

1 **Analysing Price Dynamics in the Whisky Market: Insights into Price Explosivity and**
2 **Co-explosivity**

3 Marcin Potrykus¹, Kashif Ali², Kacper Guzewicz³

5 ¹Gdańsk University of Technology, Faculty of Management and Economics, Department of
6 Finance, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland, Email: marpotry@pg.edu.pl

7 ²University of Central Punjab, Faculty of Management Sciences, 1 - Khayaban-e-Jinnah Road,
8 Johar Town, Lahore, Pakistan, Email: kashifali@ucp.edu.pk

9 ³Gdańsk University of Technology, Faculty of Management and Economics, Department of
10 Finance, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland, Email:
11 s184339@student.pg.edu.pl

13 Correspondence concerning this article should be addressed to Marcin Potrykus, ¹Gdańsk
14 University of Technology, Faculty of Management and Economics, Department of Finance,
15 Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland, Email: marpotry@pg.edu.pl. This article
16 has been accepted for publication and undergone full peer review but has not been through the
17 copyediting, typesetting, pagination and proofreading process, which may lead to differences
18 between this version and the Version of Record.

19

20 Please cite this article as:

21 Potrykus M., Ali K., Guzewicz K. (2026), Analysing Price Dynamics in the Whisky Market:
22 Insights into Price Explosivity and Co-explosivity, **Wine Economics and Policy, Just**
23 *Accepted*.

24 DOI: 10.36253/wep-17104

25

26

27

28

29 **Abstract**

30 The dynamics of price explosivity in the whisky market are crucial for investors seeking
31 portfolio diversification, particularly during periods of global economic instability. This article
32 examines thirty-one whisky indices, grouped into three market groups (Market Performance
33 Indices, Distillery Specific Indices, Collector Specific Indices) in terms of the occurrence of
34 price explosivity periods and their co-explosivity. We use GSADF test to analyze price
35 explosivity periods by using weekly data from December 31, 2012 to March 25, 2024. We find
36 that the period most affected by price explosivity in the whisky market spans from 2016 and
37 2018. Bowmore, Springbank, Glenfarclas Family Cask, Macallan M18 and Macallan M25
38 show the highest level of price explosivity. We also confirm the strong co-explosivity effect
39 among studied index groups. However, we find that whisky market does not prone to price
40 explosivity during COVID-19 or the Russian aggression in Ukraine, unlike other markets. This
41 stability makes the whisky market a valuable source of portfolio diversification in times of
42 crisis.

43 **Keywords:** Whisky investment, price explosivity, GSADF test, co-explosivity

44 **1. Introduction**

45 Over the course of human history, mankind has dedicated itself to the production of alcohol and
46 its related products such as whisky. In the vast alcohol market, investment in whisky has entered
47 the category of alternative investment [1]. The whisky investment market falls under the
48 category of emotional investments. In recent years, the demand for whisky has increased
49 dramatically. According to the Scotch Whisky Association, the export value of Scotch Whisky
50 was worth £6.2bn in 2022 [2, 3]. In the whisky market, Scotland is considered the market leader
51 with 53 bottles every second to around 180 overseas markets. Apart from Scotland, recent years
52 have witnessed a significant rise in whisky production in other countries such as America,
53 Canada and Japan [4]. The increase in whisky production is based on three factors: the rise in
54 wealthy customers, rising demand in developing markets, and the increasing wealth of middle-
55 class customers in the Asia-Pacific region [5].

56 Importantly, the whisky market is influenced by three groups: investors, collectors and drinkers.
57 Members of each group have different motivations that influence their purchase decisions. For
58 instance, the purchase decision of an investor is mainly influenced by the amount of the future
59 expected rate of return. This should be ensured by the rarity of a given drink, which may be
60 dependent on a specific brand of a distillery. On the other hand, the motivations of collectors

61 may be related to the desire to collect all bottles from a certain distillery or a certain year [6].
62 Finally, drinkers influence the whisky market through consumption habits, tastes and trends.
63 Their preferences for specific brands, styles and flavours influence manufacturing, pricing and
64 marketing strategies. Due to data availability, this study focuses on two main groups: collectors
65 and investors. In other words, the main target groups are investors and collectors, and distillery-
66 specific indices and collector-specific indices are used to collect data. The entire analysis was
67 supplemented with a study of the condition of the broadly understood market using indices from
68 the Market Performance Indices group, which means that this text should also prove interesting
69 for researchers of investment markets and owners or managers employed in the sector related
70 to the broadly understood whisky market. This market not only employs thousands of people
71 in Scotland, but also constitutes an important part of trade in many countries around the world.
72 Thomé et al. [7] argued that the United Kingdom and Ireland are the main exporters of this
73 market, while Australia, France, Japan and Spain are the largest importers of whisky. Whereas
74 Latvia, Netherlands and Singapore fall under the re-export category. This highlights that the
75 whisky market structure is complex, thus an interesting subject of scientific research [8].

76 The whisky market is considered a less mature investment than that in the wine market.
77 Nevertheless, these market segments gain investors' attention considerably [9]. Moreover, the
78 whisky market size was valued at US \$62 billion in 2022 and is expected to reach US \$110
79 billion by 2032 [10]. Due to future growth and researcher interest, it is important to address
80 whether on the whisky market there exist periods that can be characterised as price explosivity¹.
81 In addition to answering the question of whether such periods occur in the whisky market, it
82 was also decided to analyse the connections between the examined market segments. To the
83 best of the authors' knowledge, this study advances into unexplored areas, and its findings will
84 be valuable to various market stakeholders including investors, collectors, producers and
85 investment market analysts.

86 Our main findings are as follows. First, we identify 14 indices (10 Distillery Specific Indices
87 and 4 Collector Specific Indices) that are immune to explosive price periods. Those indices,
88 when included in the portfolio, are unlikely to affect portfolio risk significantly and can be
89 treated as an interesting, safe source of portfolio diversification. Second, we indicate indices
90 that exhibit short and few periods of price explosivity. The segment solely consists of 8 indices

¹ The concept of a bubble is hard to pin down in the investment market because there is no agreement on how to identify one. To avoid this confusion, we use the term 'price explosivity' instead, which is less controversial. This term describes the rapid growth in asset prices [26].

91 from the Distillery Specific Indices group. Including these investments in a portfolio may lead
92 to short-term increases in investment risk. Third, the remaining 9 studied indices are prone to
93 frequent price increases or decreases. Eventually, including those investments in the portfolio
94 should be considered after careful risk evaluation. Additionally, we indicate that during events
95 like COVID-19 and geopolitical tensions do not trigger explosivity, establishing whisky as a
96 stable investment during instability periods. Finally, co-explosivity relationships occur,
97 particularly between certain indices, providing information regarding diversification tactics.

98 The remainder of the article is as follows. A review of the literature related to investing in the
99 whisky market is presented in the next section. Then, the data are described and the research
100 methodology dedicated to the research gap defined above is presented. The next part presents
101 the conclusions from the analysis, and the entire study is summarised in the conclusions section.

102 2. Theory

103 Research on the formation of periods of price explosivity is conducted across a wide range of
104 markets. The issue of price explosivity in capital markets, for example, has been studied in [11,
105 12, 13]. The crude oil market is another which is popular in the price explosivity field [14, 15,
106 16] as same as gold market [17, 18, 19]. Another example is house market [20, 21]. To the best
107 of the authors' knowledge, there is no article that examines the occurrence of price explosivity
108 periods on the whisky market. However, the whisky market has been the subject of research
109 across different fields, which we briefly describe below.

110 The prior literature indicates that within the alcohol segment, the whisky market ranks as the
111 second most favourable for investment purposes [22]. The prime reason for this is the higher
112 rate of return than stock or commodity markets. For instance, Moroz and Pecchioli [9] asserted
113 that the rate of return on investment in whisky was four times higher during 2015-2018 in
114 comparison with the wine market. Moreover, Borowski and Matusewicz [22], argued that the
115 values of the correlation coefficients of the whisky market were low (close to zero) compared
116 with other studied capital and commodities markets. Consequently, these features make the
117 whisky market an appropriate tool for implementing the “buy and hold” investment strategy,
118 and contribute to the increase in the effectiveness of the investment portfolio.

