Online Appendix

Gender and race in Kamala Harris's defeat. A cross-state analysis of U.S. 2024 presidential election.

The dataset and code can be retrieved at:

- Unimi Dataverse: https://doi.org/10.13130/RD_UNIMI/VZUFWR
- Harvard Dataverse: https://doi.org/10.7910/DVN/FAG5GF

Contents

1.	Codebook	2
2.	Electoral results	3
3.	Descriptive statistics	5
4.	Alternative regression models	7
5.	Using county data	10

1. Codebook

Variable	Description	Source
Democratic pct	Pct votes received by Harris-Walz in 2024, and by Biden-Harris in 2020	Multiple official State sources (* see below)
Turnout	Pct of voting eligible population	Election Lab, University of Florida <u>https://election.lab.ufl.edu/v</u> <u>oter-turnout/</u>
Female pct	Pct Female voting age population	Census.org (for 2020 official census data; for 2024 the most recent official estimate of the American Community survey data, i.e. 2023 data)
Black pct	Pct Afro-American population	same
Hispanic pct	Pct Hispanic population	same
Population over 65 pct	Pct of population over 65 years	same
Referendum	Dummy variable taking the value of 1 in states in which a referendum on abortion was held on the same day of the presidential election, and 0 otherwise.	
Competitive states	Dummy variable taking the value of 1 in the following states in which the competition was thought to be crucial for the final results: Arizona, Georgia, Michigan, Nevada, North Carolina, Pennsylvania and Wisconsin.	
Growth	GDP growth (2023)\	Bureau of Economic Analysis <u>https://www.bea.gov/itable/r</u> egional-gdp-and-personal- income
Unemployment	Unemployment rate (2023)	Bureau of Labour Statistics <u>https://www.bls.gov/opub/g</u> eographic-profile/home.htm
Inflation	Implicit regional price deflator change (2023)	Bureau of Economic Analysis https://apps.bea.gov/itable/? ReqID=70&step=1
Income	Real per capita personal income (1000 \$)	same
Education attainment	Pct of population with college education	Census.org
Urban population pct	Pct of population living in urban areas	same

Table A.1. Variables' description

2. Electoral results

* Sources of State votes results (retrieved from Wikipedia) Alabama https://www.sos.alabama.gov/alabama-votes Alaska https://www.elections.alaska.gov/enr/ Arizona https://azsos.gov/elections/election-information/2024-election-info Arkansas https://results.enr.clarityelections.com/AR/122502/web.345435/#/summary California https://www.sos.ca.gov/elections/prior-elections/statewide-election-results/general-election-nov-5-2024/statement-vote Colorado https://www.archives.gov/electoral-college/2024 Connecticut https://ctemspublic.tgstg.net/#/home Delaware https://elections.delaware.gov/results/html/index.shtml?dc=report&electionId=GE2024 District of Columbia https://electionresults.dcboe.org/election_results/2024-General-Election Florida https://floridaelectionwatch.gov/FederalOffices/President Georgia https://results.sos.ga.gov/results/public/Georgia/elections/2024NovGen Hawaii https://elections.hawaii.gov/election-results/ Idaho https://archive.voteidaho.gov/results/2024/general/ Illinois https://www.archives.gov/files/electoral-college/2024/ascertainment-illinois.pdf Indiana https://www.archives.gov/files/electoral-college/2024/ascertainment-indiana.pdf Iowa https://electionresults.iowa.gov/IA/122322/web.345435/#/summary Kansas https://sos.ks.gov/elections/election-results.html Kentucky https://www.archives.gov/files/electoral-college/2024/ascertainment-kentucky.pdf Louisiana https://voterportal.sos.la.gov/graphical Maine https://www.archives.gov/files/electoral-college/2024/ascertainment-maine.pdf Maryland https://elections.maryland.gov/elections/2024/general_Results/gen_results_2024_1.html Massachusetts https://electionstats.state.ma.us/elections/view/165300/ Michigan https://mvic.sos.state.mi.us/votehistory/Index?type=C&electionDate=11-5-2024 Minnesota https://www.archives.gov/files/electoral-college/2024/ascertainment-minnesota.pdf Mississippi https://www.sos.ms.gov/elections-voting/2024-general-election Missouri https://enr.sos.mo.gov/ Montana https://www.archives.gov/files/electoral-college/2024/ascertainment-montana.pdf Nebraska https://sos.nebraska.gov/2024-elections Nevada https://silverstateelection.nv.gov/USPresidential/ New Hampshire https://www.sos.nh.gov/2024-general-election-results New Jersey https://www.nj.gov/state/elections/election-information-2024.shtml New Mexico https://www.archives.gov/files/electoral-college/2024/ascertainment-new-mexico.pdf New York https://elections.ny.gov/election-results

