Vol. 19 No. 1 (2024)
Articles

The tale of the black viper: distribution and bioclimatic niche modelling of melanistic Vipera aspis in Italy

Matteo R. Di Nicola
Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan
Francesco P. Faraone
Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Via Archirafi 18, 90123 Palermo
Andrea V. Pozzi
Molecular Ecology and Evolution Group, School of Environmental and Natural Sciences, Bangor University, Bangor, Wales
Nicolò Borgianni
Rewilding Apennines ETS, Gioia dei Marsi (AQ)
Lorenzo Laddaga
Società di Scienze Naturali del Verbano Cusio Ossola, Museo di Scienze Naturali, Collegio Mellerio Rosmini, Domodossola
Jean-Lou M. C. Dorne
Methodology and Scientific Support Unit, European Food Safety Authority (EFSA), Via Carlo Magno 1A, Parma 43126
Gianmarco Minuti
Department of Biology, Ecology & Biodiversity Research Unit, Vrije Universiteit Brussels, Brussels

Published 2024-06-21

Keywords

  • Bioclimatic model,
  • Habitat suitability,
  • MaxEnt,
  • Mediterranean,
  • Melanism,
  • Snake,
  • Vipera aspis
  • ...More
    Less

How to Cite

Di Nicola, M. R., Faraone, F. P., Pozzi, A. V., Borgianni, N., Laddaga, L., Dorne, J.-L. M. C., & Minuti, G. (2024). The tale of the black viper: distribution and bioclimatic niche modelling of melanistic Vipera aspis in Italy. Acta Herpetologica, 19(1), 13–27. https://doi.org/10.36253/a_h-15271

Abstract

For decades, the evolutionary role of melanism in reptiles has been highly debated. According to the thermal melanism hypothesis, melanistic phenotypes should provide thermal advantages, thus positively impacting various biological aspects of these individuals. Nevertheless, these benefits seem to be countered by environmental constraints and predatory pressure. Here, we mapped for the first time the distribution of the melanistic phenotypes in the highly polymorphic asp viper (Vipera aspis). We focused our research effort on the Italian peninsula, where this species reaches its highest level of taxonomic diversity with three currently described subspecies. Furthermore, we investigated via bioclimatic niche modelling, the influence of a wide array of bioclimatic variables on the distribution of melanism in Italian asp vipers. In general, our results seem to support the implications of the thermal melanism hypothesis, highlighting the central influence of mean annual temperature and elevation on the geographic distribution of melanistic V. aspis. At the finest scale, our analyses have highlighted a distinction in bioclimatic niches among the three assessed subspecies. However, further fine-scale investigations are needed in order to exclude the potential influence of latitude and elevation on the observed the intersubspecific bioclimatic niche segregation pattern.

Metrics

Metrics Loading ...

References

  1. Allen, W.L., Baddeley, R., Scott-Samuel, N.E., Cuthill, I.C. (2013): The evolution and function of pattern diversity in snakes. Behav. Ecol. 24: 1237-1250. DOI: https://doi.org/10.1093/beheco/art058
  2. Andersen, D., Litvinchuk, S.N., Jang, H.J., Jiang, J., Koo, K.S., Maslova, I., Kim, D., Jang, Y., Borzée, A. (2022): Incorporation of latitude-adjusted bioclimatic variables increases accuracy in species distribution models. Ecol. Model. 469: 109986. DOI: https://doi.org/10.1016/j.ecolmodel.2022.109986
  3. André, G., Lavergne, S., Carcaillet, C. (2023): Unsuspected prevalence of Pinus cembra in the high-elevation sky islands of the western Alps. Plant Ecol. 224: 865-873. DOI: https://doi.org/10.1007/s11258-023-01341-1
  4. Andrén, C., Nilson, G. (1981): Reproductive success and risk of predation in normal and melanistic colour morphs of the adder, Vipera berus. Biol. J. Linn. Soc. 15: 235-246. DOI: https://doi.org/10.1111/j.1095-8312.1981.tb00761.x
  5. Attorre, F., Alfo’, M., De Sanctis, M., Francesconi, F., Bruno, F. (2007): Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int. J. Climatol. 27: 1825-1843. DOI: https://doi.org/10.1002/joc.1495
  6. Baena, O., Oliveras, I. (2015): Nou cas de melanisme en Vipera aspis (Linnaeus, 1758) al massís del Montseny (Vallès Oriental; Catalunya). Butll. Soc. Catalana d’Herpetologia 22: 29-30.
