Vol. 39 No. 4 (2025)
Reviews

Beyond salt stress: Unlocking the potential of sugar beet in saline environments

T. Assaf
Department of Plant Production and Protection, Faculty of Agriculture, Jerash University, 26150 Jerash, Jordan.
M. Alrosan
- Department of Food Science and Nutrition, Faculty of Agriculture, Jerash University, 26150 Jerash, Jordan. - QU Health, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.

Published 2025-12-31

Keywords

  • salt stress mitigation,
  • Beta vulgaris L.,
  • fertilization managemnet,
  • organic amendments

How to Cite

Assaf, T., & Alrosan , M. (2025). Beyond salt stress: Unlocking the potential of sugar beet in saline environments. Advances in Horticultural Science, 39(4), 331–350. https://doi.org/10.36253/ahsc-18253

Abstract

Soil salinity is a growing constraint on crop production, especially in arid and semi-arid regions of the world where freshwater is scarce and irrigation water often has poor quality. Sugar beet (Beta vulgaris L.) is an important crop with relatively high salt tolerance that is increasingly valued for its potential to grow on marginal lands. This review combines current knowledge and recent advances in improving sugar beet’s tolerance to salinity stress through agronomic practices, as well as physiological and environmentally friendly methods to manage salinity. Key topics include how sugar beet responds to salinity at the morphological and physiological levels, tolerance mechanisms such as osmotic adjustment and antioxidant activity, effects of salinity on yield and sugar quality, and various salinity mitigation strategies. These strategies involve the application of organic amendments (biochar, compost, humic substances), improved nutrient management (potassium, phosphorus, silicon, and micronutrients), biostimulants and plant hormones applied to the foliage (salicylic acid, melatonin, GABA), microbial inoculants (PGPR and AMF), and seed priming techniques. The review also discusses regulated deficit irrigation and the development of salt-tolerant cultivars. The importance of sustainable, low-impact approaches to enhance soil health, boost plant tolerance to stress, and improve water efficiency will be emphasized. Ultimately, this review identifies gaps in our understanding of sustainable interventions and offers guidance for future research to expand sugar beet cultivation in saline environments.

References

  1. ABBASI Z., 2020 - Evaluation of sugar beet monogerm O-type lines for salinity tolerance at vegetative stage. - Afr. J. Biotechnol., 19(9): 602-612.
  2. ABD EL-MAGEED T.A., EL-SHERIF A.M., ABD EL-MAGEED S.A., ABDOU N.M., 2019 - A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. - Agric. Water Manag., 226: 105831.
  3. ABD EL-MAGEED T.A., RADY M.O., SEMIDA W.M., SHAABAN A., MEKDAD A.A., 2021 - Exogenous micronutrients modulate morpho-physiological attributes, yield, and sugar quality in two salt-stressed sugar beet cultivars. - J. Soil Sci. Plant Nutr., 21(2): 1421-1436.
  4. ABDEL-SALAM M., ABUZAID A., MOUHMOUD F., ABBAS M.H., 2025 - Increasing maize productivity in arid sandy soils using combinations of (normal/acidified) biochar and elemental sulfur. - Egypt. J. Soil Sci., 65(1): 339-357.
  5. ABDOU N.M., EL-SAMNOUDI I.M., IBRAHIM A.E.A.M., EL-TAWWAB A.R.A., 2024 - Biochar amendment alleviates the combined effects of salinity and drought stress on water productivity, yield and quality traits of Sugar beet (Beta vulgaris L.). - J. Soil Sci. Plant Nutr., 24(2): 2091-2110.
  6. ABDOU N.M., ROBY M.H.H., AL-HUQAIL A.A., ELKELISH A., SAYED A.A.S., ALHARBI B.M., MAHDY H.A.A., ABOU-SREEA A.I.B., 2023 - Compost improving morphophysiological and biochemical traits, seed yield, and oil quality of Nigella sativa under drought stress. - Agronomy, 13: 1147.
  7. ABU-ELLAIL F.F.B., SASY A.H., 2021 - GT biplot analysis for yield and related traits in some sugar beet varieties as affected by compost under saline soil. - Egypt. J. Appl. Sci., 36(3): 66-83.
