Vol. 19 No. 1 (2024)
Short Note

Fluorescence in amphibians and reptiles: new cases and insights

Lucas M. Botelho
Projeto Dacnis, Estrada do Rio Escuro, 4754, Sertão das Cotias, Ubatuba, São Paulo, 11680-000
Suzana E. Martins
IPBio – Instituto de Pesquisas da Biodiversidade, Reserva Betary, 18330-000, Iporanga, São Paulo
Gregory Melocco
Departamento de Ciências Farmacêuticas (Toxicologia e Fitopatologia), Farmácia, USP, 05508-000, São Paulo, São Paulo
Luís F. Toledo
Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, 13083-970, Campinas, São Paulo
Ivan Sazima
Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-863
Edelcio Muscat
Projeto Dacnis, Estrada do Rio Escuro, 4754, Sertão das Cotias, Ubatuba, São Paulo, 11680-000

Published 2024-06-21

Keywords

  • Biofluorescence,
  • Coloration,
  • Herpetofauna,
  • Natural history,
  • Ontogeny,
  • Sexual dimorphism,
  • Terrestrial vertebrates,
  • Visual communication
  • ...More
    Less

How to Cite

Botelho, L. M., Martins, S. E., Melocco, G., Toledo, L. F., Sazima, I., & Muscat, E. (2024). Fluorescence in amphibians and reptiles: new cases and insights. Acta Herpetologica, 19(1), 75–80. https://doi.org/10.36253/a_h-14922

Funding data

Abstract

Fluorescence in amphibians and reptiles has emerged as a prominent study subject in recent years, with research focused on understanding its function and diversity. As the knowledge of fluorescence in vertebrates is still understudied, we surveyed amphibian and reptile species in montane and lowland Atlantic Forest sites to evaluate presence or absence of fluorescence. By randomly sampling species, we found evidence of fluorescence in amphibians of the genera Scinax, Brachycephalus and Hylodes, and reptiles of the genera Bothrops, Enyalius and Hemidactylus. Our findings increase the list of known species that may benefit from fluorescent patterns. Fluorescence was either ocular, dermal, or subdermal related to the skeleton or ossified dermal structures. Whether these species are able to see and interpret the different the patterns generated by fluorescent structures is yet to be discovered.

Metrics

Metrics Loading ...