119 The study of Le Fur [23] highlighted the fact of an average positive rate of return in the long
120 term on this market. At the same time, this signals a significant empirical area of variability for
121 annualised returns. The author states directly that the rates of return on the whisky market
122 change dramatically from negative to positive, which may encourage speculation on this

123 market. It was the results of this study that formed the basis for assessing whether, in the light
124 of significant fluctuations in rates of return on this market, it is possible to define the existence
125 of price explosivity (possibly of a speculative origin) and their mutual relationships. Another
126 conclusion from this study concerns the zero correlation of rates of return between investments
127 in the whisky market, represented by the individual indices of this market. The study was also
128 extended to examine cointegration, which occurs to a greater extent between the studied indices
129 in the short term than in the long term. All of the above-mentioned features indicate the potential
130 value of investing in whisky from the perspective of diversifying the investment portfolio.

131 The fact is that the factors which determine the price in the whisky market are significantly
132 different from those that influence prices in traditional investment markets or other alternative
133 investment markets [4]. The author mentions the fact that the production cycle and the
134 maturation time of the drink are long as an important factor in the rising price of whisky in
135 recent years, and therefore in the significant increase in rates of return on this market. The recent
136 sudden increase in demand from developing countries cannot be completely satisfied, which
137 directly translates into an above-average price increase, which mainly concerns old whiskies.
138 Another important conclusion from this study, similar to previous works, is related to the
139 indisputable function of diversifying the investment portfolio using investments in whisky. The
140 author concludes that investment in whisky, due to its risk-return profile, can be treated as an
141 independent area of investment assets.

142 In the determination of the variables that influence the ask price of a bottle of whisky Moroz
143 and Pecchioli [24], the authors used the following features as explanatory variables in the
144 estimated models: whisky age (period given in years between the distillation date and the
145 bottling date), cask strength (equal to 1 if the whisky was bottled without diluting, and 0 in
146 other cases), non-chill filtering (equal to 1 if the whisky was non-chill filtered and 0 in other
147 cases), alcohol content. Two variables were used to describe the alcohol content: the first
148 variable was between 46% and 50%, and the second described the alcohol content above 50%.
149 Other features include the Murray Score, which determines a point assessment of whisky
150 quality on a 100-point scale, as well as a definition of the distillery and bottler variabilities.
151 Importantly, the authors showed that among the variables examined, mixed conclusions can be
152 drawn regarding the impact of the expert assessment used on the ask price. On the one hand, it
153 turned out that the Murray Score variable is not a statistically significant variable in the
154 proposed models, while on the other hand, the authors do not deny the usefulness of this
155 indicator for novice investors in the whisky market. Additionally, the need to improve the

156 Murray Score was emphasised, as well as the fact that it is possible to obtain econometric
157 models with satisfactory indicators using distillery and bottler variables, which explain the ask
158 price better than the Murray Score.

159 Pecchioli and Moroz [25] argued that in the whisky market, a collective reputation effect is
160 present, and they assume that this is true also after controlling for variables connected to the
161 distillery's reputation and the production process of the bottles. In particular, Pecchioli and
162 Moroz [25] discovered, for example, that the average age of distilleries within an appellation
163 impacts the price in a positive way. The authors conclude that their findings are proof of the
164 existence of collective reputation in the case of geographical appellations in the whisky market.
165 Moreover, the authors explain that buyers (investors) may consider collective reputation because
166 their knowledge about quality determinants is weak and it is more difficult to possess such
167 knowledge. The authors created a dataset for their research consisting of more than 83 thousand
168 sales records from nine years (2011-2019).

169 **3. Material and methods**

170 In this empirical investigation, we examine 31 indices representing price changes in the whisky
171 market, which are publicly available on the website <https://www.rarewhisky101.com/indices>.
172 The indices are grouped into three areas, defined as:

- 173 • Market Performance Indices (MPI) (abbreviations used in the rest of the work are also
174 given in brackets for this group of indices): Rare Whisky Icon 100 Index (RWI100) and
175 Vintage 50 Index (V50).
- 176 • Distillery Specific Indices (DSI): Ardbeg Index, Balvenie Index, Bowmore Index, Brora
177 Index, Bruichladdich Index, Bunnahabhain Index, Caol Ila Index, Clynelish Index,
178 Dalmore Index, Glendronach Index, Glenfarclas Index, Glenfiddich Index, Glenlivet
179 Index, Glenmorangie Index, Highland Park Index, Lagavulin Index, Laphroaig Index,
180 Macallan Index, Port Ellen OB Index, Rosebank Index, Springbank Index and Talisker
181 Index.
- 182 • Collector Specific Indices (CSI): Diageo Special Releases Index, Flora & Fauna Index,
183 Glenfarclas Family Cask Index, Manager's Dram Index, Macallan M18 Index, Macallan
184 M25 Index and Rare Malts Index.

185 Data for all indices are available on a weekly basis, with new data published every Monday.
186 The time period for all examined indices spans from December 31, 2012 to March 25, 2024,
187 corresponding to 587 measurements for each data series. It should be noted that

188 <https://www.rarewhisky101.com/indices> also provides data for 9 other indices, which were not
 189 analysed in this empirical investigation due to either having a shorter time series (Japanese 100
 190 Index, Single Grain 100 Index, Karuizawa Index, Yamazaki Index, Balvenie Tun 1401 Index,
 191 Game of Thrones Index, Hanyu Cards Index, Macallan ESC. Single Cask Index) or a different
 192 data frequency (RW Apex 1000). In line with the approach taken by [26], we drop these indices
 193 to ensure the analysis covers the longest possible time range.

194 To better illustrate the research data, Table 1 presents basic descriptive statistics for logarithmic
 195 rates of return, which were calculated on the basis of the values of the studied indices.

Table 1 Descriptive statistics of whisky indices

Descriptive statistics	Mean	Standard Deviation	Kurtosis	Skewness	Range	Minimum	Maximum
MSCI World	0.16%	2.24%	9.89	-0.77	31.33%	-15.85%	15.49%
RWI100	0.22%	1.42%	5.75	1.04	15.27%	-5.54%	9.73%
V50	0.22%	1.33%	79.92	6.41	23.65%	-4.26%	19.38%
Ardbeg	0.17%	1.90%	14.68	1.52	25.18%	-9.11%	16.07%
Balvenie	0.24%	2.39%	23.73	2.51	36.76%	-15.21%	21.55%
Bowmore	0.26%	1.55%	14.37	2.61	17.63%	-6.98%	10.65%
Brora	0.29%	2.38%	26.49	3.41	30.26%	-10.03%	20.24%
Bruichladdich	0.15%	2.38%	7.21	1.01	25.90%	-12.00%	13.90%
Bunnahabhain	0.18%	2.50%	12.94	1.57	30.81%	-11.33%	19.48%
Caol Ila	0.17%	2.74%	11.09	1.02	31.03%	-14.99%	16.05%
Clynelish	0.24%	2.69%	37.25	2.65	46.77%	-15.33%	31.44%
Dalmore	0.28%	2.22%	116.37	8.49	41.59%	-6.36%	35.23%
Glendronach	0.25%	2.01%	28.81	3.16	29.21%	-10.19%	19.01%
Glenfarclas	0.11%	2.03%	27.41	0.33	36.22%	-18.88%	17.33%
Glenfiddich	0.13%	1.33%	26.72	0.50	22.14%	-12.85%	9.29%
Glenlivet	0.09%	1.49%	18.22	2.12	19.39%	-7.62%	11.77%
Glenmorangie	0.13%	2.02%	5.95	-0.32	19.12%	-10.40%	8.71%
Highland Park	0.18%	2.02%	13.06	2.10	23.83%	-8.38%	15.45%
Lagavulin	0.15%	2.33%	5.55	0.40	21.60%	-12.08%	9.52%
Laphroaig	0.17%	1.93%	12.97	2.06	22.88%	-7.79%	15.09%
Macallan	0.21%	1.83%	16.45	2.27	22.37%	-5.82%	16.55%
Port Ellen OB.	0.16%	4.34%	55.62	-0.67	97.07%	-51.47%	45.60%
Rosebank	0.21%	3.90%	76.14	4.54	85.26%	-33.12%	52.14%
Springbank	0.29%	1.44%	15.90	3.04	16.58%	-6.96%	9.62%
Talisker	0.18%	1.98%	16.45	0.97	27.69%	-14.94%	12.75%
Diageo Special Releases	0.21%	2.26%	24.41	1.61	39.81%	-17.86%	21.94%
Flora & Fauna	0.08%	2.47%	12.93	1.12	32.42%	-13.72%	18.70%
Glenfarclas Family Cask	0.34%	2.96%	174.73	10.80	63.41%	-10.62%	52.79%

Manager's Dram	0.17%	4.40%	11.44	0.60	54.76%	-25.77%	28.99%
Macallan M18	0.31%	1.86%	6.07	1.17	19.30%	-9.31%	9.99%
Macallan M25	0.25%	1.55%	5.20	1.17	13.54%	-4.91%	8.63%
Rare Malts Index	0.21%	1.47%	21.63	2.82	19.24%	-4.60%	14.64%

Notes: This table provides details of summary statistics of 31 whisky indices and MSCI World Index, containing the information of mean, standard deviation, range, minimum, and maximum value.