North Carolina https://s3.amazonaws.com/dl.ncsbe.gov/State_Board_Meeting_Docs/2024-11-26/Canvass/State_Composite_Abstract_Report-Contest.pdf
North Dakota https://results.sos.nd.gov/ResultsSW.aspx?text=All&type=SW↦=CTY
Ohio https://www.ohiosos.gov/elections/election-results-and-data/2024-official-election-results/
Oklahoma https://www.archives.gov/files/electoral-college/2024/ascertainment-oklahoma.pdf
Oregon https://sos.oregon.gov/elections/Pages/electionhistory.aspx
Pennsylvania https://www.archives.gov/files/electoral-college/2024/ascertainment-pennsylvania.pdf
Rhode Island https://www.ri.gov/election/results/2024/general_election/
South Carolina https://www.enr-scvotes.org/SC/122436/web.345435/#/summary
South Dakota https://sdsos.gov/elections-voting/upcoming-elections/general-information/default.aspx
Tennessee https://sos.tn.gov/elections/results#2024
Texas https://results.texas-election.com/races
Utah https://electionresults.utah.gov/results/public/utah/elections/general11052024
Vermont https://electionresults.vermont.gov/#/federal
Virginia https://enr.elections.virginia.gov/results/public/Virginia/elections/2024NovemberGeneral
Washington https://www.sos.wa.gov/sites/default/files/2024-12/ 12/Official%20Canvass%20of%20the%20Returns%20G2024_%20Certification%2012%2004%202024.pdf
West Virginia https://www.archives.gov/files/electoral-college/2024/ascertainment-west-virginia.pdf
Wisconsin https://elections.wi.gov/election-result/2024-general-election-results
Wyoming https://sos.wyo.gov/Elections/Docs/2024/2024GeneralResults.aspx

3. Descriptive statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
Democrats ticket pct 2024	51	46.49	11.61	25.84	90.28
Democrats vote change 2024-2020	51	-2.14	1.31	-5.36	0.16
Turnout 2024	51	64.93	6.16	50.27	76.64
Change in turnout 2024-2020	51	-2.12	1.94	-6.77	1.60
Female pct	51	50.96	1.12	47.20	53.60
Black pct	51	10.73	9.93	0.40	40.90
Hispanic pct	51	13.24	10.21	2.10	48.60
Referendum	51	0.20	0.40	0	1
Competitive states	51	0.14	0.35	0.00	1.00
Growth GDP	51	3.06	1.81	0.23	7.79
Unemployment	51	3.37	0.75	1.80	5.00
Regional price deflator	51	3.42	1.42	-0.70	6.09
Real income per capita (1000 \$)	51	58.43	6.67	47.24	80.06
Population over 65 pct	51	18.19	2.17	12.20	22.90
Education attainment	51	34.98	7.16	24.12	63.05
Urban population pct	51	72.98	15.16	35.12	100.00

Table A.2. Descriptive statistics of the main variables used

Figure 1. Change in support for the Democratic ticket

Figure 2. Distribution of turnout levels in 2020 and 2024.

4. Alternative regression models

Instead of controlling for turnout *levels*, it could alternatively be possible to control for turnout *change*. As demonstrated by the models in Table A.3, there are absolutely no differences in the results of the covariates of interest, and also of most other control variables.

	(1)	(2)	(3)
	Change in	Change in	Change in
	Dem pct	Dem pct	Dem pct
Female VAP pct	-0.43***		0.15
_	(0.14)		(0.30)
Black pct		-0.03**	-0.04
		(0.01)	(0.04)
Hispanic pct		-0.06***	-0.07**
		(0.02)	(0.03)
Referendum	-0.49		-0.03
	(0.42)		(0.42)
Competitive states	-0.04	0.54	1.15*
	(0.48)	(0.45)	(0.60)
Change in turnout	0.25**	0.10	0.06
	(0.12)	(0.11)	(0.11)
Growth			0.22**
			(0.10)
Unemployment			-0.24
			(0.24)
Inflation			-0.07
			(0.14)
Income pc (1000 \$)			0.01
			(0.02)
Population over 65 pct			-0.24*
			(0.12)
Education attainment			-0.01
			(0.03)
Urban population pct			-0.00
			(0.02)
Constant	20.23***	-0.91***	-3.80
	(7.37)	(0.32)	(13.99)
Observations	51	51	51
R-squared	0.26	0.32	0.55

Table A.3. Alternative specifications compared to Tables 4-5-6 (using change in turnout)

Robust standard errors are in parentheses *** p < .01, ** p < .05, * p < .10

We further included in the right hand-side of the equation a dummy variable for the District of Columbia, suspecting it could be an extreme case having some leverage on our results, and replicated all the original analyses reported in Tables 4, 5 and 6. The variable is often statistically significant, but it never affects our main results.

