). Kernel density calculates the density of point features around each output 
raster cell. Conceptually, a smoothly curved surface is fitted over each point. The 
surface value is highest at the location of the point and diminishes with increas-
ing distance from the point, reaching zero at the search radius distance from the 
point. Consistent with the geographical scale of the case study, we chose a search 
radius of 500 m.

As an index of visual sensitivity of points with high-cultural-landscape val-
ue, we used the cumulative viewshed method calculated from high-density lo-
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cations. Visibility analysis is increasingly applied by landscape planners as well, 
being a useful decision support system because it deals with the best possible 
spatial arrangement of land uses and assesses the visual impact of given features 
in the landscape (e.g., Bell, 2001; Bryan, 2003; Hernández et al., 2004; Palmer and 
Hoffman, 2001). Perhaps the most popular concept used to explore visual space 

Figure 1. The structure of the spatial decision support system.
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in a landscape has been the cumulative viewshed (Wheatley, 1995; Ramos and 
Pastor, 2012), sometimes called total viewshed or intrinsic viewshed (Franch-Par-
do et al., 2017). In general, cumulative viewsheds are created by repeatedly cal-
culating the viewshed from various viewpoint locations and then adding them 
using map algebra to produce a single image. We defined and calculated each 
viewshed using a digital terrain model (DTM) of 10 m from a height of 165 cm 
and within a maximum radius of 15 km. We used this value because, in the ana-
lyzes carried out in the campaign for the protection of rural Wales (Sullivan et al., 
2012), wind structures were considered the main focal points of visual attention 
from 12 to 19 km.

2.2. Energy Production

Wind energy production maps are the most important data for assessing the 
energy potential of a territory. In our study, we used the maps of wind producibil-
ity realized with the WINDGIS project (Mari et al., 2011). In addition to the aver-
age wind speed, the WINDGIS geodatabase contains FLHs at heights of 25, 50, 75, 
and 100 m. A full-load hour is at full-wind capacity. It is the capacity it will take a 
given WT to yield its annual production if it can produce its installed capacity. For 
the definition of turbine power to be used in the impact assessment, we referred 
to the statistical report on energy from renewable sources in Italy (GSE 2018). As 
shown in Figure 2, the WTs installed in Italy are primarily those with low pow-

Figure 2. Number and capacity of wind power plants installed in Italy. Data are from the Italian 
company “Gestore Servizi Energetici (GSE).”
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er (60 kW), medium power (200 kW), and medium-large power (1 MW). Table 1 
shows the technical data for the WTs used in the evaluation models.

2.3. Wind turbine Perception and Social Evaluation

VR technology is an advanced technology that combines a high degree of con-
trol and ecological validity and is capable of simulating experimental conditions 
reasonably similar to those in a real environment. In our research, we used VR to 
create stimuli through 360° panoramic photos of the landscape, such that partici-
pants could immerse themselves in the virtual world through VR devices, expect-
ing to have the same experiences as in the real landscape. The key to the accuracy 
of VR technology lies in the realization of the “presence,” which arouses the sen-
sation of physically “being there” through the virtual environment, such that the 
virtual environment can reproduce the experience of the user in the real environ-
ment.

In our study, we inserted the WTs of the different powers investigated by pho-
tomontage in the spherical photos simulating a distance from the observer from a 
minimum of 1.1 to a maximum of 6 km. At this level, WTs visually dominated the 
space because of their height, which occupies an important amount of space. They 
are attractive without moving blades. However, at these distances, the acoustic im-
pact is negligible even for the turbines with the greatest power among those con-
sidered in this study (Rogers et al., 2006). For these reasons, only the visual impact 
must be considered, and therefore, this is different from that of previous studies. 
VR was used without acoustic simulation.

