Vol. 19 No. 1 (2024)
Articles

Hemipenial morphology does not provide insight on mating barriers between the two main lineages of Hierophis viridiflavus (Lacépède, 1789)

Federico Storniolo
Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, Via Torquato Taramelli 24, 27100 Pavia
Thomas Dadda
Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, Via Torquato Taramelli 24, 27100 Pavia
Stefano Scali
Museo di Storia Naturale di Milano, Corso Venezia 55, 20121 Milano
Marco A.L. Zuffi
Museo di Storia Naturale dell’Università di Pisa, Via Roma 79, 56011 Calci (PI)
Marco Mangiacotti
Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, Via Torquato Taramelli 24, 27100 Pavia
Roberto Sacchi
Dipartimento di Scienze della Terra e dell’Ambiente, Università di Pavia, Via Torquato Taramelli 24, 27100 Pavia

Published 2024-06-21

Keywords

  • Hierophis viridiflavus,
  • mating barriers,
  • hemipenes,
  • anatomy,
  • morphology

How to Cite

Storniolo, F., Dadda, T., Scali, S., Zuffi, M. A., Mangiacotti, M., & Sacchi, R. (2024). Hemipenial morphology does not provide insight on mating barriers between the two main lineages of Hierophis viridiflavus (Lacépède, 1789). Acta Herpetologica, 19(1), 3–12. https://doi.org/10.36253/a_h-14145

Abstract

Copulatory organs are a key trait in reproductive compatibility and sexual isolation. The role of male genitalia in boosting mating success is well known and is often the outcome of behavioural and biological constraints, although no clear and common interpretation about their evolution appears broadly applicable. In snakes, hemipenial morphology has often been described under the perspective of sexual selection, taking into consideration both behavioural and morphological traits of both sexes. We investigated hemipenial morphology and ornamentation in the two subspecies of Hierophis viridiflavus, a male-male combating colubrid, and compared it to the sister species H. gemonensis, to assess intraspecific variation in size of genitalia and ornamentation richness. The male intromitted organ of this species is unilobed and bulbous, with rich ornamentations consisting of basal spines and apical calyculations. We detected no statistically significant difference in hemipenial size, basal spine count, and spine length between the two subspecies, suggesting that no copulatory barrier is present between the two clades. Although hemipenial morphology and anatomy do not seem suitable to assess intraspecific variability as shown in this study, they are often highly variable at the family or genus level, suggesting that the evolution of male genitalia is linked to phylogenetic relationships and that hemipenial divergence might be correlated to lineage splitting despite not being necessarily the main cause. Future studies should be aimed at investigating hemipenial morphology and anatomy across species under the perspective of comparative phylogeny and reproductive behaviours to address thoroughly the constraints of hemipenial evolution and development.