  7. Barbanera, F., Zuffi, M.A.L., Guerrini, M., Gentilli, A., Tofanelli, S., Fasola, M., Dini, F. (2009): Molecular phylogeography of the asp viper Vipera aspis (Linnaeus, 1758) in Italy: Evidence for introgressive hybridization and mitochondrial DNA capture. Mol. Phylogenet. Evol. 52: 103-114. DOI: https://doi.org/10.1016/j.ympev.2009.02.006
  8. Bassini, E., Bruno, S., Mazzei, P., Stagni, G. (1991): I serpenti dell’Emilia-Romagna e in particolare della provincia di Bologna (Italia settentrionale). Mediterránea. Serie de Estudios Biológicos, N. 13 (1991); Pp. 27-66. DOI: https://doi.org/10.14198/MDTRRA1991.13.03
  9. Benito, M., Pérez-Salerno, A., Gómez, S., Albero, L. (2022): New cases of melanism in Chalcides striatus, Coronella austriaca, and Vipera seoanei from Burgos, northern Spain. Herpetol. Notes 15: 687-689.
  10. Bittner, T.D., King, R.B., Kerfin, J.M. (2002): Effects of body size and melanism on the thermal biology of garter snakes (Thamnophis sirtalis). Copeia 2002: 477-482. DOI: https://doi.org/10.1643/0045-8511(2002)002[0477:EOBSAM]2.0.CO;2
  11. Bonanomi, G., Zotti, M., Mogavero, V., Cesarano, G., Saulino, L., Rita, A., Tesei, G., Allegrezza, M., Saracino, A., Allevato, E. (2020): Climatic and anthropogenic factors explain the variability of Fagus sylvatica treeline elevation in fifteen mountain groups across the Apennines. For. Ecosyst. 7: 5. DOI: https://doi.org/10.1186/s40663-020-0217-8
  12. Borgianni, N., Paolino, G. (2020): Melanism in Vipera aspis francisciredi (Laurenti, 1768) (Reptilia Serpentes) in the Lazio Region (Parco Naturale Regionale dei Monti Simbruini), Italy. Biodivers. J. 11: 615-618. DOI: https://doi.org/10.31396/Biodiv.Jour.2020.11.2.615.618
  13. Boria, R.A., Olson, L.E., Goodman, S.M., Anderson, R.P. (2014): Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275: 73-77. DOI: https://doi.org/10.1016/j.ecolmodel.2013.12.012
  14. Brodmann, P. (1987): Die Giftschlangen Europas und die Gattung Vipera in Afrika und Asien. Bern, Kümmerly u. Frey.
  15. Broennimann, O., Ursenbacher, S., Meyer, A., Golay, P., Monney, J.-C., Schmocker, H., Guisan, A., Dubey, S. (2014): Influence of climate on the presence of colour polymorphism in two montane reptile species. Biol. Lett. 10: 20140638. DOI: https://doi.org/10.1098/rsbl.2014.0638
  16. Brooks, J., Rohrer, J., Beck, D.D. (2022): Color Variation, Tail Banding, and Sexual Dichromatism in Washington Populations of Northern Pacific Rattlesnakes, Crotalus oreganus. Herpetologica 78: 192-200. DOI: https://doi.org/10.1655/Herpetologica-D-20-00042
  17. Bruni, G., Di Nicola, M.R., Banfi, F., Faraone, F.P. (2022): Distribution and characterization of melanism in Grass Snakes from Italy. Nat. Sicil. 46: 41-48.
  18. Bruno, S. (1976): L’ornamentazione della Vipera aspis (L., 1758) in Italia (Serpentes Viperidae) (Studi sulla fauna erpetologica italiana. XXI). Atti Soc. ital. Sci. Nat. Mus. Civ. Stor. Nat. Milano 117: 165-194.
