Published 2025-11-17
Keywords
- Amazon Rainforest,
- Brazilian Atlantic Forest,
- Caatinga,
- Cerrado
How to Cite
Copyright (c) 2025 Aline Possamai Della, Jefferson Prado

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
In this study, we provide a comprehensive and updated overview of the biogeographic history of several Brazilian phytogeographic domains: the Amazon Rainforest, Brazilian Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal. We also outline the main hypotheses that were proposed to explain the distribution patterns and endemism of taxa within these domains. The tropical forests, specifically the Amazon Rainforest and the Brazilian Atlantic Forest, were likely continuous during the Eocene optimum. However, global cooling and increased aridity in the late Eocene and part of the Oligocene led to the fragmentation of these extensive tropical forests. This fragmentation resulted in the creation of the dry diagonal, which includes the Cerrado, Caatinga, Pantanal, and Chaco regions. The dry diagonal served as a geographic barrier, promoting the formation of the Brazilian Atlantic Forest to the East and the Amazon Rainforest to the West. Despite this barrier, forest corridors likely existed between these domains, playing a crucial role in the segregation of the Caatinga from the Cerrado. The Caatinga is the most recent of these domains, having formed in the early to mid-Holocene. The lineages characteristic of the Cerrado likely diversified between the Miocene and early Pliocene.
References
- Alho CJR. 2008. Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Brazilian Journal of Biology. 68: 957–966.
- Andrade BO, Bonilha CL, Ferreira PMA, Boldrini I, Overbeck GE. 2016. Highland grasslands at the Southern tip of the Atlantic Forest biome: Management options and conservation challenges. Oecologia Australis. 20: 175–199.
- Antonelli A, Sanmartín I. 2011. Why are there so many plant species in the Neotropics? Taxon. 60: 403–414.
- Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL. 2018. Amazonia is the primary source of Neotropical biodiversity. PNAS. 115: 6034–6039.
- Azevedo JAR, Collevatti RG, Jaramillo CA, Strömberg CAE, Guedes TB, Matos-Maraví P, Bacon CD, Carrillo JD, Faurby S, Antonelli A. 2020. On the young savannas in the land of ancient forests. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 271–298). Springer Nature Switzerland.
- Baez-Lizarazo MR, Köhler M, Reginato M. 2023. A historical perspective on the biogeography of the Pampa region: imprints of time and origins of its flora. In: Overbeck GE, Pillar VDP, Müller SC, Bencke GA (Eds.). South Brazilian Grasslands. Springer, Cham.
- Baker PA, Fritz AC, Battisti DS, Dick CW, Vargas OM, Asner GP, Martin RE, Wheatley A, Prates I. 2020. Beyond refugia: new insights on Quaternary climate variation and the evolution of biotic diversity in tropical South America. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 51–70). Springer Nature Switzerland.
- Beerling DJ, Osborne CP. 2006. The origin of the savanna biome. Global Change Biology. 12: 2023–2031.
- Bouchenak-Khelladi Y, Slingsby JA, Verboom GA, Bond WJ. 2014. Diversification of C4 Grasses (Poaceae) does not coincide with their ecological dominance. American Journal of Botany. 101: 300–307.
- Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of neotropical rainforests. Philosophical Transactions of The Royal Society Biological Sciences. 359: 1595–1610.
- Bush MB, Oliveira PE. 2006. The rise and fall of the refugial hypothesis of Amazonian speciation: a paleoecological perspective. Biota Neotropica. 6:bn00106012006.
- Cabrera AL. 1976. Regiones fitogeograficas Argentina. Enciclopedia Argentina de Agricultura y jardinería, Fasc. 1, 2nd ed. II Acme, Buenos Aires.
- Caetano S, Prado D, Pennington RT, Beck S, Oliveira-Filho A, Spichiger R, Naciri Y. 2008. The history of seasonally dry tropical forests in Eastern South America: inferences from the genetic structure of the tree Astronium urundeuva (Anacardiaceae). Molecular Ecology. 17: 3147–3159.
