Vol. 79 No. 2 (2024)
Articles

Possible horizontal gene transfer: Virectaria stellata (Sabiceeae-Rubiaceae), a new sandstone cliff species from the Republic of Guinea with stellate hairs recorded for the first time in the Rubiaceae

Faya Julien Simbiano
Herbier National de Guinée, Université Gamal Abdel Nasser de Conakry
Xander M. van der Burgt
Herbarium, Royal Botanic Gardens, Kew, Richmond
Iain Darbyshire
Herbarium, Royal Botanic Gardens, Kew, Richmond
Pepe M. Haba
Société des Mines de Mandiana, Kankan
Gbamon Konomou
Herbier National de Guinée, Université Gamal Abdel Nasser de Conakry
Martin Cheek
Herbarium, Royal Botanic Gardens, Kew, Richmond
Charlotte Couch
Herbarium, Royal Botanic Gardens, Kew, Richmond
Sékou Magassouba
Herbier National de Guinée, Université Gamal Abdel Nasser de Conakry

Published 2024-09-03

Keywords

  • Acanthaceae,
  • Barleria,
  • horizontal gene transfer,
  • lateral gene transfer,
  • sandstone,
  • stellate hairs
  • ...More
    Less

How to Cite

Simbiano, F. J., van der Burgt, X. M., Darbyshire, I., Haba, P. M., Konomou, G., Cheek, M., Couch, C., & Magassouba, S. (2024). Possible horizontal gene transfer: Virectaria stellata (Sabiceeae-Rubiaceae), a new sandstone cliff species from the Republic of Guinea with stellate hairs recorded for the first time in the Rubiaceae. Webbia, 79(2), 227–237. https://doi.org/10.36253/jopt-16523

Abstract

Virectaria (Sabiceeae-Cinchonoideae-Rubiaceae), is a morphologically isolated genus of tropical African herbs or subshrubs, occurring from Senegal to Tanzania. Virectaria stellata, a new species from Guinea, is published. It is a perennial herb, with stems becoming creeping and rooting, to 60 cm long. Virectaria stellata has stellate hairs, recorded here for the first time in the family Rubiaceae. We hypothesize that the stellate hairs of this species result not from mutation but from horizontal gene transfer (HGT) from an Acanthaceae, most likely Barleria, due to their common and perhaps uniquely shared microstructure. We briefly review literature on the control of the transition from simple to stellate hairs and on HGT in plants. Virectaria stellata is found in Forécariah and Kindia Prefectures in the Republic of Guinea.  A Virectaria specimen without stellate hairs but otherwise similar to V. stellata was collected in Guinea, about 90 km to the North of the northernmost V. stellata collection. This specimen may represent a possible progenitor of V. stellata. The identification of this specimen requires further study. Virectaria stellata occurs in fissures in vertical sandstone rock at altitudes of 450 to 910 m, in sun or half-shade. An overview of sandstone endemic plant species in the vicinity of the new Virectaria is provided. No threats have been observed, therefore, Virectaria stellata is provisionally assessed here as Least Concern (LC).

