Digital strategies for sustainable production in the timber construction sector: informative models for resource optimisation
Published 2025-11-07
Keywords
- Technology transfer,
- Timber digitalisation,
- Informative models,
- Parametric design,
- Visual programming language
How to Cite
Copyright (c) 2025 Roberto Cognoli, Michele Calvano

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
This paper describes the technology transfer process involving expertise developed by the University of Camerino and Sapienza University of Rome in the field of timber digitalisation and parametric informative models. The research was applied in collaboration with an Interior Contract company in the Lazio region for the design of a complex wooden architectural element. The adoption of a methodology based on informed digital models, spanning from design to fabrication, enabled a reduction in production waste (-30%) and an optimisation of design and production time (-20%). The case study demonstrates how the synergy between multidisciplinary research expertise and the industrial sector can generate efficient and replicable solutions. From an academic perspective, the experimentation has strengthened the collaboration between universities and industry, fostering the development of transferable know-how for future applications.
Downloads
References
- Brand, S. (1994), How Buildings Learn: What Happens After They’re Built, Viking, New York.
- Bucci Ancapi, F., et al. (2025), “How ex ante policy evaluation supports circular city development: Amsterdam’s mass timber construction policy”, Journal of Environmental Management, Vol. 376, p. 124516. Available at: https://doi.org/10.1016/j.jenvman.2025.124516. DOI: https://doi.org/10.1016/j.jenvman.2025.124516
- Caetano, I. and Leitão, A. (2019), “Integration of an algorithmic BIM approach in a traditional architecture studio”, Journal of Computational Design and Engineering, Vol. 6, n. 3, pp. 327–336. Available at: https://doi.org/10.1016/j.jcde.2018.11.004. DOI: https://doi.org/10.1016/j.jcde.2018.11.004
- Caetano, I., Santos, L. and Leitão, A. (2020), “Computational design in architecture: defining parametric, generative, and algorithmic design”, Frontiers of Architectural Research, Vol. 9, n. 2, pp. 287–300. Available at: https://doi.org/10.1016/j.foar.2019.12.008. DOI: https://doi.org/10.1016/j.foar.2019.12.008
- Calvano, M. and Mancini, M.F. (2021), “Testing and Defining a Complex Design Through Digital and Physical Models”, Nexus Network Journal, Vol. 23, n. 4, pp. 995–1016. Available at: https://doi.org/10.1007/s00004-021-00569-6. DOI: https://doi.org/10.1007/s00004-021-00569-6
- Cognoli, R., Cocco, P.L. and Ruggiero, R. (2024), “Innovative timber upcycling: digital strategies for prolonging timber lifespan and promoting reuse”, IOP Conference Series: Earth and Environmental Science, Vol. 1402, n. 1, p. 012036. Available at: https://doi.org/10.1088/1755-1315/1402/1/012036. DOI: https://doi.org/10.1088/1755-1315/1402/1/012036
- Corticeiro, S., Tomé, M. and Vieira, H. (2023), “Can forest certification schemes really drive economic value to European forest owners?” Available at: https://doi.org/10.20944/preprints202311.1966.v1. DOI: https://doi.org/10.20944/preprints202311.1966.v1
- FederlegnoArredo, Federazione imprese settore mobile e arredamento (no date), Available at: https://www.federlegnoarredo.it/ (Accessed on 10/03/2024).
- Garagnani, S. (2013), “Building Information Modeling and real world knowledge. A methodological approach to accurate semantic documentation for the built environment”, DigitalHeritage 2013. Available at: https://doi.org/10.1109/DigitalHeritage.2013.6743788. DOI: https://doi.org/10.1109/DigitalHeritage.2013.6743788
- Garcia, A.B. et al. (2021), “MATERIAL (DATA) INTELLIGENCE”, Proceedings of the 26th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Vol. 1, pp. 361–370. Available at: https://research.tudelft.nl/en/publications/material-data-intelligence-towards-a-circular-building-environmen (Accessed on 30/06/2025).
- Gu, H., Nepal, P., Arvanitis, M. and Alderman, D. (2021), “Carbon impacts of engineered wood products in construction”, in Gong, M. (Ed.), Engineered Wood Products for Construction, IntechOpen. Available at: https://doi.org/10.5772/intechopen.99193. DOI: https://doi.org/10.5772/intechopen.99193
- Hawkins, W., Cooper, S., Allen, S., Roynon, J. and Ibell, T. (2021), “Embodied carbon assessment using a dynamic climate model: Case-study comparison of a concrete, steel and timber building structure”, Structures, Vol. 33, pp. 90–98. Available at: https://doi.org/10.1016/j.istruc.2020.12.013. DOI: https://doi.org/10.1016/j.istruc.2020.12.013
- Honic, M., Kovacic, I., Aschenbrenner, P. and Ragossnig, A. (2021), “Material Passports for the end-of-life stage of buildings: challenges and potentials”, Journal of Cleaner Production, Vol. 319, n. 128702. Available at: https://doi.org/10.1016/j.jclepro.2021.128702. DOI: https://doi.org/10.1016/j.jclepro.2021.128702
- Hudert, M. and Pfeiffer, S. (2019), Rethinking Wood: Future Dimensions of Timber Assembly, Birkhäuser. DOI: https://doi.org/10.1515/9783035617061
- International Organization for Standardization (2018) ISO 19650-1:2018 — Organisation and digitisation of information about buildings and civil engineering works, including BIM: Information management using building information modelling — Part 1: Concepts and principles. Geneva: ISO. Available at: https://www.iso.org/standard/68078.html (Accessed on 03 March 2025).
