Assessing the Climatic Vulnerability of the Micrurus sangilensis (Niceforo Maria, 1942) under Future Scenarios: Vulnerability of M. sangilensis to Climate Change
Published 2026-01-20
Keywords
- Biodiversity conservation,
- climate change,
- ecological niche modeling,
- fragmented landscapes,
- Micrurus sangilensis
How to Cite
Copyright (c) 2026 Julián Arango-Lozano, Karime Angarita-Corzo, Felipe Toro-Cardona

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
The Vulnerable Micrurus sangilensis common known as the Santander coral snake distributes in dry and montane forests, ecosystems under severe anthropogenic pressure in northeastern Colombia. Its already fragmented habitat may exacerbate risks in vegetation structure due to climate change. We assessed whether the current distribution of the snake may be altered under different scenarios with climate change in the 2040-2060 years; aiming to recognize conservation priority areas. With ecological niche modeling we calculated current and obtained values of stability in the distribution range of the species for the most conservative emission scenarios of socio-economic pathways (SSP) 126, and 245; and the expected greater emissions 585 within five different global circulation models. We also escalated an index of vulnerability to land use change to 2050 in the remaining areas for the species, detecting prioritizing conservation zones. Our findings reveal a nearly 25% consistency of loss in the three SSP scenarios, while gaining stability varies between different GCMs. Over 37% of remaining suitable areas were categorized as highly vulnerable to land-use change, especially at elevations between 900 and 2000 m. We emphasize the need to integrate M. sangilensis habitats into Colombia’s protected area network, restore degraded ecosystems, and establish ecological corridors to mitigate fragmentation. While the most vulnerable to changing areas appear to be the ones with critical requirements for conservation; we call attention to aim conservation efforts in the low and middle vulnerable to change regions, those with lower likelihood to be modified in the near future.
References
- Allentoft, M.E., O’Brien, J. (2010): Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity. 2(1): 47–s71.
- Alvarado‐Serrano, D.F., Knowles, L.L. (2014): Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol. Ecol. Resour. 14(2): 233–248.
- Andrade-Díaz, M.S., Sarquis, J.A., Loiselle, B.A., Giraudo, A.R., Díaz-Gómez, J.M. (2019): Expansion of the agricultural frontier in the largest South American Dry Forest: Identifying priority conservation areas for snakes before everything is lost. PloS one. 14(9): e0221901.
- Arango-Lozano, J., Toro-Cardona, F.A., Montilla, J.S.O., Ramírez-Chaves, H.E. (2025): Ecological Forecasting for Night Monkeys in the Aotus lemurinus Complex: Climate-driven Threats to Habitat Suitability. Int J Primatol. 46: 556–572.
- Archis, J.N., Akcali, C., Stuart, B.L., Kikuchi, D., Chunco, A.J. (2018): Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius). PeerJ. 6: e4647.
- Arredondo, J.C., Bolívar, W., Renjifo, J. (2015): Riama laevis (errata version published in 2017). The IUCN Red List of Threatened Species 2015: e.T44578783A115386854. https://dx.doi.org/10.2305/IUCN.UK.2015-4.RLTS.T44578783A44578792.en. Accessed on 08 October 2024.
- Bax, V., Francesconi, W. (2019): Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manag. 232: 387–396.
- Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012): Impacts of climate change on the future of biodiversity. Ecol. Lett. 15(4): 365–377.
- Bestion, E., Clobert, J., Cote, J. (2015): Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18(11): 1226–1233.
- Bolívar, W., Velasco, J. Arredondo, J.C. (2016): Synophis plectovertebralis. The IUCN Red List of Threatened Species 2016: e.T44581867A44581870. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T44581867A44581870.en. Accessed on 08 October 2024.
- Brown, G.P., Shine, R. (2006): Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia. Biol. J. Linn. Soc. 89(1): 159–168.
- Bush, A., Hoskins, A.J. (2017): Does dispersal capacity matter for freshwater biodiversity under climate change?. Freshw. Biol. 62(2): 382–396.
- Caicedo-Portilla, J., Lynch, JD. (2015): Micrurus sangilensis Nicéforo María, 1942. Pp. 106-108. En: Morales-Betancourt, M. A., C. A. Lasso, V. P. Páez y B. C. Bock. 2015. Libro rojo de reptiles de Colombia (2015). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, D. C., Colombia.