The eye-tracking allows the detection of the direction of the gaze of the in-
dividual who observes a landscape. When observing visual scenes, the resulting 
eye movements are not simply a set of random fixations. Instead, the fixations ex-
hibit a specific pattern according to a specific strategy embedded in the human 
nervous system (Dupont et al., 2016). When observing images, attention will be al-
located only to a limited part of the image. Two main aspects influence how atten-
tion is distributed: the content of the scene (bottom-up, low-level process) and the 
cognitive characteristics of the observer top-down, high-level process (Rajashekar 
and van der Linde, 2008). The fast bottom-up mechanism is always operating – al-
though stronger in free-viewing situations – the top-down mechanism predomi-
nantly comes into effect when performing tasks; for example, answering a ques-

Table 1. Technical data on the WTs used in the evaluation models.

Power Model Height of pole 
(m)

Rotor diameter 
(m)

60 kW GHRE POWER FD25-60 30/36 25

200 kW SEI NW 200/29 40/50 29

1000 kW GHRE POWER GW 93-1000 75/85 93
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tionnaire (Borji et al., 2013). In the particular case of landscapes, the bottom-up 
processes will mainly drive the observation because people usually observe scenes 
freely and without a task in mind (Dupont et al., 2016). Consequently, the distri-
bution of fixations will be primarily guided by the content of the visual stimulus. 
This technique might be useful in landscape planning, architecture, and design, 
and in particular, in visual impact assessments of new projects; for example, esti-
mating how well different wind energy facilities are visually integrated into the 
surrounding landscape. Fixation times aggregated for a type of content, such as 
WTs, can be used as an indicator of the amount of cognitive processing related to 
that type of content (Duchowsky, 2007). 

The preparation of the stimuli to be evaluated through VR and eye-tracking 
was divided into the following phases. First, six locations corresponding to high-
value cultural landscapes were identified through the map of Flickr photo den-
sity. On these points, we downloaded the 360° spherical images from the Google 
Street View database. These images could be played in VR through a VR headset. 
The 360° spherical images have a spherical projection covering 360° in the hori-
zontal and nearly 180° degrees in the vertical field of view. For this reason, the 
size of a WT in image pixels is given by its visual angle defined by the arctangent 
of the height of the turbine according to the distance from the observer. Thus, for 
a spherical image with a height of H pixels and an angle measured in degrees, the 
apparent height of the turbine measured in pixels was calculated with the follow-
ing equation (1):

 (1)

Applying this method 12 photomontages of spherical photos were constructed 
(Table 2). The visual stimulus of the single WT and the wind power facility was 
created using the Unity 3D software. Each stimulus consisted of a sequence of six 
photomontages as shown in Table 2.

Eye-tracking was performed running Pupil Labs open source eye-tracking 
software, which captures pupil dilation. This software works with the Pupil Labs 
eye-tracking hardware integrated into the HTC Vive head-mounted display (Fig-
ure 3).

In the first run, the participants were asked to look at the six landscapes with-
out a task. This bottom-up perception enabled an unbiased exploration of the 
landscape without directing the attention of the participants to specific elements. 
At the end of the vision of each 360° image, the participants answered the follow-
ing questions:
1. In this landscape there are WTs, could you see them? Yes/No.
2. If yes, did they disturb you? Yes/No.
Finally, at the end of the stimulus, this last question was asked:
3. Is landscape protection or renewable energy production more important? Rat-

ing scale from 1 = landscape preservation up 5 = renewable energy.
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2.4. The trade-off from landscape and wind energy production as a multiple objective deci-
sion problem

A conflict between wind energy production and conservation of cultural land-
scapes occurs if areas of high-visual value are suitable for the production of wind 
energy. The trade-offs between green energy production and landscape conserva-
tion can be analyzed and solved through a multi-objective approach. For each ter-
ritorial location (pixel of a raster map) it is necessary to identify the energy techni-
cal alternative that maximizes the production of territorial energy and minimizes 
the impact on the landscape. The general form of this problem is shown in the 
following equation:

 (2)

where i={1,2,…n} territorial location (pixels of a raster map); j={60kW1WT;60k
W6WTs;200kW1WT;200kW6WTs;1MW1WT;1MW6WTs} are technical alternatives 
to wind energy facilities; GrEn(i,j) is the environmental (positive) impact derived 
from the use of renewable energy in location i and for the wind energy facility 
j; ImpLand(i,j) is the landscape (negative) impact; WGrEn and WImpLand are, respec-

Table 2. Stimulus data.