- Capurucho JMG, Ashley MV, Ribas CC, Bates JM. 2018. Connecting Amazonian, Cerrado, and Atlantic Forest histories: paraphyly, old divergences, and modern population dynamics in tyrant-manakins (Neopelma/Tyranneutes, Aves: Pipridae). Molecular Phylogenetics and Evolution. 127: 696–705.
- Carnaval AC, Moritz C. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography. 35: 1187–1201.
- Cazé ALR, Mäder G, Nunes TS, Queiroz LP, Oliveira G, Diniz-Filho JAF, Bonatto SL, Freitas LB. 2016. Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest? Molecular Phylogenetics and Evolution. 101: 242–251.
- Cole MM. 1960. Cerrado, Caatinga, and Pantanal: the distribution and origin of the savanna vegetation of Brazil. The Geographical Journal. 126: 168–179.
- Colinvaux PA, Oliveira PE, Bush MB. 2000. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Science Reviews. 19: 141–169.
- Collevatti RG, Lima NA, Vitorino LC. 2020. The diversification of extant angiosperms in the South American dry diagonal. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 547–568). Springer Nature Switzerland.
- Colli-Silva M, Pirani JR. 2019. Biogeographic patterns of Galipeinae (Galipeeae, Rutaceae) in Brazil: species richness and endemism at different latitudes of the Atlantic Forest “hotspot”. Flora. 251: 77–87.
- Côrtes ALA, Rapini A, Daniel TF. 2015. The Tetramerium lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc hypothesis for South American seasonally dry forests. American Journal of Botany. 102: 992–1007.
- Costa LP. 2003. The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography. 30: 71–86.
- Costa GC, Hampe A, Ledru MP, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval AC. 2017. Biome stability in South America over the last 30 kyr: inferences from long-term vegetation dynamics and habitat modelling. Global Ecology and Biogeography. 27: 285–297.
- Cracraft J, Ribas CC, D’Horta FM, Bates J, Almeida RP, Aleixo A, Boubli JP, Campbell KE, Cruz FW, Ferreira M, Fritz SC, Grohmann CH, Latrubesse EM, Lohmann LG, Musher LJ, Nogueira A, Sawakuchi AO, Baker P. 2020. The origin and evolution of Amazonian species diversity. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 225–244). Springer Nature Switzerland.
- Dantas GPM, Cabanne GS, Santos FR. 2011. How past vicariant events can explain the Atlantic Forest biodiversity? In: O Grillo, G Venora (Eds.). Ecosystems Biodiversity (pp. 429–442). Intechopen.
- Della AP, Prado J. 2024. Areas of endemism of Pteridaceae (Polypodiopsida) in Brazil: a first approach. Cladistics. 40: 157–180.
- Della AP, Schuettpelz E, Picard K, Prado J. 2025. Was the Dry Diagonal of South America a barrier for dispersing Pteridaceae (Polypodiopsida) species between the Brazilian Atlantic Forest and Amazon Forest? Journal of Biogeography. 52: e15169.
- Fiaschi P, Pirani JR. 2009. Review of plant biogeographic studies in Brazil. Journal of Systematics and Evolution. 47: 477–496.
- Fiaschi P, Pirani JR, Heiden G, Antonelli A. 2016. Biogeografia da flora da América do Sul. In Carvalho C, Almeida EAB (Orgs.) Biogeografia da América do Sul (Pp. 214–226). GEN, Roca, São Paulo.
- Fine PVA, Lohmann LG. 2018. Importance of dispersal in the assembly of the Neotropical biota. PNAS. 115: 5831.
- Flora do Brasil. 2020. http://floradobrasil.jbrj.gov.br/reflora. Retrieved May 21, 2020.
- Florentín JE, Arana MD, Prado DE, Morrone JJ, Salas RM. 2018. Diversification of Galianthe species (Rubiaceae) in the Neotropical seasonally dry forests: a case study of a mainly subshrubby genus. Plant Ecology and Evolution. 151: 161–174.