References

  1. Alvarez, J.A., Lewis-Deweese, P., Wilcox, J.T. (2022): Ocular biofluorescence due to ultra-violet excitation in California Red-legged and Foothill Yellow-legged Frogs, in central California, US. Sonoran Herpetol. 35: 154-156.
  2. Chaves-Acuña, W., Chaves, G., Klank, J., Arias, E., Bolanõs, F., Shepack, A., Leenders, T. et al. (2020): Recent findings of Isthmohyla pictipes (Anura: Hylidae) in Costa Rica: variation and implications for conservation. Zootaxa 4881: 499-514. DOI: https://doi.org/10.11646/zootaxa.4881.3.4
  3. Cockayne, E.A. (1924): I. The distribution of fluorescent pigments in Lepidoptera. Trans. R. Entomol. Soc. Lond. 72: 1-19. DOI: https://doi.org/10.1111/j.1365-2311.1924.tb03347.x
  4. Deschepper, P., Jonckheere, B., Matthys, J. (2018): Light in the dark: The discovery of another fluorescent frog in the Costa Rican rainforests. Wilderness Environ. Med. 1: 287-422. DOI: https://doi.org/10.1016/j.wem.2018.03.004
  5. Goutte, S., Mason, M.J., Antoniazzi, M.M., Jared, C., Merle, D., Cazes, L., Toledo, L.F. et al. (2019): Intense bone fuorescence reveals hidden patterns in pumpkin toadlets. Sci. Rep. 9: 5388. DOI: https://doi.org/10.1038/s41598-019-41959-8
  6. Gray, R.J. (2019): Biofluorescent lateral patterning on the mossy bushfrog (Philautus macroscelis): the first report of biofluorescence in a rhacophorid frog. Herpetol. Notes 12: 363-364.
  7. Haddock, S.H.D., Dunn, C.W. (2015): Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4: 1094-1104. DOI: https://doi.org/10.1242/bio.012138
  8. Hartmann, P.A., Hartmann, M.T., Giasson, L.O.M. (2003): Uso do hábitat e alimentação em juvenis de Bothrops jararaca (Serpentes, Viperidae) na Mata Atlântica do sudeste do Brasil. Phyllomedusa 2: 35-41. DOI: https://doi.org/10.11606/issn.2316-9079.v2i1p35-41
  9. Hausmann, F., Arnold, K.E., Marshal, N.J., Owens, I.P.F. (2003): Ultraviolet signals in birds are special. Proc. R. Soc. B: Ciênc. Biol. 720: 61-67. DOI: https://doi.org/10.1098/rspb.2002.2200
  10. Jeng, M.L. (2019): Biofluorescence in terrestrial animals, with emphasis on fireflies: a review and field observation. In: Bioluminescence - Analytical Applications and Basic Biology, pp. 1-25. Suzuki, H., Ed, IntechOpen, London. DOI: https://doi.org/10.5772/intechopen.86029
  11. Lagorio, M.G., Cordon, G.B., Iriel, A. (2015): Reviewing the relevance of fluorescence in biological systems. Photochem. Photobiol. Sci. 14: 1538-1559. DOI: https://doi.org/10.1039/c5pp00122f
  12. Lamb, J.Y., Davis, M.P. (2020): Salamanders and other amphibians are aglow with biofluorescence. Sci. Rep. 10: 2821. DOI: https://doi.org/10.1038/s41598-020-59528-9
  13. Macel, M., Ristorate, F., Locascio, A., Spagnuolo, A., Sordino, P., D’Aniello, S. (2020): Sea as a color palette: The ecology and evolution of fluorescence. Zool. Lett. 6: 1-11. DOI: https://doi.org/10.1186/s40851-020-00161-9
  14. Maria, M, Al-Razi, H., Borzee, A., Muzaffar, S.B. (2022): Biofluorescence in the herpetofauna of northeast Bangladesh. Herpetozoa 35: 39-44. DOI: https://doi.org/10.3897/herpetozoa.35.e76225
  15. Nunes, I., Guimarães, C.S., Moura, P.H.A.G., Pedrozo, M., Moroti, M.T., Castro, L.M., Stuginski, D.R., Muscat, E. (2021): Hidden by the name: A new fluorescent pumpkin toadlet from the Brachycephalus ephippium group (Anura: Brachycephalidae). PLoS ONE 16: e0244812. DOI: https://doi.org/10.1371/journal.pone.0244812
  16. Paul, L., Mendyk, R. (2021): Glow and behold: Biofluorescence and new insights on the tails of pitvipers (Viperidae: Crotalinae) and other snakes. Herpetol. Rev. 52: 221-237.
