Vol. 20 No. 1 (2025)
Articles

Growth and metamorphosis of Bufo gargarizans gargarizans larvae: effects of water volume and food diversity

Tong Lei Yu
College of Life Science, Xinyang Normal University, SD 464000, China
Ying Xie
College of Life Science, Xinyang Normal University, SD 464000, China
Xin Mei Sun
College of Life Science, Xinyang Normal University, SD 464000, China
Cheng Le Feng
College of Life Science, Xinyang Normal University, SD 464000, China
Jiang Xue Fan
College of Life Science, Xinyang Normal University, SD 464000, China
Yu Qi Liu
College of Life Science, Xinyang Normal University, SD 464000, China
Tong Xian Chen
College of Life Science, Xinyang Normal University, SD 464000, China
Xue Ke Ma
College of Life Science, Xinyang Normal University, SD 464000, China
Bing Yao Wang
College of Life Science, Xinyang Normal University, SD 464000, China
Meng Zhang
College of Life Science, Xinyang Normal University, SD 464000, China

Published 2025-05-06

Keywords

  • Bufo gargarizans gargarizans,
  • water volume,
  • food diversity,
  • phenotypic plasticity,
  • metamorphic size

How to Cite

Yu, T. L., Xie, Y., Sun, X. M., Feng, C. L., Fan, J. X., Liu, Y. Q., Chen, T. X., Ma, X. K., Wang, B. Y., & Zhang, M. (2025). Growth and metamorphosis of Bufo gargarizans gargarizans larvae: effects of water volume and food diversity. Acta Herpetologica, 20(1), 41–47. https://doi.org/10.36253/a_h-15323

Funding data

Abstract

Organisms can evolve and produce different phenotypes in respond to local environmental conditions. Abiotic factors, such as water volume and food diversity in breeding ponds, also play significant roles in the survival and age at metamorphosis of amphibians. Here, we experimentally examined the plasticity of growth rate, survival rate, larval mass, age, and body size at metamorphosis in Bufo gargarizans gargarizans in response to varying combinations of water volume and food diversity. The interaction between water volume and food diversity had no effect on larval growth and development. However, food diversity had a significant impact on the age at metamorphosis, with two food resources resulting in a shorter larval period and earlier metamorphosis, particularly in larger water volumes. Our findings demonstrated that tadpoles raised in larger water volumes had larger body sizes at metamorphosis compared to those in smaller water volumes. Additionally, tadpoles in larger water volumes exhibited higher growth rates and shorter larval periods than those in smaller water volumes. We suggest that the increased frequency of physical encounters between tadpoles and the vessel walls in smaller volumes, akin to high-density conditions, causes psychological stress due to crowding, which hinders larval growth and development.