  19. Bruno, S. (1985): Le vipere d’Italia e d’Europa. Edagricole, Bologna.
  20. Bury, S., Kolanek, A., Chylarecki, P., Najbar, B., Kurek, K., Mazgajski, T.D. (2022): Climatic conditions and prevalence of melanistic snakes-contrasting effects of warm springs and mild winters. Int. J. Biometeorol. 66: 1329-1338. DOI: https://doi.org/10.1007/s00484-022-02279-1
  21. Bury, S., Mazgajski, T.D., Najbar, B., Zając, B., Kurek, K. (2020): Melanism, body size, and sex ratio in snakes—new data on the grass snake (Natrix natrix) and synthesis. Sci. Nat. 107: 22. DOI: https://doi.org/10.1007/s00114-020-01678-x
  22. Capula, M., Luiselli, L. (1994): Reproductive strategies in alpine adders, Vipera berus. The black females bear more often. Acta Oecol. 15: 207-214.
  23. Castella, B., Golay, J., Monney, J. ‐C., Golay, P., Mebert, K., Dubey, S. (2013): Melanism, body condition and elevational distribution in the asp viper. J. Zool. 290: 273-280. DOI: https://doi.org/10.1111/jzo.12037
  24. Chang, C., Zheng, R. (2003): Effects of ultraviolet B on epidermal morphology, shedding, lipid peroxide, and antioxidant enzymes in Cope’s rat snake (Elaphe taeniura). J. Photoch. Photobio. B 72: 79-85. DOI: https://doi.org/10.1016/j.jphotobiol.2003.06.001
  25. Clusella Trullas, S., Terblanche, J.S., Van Wyk, J.H., Spotila, J.R. (2007a): Low repeatability of preferred body temperature in four species of Cordylid lizards: Temporal variation and implications for adaptive significance. Evol. Ecol. 21: 63-79. DOI: https://doi.org/10.1007/s10682-006-9124-x
  26. Clusella Trullas, S., Van Wyk, J.H., Spotila, J.R. (2007b): Thermal melanism in ectotherms. J. Therm. Biol. 32: 235-245. DOI: https://doi.org/10.1016/j.jtherbio.2007.01.013
  27. Clusella‐Trullas, S., Terblanche, J.S., Blackburn, T.M., Chown, S.L. (2008): Testing the thermal melanism hypothesis: a macrophysiological approach. Funct. Ecol. 22: 232-238. DOI: https://doi.org/10.1111/j.1365-2435.2007.01377.x
  28. Cox, C.L., Davis Rabosky, A.R. (2013): Spatial and Temporal Drivers of Phenotypic Diversity in Polymorphic Snakes. Am. Nat. 182: E40-E57. DOI: https://doi.org/10.1086/670988
  29. Cox, C.L., Rabosky, A.R.D., Chippindale, P.T. (2013): Sequence variation in the Mc1r gene for a group of polymorphic snakes. Gene 513: 282-286. DOI: https://doi.org/10.1016/j.gene.2012.10.065
  30. Cyriac, V.P., Kodandaramaiah, U. (2019): Conspicuous colours reduce predation rates in fossorial uropeltid snakes. PeerJ 7: e7508. DOI: https://doi.org/10.7717/peerj.7508
  31. De Avila, F., Oliveira, J., De Oliveira, M., Borges-Martins, M., Valiati, V.H., Tozetti, A. (2019): Does color polymorphism affect the predation risk on Phalotris lemniscatus (Duméril, Bibron and Duméril, 1854) (Serpentes, Dipsadidae)? Acta Herpetol. 14: 57-63.
  32. De Smedt, J. (2006): The Vipers of Europe. Halblech, JDS Verlag.
  33. Delhey, K. (2017): Gloger’s rule. Curr. Biol. 27: R689-R691. DOI: https://doi.org/10.1016/j.cub.2017.04.031
  34. Di Nicola, M.R. (2019): A revised dichotomous key to the snakes of Italy (Reptilia, Squamata, Serpentes), according to recent systematic updates. Zootaxa 4686: 294-296. DOI: https://doi.org/10.11646/zootaxa.4686.2.10
  35. Di Nicola, M.R., Cavigioli, L., Luiselli, L., Andreone, F. (2019): Anfibi & Rettili d’Italia. Edizioni Belvedere, Latina.
  36. Di Nicola, M.R., Cavigioli, L., Luiselli, L., Andreone, F. (2021): Anfibi & Rettili d’Italia. Edizione aggiornata. Edizioni Belvedere, Latina.
