No. 25 (2023): Enabling Roles of Technology
Research and Experimentation

Harnessing the natural intelligence of wood to improve passive ventilation in buildings

Fabio Bianconi
Università degli Studi di Perugia, Dipartimento di Ingegneria Civile e Ambientale
Marco Filippucci
Università degli Studi di Perugia, Dipartimento di Ingegneria Civile e Ambientale
Giulia Pelliccia
Università degli Studi di Perugia, Dipartimento di Ingegneria Civile e Ambientale
David Correa
University of Waterloo, School of Architecture

Published 2023-05-30


  • Wooden composites,
  • 4D printing,
  • Hygrometric regulation,
  • Passive control,
  • Responsive actuators

How to Cite

Bianconi, F., Filippucci, M., Pelliccia, G., & Correa, D. (2023). Harnessing the natural intelligence of wood to improve passive ventilation in buildings. TECHNE - Journal of Technology for Architecture and Environment, (25), 252–259.


Wood actively equalises its moisture content in relation to its surrounding environment. Technical applications that can harness this characteristic can have a great impact in the improvement of indoor hygrometric comfort. So far few applications have made use of this unique property. The natural hygroscopic intelligence of wood can lead to the development of a new technology capable of ensuring improved indoor comfort. The natural material can thus be engineered by creating responsive composites made from wood waste and transformed through 4D printing. The biomimetic actuators studied in this paper are aimed at linking the transformation of form into environmental control functionality applied to building comfort in adaptive and passive solutions.


Download data is not yet available.