References

  1. Andonov, K., Natchev, N., Kornilev, Y.V., Tzankov, N. (2017): Does sexual selection influence ornamentation of hemipenes in Old World snakes? Anat. Rec. 300: 1680-1694. DOI: https://doi.org/10.1002/ar.23622
  2. Arnqvist, G., Danielsson, I. (1999): Copulatory behavior, genital morphology, and male fertilization success in water striders. Evolution 53: 147-156. DOI: https://doi.org/10.1111/j.1558-5646.1999.tb05340.x
  3. Arnqvist, G., Thornhill, R. (1998): Evolution of animal genitalia: patterns of phenotypic and genotypic variation and condition dependence of genital and non-genital morphology in water strider (Heteroptera: Gerridae: Insecta). Genet. Res. 71: S0016672398003279. DOI: https://doi.org/10.1017/S0016672398003279
  4. Bates, D., Maechler, M., Bolker, B., Walker, S. (2015). Fitting Linear Mixed-Effects models using lme4. J. Stat. Softw. 67: 1-48. DOI: https://doi.org/10.18637/jss.v067.i01
  5. Bernardo, P.H., MacHado, F.A., Murphy, R.W., Zaher, H. (2012): Redescription and morphological variation of Oxyrhopus clathratus Duméril, Bibron and Duméril, 1854 (Serpentes: Dipsadidae: Xenodontinae). South. Am. J. Herpetol. 7: 134-148. DOI: https://doi.org/10.2994/057.007.0203
  6. Branch, W.R. (1986): Hemipenial morphology of African snakes: A taxonomic review. Part 1. Scolecophidia and Boidae. J. Herpetol. 20: 285-299. DOI: https://doi.org/10.2307/1564495
  7. Breheny, P., Burchett, W. (2017): Visualization of regression models using visreg. The R Journal 9: 56-71. DOI: https://doi.org/10.32614/RJ-2017-046
  8. Brennan, P.L., Prum, R.O. (2015): Mechanisms and evidence of genital coevolution: the roles of natural selection, mate choice, and sexual conflict. Cold Spring Harb. Perspect. Biol. 7: a017749. DOI: https://doi.org/10.1101/cshperspect.a017749
  9. Cadle, J.E. (2011): Hemipenial morphology in the North American snake genus Phyllorhynchus (Serpentes: Colubridae), with a review of and comparisons with natricid hemipenes. Zootaxa 3092: 1-25. DOI: https://doi.org/10.11646/zootaxa.3092.1.1
  10. Capula, M., Filippi, E., Luiselli, L. (1995): Annual mating in female colubrid snakes with irregular reproductive frequency. Herpetozoa 8: 11-15.
  11. Capula, M., Filippi, E., Luiselli, L., Jesus, V.T. (1997): The ecology of the Western whip snake, Coluber viridiflavus (lacépède, 1789), in Mediterranean Central Italy. Herpetozoa 10: 65-79.
  12. Cope, E.D. (1895): The classification of the Ophidia. Trans. Am. Phil. Soc. 18: 186-219. DOI: https://doi.org/10.2307/1005387
  13. Dowling, H.G., Savage, J.M. (1960): A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. Zoologica 45: 17-28. DOI: https://doi.org/10.5962/p.203350
  14. Dufour, L. (1844): Anatomie générale des Dipteres. Ann. Sci. Nat. 1: 244-264.
  15. Duursma, R. (2022): bootpredictlme4: predict method for lme4 with bootstrap. R package version 0.1.
  16. Eberhard, W.G. (2010): Evolution of genitalia: theories, evidence, and new directions. Genetica 138: 5-18. DOI: https://doi.org/10.1007/s10709-009-9358-y
  17. Edgar, P., Bird, D.R. (2006): Action plan for the conservation of the Aesculapian snake (Zamenis longissimus) in Europe. In: Convention on the Conservation of European Wildlife and Natural Habitats. Council of Europe, Strasbourg.
  18. Edwards, R. (1993): Entomological and mammalogical perspectives on genital differentiation. Trends. Ecol. Evol. 8: 406-409. DOI: https://doi.org/10.1016/0169-5347(93)90042-N
  19. Folwell, M.J., Sanders, K.L., Brennan, P.L., Crowe-Riddell, J. (2022): First evidence of hemiclitores in snakes. Proc. Royal Soc. B. 289: 20221702. DOI: https://doi.org/10.1098/rspb.2022.1702