References

  1. Bachman S, Moat J, Hill A, de la Torre J, Scott B. 2011. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys. 150: 117–126. https://doi.org/10.3897/zookeys.150.2109
  2. Balkwill M-J, Balkwill K. 1997. Delimitation and infra-generic classification of Barleria (Acanthaceae). Kew Bulletin. 97: 535–573. https://doi.org/10.2307/4110286
  3. Beentje H. 2016. The Kew plant glossary, an illustrated glossary of plant terms, ed. 2. Royal Botanic Gardens, Kew.
  4. Bremekamp CEB. 1952. The African species of Oldenlandia L. sensu Hiern et K. Schumann. Verhandelingen der koninklijke Nederlandse Akademie van Wetenschappen. Afd. Nat., ser. 2, 48: 1–297.
  5. Bremer B, Thulin M. 1998. Collapse of Isertieae, re-establishment of Mussaendeae, and a new genus of Sabiceeae (Rubiaceae); phylogenetic relationships based on rbc L data. Plant Systematics and Evolution. 211: 71–92. https://doi.org/10.1007/bf00984913
  6. Breteler FJ, Baldé A. 2024. Casearia septandra (Salicaceae), a new tree species from the mountains of Guinea, West Africa. Kew Bulletin. https://doi.org/10.1007/s12225-024-10166-8.
  7. Camoirano A, Arce AL, Ariel FD, Alem AL, Gonzalez DH, Viola IL. 2020. Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. Journal of Experimental Botany. 71(18): 5438–5453.
  8. Canteiro C, Cheek M. 2019. Fleurydora felicis. The IUCN Red List of Threatened Species 2019: e.T32181A95806238. https://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T32181A95806238.en. Accessed on 15 April 2024.
  9. Cheek M, Dorr L. 2007. Sterculiaceae in Beentje, H. (Ed.) Flora of Tropical East Africa. R.B.G., Kew.
  10. Cheek M, Haba PM, Konomou G, van der Burgt XM. 2019. Ternstroemia guineensis (Ternstroemiaceae), a new endangered, submontane shrub with neotropical affinities, from Kounounkan, Guinea, W. Africa. Willdenowia. 49 (3): 351–360. https://doi.org/10.3372/wi.49.49306
  11. Cheek M, Magassouba S, Howes MR, Doré T, Doumbouya, Molmou D, Grall A, Couch C, Larridon I. 2018. Kindia (Pavetteae, Rubiaceae), a new cliff-dwelling genus with chemically profiled colleter exudate from Mt Gangan, Republic of Guinea. PeerJ. 6:e4666 https://doi.org/10.7717/peerj.4666
  12. Cheek M, Molmou D, Gosline G, Magassouba S. 2024. Keita (Aptandraceae-Olacaceae s.l.), a new genus for African species previously ascribed to Anacolosa, including K. deniseae sp. nov., an Endangered submontane forest liana from Simandou, Republic of Guinea. Kew Bulletin. 1–16. https://doi.org/10.1007/s12225-024-10172-w
  13. Cheek M, Molmou D, Jennings L, Magassouba S, van der Burgt XM. 2019. Inversodicraea koukoutamba and I. tassing (Podostemaceae), new waterfall species from Guinea, West Africa. Blumea. 64: 216–224. https://doi.org/10.3767/blumea.2019.64.03.03
  14. Cheek M, Tchiengue B, Thiam A, Molmou D, Dore TS, Magassouba S. 2024. New discoveries of plants from Republic of Guinea, W. Africa, including Gymnosiphon fonensis Cheek, sp. nov. (Burmanniaceae), a new Critically Endangered species from Simandou. Adansonia. 46 (10): 89101. https://doi.org/10.5252/adansonia2024v46a10. http://adansonia.com/46/10
  15. Comito R, Darbyshire I, Kiel C, McDade L, Fisher AE. 2022. A RADseq phylogeny of Barleria (Acanthaceae) resolves fine-scale relationships. Molecular Phylogenetics and Evolution. 169: 107428. https://doi.org/10.1016/j.ympev.2022.107428
  16. Couch C, Cheek M, Haba PM, Molmou D, Williams J, Magassouba S, Doumbouya S, Diallo MY. 2019. Threatened habitats and tropical important plant areas (TIPAs) of Guinea, West Africa. Kew: Royal Botanic Gardens, Kew.
