Just Accepted Manuscripts
Articles

First record of biogenic silica in the stomach content of freshwater turtles

Luan Maler de Oliveira
State University of Maringá
Mauro Parolin
State University of Paraná (UNESPAR)
Carlos Eduardo Vargas Grou
State University of Maringá
Matheus Maximilian Ratz Scoarize
State University of Maringá
Evanilde Benedito
State University of Maringá

Published 2026-01-20

Keywords

  • Biomineralization,
  • Phytoliths,
  • Sponge spicules,
  • Freshwater sponge,
  • Herpetofauna,
  • Freshwater turtles, growth rates, longevity, stream, forest pond,
  • aquatic turtles
  • ...More
    Less

How to Cite

Maler de Oliveira, L., Parolin, M., Eduardo Vargas Grou, C., Maximilian Ratz Scoarize, M., & Benedito, E. (2026). First record of biogenic silica in the stomach content of freshwater turtles. Acta Herpetologica. https://doi.org/10.36253/a_h-18063

Abstract

Aquatic species such as fish and turtles consume sponges and plants, which are sources of biogenic silica. Sponges belong to the phylum Porifera, and species in the class Demospongiae produce siliceous spicules, while plants form phytoliths. Some turtle species adjust their diet according to ontogenetic stage, with most being predominantly omnivorous and predators of silicified organisms. Studies on the ingestion of biogenic silica by turtles remain scarce in freshwater environments. This study aimed to analyze the diversity of biogenic silica bodies in the stomachs of the species Phrynops geoffroanus. Specimens were captured in Iguaçu National Park (PNI), Paraná, a vital remnant of the Atlantic Forest. Individuals underwent biometric measurements, photographic documentation, and euthanasia using Thiopental (93 mg/kg), following strict ethical protocols. Biological material was sent to the State University of Maringá, where stomachs were extracted. Stomach contents were processed at the Laboratory of Paleoenvironmental Studies (LEPAFE) at the State University of Paraná (UNESPAR), treated with HNO₃ on a heating plate, and the resulting material was mounted on slides for analysis. Three specimens of Phrynops geoffroanus at different ontogenetic stages were examined. Stomach analysis revealed the presence of biogenic silica, including phytoliths, diatom frustules, and sponge spicules, with the highest concentration found in young individuals and the lowest in juveniles. The predominant phytolith types suggest interactions with grasses and Podostemaceae. Gemmuloscleres of Oncosclera navicella were identified in young and adult individuals, confirming predation on freshwater sponges. This study highlights the trophic ecology of Phrynops geoffroanus and its interaction with silicified organisms.

