Published 2025-05-12
Keywords
- Amphibians,
- Atlantic Forest,
- Caatinga,
- morphometry,
- reproduction
- oocytes,
- seasonality ...More
How to Cite
Copyright (c) 2025 Francis Luiz Santos Caldas, Adrian Antonio Garda, Cássio Rachid Meireles de Almeida Simões, Edinaldo Leite-Filho, Renato Gomes Faria, Daniel Oliveira Mesquita

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Os anfíbios são intrinsecamente relacionados à água, e muitas características das espécies variam com esse recurso principalmente em biomas com características hídricas díspares, como a Caatinga e a Mata Atlântica no Brasil. Comparamos esses ambientes e previmos que os anuros, independentemente da espécie, são menores na Caatinga porque a irregularidade da água acelera a metamorfose e a imprevisibilidade da disponibilidade de alimento reduz o estoque de energia para o crescimento. Além disso, o esforço reprodutivo feminino na Caatinga deve ser mais qualitativo do que quantitativo, com ninhadas menores, mas com ovócitos maiores. Nas comparações intraespecíficas, usamos variáveis morfométricas e estimamos o número e o volume individual de ovócitos. Independentemente do sexo, as espécies não variaram em tamanho entre os ambientes, ao contrário da nossa previsão. Em ambientes úmidos, o período reprodutivo mais prolongado e o comprometimento energético com diversas necessidades podem comprometer o crescimento e gerar custos tão altos quanto os do ambiente semiárido, equalizando os padrões corporais. Apenas L. macrosternum apoiou nossa segunda previsão, com menor número de ovócitos na Caatinga, mas sem maior volume. Não temos certeza de quais fatores influenciaram esse tamanho de oócito, mas eles provavelmente agem cumulativamente para evitar gasto desnecessário de energia, resultando em uma estratégia qualitativa. Discutimos como a irregularidade da precipitação e outras características contrastantes entre nossos locais podem ser responsáveis pelos padrões observados.
References
- Ab'Saber, A.N. (1977): Os domínios morfoclimáticos na América do Sul: primeira aproximação. Geomorfologia 52: 1-121.
- Ab'Saber, A.N. (1999): Sertões e sertanejos: uma geografia humana sofrida. Estud. Av. 13: 7-59.
- Afonso, L.G., Eterovick, P.C. (2007): Spatial and temporal distribution of breeding anurans in streams in southeastern Brazil. J. Nat. Hist. 41: 949-963.
- Arzabe, C., Carvalho, C.X., Costa, M.A.G. (1998): Anuran assemblages in Crasto Forest ponds (Sergipe State, Brazil): comparative structure and calling activity patterns. Herpetol. J. 8: 111-113.
- Bento, D.M., Ferreira, R.L., Prous, X., Souza-Silva, M., Bellini, B.C., Vasconcellos, A. (2016): Seasonal variations in cave invertebrate communities in the semiarid Caatinga, Brazil. J. Cave Karst. Stud. 78: 61-71.
- Blaustein, A.R., Edmond, B., Kiesecker, J.M., Beatty, J.J., Hokit, D.G. (1995): Ambient ultraviolet radiation causes mortality in salamander eggs. Ecol. Appl. 5: 740-743.
- Blaustein, A.R., Hatch, A., Belden, L.K., Wildy, E.L. (2001): Influence of abiotic and biotic factors on amphibians in ephemeral ponds with special reference to long-toed salamanders (Ambystoma macrodactylum). Israel J. Zool. 47: 333-346.
- Blaustein, L., Garb, J.E., Shebitz, D., Nevo, E. (1999): Microclimate, developmental plasticity and community structure in artificial temporary pools. Hydrobiologia 392: 187-196.
- Brandão, R.A., Fenker, J., Lopes, B.E.P.C., Sena, V.M.A., Vasconcelos, B.D. (2020): Diet of terrestrial anurans in an ephemeral and simplified habitat during the dry season in the Brazilian Cerrado. Ethol. Ecol. Evol. 1: 1-24.