Observation point 
(Goggle Street 
View location)

WT power Cluster Angle of view 
(degrees) Stimulus

1 60 kW 1 0.55 2

2.42 1

2 60 kW 1 0.44 1

6 7.92 2

3 60 kW 6 2.97 2

4.29 1

4 1 MW 1 1.54 1

6.49 2

5 1 MW 1 1.21 2

6 21.6 1

6 1 MW 6 8.14 1

11.66 2
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tively, weights representing the social benefit derived from renewable energy and 
landscape conservation; Probi,j(┤) is the (┤) probability that people felt disturbed 
in location i when viewing the wind energy facility j; AvCO2(i,j) are the tons of net 
CO2 avoided per year in location i for the j-th facility.

Figure 3. Pupil Labs eye tracker for HTC VIVE.
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As an indicator of the environmental impact of wind energy production using 
WTs, the amount of net CO2 avoided was chosen. The net annualized emissions 
in the life cycle of the WT was calculated according to the method proposed by 
Smoucha et al. (2016). Formally:

 (3)

where WindCO2(j,i) it is the annual CO2 avoided through the production of wind 
energy using WT j; LCycCO2(j) is the CO2 output during the life cycle of the WT; 
lifespan(j) is the WT lifespan. The CO2 avoided the production of wind energy 
WindCO2(i,j) depends from the power of the turbine j, WTPower(j), from the full-
load hours in the location i, H(i) and from the coefficient of the emission of tons of 
CO2 emitted per MW of energy produced using fossil fuels I:

WindCO2(i,j) = WTPower(j) · H(i) · I (4)

Considering that the most used fossil energy source for the production of elec-
tricity in Tuscany is gas, we was set as I = 0.490 t/MW. Finally, the index was nor-
malized in the interval [0,1]:

 (5)

The landscape impact index was derived from two sub-indices, the first was 
related to the perception of the wind energy plant and the second to the value of 
the cultural landscape in which the plant was perceived. 

The perceptibility index used was the time to the first fixation derived from 
the eye-tracking experiment. The time to the first fixation indicated the amount 
of time taken by an interviewee (or all respondents on average) to look at a spe-
cific disturbance element from the beginning of the stimulus. Therefore, the time 
to the first fixation could be a suitable measure to study the disturbance by land-
scape elements, such as WTs. The time to the first fixation is a basic metric but 
valuable in eye monitoring and can provide information on how some aspects of 
a visual scene are prioritized (Noland et al., 2017). The time to the first fixation 
was therefore considered as inversely proportional to the (negative) impact of the 
wind energy system. To calculate the time to first fixation (TTFF(i,j)) for each loca-
tion i and every alternative j, we used the following method. We first calculated 
the non-dimensional visual impact index, NI (j) of each wind energy facility j. NI 
was defined as the ratio of the two visual angles (see Rodrigues et al., 2010; Minelli 
et al., 2014):

 (6)
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where Afov is the angle of the human vertical field of view (approximately 135°). 
Aobj is calculated as the perceived angle subtended by WT(j):

 (7)

where E(i) is the elevation of the location i; E(l) is the elevation of the near-
est high-landscape-value location l, as calculated from the map of the density of 
points of shared photos on Flickr; D(i,l) is the distance from l to i; nWT(j) is the 
number of WTs (1 or 6) in alternative j. Finally, we calculated the relationship be-
tween NI (i, j) and TTFF (i, j) based on the data collected through the eye-tracking 
survey using a log-log regression:

TTFF(i,j) = a · NI(i,j)-b (8)

The second index was calculated through the Flickr points intervisibility 
map. We constructed a dimensionless indicator [0,1] based on the hypothesis 
that the locations with the maximum landscape value were those framed by at 
least 10% of the photo shooting locations shared on Flickr, according to the fol-
lowing report:

 (9)

where ImpView(i,j) is the impact indicator related to the value of the cultural land-
scape for location i and alternative j; Viewi,j is the cumulative value for viewshed 
maps; P10%(Viewi,j) are the tenth percentiles of the cumulative viewshed maps. 
Both indicators were normalized in the range [0,1]. 