  8. AHMED B.O., YAMAMOTO T., RASIAH V., INOUE M., ANYOJI H., 2007 - The impact of saline water irrigation management options in a dune sand on available soil water and its salinity. - Agric. Water Manag., 88(1-3): 63-72.
  9. ALHARBI K., HAFEZ E., OMARA A.E.D., AWADALLA A., NEHELA Y., 2022 - Plant growth promoting rhizobacteria and silica nanoparticles stimulate sugar beet resilience to irrigation with saline water in salt-affected soils. - Plants, 11(22): 3117.
  10. ALI A.S., ELSHAMY H., DYAB M., HAROUN S., EL-MEHASSEB I., 2025 - Nanoparticles enhance antioxidant system and improve yield quality of sugar beet (Beta vulgaris L.) plants irrigated with wastewater. - Egypt. J. Soil Sci., 65(2).
  11. ALKHARABSHEH H.M., SELEIMAN M.F., BATTAGLIA M.L., SHAMI A., JALAL R.S., ALHAMMAD B.A., AL-SAIF A.M., 2021 - Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. - Agronomy, 11: 993.
  12. AMER M., GAIZA S., ABOU EL SOUD H., RASHAD S., 2020 - Contribution of management of irrigation water and organic application in improving some soil properties and its water productivity of sugar beet and cotton. - Environ. Biodivers. Soil Secur., 4(Issue 2020): 7-18.
  13. ASHRAFI E., RAZMJOO J., ZAHEDI M., 2018 - Effect of salt stress on growth and ion accumulation of alfalfa (Medicago sativa L.) cultivars. - J. Plant Nutr., 41(7): 818-831.
  14. AYCAN M., ERKILIC E.G., OZGEN Y., POYRAZ I., YILDIZ M., 2023 - The response of sugar beet (Beta vulgaris L.) genotypes at different ploidy levels to salt (NaCl) stress. - Int. J. Plant Biol., 14(1): 199-217.
  15. BOURAS H., BOUAZIZ A., BOUAZZAMA B., HIRICH A., CHOUKR-ALLAH R., 2021 - How phosphorus fertilization alleviates the effect of salinity on sugar beet (Beta vulgaris L.) productivity and quality. - Agronomy, 11(8): 1491.
  16. BRAR N.S., DHILLON B.S., SAINI K.S., SHARMA P.K., 2015 - Agronomy of sugarbeet cultivation - A review. - Agric. Rev., 36(3): 184-197.
  17. CARR M.K.V., KNOX J.W., 2011 - The water relations and irrigation requirements of sugar cane (Saccharum officinarum): A review. - Exp. Agric., 47(1): 1-25.
  18. COSTA F.H., AZEVEDO B.M.D., SOUSA G.G.D., SOUSA L.V.D., FERNANDES C.N., PINTO O.R.D.O., FRAZÃO D.S., 2025 - Interval of irrigation suppression in beet cultivation under salt stress. - Rev. Bras. Eng. Agríc. Ambient., 29(9): e289926.
  19. CUI Z., LI X., HAN P., CHEN R., DONG Y., GENG G., WANG Y., 2025 - Integrative transcriptomic and physiological analyses uncover mechanisms by which arbuscular mycorrhizal fungi mitigate salt stress in sugar beet. - Mycorrhiza, 35(3): 1-19.
  20. DAOUD S., HARROUNI C., HUCHZERMEYER B., KOYRO H.W., 2008 - Comparison of salinity tolerance of two related subspecies of Beta vulgaris: The sea beet (Beta vulgaris ssp. maritima) and the sugar beet (Beta vulgaris ssp. vulgaris), pp. 115-129. - In: ABDELLY C., M. ÖZTÜRK, M. ASHRAF, and C. GRIGNON (eds.) Biosaline agriculture and high salinity tolerance. Birkhäuser Verlag, Basel, Switzerland, pp. 367.
  21. EID S.M., IBRAHIM M.M., 2010 - Irrigation water salinity and irrigation intervals effects on growth, yield and quality of sugar beet in saline soil at Middle North Nile Delta. - J. Soil Sci. Agric. Eng., 1(8): 789-800.
  22. EL-ATRONY D., FARID I.M., EL-GHOZOLI M., ABBAS M.H., 2025 a - Sustainable enhancement of sugar beet productivity in salt-affected soils using humic substances and Bacillus biofertilizers. - Environ. Biodivers. Soil Secur., 9(2025).