196
197 Based on the data from Table 1, it can be concluded that in terms of the average logarithmic
198 rate of return, each of the examined indices was characterised by a positive average rate of
199 return ranging from 0.08% to 0.34%. In the case of investment risk, it can be stated that the
200 following indices were also characterised by high risk, measured by the standard deviation of
201 rates of return, exceeding 3 percentage points: Rosebank, Port Ellen OB, and Manager's Dram;
202 there are no indices from the Market Performance Indices group among them. The indices from
203 this group are characterised by the lowest investment risk, not exceeding 1.5 percentage points,
204 which proves the low risk on the broad whisky market. The examined indices are classified
205 similarly in terms of investment risk if the range value is considered as an indicator. Moreover,
206 Table 1 contains data on the kurtosis and skewness of the examined distributions of returns, as
207 well as the values of the minimum and maximum rates of return. For comparison purposes, we
208 also include in Table 1, in the first row, data for the MSCI World Index. The values for MSCI
209 indicate that, in general, MSCI can be described as an investment with a lower average rate of
210 return and higher investment risk, measured by standard deviation and range.

211 The periods in which the index value deviated from the fundamental value were determined
212 according to the methodology described in [19, 27, 28]. Transforming the approach described
213 in the works above for the needs of the whisky market, the value of the indices examined in this
214 article, reflecting prices on this market, can be written as follows:

$$P_t = P_t^f + B_t \quad (1)$$

215 where:

216 P_t – is the level of an analysed index at time "t" published in <https://www.rarewhisky101.com/>,

217 P_t^f – is a fundamental component, a fundamental level of an analysed index at time "t",

218 B_t – is a explosivity component, a explosivity factor in an analysed index at time "t".

220 If $B_t \neq 0$, there is a price explosivity in the whisky market represented by a certain index.
221 Moreover, if $B_t < 0$, then there is a negative explosivity in the market, and for $B_t > 0$, there is a
222 positive explosivity in the market. The price explosivity component can be expressed as
223 follows:

224
$$B_t = E_t \left[\frac{B_{t+1}}{1+r} \right] \quad (2)$$

225 This means that the occurrence of a price explosivity is possible only in period "t" if the
226 maintenance of this component at a level higher than in the given period is also assumed by
227 market participants in the next period, i.e. "t+1". The higher level of the explosivity component
228 in the period "t+1" is additionally estimated considering the discount factor equal to $1+r$, where
229 "r" is the investor's assumed rate of return.

230 In existing scientific research, several possible sources are mentioned as the reason for the
231 emergence and formation of a price explosivity component that is different from zero. These
232 include "herding behaviour" [29], attention cascades created by the media [30], over-optimism
233 or over-pessimism [31], or speculative trading [32]. The above reasons for the formation of
234 price explosivity (or price explosivity) of various origins can be diagnosed using the GSADF
235 test, i.e. Generalised Supremum Augmented Dickey-Fuller, described in the work [33]. The
236 popularity of this test for detecting periods known as price explosivity is described in [34]. The
237 author showed that the GSADF test is the dominant method of detecting price explosivity in
238 works on the commodity market after 2012. Moreover, the strengths of the GSADF test,
239 compared to its previous versions, SADF and ADF, include the detection of multiple price
240 explosivity and maintaining the power of the test for long time series [35]. The above factors
241 are the key reasons why this research methodology was chosen in this work.

242 The basic GSADF test statistic formula is given below:

243
$$GSADF(r_0) = \sup_{r_2 \in [r_0, 1], r_1 \in [0, r_2 - r_0]} ADF_{r_1}^{r_2} \quad (3)$$

244 where:

245 r_0 - the minimum length of the test window,
246 r_1 - the start of the test window,
247 r_2 - the end of the test window,
248 ADF - the value of the statistic for the Augmented Dickey-Fuller test [36].

249 If the value of the test statistic for the tested time series exceeds the value of the critical statistic,
250 which in this work was obtained using Monte Carlo simulations with the number of repetitions
251 equal to 5,000, then it can be assumed that there is at least one price explosivity in the tested
252 time series. It should be emphasised that all calculations in this work were performed using the
253 R program, and the main package that was the basis for detecting periods of price explosivity
254 was the "exuber" package [37]. Importantly, the period of price explosivity or the price
255 explosivity includes periods whose minimum duration is at least 3 analysed periods (i.e. three
256 weeks). Such a minimum period has also been previously defined, for example, in the work
257 [38].

258 After diagnosing the periods in which price explosivity occurred, a zero-one matrix was
259 prepared. The value of one was assigned to those time units for which the existence of price
260 explosivity was demonstrated based on the GSADF test, and the value of zero otherwise.
261 Indices for which the occurrence of multiple price explosivity was not confirmed were omitted
262 from this analysis. The matrix prepared in this way constituted input data for performing logistic
263 regression in order to examine co-explosivity between the examined indices. The econometric
264 model that was used to examine co-explosivity can be written as [26]:

$$265 \quad \log \left(\frac{P(Y = 1|X)}{1-P(Y = 1|X)} \right) = \beta_0 + \beta_t * X_{i,t} + \varepsilon_t \quad (4)$$

266 where:

267 Y – is a dependent variable indicating if price explosivity was detected,
268 $X_{i,t}$ – represents a set of dummy variables (the number of variables is connected with the
269 analysed group, for example, Market Performance Indices),
270 β_0 – a constant term,
271 β_i – a coefficient value,
272 ε_t – an error term.

273 An identical procedure for finding evidence of co-explosivity is used in [26, 39]. To obtain
274 models with the best fit, assessed by the McFadden R^2 statistic [40], we use the backward-
275 elimination rule for the stepwise regression method, which, for the number of explanatory
276 variables that we use, is an adequate method for our purpose [41].

277

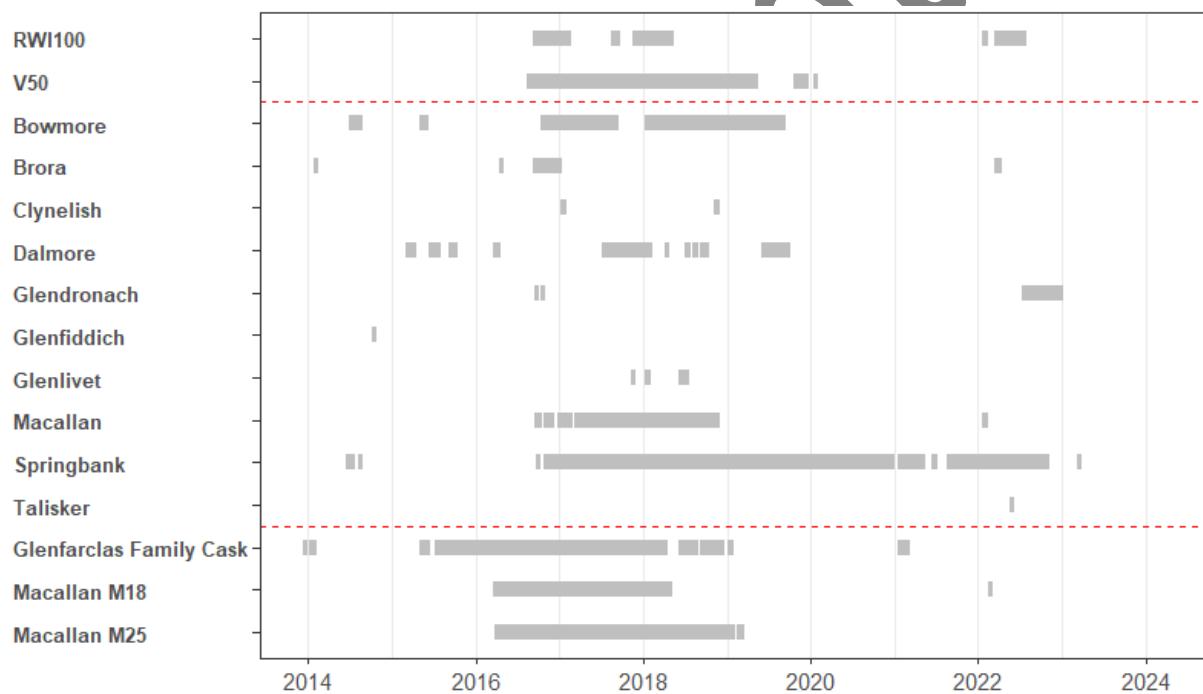
278 **4. Results and discussion**

279 **4.1. Price explosivity on whisky market – GSADF test results**

280 Based on the analysis, it was demonstrated for the 15 examined indices that there was at least
 281 one price explosivity at a level of statistical significance equal to at least $\alpha = 0.05$. For fifteen
 282 indices, no such periods were found, and for the one tested time series (Bunnahabhain), the
 283 statistical significance of the obtained result was $\alpha = 0.10$. The names of the studied indices
 284 divided into three areas, along with the statistical significance of the obtained results, are
 285 presented in Table 2.