Considering that the visual impact on the landscape is an objective to be mini-
mized and that the maximum suitability is obtained with the minimum impact, 
the normalization procedure was the following:

 (10)

The aggregate visual impact indicator on the landscape was calculated by the 
minimum operator:

ImpLand(i,j)=min[NTIFF(i,j),NImpView(i,j)].

The last element of the model is the constraint . The probability that a person 
feels disturbance when viewing a WT j from the location i was estimated through 



30 Iacopo Bernetti et al.

a logistic regression that correlated the (binary) results obtained from question 3 
of the questionnaire with the non-dimensional visual impact index, NI (i, j):

 (11)

The multi-objective model was solved with the weighted linear combination. 
For each alternative j, a suitability map was calculated using the following:

 (12)

The weights were calculated in proportion to the answers given to question 
2.2 of the questionnaire.

3. The study area 

The territory of the Chianti Classico (Figure 4) extends for 71,800 ha located 
between the provinces of Siena and Florence. The characteristic element of the 
Chianti agricultural landscape is the rows of vines that alternate with the olive 
groves. With over 7,200 ha of vineyards registered in the D.O.C.G. register, Chianti 
Classico is one of the most important appellations in Italy. The enhancement of 
the territory and landscape of Chianti has its origins since the sixteenth century, 
when, with the conversion of the Florentine Lordship into the Grand Duchy of 
Tuscany, banking and commercial activities went into crisis and many investments 
were directed toward strengthening the primary production. Some forms of pro-
duction still present today originated from that period (Marone and Menghini 
1991). Torquati, Giacché, and Venanzi (2015, p. 122) defined Chianti as a “Tradi-
tional Cultural Vineyard Landscape” (TCVL) because the viticulture sector is one 
of most integrated with the kind of tourism that is interested in quality-food prod-
ucts associated with a specific place of origin. Additionally, the sector, more than 
others, has responded to market changes by increasing the appeal of their prod-
ucts.

4. Results

4.1. The landscape evaluation

The geotagged photos were queried from the Flickr API using the statistical 
software program R using a buffer of 15 km beyond the margin of the study area. 
The raw database contained approximately 137,000 localizations of photos taken 
from 2005 to 2017. The pictures containing the tags “agriculture,” “rural land-
scape,” “vineyard,” “olive,” “grassland,” and related words were filtered. To avoid 
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the bias of highly active users, we only included one randomly selected photo 
per user. The final database contained 4.814 photographic points. Figure 5 shows 
the density map with the sampling points and the position of the WTs inserted 
through photomontage in the spherical photos. Additionally, in Figure 5, the maps 
of the cumulative viewshed for the two sizes of WTs are shown.

The two cumulative viewshed maps show that the most sensitive areas are sit-
uated in the southern area near the city of Siena.

4.2. Eye-tracking experiment.

The study involved seven women and eight men, aged between 19 and 39 
years (mean = 29), each was submitted to six stimuli for a total of 90 observations. 
Figure 6 shows the attention heatmap in the landscape scene. Heatmaps are visu-
alizations, which show the general distribution of gaze points. They are typically 
displayed as a color gradient overlays on the presented image or stimulus. The 
yellow, orange, red, and violet colors represent in ascending order the number of 
gaze points that were directed towards parts of the image. In the photos, the posi-
tion of the WTs is highlighted with a rectangle with blue margins. 

