Just Accepted Manuscripts
Articles

Enhanced antipredator behavioral responses in wild-caught toad tadpoles of Duttaphrynus melanostictus: an empirical study

Santosh M. Mogali
09880713168

Published 2025-11-01

How to Cite

Mogali, S. M. (2025). Enhanced antipredator behavioral responses in wild-caught toad tadpoles of Duttaphrynus melanostictus: an empirical study. Acta Herpetologica. https://doi.org/10.36253/a_h-18276

Abstract

This study investigated how prior experience modulates the anti-predator behavioral responses of Duttaphrynus melanostictus tadpoles to kairomones from the predatory tadpole Hoplobatrachus tigerinus. I compared the responses of four distinct categories of tadpoles: 1) predator-naïve (laboratory-born); 2) indirect predator-experienced (short-term exposure to caged predator cues); 3) direct predator-experienced (short-term direct encounters); 4) wild-caught (long-term natural experience). A stimulus solution (kairomones) from the predator was used to simulate predation risk. The results showed that tadpoles of D. melanostictus from all experience groups exhibit antipredator behavioral responses, i.e., overall reduced swimming and less time spent swimming, but with a higher burst speed in response to water-borne kairomonal cues of predators. Crucially, the intensity of these antipredator behavioral responses was strongly dependent on experience, following a clear hierarchical gradient: wild-caught > direct-predator experienced > indirect-predator experienced > predator-naïve > control. The significant, albeit low-level, response of predator-naïve tadpoles indicates that predator recognition is innate.

However, the enhanced antipredator behavior of wild-caught tadpoles compared to predator-naïve or direct or indirect predator-experienced tadpoles suggests that learning and cumulative experience are involved. A combination of both innate and learned behaviors could allow tadpoles of D. melanostictus to calibrate their defensive investment necessary for survival.