	(1)	(2)	(3)
	Change in	Change in	Change in
	Dem pct	Dem pct	Dem pct
Female VAP pct	-0.46***	-0.49***	-0.48***
_	(0.14)	(0.15)	(0.14)
District of Columbia	1.51***	1.61***	1.58***
	(0.47)	(0.45)	(0.46)
Referendum		-0.50	-0.53
		(0.49)	(0.47)
Competitive states		0.76*	0.58
		(0.41)	(0.43)
Turnout			0.03
			(0.03)
Constant	21.25***	22.95***	20.28**
	(7.32)	(7.39)	(7.99)
Observations	51	51	51
R-squared	0.14	0.20	0.21

Table A.4. Gender and change in support for the Democratic party

Robust standard errors in parentheses *** p < .01, ** p < .05, * p < .10

	(1)	(2)	(3)	(4)	(5)
	Change in				
	Dem pct				
Black pct	-0.03*	-0.03*			-0.04***
	(0.02)	(0.02)			(0.02)
Hispanic pct			-0.06***	-0.06***	-0.06***
			(0.02)	(0.02)	(0.02)
District of Columbia	1.19**	1.35**	0.20	0.31	1.66***
	(0.54)	(0.51)	(0.16)	(0.19)	(0.46)
Competitive states		0.57		0.66*	0.93**
		(0.45)		(0.36)	(0.39)
Turnout		0.03		0.02	0.00
		(0.03)		(0.03)	(0.03)
Constant	-1.84***	-3.68*	-1.38***	-2.45	-1.05
	(0.25)	(1.95)	(0.23)	(1.91)	(2.03)
Observations	51	51	51	51	51
R-squared	0.04	0.09	0.21	0.25	0.33

Table A.5 Race and change in support for the Democratic party

Robust standard errors in parentheses *** p < .01, ** p < .05, * p < .10

	(1)	(2)	(3)
	Change in	Change in	Change in
	Dem pct	Dem pct	Dem pct
Female VAP pct	-0.48*	-0.11	0.23
	(0.25)	(0.24)	(0.23)
Black pct	0.00	-0.02	-0.06*
	(0.03)	(0.02)	(0.03)
Hispanic pct	-0.06***	-0.06***	-0.07**
	(0.02)	(0.02)	(0.03)
District of Columbia	1.54***	2.33***	3.64**
	(0.42)	(0.63)	(1.34)
Competitive states	0.81**	1.03**	0.90*
	(0.38)	(0.41)	(0.48)
Turnout	0.01	0.02	0.07**
	(0.03)	(0.03)	(0.03)
Referendum	-0.24	-0.31	0.05
	(0.43)	(0.40)	(0.37)
Growth		0.29***	0.25**
		(0.10)	(0.11)
Unemployment		-0.28	-0.41
		(0.28)	(0.24)
Inflation		0.06	-0.14
		(0.10)	(0.14)
Income pc (1000 \$)			-0.01
			(0.03)
Population over 65 pct			-0.24*
			(0.12)
Education attainment			-0.08**
			(0.04)
Urban population pct			0.01
			(0.02)
Constant	22.17*	2.60	-8.41
	(12.75)	(13.07)	(10.09)
Observations	51	51	51
R-squared	0.39	0.52	0.62

Table A.6. Gender, race and other controls on the change in Democratic vote

Robust standard errors in parentheses *** p<.01, ** p<.05, * p<.10

5. Using county data

In the following tables we employ county electoral results instead of state results. Since there have been some redistricting in 3 states between 2020 and 2024 – Alaska, Connecticut and District of Columbia – we have been unable to include the corresponding counties do the impossibility of computing consistent differences in the results between the two elections.

	(1)	(2)	(3)
	Change in	Change in	Change in
	Dem pct	Dem pct	Dem pct
Female VAP pct	-0.35**		0.30
*	(0.14)		(0.26)
Black pct		-0.03***	-0.07***
_		(0.01)	(0.02)
Hispanic pct		-0.03***	-0.08***
		(0.01)	(0.01)
Referendum	0.12		0.36
	(0.35)		(0.24)
Competitive states	0.63**	0.67**	1.25***
	(0.29)	(0.29)	(0.26)
Turnout	0.01	-0.00	-0.02
	(0.02)	(0.02)	(0.03)
Growth			0.11*
			(0.07)
Unemployment			-0.24
			(0.19)
Inflation			-0.29***
			(0.10)
Income pc (1000 \$)			0.00
			(0.03)
Population over 65 pct			-0.24***
			(0.05)
Education attainment			-0.01
			(0.03)
Urban population pct			0.03**
			(0.01)
Constant	15.58*	-0.84	-10.31
	(7.86)	(1.45)	(14.61)
Observations/states	3103/48	3103/48	3103/48
R-squared	0.05	0.07	0.16

Table A.7. Replicating Tables 4-5-6 using county data (clustered s.e.)