Figure 4. Study area.
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In general, the salient regions in all the photos are those with high contrast, 
and therefore, high information content, such as buildings in a rural landscape 
(Dupont et al., 2016) From an evolutionary point of view. These elements can be 
determined by the Prospectus Theory - Refuge formulated by Appleton (1975). The 
normal pattern of gaze in most cases is biased by the presence of WTs, especially 
those with higher visual impact. The most affected heatmaps were those character-
ized by the presence of wind energy facilities with the highest NI, and thus, con-
firmed the efficiency of this measure to evaluate the visual impact of WTs. 

The portion of the 360° image occupied by the wind energy facility# has been 
defined as area of interest (AOI) in order to calculate the TTFF metric. An AOI is a 
tool to select regions of a displayed stimulus and to extract metrics specifically for 

Figure 5. The density map and the map of the cumulative viewshed.
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those regions. Through a specific procedure in R language, we calculated the time 
between the beginning of each experiment and the first fixation on the AOI. Fig-
ure 7 shows the boxplots related to time to first fixation frequency distributions. 
The WT with smaller dimensions registered a much higher time to the first fixa-
tion, especially in the case of photos with a single WT. The 60 kW WT had an av-

Figure 6. Attention heat maps for the landscape scene.
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erage time to the first fixation of 17 s for the facility with a single WT and 12 s for 
the cluster of six WTs against approximately 5 s for both the two 1 MW wind farm 
facilities. 

Table 3 shows the results of the log-log regression between time to first fixa-
tion and NI, which will be used in the spatial evaluation model of territorial suit-
ability for wind energy production.

Despite the low correlation coefficient caused by the variability of the partici-
pants in the observation of virtual space (Rodeghero et al., 2014), the coefficients 
were highly significant and it was, therefore, possible to apply the results to the 
multi-objective model.

By analyzing the answer to question 3 of the questionnaire, it was possible to 
calculate the weights for the multi-objective model. Figure 8 shows the frequency 
distribution of the assessment of the importance of renewable energy production 
in comparison with landscape protection. As reported in the literature, Generation 
Y is sensitive to the production of green energy (Rogatka et al., 2017).

Normalizing the evaluation, we have W_GrEn=0.71and W_ImpLand=0.29.

Table 3. Log-log regression.

Estimate  Std. Error t value Pr(>|t|)

Intercept 1.20784 0.26467  4.564 1.62e-05 ***

log(FOV) -0.33486 0.07116  -4.706 9.34e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8061 on 88 degrees of freedom

Adjusted R-squared: 0.292 

F-statistic: 22.14 on 1 and 88 DF, p-value: 9.343e-06

Figure 7. Frequency distribution of time to the first fixation.
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The last parameter for the formulation of the multi-objective model was de-
rived from the results of question 2 of the questionnaire. The dependence be-
tween NI and the probability that a person felt discomfort upon seeing a WT was 
examined through a logit model estimated using the maximum likelihood. The 
model was highly significant (Table 4) and the NI coefficient was positive and sig-
nificant. The value corresponding to the 50% probability of NI = 0.155 (Figure 9).

4.3. The multiple objective model

The condition NI > 0.155 represents the constraint of the multi-objective 
model. Using the equations (6) and (7), in the study area, the four maps of the NI 
visual impact index related to the four wind energy facilities used to realize the 
stimuli of eye-tracking experiments were calculated. Table 5 shows the quartiles 
of the frequency distribution of the value of NI. The most influential facility was 
the cluster of six WTs with 1 MW of power (1 MW 6 WT), whose impact appeared 
to be incompatible with the landscape characteristics of the Chianti territory. For 
this reason, this energy facility was not included in the model. To give the model 
more flexibility, two new technical alternatives based on the 200 kW WT, shown in 
Table 1, were included. This allowed us to evaluate the transferability of the eye-
tracking survey results to different energy plant alternatives. The five wind en-
ergy facilities analyzed in the model were: single WT with 60 kw, 200 kW and 1 
MW; cluster of six WTs with 60 kW and 200 kW power.