References

  1. Adolph, E.F. (1931): The size of the body and the size of the environment in the growth of tadpoles. Biol Bull. 61: 350-375. DOI: https://doi.org/10.2307/1536953
  2. Altig, R., Whiles, M.R., Taylor, C.L. (2007): What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw. Biol. 52: 386-395. DOI: https://doi.org/10.1111/j.1365-2427.2006.01694.x
  3. Brockelman, W.Y. (1969): An analysis of density effects and predation in Bufo americanus tadpoles. Ecology 50: 632-644. DOI: https://doi.org/10.2307/1936252
  4. Costa, H.H., Balasubramaniam, S. (1965): The food of the tadpoles of Rhacophorus cruciger (Blyth). Ceylon J. Sci. 5: 105-109
  5. Debenedictis, P.A. (1974): Interspecific competition between tadpoles of Rana pipiens and Rana sylvaticu: an experimental field study. Ecol. Monogr. 44: 129-151. DOI: https://doi.org/10.2307/1942308
  6. DeWitt, T.J., Scheiner, S.M. (2004): Phenotypic Plasticity: functional and conceptual, approaches. New York: Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195138962.001.0001
  7. Durnin, K.B., Smith, G.R. (2001): Effects of changing water volume on the tadpoles of two anuran species (Pseudacris triseriata and Rana blairi). J. Freshw. Ecol. 16: 411-414. DOI: https://doi.org/10.1080/02705060.2001.9663830
  8. Fixari, J.E. III., Mysiw, A.W., Sorenson, D.R., Smith, G.R., Rettig, J.E. (2017): Crowding effects on growth rate of Lithobates sphenocephalus tadpoles (Amphibia: Anura: Ranidae). Salamandra 53: 466-468.
  9. Gillespie, G.R. (2002): Impacts of sediment loads, tadpole density, and food type on the growth and development of tadpoles of the spotted tree frog Litoria spenceri: an in-stream experiment. Biol. Conserv. 106: 141-150. DOI: https://doi.org/10.1016/S0006-3207(01)00127-6
  10. Goetsch, W. (1924): Lebensraum und Korpergrosse. Biol. Zentralbl. 44: 529-560.
  11. Golay, N., Durrer, H. (1994): Volume d’eau effectif, volume d’eau accessible et effet de masse chez les têtards de Bufo calamita. Alytes 12: 64-74.
  12. Gosner, K.L. (1960): A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183-190.
  13. Gromko, M.H., Mason, F. S., Smith-Gill, S. J. (1973): Analysis of the crowding effect in Runa pipiens tadpoles. J. Exp. Zool. 186: 63-72. DOI: https://doi.org/10.1002/jez.1401860109
  14. Hota, A.K., Dash, M.C. (1981): Growth and metamorphosis of Rana tigrina larvae: effects of food level and larval density. Oikos 37: 349-352. DOI: https://doi.org/10.2307/3544127
  15. John, K.R., Fusaro, J.M. (1981): Growth and metamorphosis of solitary Rana pipiens tadpoles in confined space. Copeia 1981: 737-741. DOI: https://doi.org/10.2307/1444591
  16. John, K.R., Fenster, D. (1975): The effects of partitions on the growth rate of crowded Rana pipiens tadpoles. Am. Midl. Nat. 93: 123-130. DOI: https://doi.org/10.2307/2424110
  17. Kamat, N.D. (1962): On the intestinal contents of tadpoles and algae of small ponds. Curr. Sci. 31: 300-301.
  18. Kehr, A.I., Schaefer, E.F., Duré, M.I., Gómez, V.I. (2014): Influence of light intensity, water volume and density in tadpoles raised in mesocosm experiments. J. Zool. 293: 33-39. DOI: https://doi.org/10.1111/jzo.12099
  19. Licht, L.E. (1967): Growth inhibition in crowded tadpoles: Intraspecific and interspecific effects. Ecology 48: 736-745. DOI: https://doi.org/10.2307/1933731
  20. Loman, J. (2002): Rana temporaria metamorph production and population dynamics in the field–effects of tadpole density, predation and pond drying. J. Nat. Conserv. 10: 95-107. DOI: https://doi.org/10.1078/1617-1381-00011
  21. Lynn, W.G., Edelman, A. (1936): Crowding and metamorphosis in the tadpole. Ecology 17: 104-109. DOI: https://doi.org/10.2307/1932955
  22. Martin, R.A., Garnett, S.C. (2013): Relatedness and resource diversity interact to influence the intensity of competition. Biol. J. Linn. Soc. 110: 689-695. DOI: https://doi.org/10.1111/bij.12146
  23. Montealegre-Delgado, X.K., Avendaño-Casadiego, K., Bernal, M.H. (2013): Efecto del tamaño del habitat en la supervivencia, desarrollo y crecimiento en renacuajos de Engystomops pustulosus (Anura: Leiuperidae) y Rhinella humboldti (Anura: Bufonidae). Pap. Avulsos Zool. 53: 309-314. DOI: https://doi.org/10.1590/S0031-10492013002300001