  37. Di Nicola, M.R., Faraone, F.P. (2020): Vipera aspis hugyi (Southern Italian Asp). Coloration. Herpetol. Rev. 51: 631.
  38. Di Nicola, M.R., Faraone, F.P., Zabbia, T. (2022): An updated dichotomous key to the snakes of Europe. Basic Appl. Herpetol. 36: 47-64. DOI: https://doi.org/10.11160/bah.238
  39. Di Nicola, M.R., Meier, G.J. (2013): Vipera aspis hugyi (Southern Italian asp) melanism. Herpetol. Rev. 44: 698.
  40. Dubey, S., Zwahlen, V., Mebert, K., Monney, J.-C., Golay, P., Ott, T., Durand, T., Thiery, G., Kaiser, L., Geser, S.N., Ursenbacher, S. (2015): Diversifying selection and color-biased dispersal in the asp viper. BMC Evol. Biol. 15: 99. DOI: https://doi.org/10.1186/s12862-015-0367-4
  41. Ducrest, A.-L., Ursenbacher, S., Golay, P., Monney, J.-C., Mebert, K., Roulin, A., Dubey, S. (2014): Pro-opiomelanocortin gene and melanin-based colour polymorphism in a reptile: Colour Polymorphism. Biol. J. Linn. Soc. Lond. 111: 160-168. DOI: https://doi.org/10.1111/bij.12182
  42. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. (2011): A statistical explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt. Divers. Distrib. 17: 43-57. DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x
  43. Fănaru, G., Telea, A.E., Gherghel, I., Melenciuc, R. (2022): Melanism in the grass snake Natrix natrix (Linnaeus, 1758) from the Danube Delta Biosphere Reserve, Romania. Herpetozoa 35: 257-263. DOI: https://doi.org/10.3897/herpetozoa.35.e85310
  44. Fick, S.E., Hijmans, R.J. (2017): WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302-4315. DOI: https://doi.org/10.1002/joc.5086
  45. Fielding, A.H., Bell, J.F. (1997): A review of methods for the assessment of prediction errors in conservation presence/absence models. Envir. Conserv. 24: 38-49. DOI: https://doi.org/10.1017/S0376892997000088
  46. Forsman, A. (2016): Is colour polymorphism advantageous to populations and species? Mol. Ecol. 25: 2693-2698. DOI: https://doi.org/10.1111/mec.13629
  47. Forsman, A., Ahnesjö, J., Caesar, S., Karlsson, M. (2008): A model of ecological and evolutionary consequences of color polymorphism. Ecology 89: 34-40. DOI: https://doi.org/10.1890/07-0572.1
  48. Fu, T.-T., Sun, Y.-B., Gao, W., Long, C.-B., Yang, C.-H., Yang, X.-W., Zhang, Y., Lan, X.-Q., Huang, S., Jin, J.-Q., Murphy, R.W., Zhang, Y., Lai, R., Hillis, D.M., Zhang, Y.-P., Che, J. (2022): The highest-elevation frog provides insights into mechanisms and evolution of defenses against high UV radiation. Proc. Natl. Acad. Sci. U.S.A. 119: e2212406119. DOI: https://doi.org/10.1073/pnas.2212406119
  49. García-Roa, R.G., Carbonell, G. (2020): The dark side of Vipera aspis: a case of melanismin the Iberian Peninsula. Bol. Asoc. Herpetol. Esp. 31: 34-36.
  50. GBIF.org (2023): GBIF Occurrence Download https://doi.org/10.15468/dl.3nht55.
  51. Geniez, P. (2015): Serpents d’Europe, d’Afrique du Nord et du Moyen-Orient. Paris, Delachaux et Niestlé.
  52. Gibson, A.R., Falls, B. (1979): Thermal biology of the common garter snake Thamnophis sirtalis (L.): II. The effects of melanism. Oecologia 43: 99-109. DOI: https://doi.org/10.1007/BF00346675
  53. Golay, P., Monney, J.-C., Conelli, A., Durand, T., Thiery, G., Zuffi, M.A.L., Ursenbacher, S. (2008): Systematics of the Swiss asp vipers: some implications for the European Vipera aspis (Linnaeus, 1758) complex (Serpentes: Viperidae) - A tribute to Eugen Kramer. Amphibia-Reptilia 29: 71-83. DOI: https://doi.org/10.1163/156853808783431460
  54. Goldenberg, J., D’Alba, L., Bisschop, K., Vanthournout, B., Shawkey, M.D. (2021): Substrate thermal properties influence ventral brightness evolution in ectotherms. Commun. Biol. 4: 26. DOI: https://doi.org/10.1038/s42003-020-01524-w
  55. Grano, M., Meier, G., Cattaneo, C. (2017): Vipere Italiane. Gli ultimi studi sulla sistematica, l’ecologia e la storia naturale. Aicurzio, Castel Negrino.