  17. Darbyshire I. 2008. New species in Barleria sect. Stellatohirta (Acanthaceae) from Africa. Kew Bulletin. 63: 261–268. https://doi.org/10.1007/s12225-008-9028-8
  18. Darbyshire I, Anderson S, Asatryan A, Byfield A, Cheek M, Clubbe C, Ghrabi Z, Harris T, Heatubun CD, Kalema J, Magassouba S, McCarthy B, Milliken W, Montmollin B de, Nic Lughadha E, Onana JM, Saıdou D, Sarbu A, Shrestha K, Radford EA. 2017. Important Plant Areas: revised selection criteria for a global approach to plant conservation. Biodiversity Conservation. 26: 1767–1800. https://doi.org/10.1007/s10531-017-1336-6
  19. Darbyshire I, Fisher AE, Kiel CA, McDade LA. 2019. Phylogenetic relationships among species of Barleria (Acanthaceae, Lamiales): Molecular data reveal complex patterns of morphological evolution and support a revised classification. Taxon. 68: 92–111. https://doi.org/10.1002/tax.12029
  20. Darbyshire I, Vollesen K, Ensermu Kelbessa. 2010. Acanthaceae, part. 2. In: Beentje, H. (Ed.), Flora of Tropical East Africa. Royal Botanic Gardens, Kew.
  21. Dessein S, Jansen S, Huysmans S, Robbrecht E, Smets E. 2001a. A morphological and anatomical survey of Virectaria (African Rubiaceae), with a discussion of its taxonomic position. Botanical Journal of the Linnaean Society. 137: 1–29. https://doi.org/10.1111/j.1095-8339.2001.tb01102.x
  22. Dessein S, Andersson L, Robbrecht E, Smets E. 2001b. Hekistocarpa (Rubiaceae): a member of an emended tribe Virectarieae. Plant Systematics and Evolution. 229: 59–78. https://doi.org/10.1007/s006060170018
  23. Folkers U, Berger J, Hülskamp M. 1997. Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development. 124: 3779–3786. https://doi.org/10.1242/dev.124.19.3779
  24. Gao C, Ren X, Mason AS, Liu H, Xiao M, Li J, Fu D. 2014. Horizontal gene transfer in plants. Functional & Integrative Genomics.14: 23-9. https://doi.org/10.1007/s10142-013-0345-0
  25. Gosline G, Bidault E, Burgt XM van der, et al. 2023a. A Taxonomically-verified and Vouchered Checklist of the Vascular Plants of the Republic of Guinea. Scientific Data. 10: 327. https://doi.org/10.1038/s41597-023-02236-6
  26. Gosline G, Bidault E, Burgt XM van der, et al. 2023b. Checklist of the Vascular Plants of the Republic of Guinea–printable format (1.10). Zenodo. https://doi.org/10.5281/zenodo.7734985
  27. Hall JB. 1972. A new species of Virectaria (Rubiaceae) from Ghana. Kew Bulletin. 26: 567–571. https://www.jstor.org/stable/4120320
  28. Hepper FN. 1963. Virectaria. pp. 208–209 in Hepper FN. (Ed.) Flora West Tropical Africa. Ed. 2. Crown Agents, London.
  29. Heywood VH, Brummitt RK, Culham A, Seburg O. (Eds.). 2007. Flowering Plant Families of the World. R.B.G., Kew.
  30. IPNI. 2024. International Plant Names Index. Published on the Internet http://www.ipni.org, The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Herbarium. [Retrieved 16 April 2024].
  31. IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1. Second edition.–Gland, Switzerland and Cambridge, UK: IUCN. Available from: http://www.iucnredlist.org/
  32. Jongkind CCH. 2023. Erianthemum nimbaense and Phragmanthera cegeniana (Loranthaceae), two new Endangered mistletoes from the Nimba Mountains in Guinea, West Africa. Kew Bulletin. 78: 229–233. https://doi.org/10.1007/s12225-023-10075-2
  33. Khan SA, Razafimandimbison SG, Bremer B, Liede-Schumann S. 2008b. Sabiceeae and Virectarieae (Rubiaceae, Ixoroideae): one or two tribes? New tribal and generic circumscriptions of Sabiceeae and biogeography of Sabicea sl. Taxon. 57 (1): 7–23.