- Calderón, M., Caicedo, J.R., Ortega, A. (2019): Micrurus medemi. The IUCN Red List of Threatened Species 2019: e.T44581955A44581962. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T44581955A44581962.en. Accessed on 08 October 2024.
- Campbell, J. A., Lamar, W.W., Brodie, E.D. (2004): The venomous reptiles of the western hemisphere (Vol. 1, No. 2). Ithaca [NY]: Comstock Pub. Associates.
- Caten, C.T., Lima-Ribeiro, M.D.S., da Silva Jr, N.J., Moreno, A.K., Terribile, L.C. (2017): Evaluating the effectiveness of Brazilian protected areas under climate change: a case study of Micrurus brasiliensis (Serpentes: Elapidae). Trop. Conserv. Sci. 10: 1940082917722027.
- Cobos, M.E., Alonso Bosch, R. (2018): Breeding sites of a narrowly distributed amphibian, a key element in its conservation in the face of global change. Aquat. Conserv.: Mar. Freshw. Ecosyst. 28: 1089–1098.
- Cobos, M.E., Peterson, A.T., Barve, N., Osorio-Olvera, L. (2019): kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ. 7: e6281.
- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Saleem, M. (2017): An ecoregion-based approach to protecting half the terrestrial realm. Biosci. 67(6): 534–545.
- Echeverry-Cárdenas, E., López-Castañeda, C., Carvajal-Castro, J.D., Aguirre-Obando, O.A. (2021): Potential geographic distribution of the tiger mosquito Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in current and future conditions for Colombia. PLoS Negl. Trop. Dis. 15(5): e0008212.
- Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J. (2011): A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1): 43–57.
- Escobar, L.E., Lira-Noriega, A., Medina-Vogel, G., Peterson, A.T. (2014): Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat. Health. 9(1): 221–229.
- Esri. (2024): ArcGIS [online]. Environmental Systems Research Institute, Redlands.
- Fick, S.E., Hijmans, R.J. (2017): WorldClim 2: New 1-km spatial reso-lution climate surfaces for global land areas. Int. J. Climatol. 37(12): 4302–4315.
- Flórez, R.A., Montoya-Cruz, A. (2023): Extensión del rango de distribución de Micrurus sangilensis Nicéforo María, 1942 (Squamata: Elapidae) en el departamento de casanare, colombia. Rev. latinoam. Herpetol. 6(3): e770 (188–189).
- Fordham, D.A., Watts, M.J., Delean, S., Brook, B.W., Heard, L.M., Bull, C.M. (2012): Managed relocation as an adaptation strategy for mitigating climate change threats to the persistence of an endangered lizard. Glob Chang Biol. 18(9): 2743–2755.
- Fuentes, M., Cárdenas, J.P., Olivares, G., Rasmussen, E., Salazar, S., Urbina, C., Lawler, D. (2023): Global Digital Analysis for Science Diplomacy on Climate Change and Sustainable Development. Sustainability. 15(22): 15747.
- Galindo-Cruz, A., Sahagún-Sánchez, F.J., López-Barrera, F., Rojas-Soto, O. (2024): Recent changes in tropical-dry-forest connectivity within the Balsas Basin Biogeographic Province: potential effects on endemic-bird distributions. Nat. Conserv. 55: 177–199.
- Gamble, T. (2010): A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex Dev. 4(1-2): 88–103.
- García-Franco, J.L., Gray, L.J., Osprey, S. (2020): The American monsoon system in HadGEM3 and UKESM1. Weather Clim. Dyn. 1(2): 349–371.
- Global Forest Review. (2024). Tropical Forest Loss Drops Steeply in Brazil and Colombia, but High Rates Persist Overall. Global Forest Review, updated April 4, 2024. Washington, DC: World Resources Institute. Available online at https://research.wri.org/gfr/latest-analysis-deforestation-trends
- Gumbs, R., Gray, C.L., Wearn, O.R., Owen, N.R. (2018): Tetrapods on the EDGE: overcoming data limitations to identify phylogenetic conservation priorities. PLoS One 13: e0194680.
- Heller, N.E., Zavaleta, E.S. (2009): Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142(1): 14–32.