References

  1. Albert, R.M., Bamford, M.K., Stanistreet, I.G., Stollhofen, H., Rivera-Rondón, C.A., Njau, J.K., Blumenschine, R.J. (2018): River-fed wetland palaeovegetation and palaeoecology at the HWK W site, Bed I, Olduvai Gorge. Rev. Palaeobot. Palynol. 259: 223-241. DOI: https://doi.org/10.1016/j.revpalbo.2018.09.010
  2. Almonacid, J.V.R., Mittermeier, C., Carr, J.L., Mittermeier, R.A., Malecha, J.V.R., Mast, R., Rueda, J.N. (2007): Las tortugas y los cocodrilianos de los países andinos del trópico. 6.
  3. Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.D.M., Sparovek, G. (2013): Köppen’s climate classification map for Brazil. Meteorol. Z. 22: 711-728. DOI: https://doi.org/10.1127/0941-2948/2013/0507
  4. Armstrong, G., Booth, D.T. (2005): Dietary ecology of the Australian freshwater turtle (Elseya sp.: Chelonia: Chelidae) in the Burnett River, Queensland. Wildlife Research. 32: 349-353. DOI: https://doi.org/10.1071/WR04088
  5. Brasil. Decreto nº 86.676, de 1º de dezembro de 1981 (1981): Dispõe sobre a proteção de espécies da fauna silvestre e dá outras providências. Diário Oficial da União: seção 1, Brasília, DF, 2 dez.
  6. Bremond, L., Alexandre, A., Hély, C., Guiot, J. (2005): A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon. Glob. Planet. Change. 45: 277-293. DOI: https://doi.org/10.1016/j.gloplacha.2004.09.002
  7. Brocardo, C.R., da Silva, M.X., Ferracioli, P., Cândido Jr, J.F., Bianconi, G.V., Moraes, M.F.D., Crawshaw Jr, P. (2019): Mamíferos do Parque Nacional do Iguaçu. Oecol. Aust. 23: 165-190. DOI: https://doi.org/10.4257/oeco.2019.2302.01
  8. Cardona, L., Aznar, F.J., Bas, M., Tomás, J. (2024): The contribution of fish to the diet of loggerhead sea turtles in the western Mediterranean revisited. Mar. Biol. 171: 215. DOI: https://doi.org/10.1007/s00227-024-04529-9
  9. Costa, F.G.C.M.D., Bove, C.P., Arruda, R.D.C.O., Philbrick, C.T. (2011): Silica bodies and their systematic implications at the subfamily level in Podostemaceae. Rodriguésia. 62: 937-942. DOI: https://doi.org/10.1590/S2175-78602011000400019
  10. da Costa, F.G.C.M, Pellegrini, M.O.O, Bove, C.P. (2021): Diversidade de corpos de sílica em MoureraAublet (Podostemaceae) e suas aplicações filogenéticas, paleobotânicas e taxonômicas. Rev. Palaeobot. Palynol. 295: 104509. DOI: https://doi.org/10.1016/j.revpalbo.2021.104509
  11. da Costa, H.C., Guedes, T.B., Bérnils, R.S. (2022): Lista de répteis do Brasil: padrões e tendências. Herpetol. Bras. 10: 110 279.
  12. de Carvalho, V.T., Martínez, J.G., Hernández-Rangel, S. M., Astolfi-Filho, S., Vogt, R. C., Farias, I. P., Hrbek, T. (2017): Giving IDs to turtles: SNP markers for assignment of individuals to lineages of the geographically structured Phrynopsgeoffroanus (Chelidae: Testudines). Conserv. Genet. Resour. 9: 157-163. DOI: https://doi.org/10.1007/s12686-016-0626-8
  13. de Oliveira, L.M., Parolin, M., dos Santos, J.C.A., Caxambu, M.G. (2023): Fitólitos de Andropogon bicornis L. e Andropogon leucostachyus Kunth in Humb., Bonpl. & Kunth.(Poaceae). Observatorio 21: 7880-7890. DOI: https://doi.org/10.55905/oelv21n8-007
  14. de Oliveira, L.M., Calegari, M.R., Leli, I.T., Romagnolo, M.B. (2024): Production of phytoliths in woody plants of the Atlantic Forest in islands of the Paraná River, Brazil. Quat. Int. 681: 24-32. DOI: https://doi.org/10.1016/j.quaint.2023.12.006