  20. Fornasiero, S., Dendi, F., Bresciani, E., Cecchinelli, E., Zuffi, M.A.L. (2007): The scent of the others: chemical recognition in two distinct populations of the European whip snake, Hierophis viridiflavus. Amphibia-Reptilia 32: 39-47. DOI: https://doi.org/10.1163/017353710X541850
  21. Friesen, C.R., Uhrig, E.J., Squire, M.K., Mason, R.T., Brennan, P.L.R. (2014): Sexual conflict over mating in red-sided garter snakes (Thamnophis sirtalis) as indicated by experimental manipulation of genitalia. Proc. Royal Soc. B 281: 20132694. DOI: https://doi.org/10.1098/rspb.2013.2694
  22. Greenwood, J.F., Lara Granados, G., Secor, S.M., Todd, B.D., Showalter, I., Hedrick, B.P., Brennan, P.L.R. (2022): Divergent genital morphologies and female–male covariation in watersnakes. Integr. Comp. Biol. 62: 569-580. DOI: https://doi.org/10.1093/icb/icac020
  23. Hosken, D.J., Stockley, P. (2004): Sexual selection and genital evolution. Trends Ecol. Evol. 19: 87-93. DOI: https://doi.org/10.1016/j.tree.2003.11.012
  24. House, C.M., Lewis, Z., Sharma, M.D., Hodgson, D.J., Hunt, J., Wedell, N., Hosken, D.J. (2021): Sexual selection on the genital lobes of male Drosophila simulans. Evolution 75: 501-514. DOI: https://doi.org/10.1111/evo.14158
  25. Inger, R.F., Marx, H. (1962): Variation of hemipenis and cloaca in the colubrid snake Calamaria lumbricoidea. Syst. Zool. 11: 32-38. DOI: https://doi.org/10.2307/2411447
  26. Joy, J.E., Crews, D. (1985): Social dynamics of group courtship behavior in male red-sided garter snakes (Thamnophis sirtalis parietalis). J. Compar. Psychol. 99: 145-149. DOI: https://doi.org/10.1037//0735-7036.99.2.145
  27. Keogh, J.S. (1999): Evolutionary implications of hemipenial morphology in the terrestrial Australian elapid snakes. Zool. J. Linn. Soc. 125: 239-278. DOI: https://doi.org/10.1111/j.1096-3642.1999.tb00592.x
  28. King, R.B. (1989): Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol. J. Linn. Soc. 38: 133-154. DOI: https://doi.org/10.1111/j.1095-8312.1989.tb01570.x
  29. King, R.B., Jadin, R.C., Grue, M., Walley, H.D. (2009): Behavioural correlates with hemipenis morphology in New World natricine snakes. Biol. J. Linn. Soc. 98: 110-120. DOI: https://doi.org/10.1111/j.1095-8312.2009.01270.x
  30. Klaczko, J., Gilman, C.A., Irschick, D.J. (2017): Hemipenis shape and hindlimb size are highly correlated in Anolis lizards. Biol. J. Linn. Soc. 122: 627-634. DOI: https://doi.org/10.1093/biolinnean/blx104
  31. Klaczko, J., Ingram, T., Losos, J. (2015): Genitals evolve faster than other traits in Anolis lizards. J. Zool. 295: 44-48. DOI: https://doi.org/10.1111/jzo.12178
  32. Klaczko, J., Montingelli, G.G., Zaher, H. (2014): A combined morphological and molecular phylogeny of the genus Chironius Fitzinger, 1826 (Serpentes: Colubridae). Zool. J. Linn. Soc. 171: 656-667. DOI: https://doi.org/10.1111/zoj.12147
  33. Lacépède, B.G. (1789): Histoire naturelle des quadrupèdes ovipares et des serpens. Hôtel de Thou, Paris. DOI: https://doi.org/10.5962/bhl.title.50643
  34. Luiselli, L. (1996): Individual success in mating balls of the grass snake, Natrix natrix: size is important. J. Zool. 239: 731-740. DOI: https://doi.org/10.1111/j.1469-7998.1996.tb05474.x
  35. Madsen, T., Shine, R. (1993): Male mating success and body size in european grass snakes. Copeia 1993: 561-564. DOI: https://doi.org/10.2307/1447163
  36. Mayr, E. (1963): Animal species and evolution. Harvard University Press, Cambridge. DOI: https://doi.org/10.4159/harvard.9780674865327
  37. Meier, N., Lucek, K., Zuffi, M.A.L., Storniolo, F., Mezzasalma, M., Geniez, P., Dubey, S., Sacchi, R., Scali, S., Ursenbacher, S. (2023): Extensive gene flow suggests lack of reproductive barriers between the two subspecies of the green whip snake, Hierophis viridiflavus (Squamata: Colubridae). Biol. J. Linn. Soc. 141: 133-147. DOI: https://doi.org/10.1093/biolinnean/blad062