  34. Khan SA, Razafimandimbison SG, Bremer B, Liede-Schumann S. 2008a. Phylogeny and biogeography of the African genus Virectaria Bremek. (Sabiceeae s.l., Ixoroideae, Rubiaceae). Plant Systematics and Evolution. 275: 43–58. https://doi.org/10.1007/s00606-008-0053-8
  35. Larridon I. 2018. Pitcairnia feliciana. The IUCN Red List of Threatened Species 2018: e.T87753965A87753976. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T87753965A87753976.en. Accessed on 15 April 2024.
  36. Linnaeus C. 1782. [“1781”]: Supplementum plantarum systematis vegetabilium editionis decimæ tertiæ, generum plantarum editionis sextæ, et specierum plantarum editionis secundae, editum a Carolo a Linné. https://www.biodiversitylibrary.org/bibliography/555
  37. Luo D, Oppenheimer DG. 1999. Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci. Development. 126(24): 5547–5557. https://doi.org/10.1242/dev.126.24.5547
  38. Mathur J. 2006. Trichome cell morphogenesis in Arabidopsis: a continuum of cellular decisions. Canadian Journal of Botany. 84: 604–612. https://doi.org/10.1139/b06-019
  39. Pattanaik S, Patra B, Singh SK, Yuan L. 2014. An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Frontiers in Plant Science. 5: 259. https://doi.org/10.3389/fpls.2014.00259
  40. Quispe-Huamanquispe DG, Gheysen G, Kreuze JF. 2017. Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Frontiers in Plant Science. 8, 2015. https://doi.org/10.3389/fpls.2017.02015
  41. Richardson AO, Palmer JD. 2007. Horizontal gene transfer in plants. Journal of Experimental Botany. 58(1):1-9. https://doi.org/10.1093/jxb/erl148
  42. Robbrecht E. 1988. Tropical Woody Rubiaceae. Opera Botanica Belgica 1. Meise Botanic Garden, Belgium.
  43. Schellmann S, Hulskamp M. 2005. Epidermal differentiation: trichomes in Arabidopsis as a model system. International Journal of Developmental Biology. 49: 579–584. https://doi.org/10.1387/ijdb.051983ss
  44. Szymanski DB, Lloyd AM, Marks MD. 2000. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in Plant Science. 5(5): 214–219. https://doi.org/10.1016/s1360-1385(00)01597-1
  45. Thiers BM. updated continuously. Index Herbariorum. https://sweetgum.nybg.org/science/ih/
  46. Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF. (Eds.) 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017.– Regnum Vegetabile. 159. Glashütten: Koeltz Botanical Books.
  47. Verdcourt B. 1953. A revision of certain African genera of herbaceous Rubiaceae. 111. The genus Virectaria Brem. Bulletin Jardin botanique de l’Etat. 28: 209–281. https://doi.org/10.2307/3666790
  48. Verdcourt B. 1975. New sectional name in Spermacoce and a new tribe Virectarieae. Kew Bulletin. 30: 356. https://doi.org/10.2307/4103163
  49. Xanthos M, Konomou G, Haba P, van der Burgt XM. 2020. Trichanthecium tenerium (Poaceae: Panicoideae), a new species from Guinea-Conakry. Kew Bulletin. 75: 1–7. https://doi.org/10.1007/s12225-020-9864-8
  50. Xanthos M, Konomou G, Haba PM, van der Burgt XM. 2021. Ctenium bennae (Poaceae; Chloridoideae), a new rheophytic species from Guinea-Conakry. Kew Bulletin. 76: 745–750. https://doi.org/10.1007/s12225-021-09989-6
  51. Yang Z, Zhang Y, Wafula EK, Honaas LA, Ralph PE, Jones S, Clarke CR, Liu S, Su C, Zhang H, Altman NS. 2016. Horizontal gene transfer is more frequent with increased heterotrophy and contributes to parasite adaptation. Proceedings of the National Academy of Sciences. 113(45):E7010-9. https://doi.org/10.1073/pnas.1608765113