- Fouquet A, Recoder M, Teixeira Jr M, Cassimiro J, Amaro RC, Camacho A, Damasceno R, Carnaval AC, Moritz C, Rodrigues MT. 2012. Molecular phylogeny and morphometric analyses reveal deep divergence between Amazonia and Atlantic Forest species of Dendrophryniscus. Molecular Phylogenetics and Evolution. 62: 826–838.
- Guedes TB, Azevedo AR, Bacon CD, Provete DB, Antonelli A. 2020. Diversity, endemism, and evolutionary history of montane biotas outside the Andean region. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 299–328). Springer Nature Switzerland.
- Haffer J. 1969. Speciation in Amazonian forest birds. Science. 165: 131–137.
- Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri R, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science. 330: 927–931.
- IBGE. 2024. https://brasilemsintese.ibge.gov.br/territorio.html. Retrieved January 30, 2024.
- Jaramillo C, Rueda MJ, Mora G. 2006. Cenozoic plant diversity in the Neotropics. Science. 311: 1893–1896.
- Junk WJ, Cunha CN. 2016. The Pantanal: a brief review of its ecology, biodiversity, and protection Status. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC. (Eds.). The wetland book II: distribution, description, and conservation. Springer, Dordrecht.
- Leite YLR, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC, Quaresma VS, Fagundes V, Paresque R, Passamani M, Pardini R. 2015. Neotropical forest expansion during the last glacial period challenges the refuge hypothesis. PNAS. 3: 1008–1013.
- Leite YLR, Costa LP, Loss AC, Rocha RG, Batalha-Filho H, Bastos AC, Quaresma VS, Fagundes V, Paresque R, Passamani M, Pardini R. 2016. The “Atlantis Forest hypothesis” adds a new dimension to Atlantic Forest biogeography. PNAS. 113: E2099–E2100.
- Lohmann LG, Bell CD, Calió MF, Winkworth RC. 2013. Pattern and timing of biogeographical history in the Neotropical tribe Bignonieae (Bignoniaceae). Botanical Journal of the Linnean Society. 171: 154–170.
- Luebert F, Lörch M, Acuña R, Mello-Silva R, Weigend M, Mutke J. 2020. Clade-specific biogeographic history and climatic niche shifts of the Southern Andean-Southern Brazilian disjunction in plants. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 661–682). Springer Nature Switzerland.
- Magri AR, Luebert F, Cabral A, Alcantara S, Lohmann LG, Prado J, Lopes JC. 2025. Historical biogeography of Vellozia (Velloziaceae) reveals range expansion in South American mountaintops after climatic cooling events and increased diversification rates after the occupation of Southern Espinhaço Province. Botanical Journal of the Linnean Society. 207: 115–127.
- Martini AMZ, Fiaschi P, Amorim AM, Paixão JL. 2007. A hot-point within a hot-spot: a high diversity site in Brazil’s Atlantic Forest. Biodiversity and Conservation. 16: 3111–3128.
- Nores M. 2020. Avian diversity in humid tropical and subtropical South American Forests, with a discussion about their related climatic and geological underpinnings. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 145–188). Springer Nature Switzerland.
- Ortiz-Jaureguizar E, Cladera GA. 2006. Paleoenvironmental evolution of Southern South America during the Cenozoic. Journal of Arid Environments. 66: 498–532.
- Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, Boldrini II, Both R, Forneck ED. 2007. Brazil’s neglected biome: the South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics. 9: 101–116.
- Pedro VAS. 2014. Filogeografia de anfíbios da diagonal de áreas abertas da América do Sul [Doctoral thesis, Universidade Federal do Rio Grande do Norte].
- Pennington RT, Prado DE, Pendry CA. 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography. 27: 261–273.
- Peres EA, Pinto-da-Rocha R, Lohmann LG, Michelangeli FA, Miyaki CY, Carnaval AC. 2020. Patterns of species and lineage diversity in the Atlantic Rainforest of Brazil. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 415–447). Springer Nature Switzerland.