Figure 8. Rating renewable energy vs. landscape conser-
vation.

Figure 9. Logit model.

Table 4. Logit model.

Estimate  Std. Error z value Pr(>|z|)

Intercept -2.2792 0.4244  -5.370 7.88e-08

FOV 14.5521 4.3168  3.371 0.000749

AIC: 84.384
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Table 6 shows, through frequency distributions, the trade-off between land-
scape conservation index and avoided CO2 emissions. The WTs of lower power 
(60 and 200 kW) had a negative carbon balance in unfavorable locations, but in 
the first quartile, the budgets were all in surplus. Analyzing the characteristic pa-
rameters of the CO2 frequency distribution avoided per year, the most efficient 
technical alternative was the 1 MW WT. The landscape conservation index instead 
confirmed a lower impact of the 60 kW WT. It was also interesting to note that for 
the WTs with a higher power, the 1 MW WT dominated (according to the Pareto 
rule) the 200 kW WT in the cluster of six WTs.

The suitability maps (Figure 10) show that the constraint of visual impacts 
strongly reduced the territorial suitability for the production of wind energy in 
the Chianti area, especially for the energy facilities characterized by a cluster of six 
WTs.

In the areas furthest away from locations with high-landscape value (areas 

Table 5. Frequency distribution of NI value in maps.

60 kW 1 WT 60 kW 6 WT 1 MW 1 WT 1 MW 6 WT

Minimum 0.008 0.047 0.022 0.132

First quartile 0.011 0.067 0.031 0.189

Median 0.027 0.164 0.077 0.460

Tirth quartile 0.046 0.277 0.128 0.771

Maximum 0.094 0.566 0.254 1.525

Table 6. Trade-off of avoided CO2 vs. landscape conservation.

Minimum First 
quartile Median Third 

quartile Maximum

Avoided CO2 
(t/WT/year) 60 kW 1 WT -31.55 28.96 30.06 31.30 62.97

60 kW 6 WT -189.32 173.75 180.36 187.79 377.80

200 kW 1 WT -102.18 99.53 103.20 107.33 212.89

200 kW 6 WT -613.06 597.15 619.20 643.98 1277.34

1 MW 1 WT 431.07 749.65 765.36 783.11 929.45

Landscape index
 (a dimensional index) 60 kW 1 WT 0.00 0.30 0.47 0.60 1.00

60 kW 6 WT 0.00 0.13 0.22 0.29 0.51

200 kW 1 WT 0.00 0.27 0.42 0.54 0.92

200 kW 6 WT 0.00 0.10 0.19 0.25 0.45

1 MW 1 WT 0.00 0.04 0.25 0.37 0.69
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with a high density of shooting points of photos shared on Flickr), the wind en-
ergy facility that allowed a greater avoidance of the emission of CO2 (1 MW 1 WT 
and 200 kW 6 WT) was the most suitable. Instead, the 60 kW WT, especially in the 
cluster configuration with six WTs, appeared to be the worst alternatives because 
they had a visual impact slightly lower than the 200 kW equipment; however, 
poor efficiency in CO2 balance. These evaluations are summarized in Figure 11, 
which shows the most efficient technical alternative for each territorial location.

The two most efficient solutions in the study area were the 1 MW single WT 
in the most distant areas from locations with a high-weight value and the single 
200 kW windpipe for the areas that were most sensitive to visual impact.

Figure 10. Suitability maps.
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5. Discussion and conclusions

Our study combined wind maps, visual perception models estimated by eye-
tracking experiments, and the evaluation of the value of the landscape through 

Figure 11. Optimal wind energy facilities maps.
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the density of geotagged photos shared on Flickr in a multi-objective model. With 
this model, we analyzed the trade-offs between visual impacts on the landscape 
and CO2 emissions avoided with the production of renewable energy and identi-
fied the most efficient wind energy facilities. The results obtained showed that in 
an area with typical- and high-value landscapes, single WTs with medium power 
and distant from the most sensitive places were more efficient. However, small 
turbines were not efficient, even in locations closer to sensitive landscapes.