  38. Mezzasalma, M., Dall’Asta, A., Loy, A., Cheylan, M., Lymberakis, P., Zuffi, M.A.L., Tomović, L., Odierna, G., Guarino, F.M. (2015): A sisters’ story: Comparative phylogeography and taxonomy of Hierophis viridiflavus and H. gemonensis (Serpentes, Colubridae). Zool. Scr. 44: 495-508. DOI: https://doi.org/10.1111/zsc.12115
  39. Myers, C.W., Cadle, J.E. (2003): On the snake hemipenis, with notes on Psomophis and techniques of eversion: a response to Dowling. Herpetol. Rev. 34: 295.
  40. Myers, C.W., McDowell, S.B. (2014): New taxa and cryptic species of neotropical snakes (Xenodontinae), with commentary on hemipenes as generic and specific characters. Bull. Am. Mus. Nat. Hist. 385: 1-112. DOI: https://doi.org/10.1206/862.1
  41. Nagy, Z. T., Lawson, R., Joger, U., Wink, M. (2004): Molecular systematics of racers, whipsnakes and relatives (Reptilia: Colubridae) using mitochondrial and nuclear markers. J. Zool. Syst. Evol. Res. 42: 223-233. DOI: https://doi.org/10.1111/j.1439-0469.2004.00249.x
  42. Ng J., Geneva A.J., Noll, S., Glor, R.E. (2017): Signals and speciation: Anolis dewlap color as a reproductive barrier. J. Herpetol. 51: 437-447. DOI: https://doi.org/10.1670/16-033
  43. Ota, H., Iwanaga, S. (1997): A systematic review of the snakes allied to Amphiesma pryeri (Boulenger) (Squamata: Colubridae) in the Ryukyu Archipelago. Japan. Zool J. Linn. Soc. 121: 339-360. DOI: https://doi.org/10.1111/j.1096-3642.1997.tb00341.x
  44. Perry-Richardson, J.J., Schofield, C.W., Ford, N.B. (1990): Courtship of the garter snake, Thamnophis marcianus, with a description of a female behavior for coitus interruption. J. Herpetol. 24: 76-78. DOI: https://doi.org/10.2307/1564292
  45. Pesantes, O.S. (1994): A method for preparing the hemipenis of preserved snakes. J. Herpetol. 28: 93-95. DOI: https://doi.org/10.2307/1564686
  46. R Core Team (2022): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  47. Rivas, J.A., Muñoz, M. de C., Burghardt, G.M., Thorbjarnarson, J.B. (2007): Sexual size dimorphism and the mating system of the green anaconda (Eunectes murinus). In: Biology of the boas and pythons, pp. 312-325. Henderson, R.W., Powell, R., Eds, Eagle Mountain, Utah: Eagle Mountain Publishing, LC.
  48. Rossman, D.A., Eberle, W.G. (1977): Partition of the genus Natrix, with preliminary observations on evolutionary trends in natricine snakes. Herpetologica 1977: 34-43.
  49. Schargel, W.E., Castoe, T.A. (2003): The hemipenes of some snakes of the semifossorial genus Atractus, with comments on variation in the genus. J. Herpetol. 37: 718-721. DOI: https://doi.org/10.1670/7-02N
  50. Schätti, B. (1987): The phylogenetic significance of morphological characters in the Holoartic racers of the genus Coluber Linnaeus, 1758 (Reptilia, Serpentes). Amphibia-Reptilia 8: 401-418. DOI: https://doi.org/10.1163/156853887X00171
  51. Schätti, B. (1988): Systematik und Evolution der Schlangengattung Hierophis Fitzinger, 1843 (Reptilia, Serpentes). Inaugural-Dissertation zur Erlangung der philosophischen Doctorwürde, Zürich.
  52. Schatti, B., Monsch, P. (2004): Systematics and phylogenetic relationships of whip snakes (Hierophis Fitzinger) and Zamenis andreana Werner, 1917 (Reptilia: Squamata: Colubrinae). Rev. Suisse Zool. 111: 239-256. DOI: https://doi.org/10.5962/bhl.part.80237
  53. Schätti, B., Vanni, S. (1986). Intraspecific variation in Coluber viridiflavus Lacépède, 1789, and validity of its subspecies (Reptilia, Serpentes, Colubridae). Rev. Suisse Zool. 93: 219-232. DOI: https://doi.org/10.5962/bhl.part.79689