- Braun, P.C., Braun, C.A.S. (1977): Nova espécie de Hyla do Estado do Rio Grande do Sul, Brasil (Anura, Hylidae). Rev. Bras. Biol. 37: 853-857.
- Caldas, F.L.S., Silva, B.D., Santos, R.A., De-Carvalho, C.B., Santana, D.O., Gomes, F.F.A., Faria, R.G. (2016): Autoecology of Phyllomedusa nordestina (Anura: Hylidae) in areas of the Caatinga and Atlantic Forest in the State of Sergipe, Brazil. North-West. J. Zool. 12: 271-285.
- Caldas, F.L.S., Garda, A.A., Cavalcanti, L.B.Q., Leite-Filho, E., Faria, R.G., Mesquita, D.O. (2019): Spatial and trophic structure of anuran assemblages in environments with different seasonal regimes in the Brazilian Northeast Region. Copeia 107: 567-584.
- Cechin, S.Z., Martins, M. (2000): Eficiência de armadilhas de queda (pitfall traps) em amostragens de anfíbios e répteis no Brasil. Rev. Bras. Zool. 17: 729-740.
- Crump, M.L., Scott, N.J.J. (1994): Measuring and monitoring biological diversity: standard methods for amphibians. In: Standard Techniques for Inventory and Monitoring, p. 76-141. Heyer, W.R., Donnelly, M.A., Mcdiarmid, R.W., Hayek, L.C., Foster, M.S., Eds., Washington, D.C., Smithsonian Institution Press.
- Dayton, G.H., Fitzgerald, L.A. (2001): Competition, predation, and the distributions of four desert anurans. Oecologia 129: 430-435.
- Dayton, G.H., Fitzgerald, L.A. (2006): Habitat suitability models for desert amphibians. Biol. Cons. 132: 40-49.
- Demetrius, L. (2000): Directionality theory and the evolution of body size. Proc. R. Soc. B. 267: 2385-2391.
- Duellman, W.E., Trueb, L. (1994): Biology of Amphibians. Baltimore, The Johns Hopkins University.
- Enge, K.M. (2001): The pitfalls of pitfall traps. J. Herpetol. 35: 467-478.
- García, J., Arizaga, J., Rodríguez, J.I., Alonso, D., Suárez‐Seoane, S. (2021): Morphological differentiation in a migratory bird across geographic gradients in mountains of southern Europe. J. Biogeogr. 48: 2828-2838.
- Heyer, W.R. (1969): The adaptive ecology of the species groups of the genus Leptodactylus (Amphibia, Leptodactylidae). Evolution 23: 421-428.
- Horato, M.N., Almeida-Santos, M., Rocha, C.F.D., Sabagh, L.T. (2024): Reproductive ecology of treefrogs: egg size promotes reproductive effort differences between females. Evol. Ecol. 38: 481-493.
- Howard, R.D. (1981): Sexual dimorphism in bullfrogs. Ecology 62: 303-310.
- Ibragimova, D.V., Lyapkov, S.M. (2018): Demographic and morphometric characteristics of the Moor Frog Rana arvalis from a transformed habitat in the Khanty-Mansi Autonomous Region—Yugra. Biol. Bull. 45: 831-838.
- INMET (2012): Instituto Nacional de Meteorologia. https://portal.inmet.gov.br.
- INMET (2013): Instituto Nacional de Meteorologia. https://portal.inmet.gov.br.
- Jared, C., Mailho‐Fontana, P.L., Mendelson, J., Antoniazzi, M.M. (2019): Life history of frogs of the Brazilian semi‐arid (Caatinga), with emphasis in aestivation. Acta Zool. 101: 302-310.
- Jolicoeur, P. (1963): The multivariate generalization of the allometry equation. Biometrics 19: 497-499.
- Joly, C.A., Metzger, J.P., Tabarelli, M. (2014): Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol. 204: 459-473.
- Kaplan, R.H., Phillips, P.C. (2006): Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution 60: 142-156.