- Herrera-Lopera, J., Ramírez-Castaño, V.A., García-Oviedo, F.A. (2018): Micrurus dumerilii (Dumeril's Coralsnake, Coral de Dumeril). Herpetol. Rev. 49(3).
- Hladki, I.A., Ramírez-Pinilla, M., Renjifo, J., Urbina, N. (2019): Micrurus sangilensis. The IUCN Red List of Threatened Species 2019: e.T44582057A44582066. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T44582057A44582066.en. Accessed on 08 October 2024.
- Holt, R.D. (1990): The microevolutionary consequences of climate change. Trends Ecol Evol. 5(9): 311–315.
- Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Álvarez Pérez, H.J., Garland Jr, T. (2009): Why tropical forest lizards are vulnerable to climate warming. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 276(1664): 1939–1948.
- Kittel, T.G. (2013): The vulnerability of biodiversity to rapid climate change. Vulnerability of Ecosystems to Climate; Seastedt, TR, Suding, K., Eds, 185–201
- Kwak, T.J., Freeman, M.C. (2010): Assessment and management of ecological integrity. Inland fisheries management in North America, 3rd edition. American Fisheries Society, Bethesda, Maryland, 353-–394.
- Le Galliard, J.F., Massot, M., Baron, J.P., Clobert, J. (2012): Ecological effects of climate change on European reptiles. Wildlife conservation in a changing climate. 179: e203.
- Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., Ackerly, D.D. (2009): The velocity of climate change. Nat. 462(7276): 1052–1055.
- Lovejoy, T.E. (2006): Climate change and biodiversity. The Energy and Resources Institute (TERI).
- Mawdsley, J.R., O’MALLEY, R., Ojima, D.S. (2009): A review of climate‐change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23(5): 1080–1089.
- Mi, C., Ma, L., Yang, M., Li, X., Meiri, S., Roll, U., Du, W. (2023): Global protected areas as refuges for amphibians and reptiles under climate change. Nat. Commun. 14(1): 1389.
- Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, Valerie., Gordon, J. E. (2006): A global overview of the conservation status of tropical dry forests. J. Biogeogr. 33(3): 491–505.
- Moraes, R.L., Recchia, M.D.P. (2011): Amphisbaena mertensi (NCN) Habitat. Herpetol. Rev. 42(3): 426.
- Morales-Betancourt, M.A., Lasso, C. A., Páez V.P., Bock, B.C. (2015): Libro rojo de reptiles de Colombia (2015). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, D. C., Colombia. 258 pp.
- Moreno-Contreras, I., Sánchez-González, L.A., Arizmendi, M.D.C., Prieto-Torres, D.A., Navarro-Sigüenza, A.G. (2020): Climatic niche evolution in the Arremon brunneinucha complex (Aves: Passerellidae) in a Mesoamerican landscape. Evol. Biol. 47(2), 123–132.
- Mota-Vargas, C., Rojas-Soto, O.R. (2016): Taxonomy and ecological niche modeling: Implications for the conservation of wood partridges (genus Dendrortyx). J. Nat. Conserv. 29: 1–13.
- Noh, J.K., Echeverria, C., Kleemann, J., Koo, H., Fürst, C., Cuenca, P. (2020): Warning about conservation status of forest ecosystems in tropical Andes: National assessment based on IUCN criteria. PLoS One. 15(8): e0237877.
- Padhiary, J., Patra, K.C., Dash, S.S., Uday Kumar, A. (2020): Climate change impact assessment on hydrological fluxes based on ensemble GCM outputs: a case study in eastern Indian River Basin. JWCC. 11(4): 1676–1694.
- Páez, V., Gallego-Garcia, N., Restrepo, A. (2016): Podocnemis lewyana. The IUCN Red List of Threatened Species 2016: e.T17823A1528580. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T17823A1528580.en. Accessed on 08 October 2024.
- Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Araújo, M.B. (2011): Ecological niches and geographic distributions (MPB-49). In Ecological niches and geographic distributions (MPB-49). Princeton University Press.
- Pitalua, Y., Rengifo, J.T., Rivas, L. (2018): Aportes a la distribución del género Micrurus (Serpentes: Elapidae) en el Departamento del Chocó, Colombia. rev. colombiana cienc. anim recia. 10(2): 131–142.