- Pinheiro MHO, Monteiro R. 2010. Contribution to the discussions on the origin of the Cerrado biome: Brazilian savanna. Brazilian Journal of Biology. 70: 95–102.
- Pott A, Oliveira AK, Damasceno-Junior GA, Silva JS. 2011. Plant diversity of the Pantanal wetland. Brazilian Journal of Biology. 71: 265–73.
- Prado DE, Gibbs PE. 1993. Patterns of species distributions in the dry seasonal forests of South America. Annals of the Missouri Botanical Garden. 80: 902–927.
- Rambo. 1954. Análise histórica da flora de Pôrto Alegre. Sellowia 6: 9–112
- Reginato M, Michelangeli FA. 2020. Bioregions of Eastern Brazil, based on vascular plant occurrence data. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 475–494). Springer Nature Switzerland.
- Rocha IS, Machado R, Santos Júnior CR, Oliveira JRS, Pessi DD, Salamuni E, Ruiz AS, Paranhos Filho AC. 2022. Bacia do pantanal revisitada: uma estrutura do tipo rifte relacionada com a migração para sul da subducção sub-horizontal dos andes entre o Paleógeno e Neógeno. Boletim Paranaense de Geociências. 80: 227–241.
- Roesch LFW, Vieira FCB, Pereira VA, Schünemann AL, Teixeira IF, Senna AJT, Stefenon VM. 2009. The Brazilian Pampa: A Fragile Biome. Diversity. 1: 182–198.
- Rull V. 2020. Neotropical diversification: historical overview and conceptual insights. In: Rull V, Carnaval C (Eds.). Neotropical diversification: patterns and processes (pp. 13–49). Springer Nature Switzerland.
- Silva AC, Souza AF. 2018. Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS ONE. 13: e0196130.
- Silva JMC, Souza MC, Castelletti HM. 2004. Areas of endemism for passerine birds in the Atlantic forest, South America. Global Ecology and Biogeography. 13: 85–92.
- Simon MF, Grether R, Queiroz LP, Skema C, Pennington RT. & Hughes, C.E. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS. 106: 20359–20364.
- Sobral-Souza T, Lima-Ribeiro MS, Solferini VN. 2015. Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evolution and Ecology. 29: 643–655.
- Souza JF, Bueno ML, Salino A. 2021. Atlantic Forest: centres of diversity and endemism for ferns and lycophytes and conservation status. Biodiversity and Conservation. 30: 2207–2222.
- Stromberg CAE. 2011. Evolution of grasses and grassland ecosystems. The Annual Review of Earth and Planetary Sciences. 39: 517–44.
- Thode VA, Sanmartín I, Lohmann LG. 2019. Contrasting patterns of diversification between Amazonian and Atlantic Forest clades of Neotropical lianas (Amphilophium, Bignonieae) inferred from plastid genomic data. Molecular Phylogenetics and Evolution. 133: 92–106.
- Thomé MTC, Sequeira F, Brusquetti F, Carstens B, Haddad CFB, Rodrigues MT, Alexandrino J. 2016. Recurrent connections between Amazon and Atlantic forests shaped diversity in Caatinga four-eyed frogs. Journal of Biogeography. 43: 1045–1056.
- Waechter JL. 2002. Padrões geográficos na flora atual do Rio Grande do Sul. Ciência Ambiente. 24: 93–108.
- Werneck FP. 2011. The diversification of Eastern South American open vegetation biomes: historical biogeography and perspectives. Quaternary Science Reviews. 30: 1630e1648.
- Werneck FP, Costa GC, Colli GR, Prado DE, Sites Jr JW. 2011. Revisiting the historical distribution of seasonally dry tropical forests: new insights based on paleodistribution modeling and palynological evidence. Global Ecology and Biogeography. 20: 272–288.
- Wilf P, Cúneo NR, Johnson KR, Hicks JF, Wing SL, Obradovich JD. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science. 300: 122–125.