  56. Hantak, M.M., Guralnick, R.P., Cameron, A.C., Griffing, A.H., Harrington, S.M., Weinell, J.L., Paluh, D.J. (2022): Colour scales with climate in North American ratsnakes: a test of the thermal melanism hypothesis using community science images. Biol. Lett. 18: 20220403. DOI: https://doi.org/10.1098/rsbl.2022.0403
  57. Huey, R.B., Kingsolver, J.G. (1989): Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4: 131-135. DOI: https://doi.org/10.1016/0169-5347(89)90211-5
  58. Jin, Y., Tong, H., Shao, G., Li, J., Lv, Y., Wo, Y., Brown, R.P., Fu, C. (2020): Dorsal Pigmentation and Its Association with Functional Variation in MC1R in a Lizard from Different Elevations on the Qinghai–Tibetan Plateau. Genome Biol. Evol. 12: 2303-2313. DOI: https://doi.org/10.1093/gbe/evaa225
  59. Jong, P.W.D., Gussekloo, S.W.S., Brakefield, P.M. (1996): Differences in Thermal Balance, Body Temperature and Activity Between Non-Melanic and Melanic Two-Spot Ladybird Beetles (Adalia bipunctata ) Under Controlled Conditions. J. Exp. Biol. 199: 2655-2666. DOI: https://doi.org/10.1242/jeb.199.12.2655
  60. Kalogiannis, S. (2021): Cases of melanism in Dolichophis caspius (Gmelin, 1789) (Squamata: Colubridae) from Greece and a new distribution record. Parnassiana Archives 9: 19-22.
  61. Kassambara, A., Mundt, F. (2020): Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7.
  62. Körner, C. (2007): The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22: 569-574. DOI: https://doi.org/10.1016/j.tree.2007.09.006
  63. Kumar, B. (2009): Nove najdbe laškega gada (Vipera aspis) v Sloveniji. Natura Sloveniae 11: 59-63. DOI: https://doi.org/10.14720/ns.11.1.59-63
  64. Lê, S., Josse, J., Husson, F. (2008): FactoMineR : An R Package for Multivariate Analysis. J. Stat. Soft. 25. DOI: https://doi.org/10.18637/jss.v025.i01
  65. Lorioux, S., Bonnet, X., Brischoux, F., De Crignis, M. (2008): Is melanism adaptive in sea kraits? Amphibia-Reptilia 29: 1-5. DOI: https://doi.org/10.1163/156853808783431523
  66. Lucchini, N., Kaliontzopoulou, A., Val, G.A., Martínez-Freiría, F. (2020): Sources of intraspecific morphological variation in Vipera seoanei: allometry, sex, and colour phenotype. Amphibia-Reptilia 42: 1-16. DOI: https://doi.org/10.1163/15685381-bja10024
  67. Luiselli, L. (1992): Reproductive Success in Melanistic Adders: A New Hypothesis and Some Considerations on Andrén and Nilson’s (1981) Suggestions. Oikos 64: 601. DOI: https://doi.org/10.2307/3545182
  68. Luiselli, L. (1993): The ecological role of color polymorphism in male adders Vipera berus: testing the hypotheses. Rev. Ecol. 48: 49-56. DOI: https://doi.org/10.3406/revec.1993.2079
  69. Madsen, T. (1987): Are Juvenile Grass Snakes, Natrix natrix, Aposematically Coloured? Oikos 48: 265. DOI: https://doi.org/10.2307/3565512
  70. Madsen, T., Stille, B. (1988): The Effect of Size Dependent Mortality on Colour Morphs in Male Adders, Vipera berus. Oikos 52: 73. DOI: https://doi.org/10.2307/3565984
  71. Majerus, M. (1998): Melanism: evolution in action. Oxford university press, Oxford, New York, Tokyo. DOI: https://doi.org/10.1093/oso/9780198549833.001.0001
  72. Martínez-Freiría, F., Toyama, K.S., Freitas, I., Kaliontzopoulou, A. (2020): Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10: 16122. DOI: https://doi.org/10.1038/s41598-020-72871-1
  73. Masseti, M., Zuffi, M.A.L. (2011): On the origin of the asp viper Vipera aspis hugyi Schinz, 1833, on the island of Montecristo, Northern Tyrrhenian Sea (Tuscan archipelago, Italy). Herpetol. Bull. 117: 1-9.