  17. Pinto, P.V., Conradie, W., Becker, F.S., Lobón-Rovira, J. (2021): Updated distribution of Kolekanos plumicaudus (Sauria: Gekkonidae), with some comments on its natural history. Herpetol. Notes 14: 1207-1212.
  18. Prötzel, D., Heß, M., Scherz, M.D., Schwager, M., Padje, A.V., Glaw, F. (2018): Widespread bone-based fluorescence in chameleons. Sci. Rep. 8: 698. DOI: https://doi.org/10.1038/s41598-017-19070-7
  19. Prötzel, D., Heß, M., Schwager, M., Glaw, F., Scherz, M.D. (2021): Neon-green fluorescence in the desert gecko Pachydactylus rangei caused by iridophores. Sci. Rep. 11: 297. DOI: https://doi.org/10.1038/s41598-020-79706-z
  20. Rebouças, R., Carollo, A.B., Freitas, M.O., Lambertini, C., Santos, R.M.N, Toledo, L.F. (2019): Is the conspicuous dorsal coloration of the Atlantic forest pumpkin toadlets aposematic? Salamandra 55: 39-47.
  21. Sazima, I. (1991): Caudal luring in two Neotropical pitvipers, Bothrops jararaca and Bothrops jararacussu. Copeia 1991: 245-248. DOI: https://doi.org/10.2307/1446274
  22. Sazima, I. (1992): Natural history of jararaca pitviper, Bothrops jararaca in southeastern Brazil. In: Biology of the Pitvipers, pp. 199-216. Campbell, J.A., Brodie Jr, E.D., Eds, Selva, Tyler (Texas).
  23. Sazima, I., Haddad, C.F.B. (1992): Répteis da Serra do Japi: notas sobre história natural. In: História Natural da Serra do Japi - Ecologia e preservação de uma área florestal no sudeste do Brasil, pp. 212-237. Morellato, L.P., Ed, UNICAMP, Campinas (Brasil).
  24. Sazima, I. (2006): Theatrical frogs and crafty snakes: predation of visually-signalling frogs by tail-luring and ambushing pitvipers. J. Ichthyol. Aquat. Biol. 11: 117-124.
  25. Sloggett, J.J. (2018): Field observations of putative bone-based fluorescence in a gecko. Curr. Zool. 64: 319-320. DOI: https://doi.org/10.1093/cz/zoy033
  26. Sparks, J.S., Schelly, R.C., Smith, W.L., Davis, M.P., Tchernov, D., Pieribone, V.A., Gruber, D.F. (2014): The covert world of fish biofluorescence: A phylogenetically widespread and phenotypically variable phenomenon. PLoS ONE 9: e83259. DOI: https://doi.org/10.1371/journal.pone.0083259
  27. Taboada, C., Brunetti, A.E., Pedron, F.N., Carnevale-Neto, F., Estrin, D.A., Bari, S.E., Chemes, L.B., Peporine-Lopes, N., Lagorio, M.G., Faivovich, J. (2017a): Naturally occurring fluorescence in frogs. Proc. Natl. Acad. Sci. 114: 3672-3677. DOI: https://doi.org/10.1073/pnas.1701053114
  28. Taboada, C., Brunetti, A.E., Alexandre, C., Lagorio, M.G., Faivovich, J. (2017b): Fluorescent Frogs: A herpetological perspective. S. Am. J. Herpetol. 12: 1-13. DOI: https://doi.org/10.2994/SAJH-D-17-00029.1
  29. Thomas, K.N., Gower, D.J., Streicher, J.W., Bell, R.C., Fujita, M.K., Schott, R.K., Liedtke, H.C. et al. (2022): Ecology drives patterns of spectral transmission in the ocular lenses of frogs and salamanders. Funct. Ecol. 36: 850-864. DOI: https://doi.org/10.1111/1365-2435.14018
  30. Top, M., Puan, C.L., Chuang, M.F., Othman, S.N., Borzee, A. (2020): First record of ultraviolet fluorescence in the Bent-toed Gecko Cyrtodactylus quadrivirgatus Taylor, 1962 (Gekkonidae: Sauria). Herpetol. Notes 13: 211-212.
  31. Tswett, M. (1911): Eine Hypothese uber den Mechanismus der photosynthetischen Energieubertragung. Phys. Chem. 2: 413-419. DOI: https://doi.org/10.1515/zpch-1911-7630
  32. Whitcher, C. (2020): New accounts of biofluorescence in several anuran genera (Hylidae, Microhylidae, Ranidae, Leptodactylidae) with comments on intraspecific variation. Herpetol. Notes 13: 443-447.
  33. Wucherer, M.F., Michiels, N.K. (2012): A fluorescent chromatophore changes the level of fluorescence in a reef fish. PLoS ONE 7: e37913. DOI: https://doi.org/10.1371/journal.pone.0037913