Table 2: Price explosivity in market performance indices, distillery specific indices, and collector specific indices

Index group	1%	5%	10%	Reject	Total
Market Performance Indices	(RWI100, V50)				2
Distillery Specific Indices	(Bowmore, Clynelish, Glendronach, Macallan, Springbank, Talisker)	(Brora, Dalmore, Glenfiddich, Glenlivet)	(Bunnahabhain)	(Ardbeg, Balvenie, Bruichladdich, Caol Ila, Glenfarclas, Glenmorangie, Highland Park, Lagavulin, Laphroaig, Port Ellen OB., Rosebank)	22
Collector Specific Indices	(Glenfarclas Family Cask, Macallan M18, Macallan M25)			(Diageo Special Releases, Flora & Fauna, Manager's Dram, Rare Malts Index)	7
Total	11	4	1	15	31


Notes: This table shows the occurrence of price explosivity in the three studied groups of indices, including market performance indices, distillery specific indices, and collector specific indices.

286
 287 As shown in Table 2, for indices that belong to the area of Market Performance Indices and
 288 represent a broadly understood part of the analysed market, it can be said that there are price
 289 explosivity on the whisky market². In the case of the next two groups of indices examined, this
 290 market is heterogeneous. It was not found that the number of DSI and CSI indices was
 291 significantly larger regarding indices for which the occurrence of price explosivity was
 292 confirmed than for those indices where such a phenomenon was not observed. For the DSI
 293 indices group, the number of such indices is similar, i.e. for 10 indices, the occurrence of periods

² We present a comparative analysis of ADF, SADF, and GSADF test results for 31 indices in Appendix Table A.1. We also show a graphical analysis of price explosivity in market performance indices, distillery specific indices, and collector specific indices in Appendix B.

294 of multiple price explosivity was confirmed at a significance level of at least $\alpha = 0.05$, and for
295 12 indices from this group, such a phenomenon was not confirmed. In the CSI group, this share
296 was 3 indices and 4 indices, respectively. This is therefore a signal to investors and analysts of
297 alternative investment markets that the whisky market is diverse in terms of the occurrence of
298 price explosivity. Only for the MPI group indices can it be said that this is a market exposed to
299 price explosivity. Detailed studies containing the values of test statistics (also for the ADF and
300 SADF tests) for all tested indices along with the critical values for the GSADF test are presented
301 in Appendix A.

302 In the next part of the work, only 15 tested indices were further analysed, being those for which
303 the occurrence of multiple price explosivity periods were found at least at the level of statistical
304 significance equal to $\alpha = 0.05$. Figure 1 below shows the periods in which price explosivity
305 were found for these indices.

306
307 Figure. 1 Data-stamping procedure for indices with the occurrence of price explosivity at least
308 at $\alpha=0.05$, minimum duration = 3.

309 The results of the data-stamping procedure are shown in Figure 1. The shaded periods are those
310 indicated as periods with the occurrence of price explosivity. Additionally, there are two
311 horizontal lines on the chart that separate the studied index groups from each other, so that the
312 indices from the MPI group are placed at the top of the chart, then the DSI group in the middle
313 part of the figure and the indices from the CSI group at the bottom (Figure 1). Places that are

314 shaded on the chart may indicate irrational investing [42, 43], so according to formula (1), these
315 are periods for which the value of the explosivity component is different from zero.

316 For the indices from the Market Performance Indices group, the first diagnosed price
317 explosivity period concerns the V50 index, starting on 2016-08-08 and lasting continuously
318 until 2019-05-20, for 145 weeks. During this period, the index initially gains 89.9%, reaching
319 a peak on 2018-10-01, and then loses 2.9% of its value over the remaining period of price
320 explosivity. The second diagnosed price explosivity period for this index lasts for 9 weeks, from
321 2019-10-21 to 2019-12-23, and during this time the index finally loses 3.5%. For the second
322 analysed index from this group (RWI100), 5 periods of price explosivity, longer than three time
323 units, were finally detected. The first such period starts on 2016-09-05 and lasts for 24 weeks
324 until 2017-02-20. Two subsequent periods start in 2017, the first on 2017-08-14 lasting until
325 2017-09-25, and the second starts on 2017-11-13, but ends on 2018-05-14. Moreover, in 2022,
326 there are two periods of price explosivity for the RWI100 index, the total duration of which is
327 24 weeks. During these periods, the RWI100 index gained on average 3.4%, with the largest
328 increases during the first (9.8%) and third (8.6%) price explosivity periods. Analysing the data
329 from Figure 1, you can also see overlaps for the main whisky market indices. For 56 weeks,
330 which is 9.5% of the research period, both indices representing the main whisky market
331 experienced price explosivity at the same time. For 69.2% of the research period for these
332 indices, no price explosivity was found at the same time.

333 In the Distillery Specific Indices group, for ten indices for which the occurrence of periods of
334 price explosivity were confirmed, the Springbank index is characteristic due to the fact that the
335 occurrence of numerous periods of price explosivity was confirmed, exactly 8, with three of
336 them lasting at least 17 weeks. The longest of these periods began on October 24, 2016 and
337 lasted continuously for 219 weeks until January 4, 2021. During this period, the index achieved
338 an increase in value by 109.6%, which was the third highest result for the examined indices.
339 The two remaining long periods of price explosivity began on 2021-01-18 and on 2021-08-16.
340 Equally long, uninterrupted periods of price explosivity were also identified for the Bowmore
341 and Macallan indices. These three distilleries are characterised by the longest periods of price
342 explosivity. Figure 1 also confirms that only short (a maximum of 4 weeks) and few (a
343 maximum of two) periods of price explosivity were detected for the Clynelish, Glenfiddich and
344 Talisker indices.

345 These three indices differ significantly from the Springbank, Bowmore and Macallan indices
346 in terms of the occurrence of price explosivity. Despite these significant differences between
347 the indicated groups of indices due to the number and characteristics of price explosivity
348 periods, it should be noted that for 33.4% of the research period, price explosivity were detected
349 simultaneously for at least two indices from the DSI group. This situation also occurred for
350 22.1% and 9.9% of the research period for the simultaneous occurrence of price explosivity for
351 three and four indices, respectively. For 9 weeks (7 times in 2018 and once in 2017 and 2016),
352 price explosivity co-occurred for five indices, being the highest value obtained for the DSI
353 group.

354 In the group of Collector Specific Indices, the most homogeneous results were obtained due to
355 the occurrence and length of periods of price explosivity. In the case of the Macallan M18 and
356 Macallan M25 indices, two periods of price explosivity were diagnosed per index. For the
357 Macallan M18 index the longer period started on 2016-03-14 and lasted until 2018-05-07, for
358 112 weeks, during which it increased its value by 176.7%. For the Macallan M25 index, the
359 longer price explosivity started on 2016-03-21 and lasted for 150 weeks until 2019-02-04,
360 during which period the index change was ultimately 129.8%. The longest price explosivity
361 period for the Glenfarclas Family Cask index began on 2015-07-06 and ended after 145 weeks
362 on 2018-04-16. What is significant about this index is the record increase in its value, which
363 increased by 216.2% during this period. In this group of indices, price explosivity co-occurred
364 for at least two indices for 24.4% of the research period, and for 18.4% for 3 indices. The
365 occurrence of price explosivity, especially in the period 2016-2018, is related to the previous
366 observations of Moroz and Pecchioli [9], who also indicated this period as extremely profitable
367 for investors. Market analysts link the boom in the whisky market that started in 2015 with the
368 increasing number of collectors in east Asia, the opening of the online platform
369 Whiskyinvestdirect, and the rising numbers of new auction houses interested in the whisky
370 market [44]. The occurrence of such long periods of price explosivity is also consistent with
371 conclusions [23] about the significant variability of rates of return obtained on this market. The
372 above results are also the basis for examining the co-occurrence of price explosivity using
373 logistic regression.

374 Table 3 contains the basic descriptive characteristics for the diagnosed periods of price
375 explosivity. The following columns, containing the name of the group of examined indices and
376 the name of the index, also present the number of detected price explosivity periods, their

377 average duration, total duration in weeks, the maximum length of a single period and the % of
378 the time during which price explosivity occurred.