  74. Matthews, G., Goulet, C.T., Delhey, K., Chapple, D.G. (2016): The effect of skin reflectance on thermal traits in a small heliothermic ectotherm. J. Therm. Biol. 60: 109-124. DOI: https://doi.org/10.1016/j.jtherbio.2016.06.013
  75. McRobie, H.R., Moncrief, N.D., Mundy, N.I. (2019): Multiple origins of melanism in two species of North American tree squirrel (Sciurus). BMC Evol. Biol. 19: 140. DOI: https://doi.org/10.1186/s12862-019-1471-7
  76. Mebert, K., Zwahlen, V., Golay, P., Thierry, D., Ursenbacher, S. (2011): Ungewöhnlich hoher Farb-Polymorphismus in alpinen Aspisvipern in Frankreich - Zufall oder natürliche Selektion? Elaphe 1: 13-19.
  77. Monney, J.-C., Luiselli, L., Capula, M. (1995): Correlates of melanism in a population of adders (Vipera berus) from the Swiss Alps and comparisons with other alpine populations. Amphibia-Reptilia 16: 323-330. DOI: https://doi.org/10.1163/156853895X00406
  78. Monney, J.-C., Luiselli, L., Capula, M. (1996): Taille et mélanisme chez Vipera aspis dans les Préalpes suisses et en Italie centrale et comparaison avec différentes populations alpines de Vipera berus. Rev. Suisse Zool. 103: 81-100. DOI: https://doi.org/10.5962/bhl.part.79939
  79. Moreno Azócar, D.L., Nayan, A.A., Perotti, M.G., Cruz, F.B. (2020): How and when melanic coloration is an advantage for lizards: the case of three closely-related species of Liolaemus. Zoology 141: 125774. DOI: https://doi.org/10.1016/j.zool.2020.125774
  80. Muri, D., Schuerch, J., Trim, N., Golay, J., Baillifard, A., El Taher, A., Dubey, S. (2015): Thermoregulation and microhabitat choice in the polymorphic asp viper (Vipera aspis). J. Therm. Biol. 53: 107-112. DOI: https://doi.org/10.1016/j.jtherbio.2015.06.009
  81. Pérez-Tris, J., Bensch, S., Carbonell, R., Helbig, A.J., Tellería, J.L. (2004): Historical diversification of migration patterns in a passerine bird. Evolution 58: 1819. DOI: https://doi.org/10.1554/03-731
  82. Pernetta, A.P., Reading, C.J. (2009): Observations of two melanistic smooth snakes (Coronella austriaca) from Dorset, United Kingdom. Acta Herpetol. 4: 109-112.
  83. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E. (2017): Opening the black box: an open‐source release of Maxent. Ecography 40: 887-893. DOI: https://doi.org/10.1111/ecog.03049
  84. Pizzatto, L., Dubey, S. (2012): Colour-polymorphic snake species are older. Biol. J. Linn. Soc. 107: 210-218. DOI: https://doi.org/10.1111/j.1095-8312.2012.01936.x
  85. Pizzigalli, C., Banfi, F., Ficetola, G.F., Falaschi, M., Mangiacotti, M., Sacchi, R., Zuffi, M.A.L., Scali, S. (2020): Eco-geographical determinants of the evolution of ornamentation in vipers. Biol. J. Linn. Soc. 130: 345-358. DOI: https://doi.org/10.1093/biolinnean/blaa037
  86. Pottier, G. (2001): Notes sur trois cas de mélanisme chez Vipera aspis zinnikeri Kramer, 1958 (Ophidia, Viperidae) dans les Hautes-Pyrénées (France). Bull. Soc. Herpétol. Fr. 49-53.
  87. QGIS Development Team (2020): QGIS Geographic Information System. Open Source Geospatial Foundation Project, http://qgis.osgeo.org.