  23. EL-ATRONY D., FARID I.M., EL-GHOZOLI M., ABBAS M.H., 2025 b - Can humic extracts and Bacillus megaterium boost sugar beet productivity in a saline-sodic soil? - Egypt. J. Soil Sci., 65(2).
  24. EL-GAMAL I.S.H., EL-SAFY N.K., ABO-MARZOKA E.A., 2021 - Growth of some sugar beet varieties under different locations as affected by foliar application with salicylic acid on yield and quality. - Egypt. Acad. J. Biol. Sci. H. Botany, 12(1): 161-173.
  25. EL-KADY M.S., ABU-ELLAIL F.F., EL-LABOUDY E.H.S., 2021 - Evaluation of some sugar beet varieties under water salinity stress in new reclaimed land. - J. Plant Prod., 12(1): 63-72.
  26. EL-MAGEED T.A.A., MEKDAD A.A., RADY M.O., ABDELBAKY A.S., SAUDY H.S., SHAABAN A., 2022 - Physio-biochemical and agronomic changes of two sugar beet cultivars grown in saline soil as influenced by potassium fertilizer. - J. Soil Sci. Plant Nutr., 22(3): 3636-3654.
  27. EL-SAMNOUDI I., IBRAHIM A.E.A., ABD EL-TAWWAB A., ABDOU N., 2021 - Addition biochar to enhanced soil quality and sugar beet crop grown under water stress treatments in salt-affected soils. - Fayoum J. Agric. Res. Dev., 35(3): 478-494.
  28. FABEIRO C., DE SANTA OLALLA F.M., LOPEZ R., DOMÍNGUEZ A., 2003 - Production and quality of the sugar beet (Beta vulgaris L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. - Agric. Water Manag., 62(3): 215-227.
  29. FAUST F., SCHUBERT S., 2017 - In vitro protein synthesis of sugar beet (Beta vulgaris) and maize (Zea mays) is differentially inhibited when potassium is substituted by sodium. - Plant Physiol. Biochem., 118: 228-234.
  30. FLOWERS T.J., 2004 - Improving crop salt tolerance. - J. Exp. Bot., 55(396): 307-319.
  31. GADELHA B.B., FREIRE M.H.D.C., SOUSA H.C., COSTA F.H., LESSA C.I., SOUSA G.G.D., 2021 - Growth and yield of beet irrigated with saline water in different types of vegetable mulching. - Rev. Bras. Eng. Agríc. Ambient., 25(12): 847-852.
  32. GHORBANI M., AMIRAHMADI E., KONVALINA P., MOUDRÝ J., BÁRTA J., KOPECKÝ M., BUCUR R.D., 2022 - Comparative influence of biochar and zeolite on soil hydrological indices and growth characteristics of corn (Zea mays L.). - Water, 14(21): 3506.
  33. GHOULAM C., FARES K., 2001 - Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). - Seed Sci. Technol., 29: 357-364.
  34. GOLDMAN I.L., JANICK J., 2021 - Evolution of root morphology in table beet: historical and iconographic. - Front. Plant Sci., 12: 689926.
  35. GOMAA M.A., EL-GENDY B.A., FAWAZ S.A., KANDIL E.E., 2022 - Sugar beet productivity and quality as affected by some nanoparticles and gibberellic acid under soil as affected by salinity. - Egypt. Acad. J. Biol. Sci., H Bot., 13(2): 195-206.
  36. GUMIENNA M., SZWENGIEL A., SZCZEPAŃSKA-ALVAREZ A., SZAMBELAN K., LASIK-KURDYŚ M., CZARNECKI Z., SITARSKI A., 2016 - The impact of sugar beet varieties and cultivation conditions on ethanol productivity. - Biomass Bioenergy, 85: 228-234.
  37. HAFEZ E.M., OSMAN H.S., GOWAYED S.M., OKASHA S.A., OMARA A.E.D., SAMI R., ABD EL-RAZEK U.A., 2021 - Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. - Agronomy, 11(4): 676.
  38. HAIDER I., RAZA M.A.S., IQBAL R., ASLAM M.U., HABIB-UR-RAHMAN M., RAJA S., AHMAD S., 2020 - Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. - J. Saudi Chem. Soc., 24(12): 974-981.