The results confirmed the findings of recent studies by other research groups 
who used eye-tracking for landscape impact analysis (Wissen Hayek et al., 2019). 
The perception time of WTs was significantly influenced by the perceived size of 
the energy installation. Installations close to the observer and/or with large tur-
bines and/or forming wind farms with many turbines were perceived quickly and 
the enjoyment of the landscape was felt to be disturbing. The distance factor in the 
perceived visual impact of the WTs has been studied by many authors, who have 
obtained different results (Mauro, 2019). Bishop (2002) stressed how, even in clear 
air, the visual impact of WTs (50 m height; 3-blade rotor; blade 26 m long) “becomes 
minimal beyond 5–7 km.” The guidelines of the Scottish Natural Heritage (Univer-
sity of Newcastle, 2002), on the other hand, propose three specific distances for the 
recommended ‘zone of visual influence.’ It suggests a landscape dominated by WTs 
in the first kilometer of distance (the “immediate area”). The view is mainly occu-
pied by WTs and by the attractive motion of their blades in the “intermediate area” 
(between 1 and 10 km). On the other hand, the WT visual impact becomes mini-
mal only after 10 km (the “distant area”). Instead, Knies and Gräfe (2011) suggested 
threshold values quite lower. Similar to that of the Scottish Natural Heritage, they 
detected several zones of visual impact (proximity, foreground, middle distance, dis-
tant view, and far distance) for WTs with different heights (80 m, 100 m, and 150 m), 
but the proposed visual thresholds were very close to the WT for the ”distant view” 
zone (1.5 km, 2 km, and 2.8 km, respectively), whereas the upper limit of the ”far 
view” zone was between 30 km and 40 km. Values so different depend on the ex-
perimental conditions, but above all on the different dimensions of the WTs and the 
number of elements inside a wind farm. The method proposed in this paper has the 
advantage of considering these factors. For example, in a work that analyzed three 
wind energy facilities with 274, 79, and 74 WTs with a tip height of approximately 
120 m, Sullivan et al. (2012) found that under favorable viewing conditions, the facil-
ities would be unlikely to be missed by casual observers at up to 32 km and that the 
facilities could be major sources of visual contrast up to 16 km. Although the wind 
farms analyzed by these authors are very different in size from those considered in 
this work, applying the logit model of Table 4, we obtain the distance at which the 
wind facilities disturb at least 50% of the observers is approximately 30 km for the 
two wind facilities consisting of approximately 70 WTs.

In conclusion, the main result of the study was the realization of a prototype 
of a spatial decision support system that could be useful for solving the conflict 
between wind energy production and the conservation of cultural landscapes. 
The kernel of the spatial decision support system were two models of visual per-
ception of turbines based on surveys using VR and eye-tracking. Another innova-
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tive feature of this work was the use of photographs shared on social media to 
identify the most sensitive landscapes.

Although the proposed method has provided encouraging results, many fur-
ther developments will be needed. The two models that are the kernel of the 
present spatial decision support system (Table 3 and 4) will have to be estimated 
by multivariate analysis taking into consideration many factors critical for visual 
impact: landscape characteristics, and number of WTs in energy facilities, among 
others. Besides Generation Y, the sample will have to be extended to other gen-
erational groups, from Baby-boomers up to Generation z. The sample of points in 
which to conduct the simulations must be extended to include urban and natu-
ral landscapes among the study areas. Finally, the relationships between WTs and 
landscape elements (roads, ridges, and field edges, among others) will have to be 
analyzed. With these further investigations, it will be possible to provide useful in-
dications for minimizing the impact of WTs and also verify the principles of wind-
farm design (Heritage, 2009).
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