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MODEL-BUILDING AS A 
PHILOSOPHICAL METHOD*

abstract

The method of building simplified formal models of phenomena under study is widespread in 
contemporary natural and social science; much scientific progress consists in the provision of better 
models. A model-building methodology has also been used with success in analytic philosophy, for 
example by Carnap in his development of intensional semantics. Arguably, philosophers have overlooked 
how much progress their discipline has made through their failure to conceive it in model-building terms. 
By using the method more extensively, they can overcome the fragility to error inherent in the naïve 
falsificationist methodology on which many analytic philosophers rely.
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Many natural scientists aim at a distinctive kind of progress which philosophers are just 
starting to recognize as an appropriate aim for them too.
The stereotype of scientific progress is discovering a new law of nature. Such laws are meant 
to be universal generalizations about the natural world, holding without exception for all 
times and places, by some sort of necessity: nice, if you can find one. However, most natural 
science studies messy complex systems – cells, animals, planets, galaxies – which are hard to 
characterize by universal laws. What laws must hold of all tigers, for example? ‘All tigers are 
striped’ won’t do, because there are albino tigers. ‘All tigers are four-legged’ won’t do either, 
because there are three-legged tigers, and so on. ‘All tigers are animals’ is true, but doesn’t get 
us far. Although tigers obey the fundamental laws of physics, like everything else in nature, 
that won’t console a biologist who wants to say something specific about living things as 
contrasted with elementary particles and stars. If we keep watering down our initial attempts, 
we may eventually reach something exceptionless, but the danger is that it will be too weak 
and uninformative to be of much interest. This isn’t just a problem about animals. Complex 
systems of all shapes and sizes tend to be messy and unruly.
To manage the problem, scientists have revised their objectives. Instead of seeking universal 
laws about complex systems, they build simplified models of them. Occasionally these are 
physical models: water running through a sand tray to model a river eroding its banks, a 
construction of colored rods and balls to model a DNA molecule. More typically, the models 
are abstract, defined by mathematical equations which describe how a hypothetical system 
changes over time. The hypothetical system is vastly simpler than the real-life systems of 
interest, but still has a few of their key features. The strategy is to analyse the behavior of the 
hypothetical system mathematically, in the hope that it will simulate some puzzling aspects 
of the real-life systems’ behavior, and thereby cast light on them (Weisberg (2013) provides a 
good introduction to the philosophy of scientific model-building). 
For example, you might wonder why a population of predators – say, foxes – and a population 
of prey – say, rabbits – keep oscillating, though rises and falls in one do not coincide with rises 
and falls in the other. A key point is that, holding other things equal, the more foxes there 
are, the more rabbits get eaten, but the more rabbits there are, the more fox cubs survive. 
One can write down differential equations that express the rate of increase or decrease of 
each population in terms of the current number of predators and prey. They are known as 
the Lotka-Volterra model. In most ways, it is grossly over-simplified: it ignores changes in 
the vegetation the rabbits feed on, changes in the tendency of humans to hunt foxes and 
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rabbits, variations among foxes, variations among rabbits, and so on. Since such factors 
make a difference, the equations are not universal laws. Indeed, they couldn’t be, since for 
mathematical reasons the change in population is treated as continuous, even though in real-
life it changes in whole numbers: when one of 200 rabbits dies, the number goes straight down 
to 199, with no intermediate time when the number of living rabbits was 199.5. Nevertheless, 
despite all these over-simplifications, the model correctly predicts some general structural 
features of population change in predator-prey species. Much progress in natural science is 
now of this kind. Once we have a successful model, we can try building a little more real-life 
complexity back into it, step by step, but the models will always be vastly simpler than real life 
itself – otherwise they would be too complex to analyze.