  39. HOZAYN M., ABD-ELMONEM A.A., SAMAHA G.M., 2020 - The physiological effect of pre-soaking with tryptophan on sugar beet (Beta vulgaris L.) productivity under different levels of salinity stresses. - Bull. Natl. Res. Cent., 44(1): 65.
  40. HUSSAIN Z., KHATTAK R.A., IRSHAD M., MAHMOOD Q., 2014 - Sugar beet (Beta vulgaris L.) response to diammonium phosphate and potassium sulphate under saline-sodic conditions. - Soil Use Manag., 30(3): 320-327.
  41. JIN F., PIAO J., MIAO S., CHE W., LI X., LI X., LAN Y., 2024 - Long-term effects of one-off biochar application on soil physicochemical properties, salt concentration, nutrient availability, enzyme activity, and rice yield in highly saline-alkali paddy soils: a 6-year field experiment. - Biochar, 6(1): 40.
  42. KANDIL A., BADAWI M.A., SEADH S.E., ARAFAT H.S., 2023 - Using some natural substances to improve seedlings parameters of sugar beet under salinity conditions. - J. Plant Production, 14(4): 211-217.
  43. KULAN E.G., ARPACIOĞLU A., ERGIN N., KAYA M.D., 2021 - Evaluation of germination, emergence and physiological properties of sugar beet cultivars under salinity. - Trakya Univ. J. Nat. Sci., 22(2): 263-274.
  44. LI Y., FAN H., SU J., FEI C., WANG K., TIAN X., MA F., 2019 b - Regulated deficit irrigation at special development stages increases sugar beet yield. - Agron. J., 111(3): 1293-1303.
  45. LI Y., LIU N., FAN H., SU J., FEI C., WANG K., KISEKKA I., 2019 a - Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet. - Agric. Water Manag., 223: 105701.
  46. LIU A., WANG H., WANG M., 2025 - Na₂SeO₃ seed priming improves seed germination, seedling growth and rhizosphere microbial community structure of Sugar Beet (Beta vulgaris L.) under salt stress. - Plant Stress, 16: 100795.
  47. LIU H.U.A., WANG Q., YU M., ZHANG Y., WU Y., ZHANG H., 2008 - Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na⁺/H⁺ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. - Plant Cell Environ., 31(9): 1325-1334.
  48. LIU L., LIU D., WANG Z., ZOU C., WANG B., ZHANG H., LI C., 2020 - Exogenous allantoin improves the salt tolerance of sugar beet by increasing putrescine metabolism and antioxidant activities. - Plant Physiol. Biochem., 154: 699-713.
  49. LIU L., WANG Z., GAI Z., WANG Y., WANG B., ZHANG P., LI C., 2022 - Exogenous application of melatonin improves salt tolerance of sugar beet (Beta vulgaris L.) seedlings. - Acta Physiol. Plant., 44(6): 57.
  50. LV X., CHEN S., WANG Y., 2019 - Advances in understanding the physiological and molecular responses of sugar beet to salt stress. - Front. Plant Sci., 10: 1431.
  51. MAHMOUD E.S.A., HASSANIN M.A., BORHAM T.I., EMARA E.I., 2018 - Tolerance of some sugar beet varieties to water stress. - Agric. Water Manag., 201: 144-151.
  52. MEHASEN S.A., 2022 - Productivity and quality of some sugar beet varieties as affected by bacterial inoculation and inducing materials in saline soil. - Ann. Agric. Sci. Moshtohor, 60(4): 1045-1050.
  53. MEKDAD A.A., SHAABAN A., RADY M.M., ALI E.F., HASSAN F.A., 2021 - Integrated application of K and Zn as an avenue to promote sugar beet yield, industrial sugar quality, and K-use efficiency in a salty semi-arid agro-ecosystem. - Agronomy, 11(4): 780.
  54. MERWAD A.R.M., 2016 - Efficiency of potassium fertilization and salicylic acid on yield and nutrient accumulation of sugar beet grown on saline soil. - Commun. Soil Sci. Plant Anal., 47(9): 1184-1192.
  55. MIAO Y., LUO X., GAO X., WANG W., LI B., HOU L., 2020 - Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. - Sci. Hortic., 272: 109577.