Table 3: Characteristics of price explosivity

Group	Index	Count	Average [Weeks]	Sum of Duration [Weeks]	Max Duration [Weeks]	% of total time
MPI	RWI100	5	16	80	26	13,6%
MPI	V50	3	52	157	145	26,7%
DSI	Bowmore	4	38	150	88	25,6%
DSI	Brora	4	7	29	18	4,9%
DSI	Clynelish	2	4	8	4	1,4%
DSI	Dalmore	10	9	91	32	15,5%
DSI	Glendronach	3	11	32	26	5,5%
DSI	Glenfiddich	1	3	3	3	0,5%
DSI	Glenlivet	3	5	14	7	2,4%
DSI	Macallan	5	23	116	91	19,8%
DSI	Springbank	8	40	317	219	54,0%
DSI	Talisker	1	3	3	3	0,5%
CSI	Glenfarclas Family Cask	8	25	197	145	33,6%
CSI	Macallan M18	2	58	115	112	19,6%
CSI	Macallan M25	2	78	155	150	26,4%

Notes: This table provides details of characteristics of price explosivity, containing the information of count, average, sum of duration, max. duration, % of total time, price explosivity lasting for at least 3 weeks.

379
380 Based on the data in Table 3, it can be concluded that the Brora, Clynelish, Glendronach,
381 Glenfiddich, Glenlivet and Talisker indices (all of which are from the DSI group) are
382 characterised by short (the maximum sum of duration for all detected periods is 32) and few
383 periods which were classified as price explosivity. The total duration of diagnosed periods of
384 price explosivity does not exceed 6% of the research period, and the average length of such a
385 period in this group does not exceed 6 weeks. These indices are therefore an interesting
386 investment for investors who allow only short-term significant price fluctuations and accept
387 moderate investment risk.

388 For the Dalmore and RWI100 indices, a significant number of periods of price explosivity were
389 recorded, but they are not long-lasting. The average duration of price explosivity for these
390 indices is 9 and 16 weeks, respectively. These indices experienced extreme fluctuations for an
391 almost identical percentage of the time observed. This value is approximately 15%.

392 Additionally, the maximum length for a single identified price explosivity is 26 (RWI100) and
393 32 (Dalmore) weeks.

394 The remaining indices, i.e. Bowmore, Glenfarclas Family Cask, Macallan, Macallan M18,
395 Macallan M25, Springbank and V50, are characterised by over or almost 20% of an occurrence
396 of periods of price explosivity in the total time of the analysed time series. The Springbank
397 index turned out to be record-breaking in this respect, for which the share exceeded 54%. What
398 these indices have in common, is the fact that, the total periods of price explosivity for these
399 indices lasted for over 115 weeks. In this set of indices, the four indices, Bowmore, Macallan
400 M18, Macallan M25, V50, are worth attention due to the fact that a small number (between 1
401 and 4) of price explosivity were observed, but for usually very long periods, with an average
402 duration exceeding 38 weeks.

403 **4.2. Co-explosivity in whisky indices**

404 In the next step of the study, the co-occurrence of diagnosed periods of price explosivity was
405 analysed using logistic regression. The construction of econometric models was carried out
406 within each of the index groups separately. This means that only data from the same group of
407 indices were used as explanatory variables for a given explanatory variable. Due to the small
408 number of considered indices, from the Market Performance Indices and Collector Specific
409 Indices groups, the results of this study are presented jointly in Table 4.

410 Table 4: Logistic regression results for market performance indices and collector specific
411 indices

	RWI100	V50	Glenfarclas Family Cask	Macallan M18	Macallan M25
RWI100		2.239 (0.268) ***			
V50		2.239 (0.268) ***			
Glenfarclas Family Cask				2.197 (0.517) ***	2.915 (0.352) ***
Macallan M18			2.197 (0.517) ***		4.384 (0.566) ***
Macallan M25			2.915 (0.352) ***	4.384 (0.566) ***	

	-2.828 (0.21) ***	-1.391 (0.111) ***	-1.9 (0.143) ***	-5.387 (0.584) ***	-3.460 (0.287) ***
const					
McFadden R ²	0.166	0.114	0.434	0.638	0.631

412 Notes: This table presents the results of co-explosivity in market performance indices and collector
 413 specific indices. The symbols "****"; "***"; **" denote statistical significance at the 0.01, 0.05 and 0.10
 414 levels, respectively.

415 The results from Table 4 constitute the basis for determining the co-occurrence of periods of
 416 price explosivity in the individual analysed index groups. The model built for the Rare Whisky
 417 Icon 100 Index (RWI100) and the Vintage 50 Index (V50) indicates the co-occurrence of the
 418 studied periods. This means that the presence of price explosivity in one index increases the
 419 probability of such periods occurring in the other index from this group. A similar relationship
 420 was also confirmed for the Collector Specific Indices group. A total of three indices were
 421 examined in this group and it turns out that for each examined index there was a higher
 422 probability of price explosivity occurring as a result of their occurrence in the other two indices
 423 from this group. All variables used as explanatory factors for both groups of indices turned out
 424 to be statistically significant, with the highest considered level of significance equal to $\alpha = 0.01$.
 425 This indicates a strong co-explosivity effect of the studied index groups.

426 Table 5 presents the results of logistic regression for the Distillery Specific Indices group. In
 427 this group, a total of ten indices were analysed for which the occurrence of price explosivity
 428 was confirmed.

429 Table 5: Results from logistic regression for distillery specific indices

	Bowmore	Brora	Dalmore	Glendronach	Glenlivet	Macallan	Springbank
Bowmore				-1.839 (0.650) ***	1.850 (0.687) ***	2.390 (0.303) ***	2.340 (0.376) ***
Brora			-2.410 (1.045) **	1.942 (0.533) ***		2.143 (0.566) ***	
Dalmore		-2.378 (1.049) **			2.194 (0.628) ***	1.856 (0.355) ***	
Glendronach	-1.481 (0.696) **	1.619 (0.537) ***					0.757 (0.403) *
Glenlivet			1.231 (0.630) *				

	2.532 ***	1.932 ***	1.951 ***			3.276 (0.736) ***
Macallan	(0.289)	(0.412)	(0.268)			
Springbank	2.293 ***			0.787 **		3.453 (0.764) ***
	(0.376)			(0.394)		
	-3.351 ***	-3.531 ***	-2.266 ***	-3.183 ***	-5.552 ***	-5.866 ***
	(0.340)	(0.289)	(0.16)	(0.307)	(0.658)	(0.772)
const						-0.576 (0.106) ***
McFadden	0.385	0.139	0.153	0.083	0.238	0.486
R2						0.250

430 Notes: This table presents the results of co-explosivity in distillery specific indices. The symbols
 431 "****", "***", **" denote statistical significance at the 0.01, 0.05 and 0.10 levels, respectively.

432 Based on the results presented in Table 5, it can be concluded that the indices that influence the
 433 occurrence of price explosivity in the largest number of other analysed data series are the
 434 Bowmore and Macallan indices. For both of these indices, price explosivity co-occurred with
 435 four other examined indices. In the case of the Bowmore index, the occurrence of price
 436 explosivity for this index increases the probability of price explosivity for the Glenlivet,
 437 Macallan and Springbank indices and at the same time, reduces the probability of such periods
 438 forming for the Glendronach index. All these relationships reached the highest significance
 439 level considered, i.e. $\alpha = 0.01$. For the Macallan index, the occurrence of a price explosivity
 440 period increases the probability of price explosivity on the Bowmore, Brora, Dalmore and
 441 Springbank indices. For the next four indices, interactions with three other indices were
 442 recorded. The first of such indices is the Glendronach index, in the case of which the occurrence
 443 of price explosivity increases the probability of price explosivity for the Brora and Springbank
 444 indices and reduces the probability for the Bowmore index. For the Springbank index, there
 445 were three interactions with other indices. In all these cases, the occurrence of price explosivity
 446 for the Springbank index increases the probability of price explosivity forming for the
 447 Bowmore, Glendronach and Macallan indices. Last two indices connected with three other
 448 indices in a case of co-explosivity are Bowmore and Brora. The most resistant indices to the
 449 co-occurrence of price explosivity with other examined indices turned out to be the Clynelish,
 450 Glenfiddich and Talisker indices. For these indices, when they were explanatory variables, no
 451 statistically significant explanatory variables were observed (except for the intercept term).
 452 These three indices also did not prove to be statistically significant explanatory variables for
 453 any of the other indices. For this reason, Table 5 does not contain columns and rows for these
 454 indices. This is primarily due to the fact that for these indices the fewest and shortest periods of

455 price explosivity were observed, which in turn made it impossible to determine the co-
456 occurrence of price explosivity with other indices.