Sometimes there is no workable alternative to model-building. For example, biologists wonder 
why two-sex reproduction is the norm for animals, since reproduction by three sexes or 
none is possible in principle. If you want to understand why a phenomenon doesn’t occur, 
you can’t go out and observe and measure it. Instead, a good strategy is to build hypothetical 
models of the phenomenon to see what goes ‘wrong’ with it. You might study a model where 
both two-sex reproduction and three-sex or no-sex reproduction occur, to see which does 
better, perhaps in achieving genetic variation within the species, which enables it to adapt 
evolutionarily to changes in the environment. Such models aim not to predict observed 
quantities but to explain an absence. 

Humans are a classic example of messy complex systems. In one way or another, much – 
though not all – of philosophy is about humans. Thus moral and political philosophy mainly 
concerns a good human life and a good human society. Philosophy of science concerns human 
science; philosophy of concerns human art; philosophy of language concerns human language. 
Though philosophy of art mind pays some attention to non-human animal minds, its main 
focus is on human minds, and in any case non-human animals are messy complex systems 
too. Though in principle epistemology concerns all knowledge, in practice it mainly concerns 
human knowledge. Logic and metaphysics are partial exceptions, since they tend to proceed 
at a level so fundamental that informative, precise, exceptionless laws are obtainable. For the 
rest, however, one might expect a model-building strategy to be appropriate.
That isn’t how most philosophers have seen it. Many still aim at exceptionless laws, even about 
messy complex systems – humans – for whom natural scientists have mainly abandoned that 
ambition. In that respect, philosophers have done their field a disservice, by inadvertently 
setting it up for failure. People who contrast progress in natural science with deadlock in 
philosophy often do so on the basis of a false image of natural science. Failing to appreciate 
how much scientific progress consists in building better models, they fail to ask how much 
philosophical progress consists in building better models too.
One example of progressive model-building in philosophy is epistemic logic, which advances in 
just that way. Its models are not universal laws; they involve grossly unrealistic simplifications. 
Nevertheless, they cast light on human knowledge in the manner of a scientific model.
When philosophers work with probabilities, they typically use models without emphasizing 
the fact. For instance, a simple model of uncertainty is a lottery. To make things definite, 
suppose that exactly 100,000 tickets have been sold, numbered in order; there is just 
one winner, chosen at random. Thus if you have one ticket, its probability of losing is 
99,999/100,000. Which statements about the lottery should you accept? You might decide that 
requiring 100% certainty is unreasonably demanding, and resolve to accept just statements 
with a probability of at least 95%. Immediately, there is a problem. By your rule, you accept 
the statement that the winning number is at least 5,001 (because its probability is 95%), and 
you accept the statement that the winning number is at most 95,000 (because its probability 
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is 95%), but you refuse to accept the statement that the winning number is between 5,001 and 
95,000 inclusive (because its probability is only 90%). Thus you accept each of two statements 
separately, but you refuse to accept the result of putting them together, their conjunction. 
A politician who did something like that on television in an election campaign could expect 
to get crucified. You might think that 95% was a bad choice of threshold for acceptance, 
and choose a different threshold. But a little calculation shows that the only thresholds for 
acceptance which avoid such problems, even when there are more tickets, are 0% and 100%. 
Since a threshold of 0% means accepting every statement whatsoever – total credulity – you 
are back to a threshold of 100%, the standard of certainty you already rejected as unreasonably 
demanding. Thus even such a ‘toy’ model can illustrate the difficulties of basing acceptance 
and rejection on information about probabilities.
If you think about the lottery model, you can quickly identify some of its simplifying 
assumptions. For instance, it assumes that you know exactly how many tickets have been 
sold. In practice, the organization running the lottery may not announce or even know 
how many tickets have been sold; even if they announce a number, you may give a nonzero 
probability to the hypothesis that they are mistaken or lying. Then you may also give a 
nonzero probability to the winning number being 100,001 (since more than 100,000 tickets 
may have been sold), and you may give a higher probability to the winning number being 1 
than to its being 100,000 (since fewer than 100,000 tickets may have been sold). But taking 
account of all those realistic complications is not time well spent. Thinking about the simple 
model takes one more quickly to the heart of the problem. When more complex probabilistic 
models are needed to understand more intricate problems, mathematically-minded 
epistemologists construct them too.