  88. R Core Team (2023): R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org.
  89. Regnet, R.A., Quintela, F.M., Roedder, D., Loebmann, D. (2022): Attributes of the population structure and ventral polychromatism of Helicops infrataeniatus Jan, 1865 (Serpentes, Colubridae, Dipsadinae) in subtropical Brazil. North-West. J. Zool. 18: 161-167.
  90. Reguera, S., Zamora-Camacho, F. J., & Moreno-Rueda, G. (2014): The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linn. Soc. 112: 132-141. DOI: https://doi.org/10.1111/bij.12250
  91. Rivera, X., Arribas, O., Martí, F. (2001): Anomalías pigmentarias en las especies de reptiles presentes en la Península Ibérica, Islas Baleares y Canarias. Butll. Soc. Catalana d’Herpetologia 15: 76-88.
  92. Ruane, S., Myers, E.A., Lo, K., Yuen, S., Welt, R.S., Juman, M., Futterman, I., Nussbaum, R.A., Schneider, G., Burbrink, F.T., Raxworthy, C.J. (2018): Unrecognized species diversity and new insights into colour pattern polymorphism within the widespread Malagasy snake Mimophis (Serpentes: Lamprophiidae). Syst. Biodivers. 16: 229-244. DOI: https://doi.org/10.1080/14772000.2017.1375046
  93. San-Jose, L.M., Gonzalez-Jimenez, V., Fitze, S. (2008): Frequency and phenotypic differences of a melanistic and normally colored common lizard, Lacerta (Zootoca) vivipara of the Southern Pyrenees (Spain). Herp. Rev. 39: 422-425.
  94. San-Jose, L.M., Roulin, A. (2018): Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am. Nat. 192: 111-130. DOI: https://doi.org/10.1086/698010
  95. Santos, X., Azor, J.S., Cortés, S., Rodríguez, E., Larios, J., Pleguezuelos, J.M. (2018): Ecological significance of dorsal polymorphism in a Batesian mimic snake. Curr. Zool. 64: 745-753. DOI: https://doi.org/10.1093/cz/zox058
  96. Senczuk, G., Gramolini, L., Avella, I., Mori, E., Menchetti, M., Aloise, G., Castiglia, R. (2021): No association between candidate genes for color determination and color phenotype in Hierophis viridiflavus, and characterization of a contact zone. J. Zool. Syst. Evol. Res. 59: 748-759. DOI: https://doi.org/10.1111/jzs.12451
  97. Sherbrooke, W.C., Frost, S.K. (1989): Integumental chromatophores of a color-change, thermoregulating lizard, Phrynosoma modestum (Iguanidae ; Reptilia). Am. Mus. Novit. 2943: 1-14. DOI: https://doi.org/10.1016/S0140-1963(18)31074-7
  98. Shine, R.G. (1993): Sexual dimorphism in snakes. In: Snakes: Ecology and Behavior, p. 49-86. Seigel, R.A, Collins, J.T, Eds, McGraw-Hill, New York.
  99. Sindaco, R., Razzetti, E. (2021): An updated check-list of Italian amphibians and reptiles. Nat. Hist. Sci. 8: 35-46. DOI: https://doi.org/10.4081/nhs.2021.519
  100. Speybroeck, J., Beukema, W., Bok, B., Van Der Voort, J., Velikov, I. (2016): Field guide to the amphibians & Reptiles of Britain and Europe. Bloomsbury, London, Oxford, New York, New Dehli, Sydney.