457 **5. Conclusion**

458 This study explores the crucial dynamics of price explosivity within the whisky market, which
459 holds particular significance for investor seeking to diversify their portfolios, especially amidst
460 global economic uncertainties. It investigates thirty-one whisky indices categorized into three
461 groups, Market Performance Indices, Distillery Specific Indices, and Collector Specific Indices,
462 regarding the occurrence of periods marked by sudden price changes. We analyze these periods
463 by applying the GSDAF test on a weekly data from December 31, 2012 to March 25, 2024. Our
464 main findings for investors and collectors in the whisky market can be summarised as follows.
465 The results show that nearly half of the analyzed indices confirm the occurrence of periods
466 defined as price explosivity at a significance level of at least $\alpha = 0.05$. Using our results, we
467 divide the studied market into three segments based on price explosivity characteristics.

468 The first segment comprises indices that have not shown any period of price explosivity. Within
469 this category, there are 10 Distillery Specific Indices, which include Ardbeg, Bruichladdich,
470 Caol Ila, Glenfarclas, Glenmorangie, Highland Park, Lagavulin, Laphroaig, Port Ellen OB., and
471 Rosebank. Additionally, there are four indices from Collector Specific Indices: Diageo Special
472 Releases, Flora & Fauna, Manager's Dram, Rare Malts Index. This highlights the presence of
473 investment opportunities in the whisky market that have remained immune to sudden price
474 fluctuations. These investments, once integrated into a portfolio, are unlikely to significantly
475 impact portfolio variance or overall investment risk. In terms of absence of price explosivity,
476 whisky indices can be compared to the capital market in Canada and Japan [13], selected
477 commodities, e.g. silver, aluminium and tin [18] or bananas, cocoa and oranges [34]. However,
478 it is important to note that these results cannot be compared to, for example, a study for the
479 wine investment market, where all nine surveyed indices demonstrated the occurrence of price
480 explosivity [45].

481 The second segment comprises the indices that exhibit short and few periods of price
482 explosivity. The segment solely consists of indices from the Distillery Specific Indices group,
483 including Balvenie, Brora, Bunnahabhain, Clynelish, Glendronach, Glenfiddich, Glenlivet, and
484 Talisker. Integrating these investments from the whisky market into a portfolio may
485 consequently lead to short-term increases in investment risk. The other whisky market indices
486 exhibit price explosivity, which exceeded a minimum of 10% of the research period, up to

487 almost 55% of this time in the case of the Springbank index. Consequently, these indices yield
488 significant results, reflecting notable price increases or decreases. However, these current
489 findings align with research on investment wines, particularly regarding the percentage of time
490 exhibiting price explosivity [45, 46]. Importantly, similar to best wines where price explosivity
491 is confirmed for well-known varieties such as high-end Bordeaux wines [47], the longest
492 periods of price explosivity are currently observed for the distilleries with the largest market
493 share (Macallan, Springbank and Bowmore) or brands (Macallan M18 and Macallan M25).
494 This suggests that price explosivity is more pronounced in well-known and valued indices
495 compared to the broader market. This correlates with the investment behavior of less
496 experienced investors, who prioritize reputation when making investment decisions [25].

497 An interesting findings arises from data-stamping analysis. The main period of price explosivity
498 falls between 2016 and 2018. However, during subsequent crises like the COVID-19 outbreak
499 in 2020 and Russian aggression against Ukraine in 2022, there is no evidence of price
500 explosivity. In contrast, other investment markets, such as cryptocurrencies market [48, 49, 50],
501 crude oil prices and gold prices [51, 52], and stock markets [53], experience price explosivity
502 during these crises. This lack of price explosivity in the whisky market is a valuable insight for
503 portfolio diversification during crisis times.

504 We also analyse the co-explosivity between indices where the GSDF test procedure indicates
505 at least one statistically significant price explosivity period. Specifically, for the main indices,
506 the presence of price explosivity in the RWI100 index increases the probability of such periods
507 occurring in the V50 index, and vice versa. Similarly, within the Collector Specific Indices
508 group for Glenfarclas Family Cask, Macallan M18 and Macallan M25, the occurrence of price
509 explosivity periods in one index heightens the probability of similar events in the two other
510 indices.

511 The Bowmore and Macallan indices experience price explosivity alongside four other indices.
512 When price explosivity occur in the Bowmore index, it increases the probability of occurrence
513 in the Glenlivet, Macallan and Springbank indices, while decreases in the Glendronach index.
514 Similarly, for the Macallan index, when price explosivity occurs, it increases the probability of
515 price explosivity in the Bowmore, Brora, Dalmore and Springbank indices. However, the
516 Clynelish, Glenfiddich and Talisker indices are less affected by co-occurring price explosivity.
517 Therefore, the findings provide valuable insights to investors diversifying their portfolios. This
518 diversification can serve as a hedge during periods of economic uncertainty. Additionally,

519 considering the lack of price explosivity during crises like the COVID-19 outbreak can inform
520 decisions on portfolio diversification strategies.

521 **References**

522 [1] V. Fromentin, B. Pecchioli, D. Moroz, Time-varying causality among whisky, wine,
523 and equity markets, *Financ Res Lett.* 63 (2024) 105345.
524 <https://doi.org/10.1016/j.frl.2024.105345>.

525 [2] Facts & Figures. <https://www.scotch-whisky.org.uk/insights/facts-figures/>, 2024
526 (accessed 12 June 2024).

527 [3] G. Stewart, I. Russell, A. Anstruther, An introduction to whisk(e)y and the development
528 of Scotch whisky, in: I. Russell, G. Stewart (Eds.), *Whisky. Technology, Production and*
529 *Marketing*, second ed., Elsevier Ltd, United Kingdom, 2021, pp. 1-5.
530 <https://doi.org/10.1016/B978-0-12-822076-4.00032-2>.

531 [4] L. Tegtmeier, Does Rare Whisky Add Value in Multi-Asset Portfolios?, *J Altern*
532 *Investments.* 24 (2022) 90–109. <https://doi.org/10.3905/jai.2022.1.154>.

533 [5] I. Buxton, P.S. Hughes, The Science and Commerce of Whisky, second ed., *Royal Society*
534 *of Chemistry*, United Kingdom, 2021.

535 [6] The DCI Model. Rare Whisky 101.
536 <https://www.rarewhisky101.com/indices/insight/dci-model>, 2024 (accessed 12 June 2024).

537 [7] K.M. Thomé, V.A.L. Paiva VAL, T.C. Gois, Through the liquid sunshine: international
538 whisky market structure and competitiveness, *Compet Rev.* 32 (2022) 600–617.
539 <https://doi.org/10.1108/CR-11-2020-0140>.

540 [8] E. Le Fur, A.S. Thelisson, O. Guyottot, Wine prices in economics: A bibliometric
541 analysis, *Strateg Chang.* (2023) 1–23. <https://doi.org/10.1002/jsc.2561>.

542 [9] D. Moroz, B. Pecchioli, Transaction price vs. ask price in hedonic regressions: evidence
543 from the vintage scotch whisky market, *Appl Econ Lett.* 28 (2021) 129–132.
544 <https://doi.org/10.1080/13504851.2020.1738323>.

545 [10] Whisky Market Outlook (2022-2032). [https://www.factmr.com/report/4515/whisky-](https://www.factmr.com/report/4515/whisky-market)
546 <https://www.factmr.com/report/4515/whisky-market>, 2024 (accessed 15 April 2024).

547 [11] L. Horváth, H. Li, Z. Liu, How to identify the different phases of stock market bubbles
548 statistically?, *Financ Res Lett.* 46 (2022) 102366. <https://doi.org/10.1016/j.frl.2021.102366>.

549 [12] Q.N. Nguyen, G.A. Waters, Detecting periodically collapsing bubbles in the S&P 500,
550 *Q Rev Econ Financ.* 83 (2022) 83–91. <https://doi.org/10.1016/j.qref.2021.11.005>.

551 [13] L.H. Wu, Rational bubbles exist in the G-7 stock markets? Threshold cointegration
552 approach, *Rom J Econ Forecast.* 16 (2013) 32–43.

553 [14] A.N. Ajmi, S. Hammoudeh, K. Mokni, Detection of bubbles in WTI, brent, and Dubai
554 oil prices: A novel double recursive algorithm, *Resour Policy.* 70 (2021) 101956.
555 <https://doi.org/10.1016/j.resourpol.2020.101956>.