In philosophy of language, model-building as understood here goes back at least to Rudolf 
Carnap. An example is his theory of the meaning of modal operators, words like ‘possibly’ and 
‘necessarily’. He treated them as building up more complex sentences from simpler ones: thus 
from the sentence ‘Everything changes’ they make sentences such as ‘Possibly everything 
changes’ and ‘Necessarily everything changes’. 
Logicians had already designed precise formal languages with symbols for logical words such 
as ‘not’, ‘or’, ‘and’, ‘something’, and ‘everything’, which enable one to build up more complex 
expressions from simpler ones, without limit. We can think of them as taking expressions 
as input and delivering more complex expressions as output. For example, if you input the 
sentence ‘Everything changes’ to ‘not’, the output is the sentence ‘Not everything changes’. 
Logicians also had a framework for analyzing the meaning of such general words. To each 
expression, simple or complex, they assigned something called its extension, encoding its 
application to the world. For instance, since the word ‘red’ applies to red things and not to 
non-red ones, its extension includes the former and excludes the latter. If a sentence applies 
to the world, its extension is truth; if it doesn’t apply to the world, its extension is falsity. 
‘Not’ makes an output sentence the opposite in extension of the input sentence: if ‘Everything 
changes’ is true then ‘Not everything changes’ is false, while if ‘Everything changes’ is false 
then ‘Not everything changes’ is true. In effect, the extension of ‘not’ just swaps truth and 
falsity. ‘Or’, ‘and’, ‘something’, and ‘everything’ work similarly: they each transform the 
extension of the input into the extension of the output. Operators which do that are called 
extensional. For each expression of the language, such rules determine its extension from 
the extensions of the simple words from which it is built up. That helps explain how we 
can understand complex sentences we never previously encountered by understanding 
the familiar words of which they are made and how they are put together. In effect, such 
extensional semantics is an elementary – but very powerful – model of linguistic meaning, 
though people did not think of it like that at the time. 
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Carnap wanted to add symbols for ‘possibly’ and ‘necessarily’ to the formal language. His 
problem was that such modal operators don’t fit the previous model of meaning: they are not 
extensional. 
For suppose that ‘possibly’ is extensional. Then if I pick a sentence ‘X’ and don’t tell you what 
it is, but only whether it’s true, you should be able to work out whether ‘Possibly X’ is true. 
In one case you can do that: if I tell you that ‘X’ is true, you can work out that ‘Possibly X’ is 
true too, since actuality implies possibility. But if I tell you that ‘X’ is false, you can’t work out 
whether ‘Possibly X’ is true. I haven’t given you enough information; the answer depends on 
what ‘X’ is. For example, if ‘X’ is ‘Napoleon won at Waterloo’ (false), then ‘Possibly X’ is true: 
although Napoleon lost, he could have won. But if ‘X’ is ‘5 is more than 6’ (also false), then 
‘Possibly X’ is false too: 5 could not have been more than 6. Thus the extension of ‘X’ doesn’t 
always determine the extension of ‘Possibly X’. ‘Possibly’ is not extensional.
Similarly, suppose that ‘necessarily’ is extensional. Then you should be able to work out 
whether ‘Necessarily X’ is true. In one case you can do that: if I tell that ‘X’ is false, you 
can work out that ‘Necessarily X’ is false too, since necessity implies actuality. But if I tell 
you that ‘X’ is true, you can’t work out whether ‘Necessarily X’ is true. I haven’t given you 
enough information; the answer depends on what ‘X’ is. For example, if ‘X’ is ‘Napoleon lost 
at Waterloo’ (true), then ‘Necessarily X’ is false. But if ‘X’ is ‘6 is more than 5’ (also true), then 
‘Necessarily X’ is true too. Thus the extension of ‘X’ doesn’t always determine the extension of 
‘Necessarily X’. ‘Necessarily’ is not extensional.