  56. MOSAAD I.S., SERAG A.H., SHETA M.H., 2022 - Promote sugar beet cultivation in saline soil by applying humic substances in-soil and mineral nitrogen fertilization. - J. Plant Nutr., 45(16): 2447-2464.
  57. MUKHERJEE E., GANTAIT S., 2023 - Genetic transformation in sugar beet (Beta vulgaris L.): technologies and applications. - Sugar Tech, 25(2): 269-281.
  58. MULET J.M., CAMPOS F., YENUSH L., 2020 - Ion homeostasis in plant stress and development. - Front. Plant Sci., 11: 618273.
  59. MUNNS R., 2002 - Comparative physiology of salt and water stress. - Plant Cell Environ., 25(2): 239-250.
  60. NASSAR M.A.A., EL-MAGHARBY S.S., IBRAHIM N.S., KANDIL E.E., ABDELSALAM N.R., 2023 - Productivity and quality variations in sugar beet induced by soil application of K-Humate and foliar application of biostimulants under salinity condition. - J. Soil Sci. Plant Nutr., 23(3): 3872-3887.
  61. NEAMATOLLAHI E., MOHAMMADI M., AFSHARI R.T., 2024 - Assessing of sugar beet seed adaptation under salt and drought stress conditions with coating technology based on Fuzzy inference system. - Heliyon, 10(19).
  62. NEMEAT ALLA H., 2023 - Yield and quality of sugar beet as affected by potassium and salicylic acid fertilization levels in saline soil. - Environ. Biodivers. Soil Secur., 7(2023): 193-204.
  63. OSMAN H.S., RADY A.M., AWADALLA A., OMARA A.E.D., HAFEZ E.M., 2022 - Improving the antioxidants system, growth, and sugar beet quality subjected to long-term osmotic stress by phosphate solubilizing bacteria and compost tea. - Int. J. Plant Prod., 16(1): 119-135.
  64. OTHMAN Y.A., HANI M.B., AYAD J.Y., ST HILAIRE R., 2023 - Salinity level influenced morpho-physiology and nutrient uptake of young citrus rootstocks. - Heliyon, 9(2).
  65. PATTANAYAK S., DAS S., KUMAR S., 2023 - Development of stress tolerant transgenomic traits in sugar beet through biotechnological application. - J. Plant Protect. Res., 1-12.
  66. PEREIRA FILHO J.V., VIANA T.V.D.A., SOUSA G.G.D., CHAGAS K.L., AZEVEDO B.M.D., PEREIRA C.C.D.S., 2019 - Physiological responses of lima bean subjected to salt and water stresses. - Rev. Bras. Eng. Agríc. Ambient., 23(12): 959-965.
  67. RASOULI F., KIANI-POUYA A., LI L., ZHANG H., CHEN Z., HEDRICH R., SHABALA S., 2020 - Sugar beet (Beta vulgaris) guard cells responses to salinity stress: a proteomic analysis. - Int. J. Mol. Sci., 21(7): 2331.
  68. RAŠOVSKÝ M., PAČUTA V., DUCSAY L., LENICKÁ D., 2022 - Quantity and quality changes in sugar beet (Beta vulgaris Provar. Altissima Doel) induced by different sources of biostimulants. - Plants, 11: 2222.
  69. RIBEIRO R.M.R., SOUSA G.G., BARBOSA A.S., MATOS E.C., VIANA T.V.A., LEITE K.N., SANTOS S.O., 2024 - The impact of saline and water stress on the agronomic performance of beet crops. - Braz. J. Biol., 84: e276278.
  70. ROZEMA J., CORNELISSE D., ZHANG Y., LI H., BRUNING B., KATSCHNIG D., VAN BODEGOM P., 2015 - Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. - AoB Plants, 7: 83.
  71. RUSSELL B.L., RATHINASABAPATHI B., HANSON A.D., 1998 - Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. - Plant Physiol., 116(2): 859-865.
  72. SARAVANAN A., KUMAR P.S., 2022 - Biochar derived carbonaceous material for various environmental applications: Systematic review. - Environ. Res., 214: 113857.
  73. SHAABAN A., ABDOU N.M., ABD EL-MAGEED T.A., SEMIDA W.M., ABD EL TAWWAB A.R., MOHAMED G.F., HEMIDA K.A., 2025 - Foliar fertilization with potassium silicate enhances water productivity and drought resilience in sugar beet. - Field Crops Res., 326: 109840.