References

  1. Amo, L., Lopez, P., Martin, J. (2004): Wall lizards combine chemical and visual cues of ambush snake predators to avoid overestimating risk inside refuges. Anim. Behav. 67: 647–653. DOI: https://doi.org/10.1016/j.anbehav.2003.08.005
  2. Batabyal, A., Gosavi, S.M., Gramapurohit, N.P. (2014): Determining sensitive stages for learning to detect predators in larval bronzed frogs: importance of alarm cues in learning. J. Biosci. 39:701–710. DOI: https://doi.org/10.1007/s12038-014-9455-7
  3. Chivers, D.P., Mirza, R.S. (2001): Importance of predator diet cues in responses of larval wood frogs to fish and invertebrate predators. J. Chem. Ecol. 27: 45–51. DOI: https://doi.org/10.1023/A:1005663815856
  4. Chivers, D.P., Brown, G.E., Smith, R.J.F. (1996): The evolution of chemical alarm signals: attracting predators benefits alarm signal senders. Am. Nat. 148: 649–659. DOI: https://doi.org/10.1086/285945
  5. Crowl, T.A., Covich, A.P. (1990): Predator-induced life-history shifts in a freshwater snail. Science 247: 949–951. DOI: https://doi.org/10.1126/science.247.4945.949
  6. Ferrari, M.C.O., Wisenden, B.D., Chivers, D.P. (2010): Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 88: 698–724. DOI: https://doi.org/10.1139/Z10-029
  7. Gazzalo A., Ratto, D., Perrucci, F., Occhinegro, A., Leone, R., Giammello, F., Balestrieri, A., Rosa, D., Rossi, P., Brandalise, F. 2024. Predation cues induce predator specific changes in olfactory neurons encoding defensive responses in agile frog tadpoles. PloS One 19: e0302728. DOI: https://doi.org/10.1371/journal.pone.0302728
  8. Gosner, K.L. (1960): A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.
  9. Gramapurohit, N.P., Radder, R.S. (2012): Mating pattern, spawning behavior, and sexual size dimorphism in the tropical toad Bufo melanostictus (Schn,). J. Herpetol. 46: 412–416. DOI: https://doi.org/10.1670/11-096
  10. Gyssels, F., Stoks, R. (2006): Behavioural responses to fish kairomones and autotomy in a damselfly. J. Ethol. 24: 79–83. DOI: https://doi.org/10.1007/s10164-005-0165-3
  11. Heyer, W.R., McDiarmid, R.W., Weigmann, D.L. (1975): Tadpoles, predation and pond habitats in the tropics. Biotropica 7: 100–111. DOI: https://doi.org/10.2307/2989753
  12. Hossie, T.J., Murray, D.L. (2010): You can't run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163: 395–404. DOI: https://doi.org/10.1007/s00442-010-1568-6
  13. Kats, L.B., Dill, L.M. (1998): The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5: 361–394. DOI: https://doi.org/10.1080/11956860.1998.11682468
  14. Laforsch, C., Tollrian, R. (2004): Inducible defenses in multimodal environments: cyclomorphosis in Daphnia cucullata. Ecology 85: 2302–2311. DOI: https://doi.org/10.1890/03-0286
  15. Landeira-Dabarca, A., Näslund, J., Johnsson, J.I., Álvarez, M. (2019): Cue recognition and behavioural responses in the three-spined stickleback (Gasterosteus aculeatus) under risk of fish predation. Acta Ethologica 22: 209–221. DOI: https://doi.org/10.1007/s10211-019-00324-8
  16. Laurila, A., Kujasalo, J., Ranta, E. (1997): Different antipredatory behaviour in two anuran tadpoles: effects of predator diet. Behav. Ecol. Sociobiol. 40: 329–336. DOI: https://doi.org/10.1007/s002650050349
  17. Lima, S.L., Dill, L.M. (1990): Behavioral decisions made under the risk of predation. a review and prospectus. Can. J. Zool. 68: 619–640. DOI: https://doi.org/10.1139/z90-092
  18. Mathis, A. (2003): Use of chemical cues in detection of conspecific predators and prey by newts, Notophthamus viridescens. Chemoecology 13: 193–197. DOI: https://doi.org/10.1007/s00049-003-0248-y
  19. Mathis, A., Vincent, F. (2000): Differential use of visual and chemical cues in predator recognition and threat-sensitive predator avoidance responses by larval newts (Notophthalmus viridescens). Can. J. Zool. 78: 1646–1652. DOI: https://doi.org/10.1139/z00-090
  20. McCormick, M.I., Manassa, R. (2007): Predation risk assessment by olfactory and visual cues in a coral reef fish. Coral Reefs 27: 105–113. DOI: https://doi.org/10.1007/s00338-007-0296-9
  21. Miller, J.R., Ament, B.J.M., Schmitz, O.J. (2014): Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. J. Anim. Ecol. 83: 214–222. DOI: https://doi.org/10.1111/1365-2656.12111
  22. Miller, A.K., Martiz, B., Mckay, S., Glaudas, X., Alexander, G.J. (2015): An ambusher's arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc. R. Soc. B. 282: 20152182. DOI: https://doi.org/10.1098/rspb.2015.2182