  15. de Oliveira, L.M., Leli, I.T., Ferrreira, M.L., Romagnolo, M.B., Calegari, M.R. (2025): Phytolith production in non-woody plants from the Atlantic Forest on islands of the Paraná River, Brazil. Quat. Int. 738: 109858. DOI: https://doi.org/10.1016/j.quaint.2025.109858
  16. Esteves, K.E., Aranha, J.M.R., Albrecht, M.P. (2021): Ecologia trófica de peixes de riacho: uma releitura 20 anos depois. Oecol. Aust. 25: 282-282. DOI: https://doi.org/10.4257/oeco.2021.2502.04
  17. Fachín-Terán, A., Vogt, R.C., Gomez, M.F.S. (1995): Food habits of an assemblage of five species of turtles in the Rio Guaporé, Rondônia, Brazil. Journal of Herpetology 29: 536-547. DOI: https://doi.org/10.2307/1564736
  18. Friol, N.R. (2019): Revisão taxonômica e filogenia das espécies sul-americanas de Chelidae (Testudines, Pleurodira). Unpublished doctoral dissertation. Universidade de São Paulo.
  19. International committee for phytolith taxonomy (ICPT), Neumann, K., Strömberg, C.A.E., Ball, T., Albert, R.A., Vrydaghs, L., Cummings, L.S. (2019): International code for phytolith nomenclature (ICPN) 2.0. Ann. Bot. 124: 189-199. DOI: https://doi.org/10.1093/aob/mcz064
  20. Kalinovsk, E.C.Z., Parolin, M., Souza Filho, E.E. (2016): Esponjas de água doce na América do Sul: O estado da arte da produção científica no Brasil. Terrae didat. 12: 4-18. DOI: https://doi.org/10.20396/td.v12i1.8645963
  21. Kennett, R., Tory, O. (1996): Diet of two freshwater turtles, Chelodina rugosa and Elseya dentata (Testudines: Chelidae) from the wet-dry tropics of northern Australia. Copeia. 409-419 p. DOI: https://doi.org/10.2307/1446857
  22. Kondo, R., Childs, C.W., Atkinson, I.A.E. (1994): Opal Phytoliths of New Zealand. (No Title).
  23. León Y, Bjorndal, K. (2002): Selective feeding in the hawksbill turtle, an important predator in coral reef ecosystems. Mar. Ecol. Prog. Ser. 245: 249-258. DOI: https://doi.org/10.3354/meps245249
  24. Lisztes-Szabó, Z., Braun, M., Csík, A., Pető, Á. (2019): Phytoliths of six woody species important in the Carpathians: characteristic phytoliths in Norway spruce needles. Veg. Hist. Archaeobotany. 28: 649-662. DOI: https://doi.org/10.1007/s00334-019-00720-x
  25. Lu, H., Liu, K.B. (2003): Phytoliths of common grasses in the coastal environments of southeastern USA. Estuar. Coast. Shelf Sci. 58: 587-600. DOI: https://doi.org/10.1016/S0272-7714(03)00137-9
  26. Márquez, R.M. (1990): FAO species catalogue. Vol. 11: Sea turtles of the world. An annotated and illustrated catalogue of sea turtle species known to date. Roma FAO.
  27. Meylan A. (1988): Spongivory in hawksbill turtles: a diet of glass. Science 239: 393-395. DOI: https://doi.org/10.1126/science.239.4838.393
  28. Molina, F.B. (1998): Comportamento e biologia reprodutiva dos cágados Phrynopsgeoffroanus, Acanthochelysradiolata e Acanthochelysspixii (Testudines, Chelidae) em cativeiro. Rev. Etol. 1998: 25-40 p.
  29. Piperno, D.R. (1988): Phytolith analysis. An Archaeological and Geological Perspective. Academic Press. San Diego.
  30. Piperno, D.R. (1991): The status of phytolith analysis in the American tropics. J. World Prehist. 5: 155-191. DOI: https://doi.org/10.1007/BF00974678
  31. Piperno, D.R. (2006): Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman Altamira. DOI: https://doi.org/10.5040/9798216409281