- Kissel, A.M., Palen, W.J., Ryan, M.E., Adams, M.J. (2019): Compounding effects of climate change reduce population viability of a montane amphibian. Ecol. Appl. 29: 1-12.
- Li, H., Cui, C., Shen, H., Zhu, Y., Chen, Z., Chen, X. (2023): Morphological variation and its correlation with bioclimatic factors in Odorrana graminea sensu stricto. Front. Ecol. Evol. 11: 1-11.
- Liao, W.B., Luo, Y., Lou, S.L., Lu, D., Jehle, R. (2016): Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (Bufo andrewsi). Front. Zool. 13: 1-9.
- Lyapkov, S., Ibragimova, D., Nakonechnyi, N. (2022): The age composition and postmetamorphic growth characteristics of the Moor Frog (Rana arvalis) from habitats with a short activity season. Biol. Bull. 49: 299-308.
- Melchiors, J., Di-Bernardo, M., Pontes, G.M.F., de Oliveira, R.B., Solé, M., Kwet, A. (2004): Reproduction of Pseudis minuta (Anura, Hylidae) in southern Brazil. Phyllomedusa 3: 61-68.
- Mesquita, D.O., Costa, G.C., Zatz, M.G. (2004): Ecological aspects of the casque-headed frog Aparasphenodon brunoi (Anura, Hylidae) in a Restinga habitat in southeastern Brazil. Phyllomedusa 3: 51-59.
- Moreira, D.C., Carvajalino-Fernández, J.M., Navas, C.A., Carvalho, J.E., Hermes-Lima, M. (2021): Metabolic and redox biomarkers in skeletal muscle underlie physiological adaptations of two estivating anuran species in a South American semi-arid environment. Front. Physiol. 12: 1-13.
- Morrison, C., Hero, J.M. (2003): Geographic variation in life‐history characteristics of amphibians: a review. J. Anim. Ecol. 72: 270-279.
- Napoli, M.F., Pimenta, B.V.S. (2009): A new species of the Bokermannohyla circumdata group (Anura: Hylidae) from the coastal forests of Bahia, Northeastern Brazil. Copeia 2009: 674-683.
- Navas, C.A., Antoniazzi, M.M., Jared, C. (2004): A preliminary assessment of anuran physiological and morphological adaptation to the Caatinga, a Brazilian semi-arid environment. Int. Congr. Ser. 1275: 298-305.
- Neckel-Oliveira, S. (2004): Effects of landscape change on clutches of Phyllomedusa tarsius, a neotropical treefrog. Biol. Cons. 118: 109-116.
- Nimer, E. (1989): Climatologia da região Nordeste. In: Climatologia do Brasil, p. 315-361. IBGE, DRNEA, Eds., Rio de Janeiro, Fundação Instituto Brasileiro de Geografia e Estatística.
- Pavón‐Vázquez, C.J., Brennan, I.G., Skeels, A., Keogh, J.S. (2022): Competition and geography underlie speciation and morphological evolution in Indo‐Australasian monitor lizards. Evolution 76: 476-495.
- Pfennig, D.W., Murphy, P.J. (2002): How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56: 1217-1228.
- Pough, F.H., Taigen, T.L., Stewart, M.M., Brussard, P.F. (1983): Behavioral modification of evaporative water loss by a Puerto Rican frog. Ecology 64: 244-252.
- R Development Core Team (2018): R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Roff, D.A. (1992): Evolution of Life Histories: theory and Analysis. New York, Chapman e Hall.
- Roff, D.A. (2002): Life-history Evolution. Sunderland, Sinauer Associates.
- Rohlf, F.J., Bookstein, F.L. (1987): A comment on shearing as a method for “size correction”. Syst. Biol. 36: 356-367.
- Ryser, J. (1996): Comparative life histories of a low-and a high-elevation population of the common frog Rana temporaria. Amphibia-Reptilia 17: 183-195.
- Saenz, D., Fitzgerald, L.A., Baum, K.A., Conner, R.N., Adams, D. (2006): Abiotic correlates of anuran calling phenology: the importance of rain, temperature, and season. Herpetol. Monogr. 20: 64-82.