- Rainwater, T.R., Platt, S.G., Charruau, P., Balaguera-Reina, S.A., Sigler, L., Cedeño-Vázquez, J.R., Thorbjarnarson, J.B. (2022): Crocodylus acutus (amended version of 2021 assessment). The IUCN Red List of Threatened Species 2022: e.T5659A212805700. https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T5659A212805700.en. Accessed on 08 October 2024.
- Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., Arnillas, C.A. (2014): Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J. Nat. Conserv. 22(5): 391–404.
- Rands, M.R., Adams, W.M., Bennun, L., Butchart, S.H., Clements, A., Coomes, D., Vira, B. (2010): Biodiversity conservation: challenges beyond 2010. science, 329(5997), 1298–1303.
- Rangel, T.F., Loyola, R.D. (2012): Labeling ecological niche models. Nat. Conserv. 10: 119–126.
- Reshmidevi, T.V., Kumar, D.N., Mehrotra, R., Sharma, A. (2018): Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. J. Hydrol. 556: 1192–1204.
- Rey-Suárez, P., Núñez, V., Fernández, J., Lomonte, B. (2016): Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: Proteome, toxicity, and cross-neutralization by antivenom. J. Proteom. 136: 262–273.
- Ríos-Soto, J.A., Arango-Lozano, J., Rivera-Molina, F.A. (2018): Micrurus mipartitus (Duméril, Bibron & Duméril, 1854). Pp 37–44. En: Catálogo de Anfibios y Reptiles de Colombia. Universidad de Antioquia, Carmen de Viboral, Antioquia, Colombia. 78 pp.
- Roze, J.A. (1996): Coral snakes of the Americas: biology, identification, and venoms (pp. xii+-328).
- Sarkar, S., Sánchez-Cordero, V., Londoño, M. C., Fuller, T. (2009): Systematic conservation assessment for the Mesoamerica, Chocó, and Tropical Andes biodiversity hotspots: a preliminary analysis. Biodivers. Conserv. 18: 1793–1828.
- Sales, L.P., Galetti, M., Pires, M.M. (2020): Climate and land‐use change will lead to a faunal “savannization” on tropical rainforests. Glob Chang Biol. 26(12): 7036–7044.
- Schloss, C.A., Nuñez, T.A., Lawler, J.J. (2012): Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the national academy of sciences, 109(22): 8606–8611.
- Soberón, J., Peterson, A.T. (2005): Interpretation of models of fundamental ecological niches and species’ distributional areas. BDI. 2: 1–10. https:// doi.org/10.17161/bi.v2i0.4
- Staudt, A., Leidner, A.K., Howard, J., Brauman, K.A., Dukes, J.S., Hansen, L.J., Solórzano, L.A. (2013): The added complications of climate change: understanding and managing biodiversity and ecosystems. Front. Ecol. Environ. 11(9): 494–501.
- Terribile, L.C., De Oliveira, G., Albuquerque, F., Rodríguez, M.Á., Diniz‐Filho, J.A. F. (2009): Global conservation strategies for two clades of snakes: combining taxon‐specific goals with general prioritization schemes. Divers. Distrib: 15(5): 841–851.
- Terribile, L.C., Feitosa, D.T., Pires, M.G., de Almeida, P.C.R., de Oliveira, G., Diniz-Filho, J.A.F., Silva Jr, N.J.D. (2018): Reducing Wallacean shortfalls for the coralsnakes of the Micrurus lemniscatus species complex: Present and future distributions under a changing climate. PloS one. 13(11): e0205164.
- Upadhyay, R.K. (2020): Markers for global climate change and its impact on social, biological and ecological systems: A review. Am. J. Clim. Change. 9(03): 159.
- Van Teeffelen, A.J., Vos, C.C., Opdam, P. (2012): Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol. Conserv. 153: 239–253.
- Vicenzi, N., Corbalán, V., Miles, D., Sinervo, B., Ibargüengoytía, N. (2017): Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol. Conserv. 206: 151–160.
- Young, B., Young, K. R., & Josse, C. (2011). Vulnerability of tropical Andean ecosystems to climate change. Climate change and biodiversity in the tropical Andes. SCOPE, IAI, 170–181.
- Yu, M., Wang, G., Parr, D., Ahmed, K.F. (2014): Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8. 5 climate projections from 19 GCMs. Clim. Change. 127: 257–271.
- Warren, D.L., Seifert, S.N. (2011): Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21: 335–342.