- Jonsson, R. and Sotirov, M. (2025), “Future wood availability in Europe in light of climate and energy policy and geopolitical developments — A wood resource balance-based assessment”, Sustainability, Vol. 17, n. 3, p. 1291. Available at: https://doi.org/10.3390/su17031291. DOI: https://doi.org/10.3390/su17031291
- Kunic, A., Kramberger, A. and Naboni, R. (2021), “Cyber-physical robotic process for re-configurable wood architecture closing the circular loop in wood architecture”, Proceedings of the eCAADe Conference 2021. Available at: https://doi.org/10.52842/conf.ecaade.2021.2.181. DOI: https://doi.org/10.52842/conf.ecaade.2021.2.181
- Kuzman, M.K. and Sandberg, D. (2023), “Engineered wood products in contemporary architectural use – a concise overview”, Wood Material Science & Engineering, Vol. 18, n. 6, pp. 2112–2115. Available at: https://doi.org/10.1080/17480272.2023.2264258. DOI: https://doi.org/10.1080/17480272.2023.2264258
- Luo, D., Gattas, J.M. and Tan, P.S.S. (2021), “Real-time defect recognition and optimized decision making for structural timber jointing”, in Yuan, P.F. et al. (Eds.) Proceedings of the 2020 DigitalFUTURES, Springer, Singapore, pp. 36–45. Available at: https://doi.org/10.1007/978-981-33-4400-6_4. DOI: https://doi.org/10.1007/978-981-33-4400-6_4
- Menges, A., Schwinn, T. and Krieg, O.D. (2016), “Advancing wood architecture”, in Menges, A., Schwinn, T. and Krieg, O.D. (Eds.) Advancing Wood Architecture, 1st ed., Routledge, New York, pp. 1–10. Available at: https://doi.org/10.4324/9781315678825-1. DOI: https://doi.org/10.4324/9781315678825-1
- Muench, S., Stoermer, E., Jensen, K., Asikainen, T., Salvi, M. and Scapolo, F. (2022) Towards a green & digital future, Publications Office of the European Union, Luxembourg. Available at: https://doi.org/10.2760/977331.
- Munaro, M.R. and Tavares, S.F. (2023), “A review on barriers, drivers, and stakeholders towards the circular economy: the construction sector perspective”, Cleaner and Responsible Consumption, Vol. 8, n. 100107. Available at: https://doi.org/10.1016/j.clrc.2023.100107. DOI: https://doi.org/10.1016/j.clrc.2023.100107
- Nepal, P., Johnston, C.M.T. and Ganguly, I. (2021), “Effects on global forests and wood product markets of increased demand for mass timber”, Sustainability, Vol. 13, n. 24, p. 13943. Available at: https://doi.org/10.3390/su132413943. DOI: https://doi.org/10.3390/su132413943
- Pazzaglia, A. and Castellani, B. (2023), “Wood waste valorization in Europe: policy framework, challenges, and decisional tools”, Procedia Environmental Science, Engineering and Management, Vol. 10, n. 2, pp. 345–352. Available at: https://procedia-esem.eu/pdf/issues/2023/no2/14_Pazzaglia_23.pdf (Accessed on 30 June 2025).
- Ramage, M.H. et al. (2017), “The wood from the trees: the use of timber in construction”, Renewable and Sustainable Energy Reviews, Vol. 68, pp. 333–359. Available at: https://doi.org/10.1016/j.rser.2016.09.107. DOI: https://doi.org/10.1016/j.rser.2016.09.107
- Svilans, T., Tamke, M., Hudert, M. and Terk, Y. (2019), “New workflows for digital timber”, in Advances in Architectural Geometry 2018, pp. 93–134. Available at: https://doi.org/10.1007/978-3-030-03676-8_3. DOI: https://doi.org/10.1007/978-3-030-03676-8_3
- Szichta, P., Risse, M., Weber-Blaschke, G. and Richter, K. (2022), “Potentials for wood cascading: A model for the prediction of the recovery of timber in Germany”, Resources, Conservation and Recycling, Vol. 178, n. 106101. Available at: https://doi.org/10.1016/j.resconrec.2021.106101. DOI: https://doi.org/10.1016/j.resconrec.2021.106101
- Tupenaite, L., Kanapeckiene, L., Naimaviciene, J., Kaklauskas, A. and Gecys, T. (2023) “Timber construction as a solution to climate change: a systematic literature review”, Buildings, Vol. 13, n. 4, p. 976. Available at: https://doi.org/10.3390/buildings13040976. DOI: https://doi.org/10.3390/buildings13040976
- Wagner, H.J., Alvarez, M., Groenewolt, A. et al. (2020), “Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA wood pavilion”, Construction Robotics, Vol. 4, pp. 187–204. Available at: https://doi.org/10.1007/s41693-020-00038-5. DOI: https://doi.org/10.1007/s41693-020-00038-5
- Yu, B. and Fingrut, A. (2022), “Sustainable building design (SBD) with reclaimed wood library constructed in collaboration with 3D scanning technology in the UK”, Resources, Conservation and Recycling, Vol. 186, n. 106566. Available at: https://doi.org/10.1016/j.resconrec.2022.106566. DOI: https://doi.org/10.1016/j.resconrec.2022.106566
- Zhang, Y., Meina, A., Lin, X., Zhang, K. and Xu, Z. (2021), “Digital twin in computational design and robotic construction of wooden architecture”, Advances in Civil Engineering, 2021, n. 8898997. Available at: https://doi.org/10.1155/2021/8898997. DOI: https://doi.org/10.1155/2021/8898997