Addington, M. and Schodek, D.L. (2005) Smart materials and new technologies: for the architecture and design professions. Oxford: Architectural.
Benyus, J.M. (1997) Biomimicry : innovation inspired by nature. New York: Harper Perennial.
Bianconi, F. et al. (2022) ‘Hygroscopic Coffer’, Interdisciplinary Perspectives on the Built Environment, 2. doi:10.37947/IPBE.2022.VOL2.1.
Bianconi, F. and Filippucci, M. (eds) (2019) Digital Wood Design. Cham: Springer International Publishing (Lecture Notes in Civil Engineering). doi:10.1007/978-3-030-03676-8.
Börjesson, P. and Gustavsson, L. (2000) ‘Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives’, Energy Policy, 28(9), pp. 575–588. doi:10.1016/S0301-4215(00)00049-5.
‘Buildings and Climate Change Summary for Decision-Makers Sustainable Buildings & Climate Initiative’ (2009) UNEP SBCI Sustainable Buildings & Climate Initiative [Preprint]. Available at: (Accessed: 2 September 2022).
Correa, D. et al. (2020) ‘4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement’, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2167). doi:10.1098/rsta.2019.0445.
Correa Zuluaga, D. and Menges, A. (2015) ‘3D printed hygroscopic programmable material systems’, in Materials Research Society Symposium Proceedings. Materials Research Society, pp. 24–31. doi:10.1557/opl.2015.644.
Dawson, C., Vincent, J.F. V and Rocca, A.-M. (1997) ‘How pine cones open’, Nature, 390(6661), p. 668. doi:10.1038/37745.
Le Duigou, A. et al. (2016) ‘3D printing of wood fibre biocomposites: From mechanical to actuation functionality’, Materials and Design, 96, pp. 106–114. doi:10.1016/j.matdes.2016.02.018.
Le Duigou, A. et al. (2021) ‘4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: Towards sustainable metamaterials’, Materials & Design, 211, p. 110158. doi:10.1016/J.MATDES.2021.110158.
El-Dabaa, R.B., Salem, I. and Abdelmohsen, S. (2021) ‘DIGITALLY ENCODED WOOD: 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins’, in ASCAAD 2021 - Architecture in the Age of Disruptive Technologies. Cairo, pp. 240–252.
Elbaum, R. (2018) ‘Structural principles in the design of hygroscopically moving plant cells’, Plant Biomechanics: From Structure to Function at Multiple Scales, pp. 235–246. doi:10.1007/978-3-319-79099-2_11/FIGURES/7.
Elbaum, R. and Abraham, Y. (2014) ‘Insights into the microstructures of hygroscopic movement in plant seed dispersal’, Plant Science, 223, pp. 124–133. doi:10.1016/J.PLANTSCI.2014.03.014.
Giordano, G. (1981) Tecnologia del legno. 1, La materia prima. UTET.
Holstov, A., Bridgens, B. and Farmer, G. (2015) ‘Hygromorphic materials for sustainable responsive architecture’, Construction and Building Materials, 98, pp. 570–582. doi:10.1016/j.conbuildmat.2015.08.136.
Kariz, M. et al. (2018) ‘Effect of wood content in FDM filament on properties of 3D printed parts’, Materials Today Communications, 14, pp. 135–140. doi:10.1016/J.MTCOMM.2017.12.016.
Khosravani, M.R. and Reinicke, T. (2020) ‘3D-printed sensors: Current progress and future challenges’, Sensors and Actuators A: Physical, 305, p. 111916. doi:10.1016/J.SNA.2020.111916.
Langhansl, M. et al. (2021) ‘Fabrication of 3D-printed hygromorphs based on different cellulosic fillers’, Functional Composite Materials, 2(1). doi:10.1186/S42252-020-00014-W.
Loonen, R.C.G.M. et al. (2013) ‘Climate adaptive building shells: State-of-the-art and future challenges’, Renewable and Sustainable Energy Reviews, 25, pp. 483–493. doi:10.1016/J.RSER.2013.04.016.
Mustapha, K.B. and Metwalli, K.M. (2021) ‘A review of fused deposition modelling for 3D printing of smart polymeric materials and composites’, European Polymer Journal, 156, p. 110591. doi:10.1016/J.EURPOLYMJ.2021.110591.
Pei, E. (2014) ‘4D printing: Dawn of an emerging technology cycle’, Assembly Automation, 34(4), pp. 310–314. doi:10.1108/AA-07-2014-062/FULL/PDF.
Pelliccia, G. et al. (2020) ‘Characterisation of wood hygromorphic panels for relative humidity passive control’, Journal of Building Engineering, 32, p. 101829. doi:10.1016/j.jobe.2020.101829.
Reichert, S., Menges, A. and Correa, D. (2015) ‘Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness’, Computer-Aided Design, 60, pp. 50–69. doi:10.1016/J.CAD.2014.02.010.
Reyssat, E. and Mahadevan, L. (2009) ‘Hygromorphs: from pine cones to biomimetic bilayers.’, Journal of the Royal Society, Interface, 6(39), pp. 951–957. doi:10.1098/rsif.2009.0184.
Rüggeberg, M. and Burgert, I. (2015) ‘Bio-Inspired Wooden Actuators for Large Scale Applications’, PLOS ONE. Edited by D. Pisignano, 10(4), p. e0120718. doi:10.1371/journal.pone.0120718.
Sandoli, A. et al. (2021) ‘Sustainable Cross-Laminated Timber Structures in a Seismic Area: Overview and Future Trends’, Applied Sciences 2021, Vol. 11, Page 2078, 11(5), p. 2078. doi:10.3390/APP11052078.
Seccaroni, M. and Pelliccia, G. (2019) ‘Customizable social wooden pavilions: A workflow for the energy, emergy and perception optimization in perugia’s parks’, in Digital Wood Design. Innovative Techniques of Representation in Architectural Design. Springer, pp. 1045–1062. doi:10.1007/978-3-030-03676-8_42.
Spear, M.J., Eder, A. and Carus, M. (2015) ‘Wood polymer composites’, Wood Composites, pp. 195–249. doi:10.1016/B978-1-78242-454-3.00010-X.
Stroble, J.K., Stone, R.B. and Watkins, S.E. (2009) ‘An overview of biomimetic sensor technology’, Sensor Review, 29(2), pp. 112–119. doi:10.1108/02602280910936219.
Sydney Gladman, A. et al. (2016) ‘Biomimetic 4D printing’, Nature Materials 2016 15:4, 15(4), pp. 413–418. doi:10.1038/nmat4544.
Tahouni, Y. et al. (2020) ‘Self-shaping Curved Folding:: A 4D-printing method for fabrication of self-folding curved crease structures’, Proceedings - SCF 2020: ACM Symposium on Computational Fabrication [Preprint]. doi:10.1145/3424630.3425416.
Tibbits, S. (2013) ‘The emergence of 4D printing’, in TED conference.
Timoshenko, S. (1925) ‘Analysis of Bi-Metal Thermostats’, JOSA, Vol. 11, Issue 3, pp. 233-255, 11(3), pp. 233–255. doi:10.1364/JOSA.11.000233.
Vailati, C. et al. (2018) ‘An autonomous shading system based on coupled wood bilayer elements’, Energy and Buildings, 158, pp. 1013–1022. doi:10.1016/J.ENBUILD.2017.10.042.
Villanueva, M. et al. (2022) ‘Scientometric Analysis for Cross-Laminated Timber in the Context of Construction 4.0’, Automation 2022, Vol. 3, Pages 439-470, 3(3), pp. 439–470. doi:10.3390/AUTOMATION3030023.
Vincent, J.F. V et al. (2006) ‘Biomimetics: its practice and theory’, Journal of the Royal Society, Interface, 3(9), pp. 471–482. doi:10.1098/rsif.2006.0127.
Wang, Q. et al. (2018) ‘3D printing with cellulose materials’, Cellulose 2018 25:8, 25(8), pp. 4275–4301. doi:10.1007/S10570-018-1888-Y.
Wood, D.M. et al. (2016) ‘Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces’, International Journal of Architectural Computing, 14(1), pp. 49–62. doi:10.1177/1478077115625522.
Zolfagharian, A. et al. (2016) ‘Evolution of 3D printed soft actuators’, Sensors and Actuators A: Physical, 250, pp. 258–272. doi:10.1016/J.SNA.2016.09.028.
Zuluaga, D.C. and Menges, A. (2015) ‘3D printed hygroscopic programmable material systems’, Materials Research Society Symposium Proceedings, 1800, pp. 24–31. doi:10.1557/OPL.2015.644.