  24. Pearman, P.B. (1993): Effects of habitat size on tadpole populations. Ecology 74: 1982-1991. DOI: https://doi.org/10.2307/1940841
  25. Pigliucci, M. (2001): Phenotypic plasticity: beyond nature and nurture. Maryland: Johns Hopkins University Press. DOI: https://doi.org/10.56021/9780801867880
  26. Podhiradsky, J. (1932): tjber den Einfluss des Lebensriumes auf das Wachstum der Tiere. Arch. F. Entwickl. 127: 251-82. DOI: https://doi.org/10.1007/BF01390718
  27. Relyea, R.A., Hoverman, J.T. (2003): The impact of larval predators and competitors on the morphology and fitness of juvenile tree frogs. Oecologia 134: 596-604. DOI: https://doi.org/10.1007/s00442-002-1161-8
  28. Richter-Boix, A., Tejedo, M., Rezende, E.L. (2011): Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol. Evol. 1: 15-25. DOI: https://doi.org/10.1002/ece3.2
  29. Rot-Nikcevic, I., Denver, R.J., Wassersug, R.J. (2005): The influence of visual and tactile stimulation on growth and metamorphosis in anuran larvae. Funct. Ecol. 19: 1008-1016. DOI: https://doi.org/10.1111/j.1365-2435.2005.01051.x
  30. Rugh, R. (1934): The space factor in the growth rate of tadpoles. Ecology 15: 407-411. DOI: https://doi.org/10.2307/1932356
  31. Sabnis, J.H., Kuthe, S.N. (1978): Observation on food and growth of Bufo melanostictus tadpole. J. Bombay Nat. Hist. Soc. 77: 21-25
  32. Sabnis, J.H., Kolhatkar, B.L. (1977): Observations on the food preference of Rana cyanophlyctis tadpole. Comp. Physiol. Ecol. 2: 232-233.
  33. Saidapur, SK. (2001): Behavioral ecology of anuran tadpoles: the Indian scenario. Proc. Indian Natn. Sci. Acad. (PINSA) B67: 311-322.
  34. Sekar, A.G. (1992): A study of the food habits of six anuran tadpoles. J. Bombay Nat. Hist. Soc. 89: 9-16.
  35. Semlitsch, R.D., Caldwell, J.P. (1982): Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scuphiopus holbrooki. Ecology 63: 905-911. DOI: https://doi.org/10.2307/1937230
  36. Semlitsch, R.D., Scott, D.E., Pechmann, J.H.K., Gibbons, J.W. (1996): Structure and dynamics of an amphibian community: Evidence from a 16-year study of a natural pond. In: Long-term studies of vertebrate communities, pp. 217-247. Cody, M.L., Small-Wood, J.A., Eds, San Diego: Academic Press Inc. DOI: https://doi.org/10.1016/B978-012178075-3/50010-6
  37. Smith, G.R. (1998): Abundance and water volume effects in amphibian larvae. Bull. Maryland Herpetol. Soc. 34: 113-117.
  38. Smith-Gill, S.J., Berven, K.A. (1979): Predicting amphibian metamorphosis. Am. Nat. 113: 563-585. DOI: https://doi.org/10.1086/283413
  39. Steinwascher, K. (1978): Interference and exploitation competition among tadpoles of Rana utricularia. Ecology 59: 1039-1046. DOI: https://doi.org/10.2307/1938556
  40. Székely, P., Cogălniceanu, D., Tudor, M. (2010): Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles. Amphib.-Reptil. 31: 425-434. DOI: https://doi.org/10.1163/156853810791769536
  41. Valenzuelasanchez, A., Cunningham, A.A., Sotoazat, C. (2015): Geographic body size variation in ectotherms: effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 12: 37-37. DOI: https://doi.org/10.1186/s12983-015-0132-y
  42. Wei, G., Xia P.H., Cheng, G., Wang, S., Zhang, J.Z., Lu, J.C., Xu, N. (2011): Predatory effect of tadpoles of Bufo gargarizans gargarizans and Microhyla pulchra on Algae. Guizhou Agr. Sci. 39: 150-151.
  43. Wells, K.D. (2007): The ecology and behavior of amphibians. University of Chicago Press, Chicago. DOI: https://doi.org/10.7208/chicago/9780226893334.001.0001
  44. Wilbur, H.M. (1977): Interactions of food level and population density in Rana sylvatica. Ecology 58: 206-209. DOI: https://doi.org/10.2307/1935124
  45. Wilbur, H.M. (1997): Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78: 2279-2303. DOI: https://doi.org/10.2307/2265892
  46. Wilbur, H. M., Collins, J. P. (1973): Ecological aspects of amphibian metamorphosis. Science 58: 1305-1314. DOI: https://doi.org/10.1126/science.182.4119.1305
  47. Yu, T.L., Sharma, M.D. (2012): Sex recognition and mate choice by male Bufo gargarizans in Central China. Zool. Sci. 29: 347-350. DOI: https://doi.org/10.2108/zsj.29.347
  48. Yung, E. (1885): Influence du nombre des individus contenus dans un meme vase, et de la forme de ce vase, sur le dleveloppment des larues de Grenouille. Comp. Rend. A cad. Sci. 101: 1018-1020.