  32. Qader, W., Dar, R.A., Rehman, I.U., Rashid, I., Sheikh, S.H. (2024): Assessing phytolith preservation in a Late Quaternary loess-paleosol sequence from the Kashmir Valley, Northwest Himalaya, India. Quat. Sci. Adv. 16: 100238. DOI: https://doi.org/10.1016/j.qsa.2024.100238
  33. Ribeiro, C.V., Pauls, S.M. (2000): Esponjas de agua dulce (Porifera, Demospongiae) de Venezuela. Acta Biol. Venez. 20: 1-28.
  34. Rhodin, A.G.J., Mittermeier, R.A. (1983): Description of Phrynops williamsi, a new species of chelid turtle of the South American P. geoffroanus complex. Pp. 58–73 in A. Rhodin e K. Miyata (eds.), Advances in Herpetology and Evolutionary Biology – essays in honor of E.E. Williams. Museum of Comparative Zoology, Cambridge.
  35. Ruhfel, B.R., Larson, D.A., Koenig, N., Rutishauser, R., Bove, C.P., Philbrick, C.T. (2024): Plastid Phylogenomic Analysis of Podostemaceae with an Emphasis on Neotropical Podostemoideae. Syst. Bot. 49: 580-616. DOI: https://doi.org/10.1600/036364424X17267811220470
  36. Souza, F.L. (2004): Uma revisão sobre padrões de atividade, reprodução e alimentação de cágados brasileiros (Testudines, Chelidae). Phyllomedusa, 3: 15-27.
  37. Schneider, L., Ferrara, C.R., Vogt, R.C., Guilhon, A.V. (2011): Nesting ecology and nest predation of Phrynopsgeoffroanus (Testudines, Chelidae) in the Guaporé River of the Brazilian and Bolivian Amazon. Chelonian Conserv. Biol. 10: 206-212. DOI: https://doi.org/10.2744/1071-8443-10.2.206
  38. Souza, F.L. (2004): Uma revisão sobre padrões de atividade, reprodução e alimentação de cágados brasileiros (Testudines, Chelidae). Phyllomedusa. 3: 15-27. DOI: https://doi.org/10.11606/issn.2316-9079.v3i1p15-27
  39. Tripathi, D.K., Prasad, R. Chauhan, D.K. (2014): An overview of biogenic silica production pattern in the leaves of Hordeum vulgare L. Indian J Plant Sci, 3: 167-177.
  40. Vogliotti, A. (2008): Partição de habitats entre os cervídeos do Parque Nacional do Iguaçu. Unpublished doctoral dissertation. Universidade de São Paulo.
  41. Volkmer-Ribeiro, C. Machado, V.D.S. (2017): Checklist das esponjas do Estado do Mato Grosso do Sul, Brasil. Iheringia Ser. Zool. 107: e2017102. DOI: https://doi.org/10.1590/1678-4766e2017102
  42. Volkmer-Ribeiro, C., Parolin, M (2010): As esponjas. In: Abordagem ambiental em bacias hidrográficas no Estado do Paraná, 105-130 p. Parolin, M., Volkmer-Ribeiro, C., Leandrini, J.A.(Org.), Eds., Campo Mourão. Fecilcam.
  43. Volkmer-Ribeiro, C., Parolin, M. (2005): Segundo registro de Sterrastrolepis brasiliensis Volkmer-Ribeiro e de Rosa-Barbosa (Demospongiae, Potamolepidae) com descrição do habitat e de assembléia, Bacia do Rio Paraná, Brasil. Rev. Bras. Zool. 22: 1003-1013. DOI: https://doi.org/10.1590/S0101-81752005000400028
  44. Works, A.J., Olson, D.H. (2018): Diets of two nonnative freshwater turtle species (Trachemys scripta and Pelodiscus sinensis) in Kawai Nui Marsh, Hawaii. Journal of Herpetology. 52: 444-452. DOI: https://doi.org/10.1670/17-137
  45. Wroth, K., Cabanes, D., Marston, J.M., Aldeias, V., Sandgathe, D., Turq, A., Dibble, H.L. (2019): Neanderthal plant use and pyrotechnology: phytolith analysis from Roc de Marsal, France. Archaeol. Anthropol. Sci. 11: 4325-4346. DOI: https://doi.org/10.1007/s12520-019-00793-9
  46. Wu, Y., Guo, X., Wang, W., Chen, X., Zhao, Z., Xia, X., Yang, Y. (2017): Red pigments and Boraginaceae leaves in mortuary ritual of late Neolithic China: A case study of Shengedaliang site. Microsc. Res. Tech. 80: 231-238. DOI: https://doi.org/10.1002/jemt.22791