Carnap solved the problem by considering not just extensions in the actual world, the way 
things are, but profiles of extensions over all possible worlds, ways things could have been. He 
borrowed the idea of possible worlds from Leibniz, though he preferred to use more linguistic 
entities, ‘state-descriptions’. He called the profiles intensions. For example, since the extension 
of ‘Napoleon lost at Waterloo’ is truth in every world in which Napoleon lost at Waterloo and 
falsity in every world in which Napoleon did not lose at Waterloo, the intension of ‘Napoleon 
lost at Waterloo’ assigns truth to each of the former worlds and falsity to each of the latter 
ones. Carnap’s crucial insight was that although the extension of the input to a modal operator 
doesn’t always determine the extension of the output, the intension of the input does always 
determine the intension of the output. He gave rules for calculating the latter in terms of 
the former. He interpreted ‘possibly’ as ‘in some possible world’ and ‘necessarily’ as ‘in every 
possible world’.
In more detail, Carnap’s rule for ‘possibly’ is that if the input is true in some possible world, 
then the output is true in every possible world, while if the input is false in every possible 
world, then the output is also false in every possible world. Thus ‘Napoleon won at Waterloo’ 
is true in some possible world, so ‘Possibly Napoleon won at Waterloo’ is true in every possible 
world. But ‘5 is more than 6’ is false in every possible world, so ‘Possibly 5 is more than 6’ is 
also false in every possible world. Thus the intension of the input determines the intension of 
the output; ‘possibly’ is intensional rather than extensional.
For ‘necessarily’, the rule is that if ‘X’ is true in every possible world, then ‘Necessarily 
X’ is also true in every possible world, whereas if ‘X’ is false in some possible world, then 
‘Necessarily X’ is false in every possible world. Thus ‘Napoleon lost at Waterloo’ is false in some 
possible world, so ‘Necessarily Napoleon lost at Waterloo’ is false in every possible world. By 
contrast, ‘6 is more than 5’ is true in every possible world, so ‘Necessarily 6 is more than 5’ is 
also true in every possible world. Thus the intension of the input determines the intension of 
the output; ‘necessarily’ is intensional rather than extensional. 
Since the rules for extensional operators like ‘not’, ‘or’, ‘and’, ‘something’, and ‘everything’ work 
for extensions in any possible world, Carnap easily adapted them to calculating intensions. The 
upshot was a complete intensional semantics for his whole formal language: every formula, 
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however complex, has an intension, determined step by step from the intensions of the simple 
constituents out of which it is composed. It’s a significantly more sophisticated model of 
meaning than extensional semantics. Through the work of Richard Montague, David Lewis, 
and many others, Carnap’s intensional semantics has massively influenced both philosophy of 
language and semantics as a branch of linguistics. Although the models have become ever more 
elaborate, they preserve the crucial move from extensions to intensions.
Carnap worked in a more model-building spirit than his predecessors. He didn’t construct 
his formal language to do mathematics in, or to reveal the hidden essence of all languages. 
He constructed a simple model language to demonstrate a way for modal operators to work. 
As we learn ever more of the extraordinary complexity underlying even the most ordinary 
conversations, philosophers of language and linguists may have to rely increasingly on a 
model-building methodology.

Models are fun. You can play with them. That’s not just an incidental side benefit; it’s what 
they are for, in both natural science and philosophy. We learn by manipulation, playing about: 
if you can’t manipulate the real thing, a good second-best is often to manipulate a model of 
it. You can fiddle with this or that component, changing it slightly to see what difference it 
makes, what varies with what. That way you come to understand more deeply how the model 
works. If the model is any good, you thereby come to understand better how the real thing 
works too. For instance, you can’t arbitrarily change how English works, to see what difference 
it makes, but you can arbitrarily change the rules of an artificial language, and calculate the 
consequences.