  74. SHABANA M.M., AL‐HUQAIL A.A., ALLA H.E.N., KHEIR A.M., EL‐SHARKAWY M., 2024 - Enhancing soil resilience and sugar beet (Beta vulgaris L.) yield: Mid‐term effects of compost and glauconite integration. - J. Agron. Crop Sci., 210(5): e12747.
  75. SHEIKH A.H., ZACHARIA I., TABASSUM N., HIRT H., NTOUKAKIS V., 2024 - 14-3-3 proteins as a major hub for plant immunity. - Trends Plant Sci., 29(11): 1245-1253.
  76. SHOKOUHIAN A., OMIDI H., 2021 - Sugar beet (Beta vulgaris L.) germination indices and physiological properties affected by priming and genotype under salinity stress. - Not. Bot. Horti Agrobot. Cluj-Napoca, 49(3): 12063.
  77. SILVA S.S.D., LIMA G.S.D., DE LIMA V.L., GHEIYI H.R., SOARES L.A.D.A., OLIVEIRA J.P., 2022 - Production and post-harvest quality of mini-watermelon crop under irrigation management strategies and potassium fertilization. - Rev. Bras. Eng. Agríc. Ambient., 26: 51-58.
  78. SINGH A., RAWAT S., RAJPUT V.D., MINKINA T., MANDZHIEVA S., ELOYAN A., SINGH R.K., SINGH O., EL-RAMADY H., GHAZARYAN K., 2024 - Nanotechnology products in agriculture and environmental protection: advances and challenges. - Egypt. J. Soil Sci., 64(4): 1355-1378.
  79. SINGH H., NORTHUP B.K., RICE C.W., PRASAD P.V.V., 2022 - Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. - Biochar, 4: 8.
  80. SIUDA A., ARTYSZAK A., GOZDOWSKI D., AHMAD Z., 2023 - Effect of form of silicon and the timing of a single foliar application on sugar beet yield. - Agriculture, 14(1): 86.
  81. SKORUPA M., GOŁĘBIEWSKI M., KURNIK K., NIEDOJADŁO J., KĘSY J., KLAMKOWSKI K., TYBURSKI J., 2019 - Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. - BMC Plant Biol., 19(1): 57.
  82. SOROUR S.G.H.R., MOSALEM M.E., ABOTALEB A.A.N., GHARIEB A.S., 2021 - Alleviation of salt-stress on sugar beet (Beta vulgaris L.) using molasses, humic, and nano-CaCO₃. - Appl. Ecol. Environ. Res., 19(6).
  83. STEVANATO P., BIAGGI M.D., SKARACIS G.N., COLOMBO M., MANDOLINO G., BIANCARDI E., 2001 - The sea beet (Beta vulgaris L. ssp. maritima) of the Adriatic coast as source of resistance for sugar beet. - Sugar Tech, 3(3): 77-82.
  84. SU J.Y., LIU C.H., TAMPUS K., LIN Y.C., HUANG C.H., 2022 - Organic amendment types influence soil properties, the soil bacterial microbiome, and tomato growth. - Agronomy, 12: 1236.
  85. SUBRAHMANYESWARI T., GANTAIT S., 2022 - Advancements and prospectives of sugar beet (Beta vulgaris L.) biotechnology. - Appl. Microbiol. Biotechnol., 106(22): 7417-7430.
  86. SZYMAŃSKA S., TYBURSKI J., PIERNIK A., SIKORA M., MAZUR J., KATARZYNA H., 2020 - Raising beet tolerance to salinity through bioaugmentation with halotolerant endophytes. - Agronomy, 10(10): 1571.
  87. TOMCZYK A., SOKOŁOWSKA Z., BOGUTA P., 2020 - Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. - Rev. Environ. Sci. Biotechnol., 19(1): 191-215.
  88. VAN ZELM E., ZHANG Y., TESTERINK C., 2020 - Salt tolerance mechanisms of plants. - Annu. Rev. Plant Biol., 71(1): 403-433.
  89. WAKEEL A., SÜMER A., HANSTEIN S., YAN F., SCHUBERT S., 2011 - In vitro effect of different Na⁺/K⁺ ratios on plasma membrane H⁺-ATPase activity in maize and sugar beet shoot. - Plant Physiol. Biochem., 49(3): 341-345.