- Schäuble, C.S. (2004): Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biol. J. Linn. Soc. 82: 39-56.
- Schiwitz, N.C., Schalk, C.M., Saenz, D. (2020): Activity level-predation risk tradeoff in a tadpole guild: implications for community organization along the hydroperiod gradient. Am. Midl. Nat. 183: 223-232.
- Silva, I.S., Lucena, E.F., Moura, F.M.S., Vasconcellos, A. (2021): Termite flights seasonally promote nutrient pulses in the Caatinga dry forest in northeastern Brazil. Appl. Soil Ecol. 166: 1-6.
- Silva, J.M.C., Barbosa, L.C.F., Leal, I.R., Tabarelli, M. (2017): The Caatinga: understanding the challenges. In: Caatinga: the Largest Tropical Dry Forest Region in South America, p. 3-19. Silva, J.M.C., Leal, I.R., Tabarelli, M., Eds., Gewerbestrasse, Springer International Publishing.
- Silva, W.R., Giaretta, A.A. (2008): Seleção de sítios de oviposição em anuros (Lissamphibia). Biota. Neotrop. 8: 243-248.
- Sinsch, U., Pelster, B., Ludwig, G. (2015): Large-scale variation of size- and age-related life-history traits in the common frog: a sensitive test case for macroecological rules. J. Zool. (Lond.). 297: 32-43.
- Solé, M., Rödder, D. (2009): Dietary assessments of adult amphibians. In: Amphibian Ecology and Conservation: a Handbook of Techniques, p. 167-184. Dodd Jr., C.K., Ed., Oxford, Oxford University Press.
- Somers, K.M. (1986): Multivariate allometry and removal of size with principal components analysis. Syst. Biol. 35: 359-368.
- Sousa, T.R., Benício, R.A., Fonseca, M.G. (2022): Polimorfismo em Rhinella diptycha (Anura: Bufonidae) em uma área de Caatinga, estado do Piauí, Nordeste do Brasil. Biosphere 1: 16-22.
- Sullivan, B.K., Fernandez, P.J. (1999): Breeding activity, estimated age-structure, and growth in sonoran desert anurans. Herpetologica 55: 334-343.
- Tiar-Saadi, M., Tiar, G., Bouslama, Z., Široký, P. (2022): Mechanisms determining body size and shape difference in Algerian Spur-Thighed Tortoises (Testudo graeca). Animals 12: 1-21.
- Tonhasca-Júnior, A. (2005): Ecologia e História Natural da Mata Atlântica. Rio de Janeiro, Interciência.
- Varjão, I.C.G., Ribeiro, L.B. (2018): Field record of aestivation with formation of cocoon in the frog Leptodactylus fuscus (Anura: Leptodactylidae) in a semiarid region of northeastern Brazil. Phyllomedusa 17: 135-138.
- Vasconcellos, A., Andreazze, R., Almeida, A.M., Araujo, H.F.P., Oliveira, E.S., Oliveira, U. (2010): Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev. Bras. Entomol. 54: 471-476.
- Velloso, A.L., Sampaio, E.V., Giulietti, A.M., Barbosa, M.R.V., Castro, A.A.J.F., Queiroz, L.P., Fernandes, A., Oren, D.C., Cestaro, L.A., Carvalho, A.J.E. (2002): Ecorregiões Propostas para o Bioma Caatinga. Recife, Flamar Gráfica e Editora.
- Werner, E.E. (1986): Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Amer. Nat. 128: 319-341.
- Wiens, J.J., Pyron, R.A., Moen, D.S. (2011): Phylogenetic origins of local‐scale diversity patterns and the causes of Amazonian megadiversity. Ecol. Lett. 14: 643-652.
- Woodward, B.D. (1983): Predator-prey interactions and breeding-pond use of temporary-pond species in a desert anuran community. Ecology 64: 1549-1555.
- Zelditch, M., Swiderski, D., Sheets, H.D. (2012): Geometric Morphometrics for Biologists: a Primer. 2 Edition. London, Academic Press.