  54. Senczuk, G., Gramolini, L., Avella, I., Mori, E., Menchetti, M., Aloise, G., Castiglia, R. (2021): No association between candidate genes for color determination and color phenotype in Hierophis viridiflavus, and characterization of a contact zone. J. Zool. Syst. Evol. Res. 59: 748-759. DOI: https://doi.org/10.1111/jzs.12451
  55. Servedio, M.R. (2004): The evolution of premating isolation: local adaptation and natural and sexual selection against hybrids. Evolution 58: 913-924. DOI: https://doi.org/10.1111/j.0014-3820.2004.tb00425.x
  56. Shapiro, A.M., Porter, A.H. (1989): The lock-and-key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Ann. Rev. Entomol. 34: 231-245. DOI: https://doi.org/10.1146/annurev.en.34.010189.001311
  57. Sillero, N., Campos, J., Bonardi, A., Corti, C., Creemers, R., Crochet, P.A., Crnobrnja Isailović, J., Denoël, M., Ficetola, G.F., Gonçalves, J., Kuzmin, S., Lymberakis, P., Pous, P. de, Rodríguez, A., Sindaco, R., Speybroeck, J., Toxopeus, B., Vieites, D.R., Vences, M. (2014): Updated distribution and biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia 35: 1-31. DOI: https://doi.org/10.1163/15685381-00002935
  58. Simmons, L.W. (2014): Sexual selection and genital evolution. Austral Entomol. 53: 1-17. DOI: https://doi.org/10.1111/aen.12053
  59. Speybroeck, J., Beukema, W., Dufresnes, C., Fritz, U., Jablonski, D., Lymberakis, P., Martinez-Solano, I., Razzetti, E., Vamberger, M., Vences, M., Voros, J., Crochet, P.A. (2020): Species list of the European herpetofauna-2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia 41: 139-189. DOI: https://doi.org/10.1163/15685381-bja10010
  60. Sota, T., Kubota, K. (1998): Genital lock‐and‐key as a selective agent against hybridization. Evolution 52: 1507-1513. DOI: https://doi.org/10.1111/j.1558-5646.1998.tb02033.x
  61. Soto, I.M., Carreira, V.P., Soto, E.M., Márquez, F., Lipko, P., Hasson, E. (2013): Rapid divergent evolution of male genitalia among populations of Drosophila buzzatii. Evol. Biol. 40: 395-407. DOI: https://doi.org/10.1007/s11692-013-9223-x
  62. Storniolo, F., Mangiacotti, M., Zuffi, M.A.L., Scali, S., Sacchi, R. (2023). Large scale phenotypic characterisation of Hierophis viridiflavus (Squamata: Serpentes): climatic and environmental drivers suggest the role of evolutionary processes in a polymorphic species. Evol. Ecol. 37: 419-434. DOI: https://doi.org/10.1007/s10682-023-10234-8
  63. Tokarz, R.R. (1988): Copulatory behaviour of the lizard Anolis sagrei: alternation of hemipenis use. Anim. Behav. 36: 1518-1524. DOI: https://doi.org/10.1016/S0003-3472(88)80222-7
  64. Utiger, UAK, Schätti, B. (2004): Morphology and phylogenetic relationships of the Cyprus racer, Hierophis cypriensis, and the systematic status of Coluber gemonensis gyarosensis Mertens (Reptilia: Squamata: Colubrinae). Rev. Suisse Zool. 111: 225-238. DOI: https://doi.org/10.5962/bhl.part.80236
  65. Vanni, S., Zuffi M.A.L. (2011): Hierophis viridiflavus (Lacépède, 1789). In: Corti C., Capula M., Luiselli, L., Razzetti E., Sindaco R. (Eds), Fauna d’Italia, Reptilia. pp. 509-516. Calderini, Bologna.
  66. Zaher, H. (1999): Hemipenial morphology of the South American xenodontine snakes, with a proposal for a monophyletic Xenodontinae and a reappraisal of colubroid hemipenes. Bull. Am. Mus. Nat. Hist. 240: 1-168.
  67. Zaher, H., Prudente, A.L.C. (2003): Hemipenes of Siphlophis (Serpentes, Xenodontinae) and techniques of hemipenial preparation in snakes: a response to Dowling. Herpetol. Rev. 34: 302-306.
  68. Zuffi, M.A.L. (2002): A critique of the systematic position of the asp viper subspecies Vipera aspis aspis (Linnaeus, 1758), Vipera aspis atra Meisner, 1820, Vipera aspis francisciredi Laurenti, 1768, Vipera aspis hugyi Schinz, 1833 and Vipera aspis zinnikeri Kramer, 1958. Amphibia-Reptilia 23: 191-213. DOI: https://doi.org/10.1163/156853802760061831