556 [15] K. Khan, C.W. Su, A. Khurshid, Do booms and busts identify bubbles in energy prices?,
557 *Resour Policy.* 76 (2022) 102556. <https://doi.org/10.1016/j.resourpol.2022.102556>.

558 [16] S. Sharma, D. Escobari, Identifying price bubble periods in the energy sector, *Energy*
559 *Econ.* 69 (2018) 418–429. <https://doi.org/10.1016/j.eneco.2017.12.007>.

560 [17] J. Białkowski, M.T. Bohl, P.M. Stephan, T.P. Wisniewski, The gold price in times of
561 crisis, *Int Rev Financ Anal.* 41 (2015) 329–339. <https://doi.org/10.1016/j.irfa.2014.07.001>.

562 [18] O. Ozgur, V. Yilanci, F.C. Ozbuday, Detecting speculative bubbles in metal prices:
563 Evidence from GSADF test and machine learning approaches, *Resour Policy.* 74 (2021)
564 102306. <https://doi.org/10.1016/j.resourpol.2021.102306>.

565 [19] W.F. Pan, Sentiment and asset price bubble in the precious metals markets, *Financ Res*
566 *Lett.* 26 (2018) 106–11. <https://doi.org/10.1016/j.frl.2017.12.012>.

567 [20] E. Martínez-García, V. Grossman, Explosive dynamics in house prices? An exploration
568 of financial market spillovers in housing markets around the world, *J Int Money Financ.* 101
569 (2020) 102103. <https://doi.org/https://doi.org/10.1016/j.jimfin.2019.102103>.

570 [21] X. Zhang, M. Zhu, Y. Tian, S. Zedda, Detecting house price bubbles in G7 countries:
571 New evidence and heterogeneous determinants, *Financ Res Lett.* 69 (2024) 106107.
572 <https://doi.org/https://doi.org/10.1016/j.frl.2024.106107>.

573 [22] K. Borowski, M. Matusewicz, Atrakcyjność inwestowania na rynku whisky
574 inwestycyjnej, *Stud i Pr Kol Zarządzania i Finans.* 179 (2020) 9–26.

575 <https://doi.org/10.33119/sip.2020.179.1>.

576 [23] E. Le Fur, Rare whiskies' market: new Eldorado for investors and collectors?, *Manag
577 Financ.* 49 (2023) 1596–1613. <https://doi.org/10.1108/MF-02-2023-0089>.

578 [24] D. Moroz, B. Pecchioli, Do Whisky Investors Read the Bible? The Effect of Expert
579 Ratings on the Vintage Single Malt Secondary Market, *J Wine Econ.* 16 (2021) 86–101.
580 <https://doi.org/10.1017/jwe.2020.53>.

581 [25] B. Pecchioli, D. Moroz, Do geographical appellations provide useful quality signals?
582 The case of Scotch single malt whiskies, *Econ Model.* 124 (2023) 106331.
583 <https://doi.org/10.1016/j.economod.2023.106331>.

584 [26] E. Bouri, S.J.H. Shahzad, D. Roubaud, Co-explosivity in the cryptocurrency market,
585 *Financ Res Lett.* 29 (2019) 178–183. <https://doi.org/10.1016/j.frl.2018.07.005>.

586 [27] B.T. Diba, H.I. Grossman, The Theory of Rational Bubbles in Stock Prices, *Econ J.* 98
587 (1988) 746–754. <https://doi.org/10.2307/2233912>.

588 [28] R.S. Pindyck, The Present Value Model of Rational Commodity Pricing, *Econ J.* 103
589 (1993) 511–530. <https://doi.org/10.2307/2234529>.

590 [29] I. Hasan, R. Tunaru, D. Vioto, Herding behavior and systemic risk in global stock
591 markets, *J Empir Financ.* 73 (2023) 107–133. <https://doi.org/10.1016/j.jempfin.2023.05.004>.

592 [30] Y. Li, W. Zhang, A. Urquhart, P. Wang, The role of media coverage in the bubble
593 formation: Evidence from the Bitcoin market, *J Int Financ Mark Institutions Money.* 80 (2022)
594 101629. <https://doi.org/https://doi.org/10.1016/j.intfin.2022.101629>.

595 [31] K. Abildgren, N.L. Hansen, A. Kuchler, Overoptimism and house price bubbles, *J
596 Macroecon.* 56 (2018) 1–14. <https://doi.org/10.1016/j.jmacro.2017.12.006>.

597 [32] S.M. Inoua, V.L. Smith, A classical model of speculative asset price dynamics, *J Behav
598 Exp Financ.* 37 (2023) 100780. <https://doi.org/10.1016/j.jbef.2022.100780>.

599 [33] P.C.B. Phillips, S. Shi, J. Yu, Testing for multiple bubbles: Historical episodes of
600 exuberance and collapse in the S&P 500, *Int Econ Rev.* 56 (2015) 1043–1078.
601 <https://doi.org/10.1111/iere.12132>.

602 [34] M. Potrykus, Price bubbles in commodity market – A single time series and panel data

603 analysis, *Q Rev Econ Financ.* 87 (2023) 110–117. <https://doi.org/10.1016/j.qref.2022.12.002>.

604 [35] K. Khan, C.W. Su, A.U. Rehman, Do multiple bubbles exist in coal price?, *Resour*
605 *Policy.* 73 (2021) 102232. <https://doi.org/10.1016/j.resourpol.2021.102232>.

606 [36] D.A. Dickey, W.A. Fuller, Distribution of the Estimators for Autoregressive Time
607 Series With a Unit Root, *J Am Stat Assoc.* 74 (1979) 427–431.
608 <https://doi.org/10.2307/2286348>.

609 [37] K. Vasilopoulos, E. Pavlidis, E. Martínez-García, Exuber: Recursive Right-Tailed Unit
610 Root Testing with R, *J Stat Softw.* 103 (2022) 1–26. <https://doi.org/10.18637/jss.v103.i10>.

611 [38] X.L. Etienne, S.H. Irwin, P. Garcia, Bubbles in food commodity markets: Four decades
612 of evidence, *J Int Money Financ.* 42 (2014) 129–155.
613 <https://doi.org/10.1016/j.jimonfin.2013.08.008>.

614 [39] S.J.H. Shahzad, M. Anas, E. Bouri, Price explosiveness in cryptocurrencies and Elon
615 Musk’s tweets, *Financ Res Lett.* 47 (2022) 102695. <https://doi.org/10.1016/j.frl.2022.102695>.

616 [40] D. McFadden, Conditional logit analysis of qualitative choice behaviour, *Front Econom.*
617 (1974) 105–142.

618 [41] G. Smith, Step away from stepwise, *J Big Data.* 5 (2018) 1-12.
619 <https://doi.org/10.1186/s40537-018-0143-6>.

620 [42] D. Hirshleifer, A. Subrahmanyam, S. Titman, Feedback and the success of irrational
621 investors, *J Financ Econ.* 81 (2006) 311–338. <https://doi.org/10.1016/j.jfineco.2005.05.006>.

622 [43] O. Mesly, Irrational exuberance and deception — Why markets spin out of control, *J*
623 *Behav Exp Financ.* 37 (2023) 100707. <https://doi.org/10.1016/j.jbef.2022.100707>.

624 [44] J. Kollewe, Top tipple: rare whisky outperforms wine and gold as 2015 investment.
625 <https://www.theguardian.com/lifeandstyle/2016/feb/05/whisky-2015-investment-outperforms-wine-gold-ftse-100>, 2024 (accessed 5 June 2024).

627 [45] M. Potrykus, Investing in wine, precious metals and G-7 stock markets – A co-
628 occurrence analysis for price bubbles, *Int Rev Financ Anal.* 87 (2023) 102637.
629 <https://doi.org/10.1016/j.irfa.2023.102637>.

630 [46] M. Czupryna, P. Oleksy, Rational Speculative Bubbles in the Fine Wine Investment

631 Market, Kwart Kol Ekon Stud i Pr. 3 (2015) 159–172.
632 <https://doi.org/10.33119/kkessip.2015.3.3.12>.

633 [47] B. Jovanovic, Bubbles in prices of exhaustible resources, *Int Econ Rev.* 54 (2013) 1–
634 34. <https://doi.org/10.1111/iere.12000>.

635 [48] M. Al-Shboul, A. Assaf, K. Mokni, Does economic policy uncertainty drive the
636 dynamic spillover among traditional currencies and cryptocurrencies? The role of the COVID-
637 19 pandemic, *Res Int Bus Financ.* 64 (2023) 101824.
638 <https://doi.org/10.1016/j.ribaf.2022.101824>.