  23. Mogali, S.M., Saidapur, S.K., Shanbhag, B.A. (2011): Levels of predation modulate antipredator defense behavior and metamorphic traits in the toad Bufo melanostictus. J. Herpetol. 45: 428–431. DOI: https://doi.org/10.1670/10-273.1
  24. Mogali, S.M., Saidapur, S.K., Shanbhag, B.A. (2012): Tadpoles of the bronze frog (Rana temporalis) assess predation risk before evoking antipredator defense behavior. J. Ethol. 30: 379–386. DOI: https://doi.org/10.1007/s10164-012-0335-z
  25. Mogali, S.M., Saidapur, S.K., Shanbhag, B.A. (2020): Behavioral responses of tadpoles of Duttaphrynus melanostictus (Anura: Bufonidae) to cues of starved and fed dragonfly larvae. Phyllomedusa 19: 93–98. DOI: https://doi.org/10.11606/issn.2316-9079.v19i1p93-98
  26. Mogali, S.M., Shanbhag, B.A., Saidapur, S.K. (2021): Comparative vulnerability of Indosylvirana temporalis and Clinotarsus curtipes (Anura: Ranidae) tadpoles to water scorpions: importance of refugia and swimming speed in predator avoidance. Phyllomedusa 20: 159–164. DOI: https://doi.org/10.11606/issn.2316-9079.v20i2p159-164
  27. Mogali, S.M., Shanbhag, B.A., Saidapur, S.K. (2023a): Antipredator responses of Polypedates maculatus tadpoles to kairomones from the carnivorous tadpoles of Hoplobatrachus tigerinus. Salamandra 59: 83–86. DOI: https://doi.org/10.11606/issn.2316-9079.v21i1p59-65
  28. Mogali, S.M., Shanbhag, B.A., Saidapur, S.K. (2023b): Similar antipredator behaviour in tadpoles of two closely associated anuran species Duttaphrynus melanostictus and Sphaerotheca breviceps (Anura) to the common predator Pantala flavescens (Odonata). Salamandra 59: 78–82.
  29. Mogali, S.M., Shanbhag, B.A., Saidapur, S.K. (2023c): Behavioral responses of laboratory-reared and wild-caught Polypedates maculatus (Anura: Rhacophoridae) tadpoles to dietary cues from the carnivorous tadpoles of Hoplobatrachus tigerinus (Anura: Dicroglossidae). Phyllomedusa 22: 3–10. DOI: https://doi.org/10.11606/issn.2316-9079.v22i1p3-10
  30. Petranka, J., Hayes, L. (1998): Chemically mediated avoidance of a predatory odonate (Anax junius) by American toad (Bufo americanus) and wood frog (Rana sylvatica) tadpoles. Behav. Ecol. Sociobiol. 42: 263–271. DOI: https://doi.org/10.1007/s002650050438
  31. Relyea, R.A. (2007): Getting out alive: how predators affect the decision to metamorphose. Oecologia 152: 389–400. DOI: https://doi.org/10.1007/s00442-007-0675-5
  32. Saidapur, S.K. (2001): Behavioral ecology of anuran tadpoles: Indian scenario. Proc. Indian Nat. Sci. Acad. 67: 311–322.
  33. Saidapur, S.K. (2025): Behavioral ecology and developmental plasticity in Indian anuran tadpoles. Behav. Ecol. Sociobiol. 79: 46. DOI: https://doi.org/10.1007/s00265-025-03583-7
  34. Scherer, A.E., Smee, D.L. (2016): A review of predator diet effects on prey defensive responses. Chemoecology 26: 83–100. DOI: https://doi.org/10.1007/s00049-016-0208-y
  35. Schmidt, B.R., Amezquita, A. (2001): Predator-induced behavioral responses: tadpoles of the neotropical frog Phyllomedusa tarsius do not respond to all predators. Herpetol. J. 11: 9–15.
  36. Schoeppner, N.M., Relyea, R.A. (2005): Damage, digestion, and defense: the role of alarm cues and kairomones for inducing prey defenses. Ecol. Lett. 8: 505–512. DOI: https://doi.org/10.1111/j.1461-0248.2005.00744.x
  37. Schoeppner, N.M., Relyea, R.A. (2009): When should prey respond to consumed heterospecifics? Testing hypotheses of perceived risk. Copeia 2009: 190–194. DOI: https://doi.org/10.1643/CE-08-041
  38. Semilitsch, R.D., Reyer, H.O. (1992): Modifications of antipredator defenses in tadpoles by environmental conditioning. J. Anim. Ecol. 61: 353–360. DOI: https://doi.org/10.2307/5327
  39. Smith, G.R., Boyd, A., Dayer, C.B., Ogle, M.E., Terlecky, A.J., Dibble, C.J. (2010): Effects of sibship and the presence of multiple predators on the behavior of Green frog (Rana clamitans) tadpoles. Ethology 116: 213-217. DOI: https://doi.org/10.1111/j.1439-0310.2009.01728.x
  40. Spieler, M., Linsenmair, K.E. (1999): Aggregation behaviour of Bufo maculates tadpoles as an antipredator mechanism. Ethology 105: 665–686. DOI: https://doi.org/10.1046/j.1439-0310.1999.00446.x
  41. Stirling, G. (1995): Daphnia behaviour as a bioassay of fish presence or predation. Funct. Ecol. 9: 778–784. DOI: https://doi.org/10.2307/2390252
  42. Van Buskirk, J., Arioli, M. (2002): Dosage response of an induced defense: how sensitive are tadpoles to predation risk? Ecology 83: 1580–1585. DOI: https://doi.org/10.1890/0012-9658(2002)083[1580:DROAID]2.0.CO;2