  90. WANG Y., LIU H., WANG M., LIU J., GENG G., WANG Y., 2024 - Salt tolerance in sugar beet: From impact analysis to adaptive mechanisms and future research. - Plants, 13(21): 3018.
  91. WANG Y., STEVANATO P., LV C., LI R., GENG G., 2019 - Comparative physiological and proteomic analysis of two sugar beet genotypes with contrasting salt tolerance. - J. Agric. Food Chem., 67(21): 6056-6073.
  92. WANG Y., STEVANATO P., YU L., ZHAO H., SUN X., SUN F., GENG G., 2017 - The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. - J. Plant Res., 130(6): 1079-1093.
  93. WANG Y., ZHAN Y., WU C., GONG S., ZHU N., CHEN S., LI H., 2012 - Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. - Plant Sci., 191: 93-99.
  94. WU G.Q., LIANG N., FENG R.J., ZHANG J.J., 2013 - Evaluation of salinity tolerance in seedlings of sugar beet (Beta vulgaris L.) cultivars using proline, soluble sugars and cation accumulation criteria. - Acta Physiol. Plant., 35(9): 2665-2674.
  95. WU G.Q., LIN L.Y., JIAO Q., LI S.J., 2019 - Tetraploid exhibits more tolerant to salinity than diploid in sugar beet (Beta vulgaris L.). - Acta Physiol. Plant., 41(4): 52.
  96. YANG A., AKHTAR S.S., IQBAL S., AMJAD M., NAVEED M., ZAHIR Z.A., JACOBSEN S.E., 2016 - Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. - Funct. Plant Biol., 43(7): 632-642.
  97. YANG L., MA C., WANG L., CHEN S., LI H., 2012 - Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. - J. Plant Physiol., 169(9): 839-850.
  98. YETIK A.K., CANDOĞAN B.N., 2022 - Optimisation of irrigation strategy in sugar beet farming based on yield, quality and water productivity. - Plant Soil Environ., 68(8).
  99. YOLCU S., ALAVILLI H., GANESH P., PANIGRAHY M., SONG K., 2021 - Salt and drought stress responses in cultivated beets (Beta vulgaris L.) and wild beet (Beta maritima L.). - Plants, 10(9): 1843.
  100. YU B., LI J., KOH J., DUFRESNE C., YANG N., QI S., LI H., 2016 - Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. - J. Proteomics, 143: 286-297.
  101. YU X., WANG X., ZHANG P., CHEN J., GU W., WANG Y., 2024 - Exogenous γ-Aminobutyric Acid (GABA) regulates the response of sugar beet seedlings to salt stress through GABA branched metabolism. - J. Plant Growth Regul., 44: 2977-2994.
  102. ZEWAIL R.M.Y., EL-GMAL I.S., KHAITOV B., EL-DESOUKY H.S., 2020 - Micronutrients through foliar application enhance growth, yield and quality of sugar beet (Beta vulgaris L.). - J. Plant Nutr., 43(15): 2275-2285.
  103. ZHANG P., LIU L., WANG X., WANG Z., ZHANG H., CHEN J., LI C., 2021 - Beneficial effects of exogenous melatonin on overcoming salt stress in sugar beets (Beta vulgaris L.). - Plants, 10(5): 886.
  104. ZHAO C., ZHANG H., SONG C., ZHU J.K., SHABALA S., 2020 - Mechanisms of plant responses and adaptation to soil salinity. - Innov., 1(1): 100017.
  105. ZHOU H., XU P., ZHANG L., HUANG R., ZHANG C., XIANG D., FAN H., 2022 - Effects of regulated deficit irrigation combined with optimized nitrogen fertilizer management on resource use efficiency and yield of sugar beet in arid regions. - J. Clean. Prod., 380: 134874.
  106. ZHOU N., ZHAO S., TIAN C.Y., 2017 - Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. - FEMS Microbiol. Lett., 364(11).
  107. ZOGHDAN M., AIAD M., SHABANA M., ABOELSOUD H., 2019 - Improvement of soil and water productivity for sugar beet under salt affected soils at North Nile Delta, Egypt. - J. Soil Sci. Agric. Eng., 10(1): 41-50.