To be easily manipulated, a model should be defined in mathematically or logically precise and 
tractable terms. If the definition is vague, or too complicated, its consequences are unclear: 
one has to fall back on one’s prior philosophical instincts to guess how it behaves, instead 
of using the model to test those instincts. By contrast, a well-defined model allows one to 
calculate rigorously how it and variations on it behave, bypassing those prior instincts, and so 
to learn something unexpected. With a model-building methodology, rigor and playfulness go 
naturally together.
The rigor of model-building is not the rigor most philosophers are used to. Traditional 
philosophical rigor requires dismissing a claim once a counterexample to it has been given. In 
that sense, most models are born refuted, because they involve false simplifying assumptions. 
For instance, models in epistemic logic typically treat agents as logically perfect. Some 
philosophers dismiss those models accordingly. 
In physics, models of the solar system may treat a planet as a point mass, as if all its mass were 
concentrated at its center. Of course, physicists know quite well that planets are not point 
masses and do not behave exactly like them. Nevertheless, physicists do not dismiss such 
models, for they also know that much can be learned from them. By contrast, if one tried to 
write into the model a fully accurate description of the planet, with all its craters and bumps, 
the result would be too complicated to permit calculation. It takes skill to distinguish amongst 
the features of a model those which have lessons to teach us from those which are mere 
artefacts of the need to keep things simple. Philosophers are having to learn that skill.
To many philosophers, dismissing the true counterexample rather than the false 
generalization seems like a disregard for truth. It would indeed be intellectually irresponsible 
to go on believing the generalization in the face of a clear counterexample. But that’s not 
the model-building attitude. One can recognize that a generalization is both false and a key 
component of a model that points us towards genuine truths. 
If counterexamples don’t refute a model, what does? Within the model-building 
methodology, what displaces a model is a better model. Part of its superiority may be that it 
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deals more adequately with counterexamples to the old model, but it should also reproduce 
in its own way the old model’s successes. A new model with that combination of virtues may 
be very hard to find.
Model-building contrasts with the methodology of conjectures and refutations, championed 
by Karl Popper. On the crude version of his view, scientists put forward bold conjectures, 
informative universal generalizations, which can be falsified but can never be verified. A 
single negative instance, a counterexample, will falsify the generalization; no finite number 
of positive instances will verify it. Scientists do their utmost to refute it, by finding such a 
counterexample. Once it is refuted, they put forward another bold conjecture, and so on. 
One problem for such a falsificationist methodology, in both natural science and philosophy, 
is that it is error-fragile. In other words, a single mistake can have disastrous consequences. 
For suppose that we are testing a bold conjecture, and take ourselves to have found a 
counterexample. As good falsificationists, we dismiss the conjecture and go on to the next 
one. But what if the counterexample was a mistake? We are fallible; sometimes we misjudge 
single instances. In that case, the original conjecture may have been true after all. But we 
never return to it; we are too busy testing new bold conjectures. Philosophers’ reliance on 
counterexamples can be alarmingly close to crude falsificationism: once a counterexample 
is accepted, there’s no going back on it. By contrast, the model-building methodology is 
much less error-fragile, for it gives no such decisive power to a single judgment. Models are 
compared over a variety of dimensions.
None of this means that philosophy should go over entirely to a model-building methodology. 
In some areas, such as logic, we have found many true and informative universal 
generalizations. In others, good models may be too much to expect. Even where good models 
are available, as in epistemology, we may do best by using both methodologies. For if each 
independently pulls in the same direction, that’s stronger evidence that it’s the right direction. 
Such a combination of methodologies is more robust, unless they pull in opposite directions.
The potential of the model-building methodology for philosophy is only beginning to be 
explored. Its scope and limits should be clearer fifty years from now.
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