639 [49] M.S.R. Chowdhury, D.S. Damianov, Uncertainty and bubbles in cryptocurrencies:
640 Evidence from newly developed uncertainty indices, *Int Rev Financ Anal.* 91 (2024) 102949.
641 <https://doi.org/10.1016/j.irfa.2023.102949>.

642 [50] M. Youssef, S.S. Waked, Herding behavior in the cryptocurrency market during
643 COVID-19 pandemic: The role of media coverage, *North Am J Econ Financ.* 62 (2022) 101752.
644 <https://doi.org/10.1016/j.najef.2022.101752>.

645 [51] C. Gharib, S. Mefteh-Wali, S.B. Jabeur, The bubble contagion effect of COVID-19
646 outbreak: Evidence from crude oil and gold markets, *Financ Res Lett.* 38 (2021) 101703.
647 <https://doi.org/10.1016/j.frl.2020.101703>.

648 [52] C. Gharib, S. Mefteh-Wali, V. Serret, S.B. Jabeur, Impact of COVID-19 pandemic on
649 crude oil prices: Evidence from Econophysics approach, *Resour Policy.* 74 (2021) 102392.
650 <https://doi.org/10.1016/j.resourpol.2021.102392>.

651 [53] E.G. Taera, B. Setiawan, A. Saleem, A.S. Wahyuni, D.K.S. Chang, R.J. Nathan, Z.
652 Lakner, The impact of Covid-19 and Russia–Ukraine war on the financial asset volatility:
653 Evidence from equity, cryptocurrency and alternative assets, *J Open Innov Technol Mark
654 Complex.* 9 (2023) 100116. <https://doi.org/10.1016/j.joitmc.2023.100116>.

655

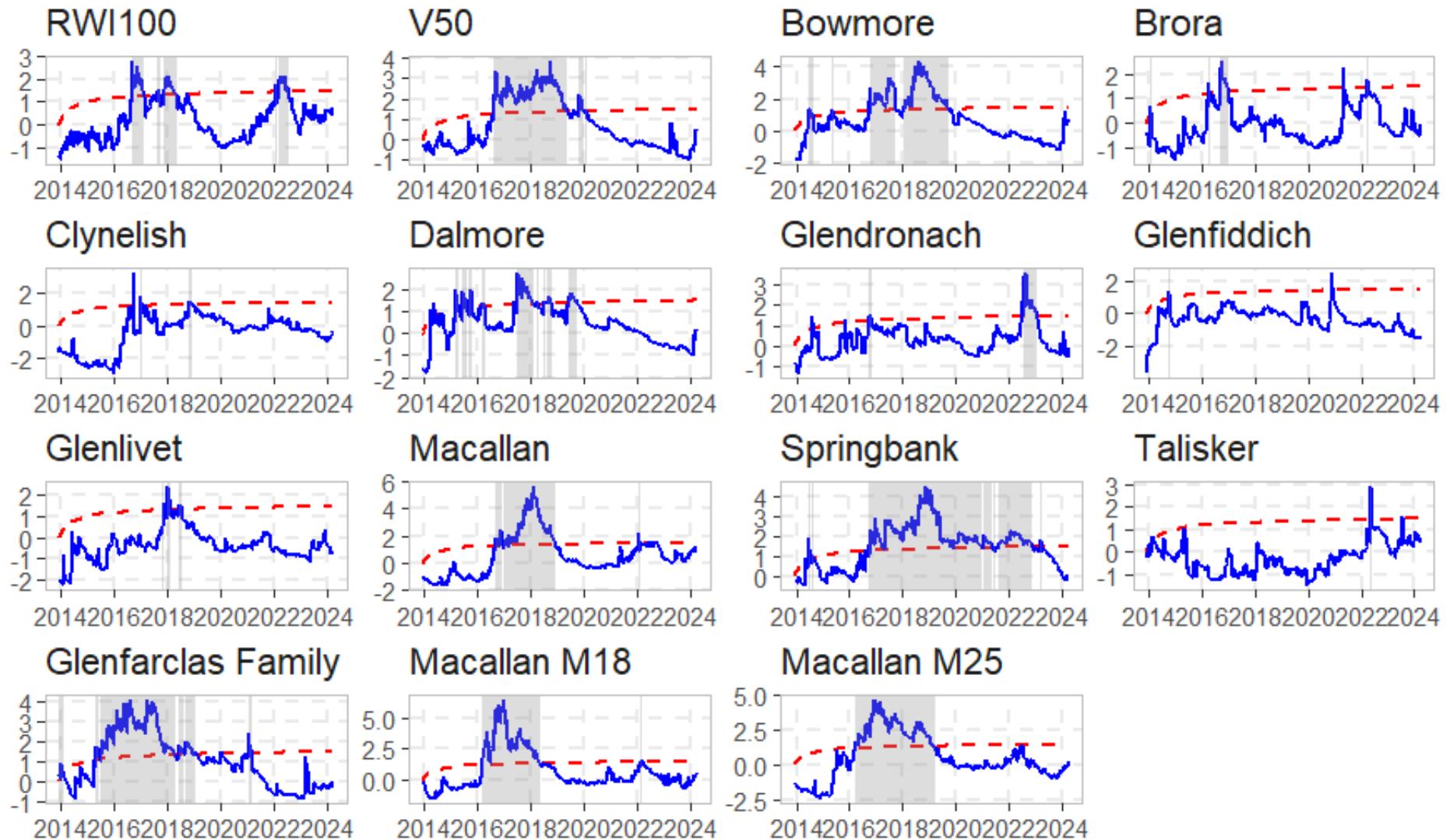
656

657

658

659 **Appendices**

660 A. ADF, SADF, and GSADF test results for 31 indices


661 Table A.1 The values of the obtained test statistics along with the significance level of the
662 obtained results

No.	Group	Index	ADF	SADF	GSADF	Significance level for GSADF
1	MPI	RWI100	-1,44	1,88	2,79	***
2	MPI	V50	-0,92	3,70	3,87	***
3	DSI	Ardbeg	-1,06	1,08	1,42	ns
4	DSI	Balvenie	-0,92	1,22	2,21	*
5	DSI	Bowmore	-1,06	4,32	4,39	***
6	DSI	Brora	-0,95	1,85	2,52	**
7	DSI	Bruichladdich	-1,52	1,33	1,58	ns
8	DSI	Bunnahabhain	-1,41	0,85	2,06	*
9	DSI	Caol Ila	-1,22	1,54	1,74	ns
10	DSI	Clynelish	-0,63	2,44	3,24	***
11	DSI	Dalmore	-0,64	2,49	2,69	**
12	DSI	Glendronach	-0,35	1,68	3,55	***
13	DSI	Glenfarclas	-1,63	1,06	1,18	ns
14	DSI	Glenfiddich	-1,93	0,28	2,41	**
15	DSI	Glenlivet	-1,28	2,31	2,41	**
16	DSI	Glenmorangie	-1,62	0,67	0,89	ns
17	DSI	Highland Park	-0,66	1,68	1,70	ns
18	DSI	Lagavulin	-1,13	1,25	1,80	ns
19	DSI	Laphroaig	-1,47	1,35	1,75	ns
20	DSI	Macallan	-0,60	5,65	5,66	***
21	DSI	Port Ellen OB.	-2,30	-0,04	0,97	ns
22	DSI	Rosebank	-1,16	1,38	1,54	ns
23	DSI	Springbank	0,59	4,45	4,45	***
24	DSI	Talisker	-0,90	1,16	2,90	***
		Diageo Special				
25	CSI	Releases	-1,09	0,48	1,29	ns
26	CSI	Flora & Fauna	-2,06	-0,54	1,70	ns
		Glenfarclas Family				
27	CSI	Cask	-1,06	4,08	4,08	***
28	CSI	Manager's Dram	-1,40	1,60	1,60	ns
29	CSI	Macallan M18	-0,84	6,49	6,49	***
30	CSI	Macallan M25	-0,97	4,39	4,68	***
31	CSI	Rare Malts Index	-1,11	1,36	1,93	ns

663 Notes: The statistical significance of the test was determined by comparing the critical values
664 for the GSADF test, which were obtained using Monte Carlo simulations with the number of
665 repetitions equal to 5,000. If the value of the test statistic for the GSADF test exceeded the value
666 of 1.996, 2.259 or 2.786, it corresponded to a significance level of 0.1, 0.05 and 0.01,
667 respectively.

A. Graphical presentation of price explosivity in market performance indices, distillery specific indices, and collector specific indices

Figure. B. 1 GSADF test results

Notes: The blue line shows the individual index, the shaded areas represent explosive episodes. The dashed line indicates the test critical value.