  101. Støa, B., Halvorsen, R., Stokland, J.N., Gusarov, V.I. (2019): How much is enough? Influence of number of presence observations on the performance of species distribution models. Sommerfeltia 39: 1-28. DOI: https://doi.org/10.2478/som-2019-0001
  102. Storniolo, F., Mangiacotti, M., Zuffi, M.A.L., Scali, S., Sacchi, R. (2023): Large scale phenotypic characterisation of Hierophis viridiflavus (Squamata: Serpentes): climatic and environmental drivers suggest the role of evolutionary processes in a polymorphic species. Evol. Ecol. 37: 419-434. DOI: https://doi.org/10.1007/s10682-023-10234-8
  103. Strugariu, A., Zamfirescu, Ş.R. (2011): Population characteristics of the adder (Vipera berus berus) in the Northern Romanian Carpathians with emphasis on colour polymorphism: is melanism always adaptive in vipers? Anim. Biol. 61: 457-468. DOI: https://doi.org/10.1163/157075511X597601
  104. Tanaka, K. (2009): Does the Thermal Advantage of Melanism Produce Size Differences in Color-dimorphic Snakes? Zool. Sci. 26: 698-703. DOI: https://doi.org/10.2108/zsj.26.698
  105. Tessa, G. (2016): Preliminary data on distribution of a rare dorsal pattern in Vipera aspis aspis (Ophidia: Viperidae) in the Gran Paradiso National Park. In: Atti XI Congresso Nazionale Della Societas Herpetologica Italica, pp. 22-25. Menegon, M., Rodriguez-Prieto, A., Deflorian, M.C., Eds, Ianieri Edizioni, Pescara.
  106. True, J.R. (2003): Insect melanism: the molecules matter. Trends Ecol. Evol. 18: 640-647. DOI: https://doi.org/10.1016/j.tree.2003.09.006
  107. Turrisi, G.F., Vaccaro, A. (2001): Distribuzione altitudinale di anfibi e rettili sul monte Etna (Sicilia orientale). Pianura, 13: 335-338.
  108. Turrisi, G.F., Vaccaro, A. (2004): Anfibi e rettili del Monte Etna (Sicilia orientale). Boll. Accad. Gioenia Sci. Nat 36: 5-103.
  109. Ursenbacher, S., Conelli, A., Golay, P., Monney, J.-C., Zuffi, M.A.L., Thiery, G., Durand, T., Fumagalli, L. (2006): Phylogeography of the asp viper (Vipera aspis) inferred from mitochondrial DNA sequence data: Evidence for multiple Mediterranean refugial areas. Mol. Phylogenet. Evol. 38: 546-552. DOI: https://doi.org/10.1016/j.ympev.2005.08.004
  110. van Proosdij, A.S.J., Sosef, M.S.M., Wieringa, J.J., Raes, N. (2015): Minimum required number of specimen records to develop accurate species distribution models. Ecography 39: 542-552. DOI: https://doi.org/10.1111/ecog.01509
  111. Watt, W.B. (1968): Adaptive Significance of Pigment Polymorphisms in Colias Butterflies. I. Variation of Melanin Pigment in Relation to Thermoregulation. Evolution 22: 437. DOI: https://doi.org/10.2307/2406873
  112. Wickham, H. (2016): ggplot2: elegant graphics for data analysis. Switzerland, Springer. DOI: https://doi.org/10.1007/978-3-319-24277-4_9
  113. Wolf, M., Werner, Y.L. (1994): The striped colour pattern and striped/non-striped polymorphism in snakes (Reptilia: Ophidia). Biol. Rev. 69: 599-610. DOI: https://doi.org/10.1111/j.1469-185X.1994.tb01250.x
  114. Zuffi, M.A.L. (1984): Cenni sulla distribuzione dell ‘ofidiofauna in un ambiente tipo dell ‘Appennino pavese: fasce preferenziali e loro condizioni ecologiche. Natura, Milano 75: 65-68.
  115. Zuffi, M.A.L. (2002): A critique of the systematic position of the asp viper subspecies Vipera aspis aspis (Linnaeus, 1758), Vipera aspis atra Meisner, 1820, Vipera aspis francisciredi Laurenti, 1768, Vipera aspis hugyi Schinz, 1833 and Vipera aspis zinnikeri Kramer, 1958. Amphibia-Reptilia 23: 191-213. DOI: https://doi.org/10.1163/156853802760061831
  116. Zuffi, M.A.L. (2006): Vipera aspis (Linnaeus, 1758). In: Atlante Degli Anfibi e Dei Rettili d’Italia, pp. 594-599. Sindaco, R., Doria, G., Razzetti, E., Bernini, F., Eds, Edizioni Polistampa, Firenze.
  117. Zuffi, M.A.L., Gentilli, A., Luiselli, L. (2011): Vipera aspis (Linnaeus, 1758). In: Fauna d’Italia - Vol. XLV - Reptilia, pp. 608-617. Corti, C., Capula, M., Luiselli, L., Razzetti, E., Sindaco, R., Eds, Calderini, Bologna.