State-clustered standard errors in parentheses *** p<.01, ** p<.05, * p<.10

County data would be preferable for this kind of analyses, but unfortunately only electoral results are available with this granularity at this stage. For this reason, we had to match those data with state

level data for all other covariates, which is clearly suboptimal, and are here presented only as supplementary analyses.

	(1)	(2)	(3)
	Change in	Change in	Change in
	Dem pct	Dem pct	Dem pct
Female VAP pct	-0.33**		0.31
× ×	(0.12)		(0.22)
Black pct		-0.03***	-0.07***
-		(0.01)	(0.02)
Hispanic pct		-0.02**	-0.07***
		(0.01)	(0.01)
Referendum	0.15		0.39*
	(0.29)		(0.23)
Competitive states	-0.07	0.12	0.77***
_	(0.39)	(0.36)	(0.28)
Change in turnout	0.24**	0.17*	0.10
	(0.10)	(0.10)	(0.07)
Growth			0.12*
			(0.06)
Unemployment			-0.11
			(0.18)
Inflation			-0.28***
			(0.10)
Income pc (1000 \$)			0.01
			(0.03)
Population over 65 pct			-0.24***
			(0.05)
Education attainment			-0.02
			(0.02)
Urban population pct			0.03***
			(0.01)
Constant	15.48**	-0.64**	-12.12
	(6.34)	(0.28)	(12.12)
Observations/states	3103/48	3103/48	3103/48
R-squared	0.08	0.08	0.17

Table A.8. Replication of Table A.7 but with change in turnout (clustered s.e.)

State-clustered standard errors in parentheses *** p<.01, ** p<.05, * p<.10

Using level of turnout, as in Table A.7, or change in turnout, as in Table A.8, as control variables, does not make any difference in the results. These analyses, confirm the cross-state results presented in the article with gender being irrelevant for the change in support for the Democratic ticket, and the size of the Hispanic community being negatively associated with that electoral result. The only difference is that, using county results, also the size of the African American community matters, and is negatively associated with the electoral performance of Kamala Harris, thus supporting our second hypothesis.

term Change in Dem pct 1 0.08 8) (0.28) *** -0.04 3) (0.03) *** -0.06*** 2) (0.02) ** 0.44 0) (0.30) ** 0.33 9) (0.46) (** 3)	
pctDem pct1 0.08 8) (0.28) *** -0.04 3) (0.03) *** -0.06^{***} 2) (0.02) 2^* 0.44 0) (0.30) p^* 0.33 9) (0.46) (**	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
*** -0.06*** 2) (0.02) 2* 0.44 0) (0.30) 0* 0.33 9) (0.46) (** 3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.44 0) (0.30) 0* 0.33 9) (0.46) (**	
0) (0.30) 0* 0.33 9) (0.46) ** 3)	
0* 0.33 9) (0.46) 5* 3)	
9) (0.46) ** 3)	
;* 3)	
3)	
- /	
0.18**	
(0.08)	
** 0.14*	
8) (0.08)	
2 0.14	
1) (0.22)	
** -0.16	
0) (0.10)	
2 0.01	
3) (0.03)	
-0.24***	
7) (0.07)	
6 -0.02	
3) (0.03)	
1 0.01	
1) (0.01)	
97 -0.96	
97 -0.96 91) (13.63)	
-0.96 61) (13.63) 7/48 3103/48	
97 -0.96 81) (13.63) 748 3103/48	
97 -0.96 31) (13.63) /48 3103/48 5 0.43	
$\begin{array}{ccc} 97 & -0.96 \\ 91) & (13.63) \\ 448 & 3103/48 \\ 5 & 0.43 \\ 1) & (0.11) \end{array}$	
$\begin{array}{ccc} 97 & -0.96 \\ 81) & (13.63) \\ 448 & 3103/48 \\ 5 & 0.43 \\ 1) & (0.11) \\ 4 & 2.14 \\ \end{array}$	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table A.8. Multilevel hierarchical models with county data nested within states

Instead of simply clustering the standard errors at the state level, we could specify a multilevel hierarchical analysis, with counties nested within states, and random intercepts (Table A.8). Here again, the results confirm what already found in the article regarding the role played by gender and Latinos. However, in model 1, using level of turnout amongst the control variables, the

size of the Black community is negatively associated with the vote for Kamala Harris relative to that obtained by Joe Biden in 2020, whereas it is not if we used change in turnout.