Vol. 14 No. 1 (2025)
Case Study Article

Classification of products based on the uncertainty of supply chain demand: a case study of wineries in Chile

Armando Camino
Universidad de Lleida, Plaça de Víctor Siurana, 1, 25003 Lleida, España
Juan Pablo Vargas
Universidad Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Santiago 9160000, Chile

Published 2025-05-20

Keywords

  • demand uncertainty,
  • production and inventory management,
  • product classification,
  • wine industry,
  • wine supply chain

How to Cite

Camino, A., & Vargas, J. P. (2025). Classification of products based on the uncertainty of supply chain demand: a case study of wineries in Chile. Wine Economics and Policy, 14(1), 117–129. https://doi.org/10.36253/wep-15086

Abstract

The wine industry faces distinctive supply chain challenges, including high product variety, export market fragmentation, and seasonal production, all of which contribute to demand uncertainty. Importantly, this uncertainty is not only externally driven but also amplified by tactical and operational decisions – such as labeling, bottling strategies, and product customization – that increase complexity. This study presents a product classification methodology based on demand behavior to improve decision-making in inventory management. Using a case study of three Chilean wineries located in the Central Valley, we compare the traditional ABC classification – commonly used in ERP systems – with a quantitative model that incorporates demand variability. The proposed approach enables segmenting products according to average demand and variability, offering clearer insights for setting differentiated service levels, inventory policies, and forecasting strategies. The findings show that the demand uncertainty-based classification provides more effective support for supply chain decision-making than conventional methods. The model has also demonstrated applicability beyond finished goods, such as in-process wine and critical inputs like corks and bottles. This research contributes empirical evidence to close the gap between theory and practice, providing a replicable tool for product segmentation in wine and other industries facing demand complexity.

References

  1. C. Bopp, R. Jara-Rojas, A. Engler, M. Araya-Alman. How are vineyards management strategies and climate-related conditions affecting economic performance? A case study of Chilean wine grape growers. Wine Economics and Policy 2022;11:61–73. https://doi.org/10.36253/wep-12739. DOI: https://doi.org/10.36253/wep-12739
  2. E. Haddad, P. Aroca, P. Jano, A. Rocha, B. Pimenta. A Bad Year? Climate Variability and the Wine Industry in Chile. Wine Economics and Policy 2020;9:23–35. https://doi.org/10.36253/web-7665. DOI: https://doi.org/10.36253/web-7665
  3. A. Gilinsky, A. Sen, J. Ford, S.C. de la Torre, S.K. Newton. US Wine Industry Preparedness For Unforeseen Crises And Disasters: An Empirical Test. Wine Economics and Policy 2020;9:6–18. https://doi.org/10.14601/web-8054.
  4. A. Zironi, P. Danese, P. Romano, R. Zironi. A Lean Six Sigma, Industry 4.0 and Circular Economy-driven methodology for wine supply chain process improvement. Wine Economics and Policy 2024;13:75–88. https://doi.org/10.36253/wep-15803. DOI: https://doi.org/10.36253/wep-15803
  5. J. Mula, R. Poler, G.S. García-Sabater, F.C. Lario. Models for production planning under uncertainty: A review. Int J Prod Econ 2006;103:271–85. https://doi.org/10.1016/j.ijpe.2005.09.001. DOI: https://doi.org/10.1016/j.ijpe.2005.09.001
  6. E. Simangunsong, L.C. Hendry, M. Stevenson. Supply-chain uncertainty: A review and theoretical foundation for future research. Int J Prod Res 2012;50:4493–523. https://doi.org/10.1080/00207543.2011.613864. DOI: https://doi.org/10.1080/00207543.2011.613864
  7. R. Bhatnagar, A.S. Sohal. Supply chain competitiveness: measuring the impact of location factors, uncertainty and manufacturing practices. Technovation 2005;25:443–56. https://doi.org/10.1016/j.technovation.2003.09.012. DOI: https://doi.org/10.1016/S0166-4972(03)00172-X
  8. G.T.M. Hult, C.W. Craighead, D.J. Ketchen. Risk Uncertainty and Supply Chain Decisions: A Real Options Perspective. Decision Sciences 2010;41:435–58. https://doi.org/10.1111/j.1540-5915.2010.00276.x. DOI: https://doi.org/10.1111/j.1540-5915.2010.00276.x
  9. Z. Sazvar, M. Zokaee, R. Tavakkoli-Moghaddam, S.A. sadat Salari, S. Nayeri. Designing a sustainable closed-loop pharmaceutical supply chain in a competitive market considering demand uncertainty, manufacturer’s brand and waste management. Ann Oper Res 2022;315:2057–88. https://doi.org/10.1007/s10479-021-03961-0. DOI: https://doi.org/10.1007/s10479-021-03961-0
  10. A. Bacchetti, N. Saccani. Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega (Westport) 2012;40:722–37. https://doi.org/10.1016/j.omega.2011.06.008. DOI: https://doi.org/10.1016/j.omega.2011.06.008
  11. S. Chopra, P. Meindl. Supply Chain Management 7th edition. Boston: Pearson Education Inc.; 2017.
  12. G. Guillén, F.D. Mele, M.J. Bagajewicz, A. Espuña, L. Puigjaner. Multiobjective supply chain design under uncertainty. Chem Eng Sci 2005;60:1535–53. https://doi.org/10.1016/j.ces.2004.10.023. DOI: https://doi.org/10.1016/j.ces.2004.10.023
  13. H. Min, G. Zhou. Supply chain modeling: past, present and future. Comput Ind Eng 2002;43:231–49. https://doi.org/10.1016/S0360-8352(02)00066-9. DOI: https://doi.org/10.1016/S0360-8352(02)00066-9
  14. M. Bortolini, M. Faccio, F.G. Galizia, M. Gamberi. Push/pull parts production policy optimization in the ato environment. Applied Sciences (Switzerland) 2021;11:6570. https://doi.org/10.3390/app11146570. DOI: https://doi.org/10.3390/app11146570
  15. A.P. Velasco Acosta, C. Mascle, P. Baptiste. Applicability of Demand-Driven MRP in a complex manufacturing environment. Int J Prod Res 2020;58:4233–45. https://doi.org/10.1080/00207543.2019.1650978. DOI: https://doi.org/10.1080/00207543.2019.1650978
  16. D. Simchi-Levi, P. Kaminsky, E. Simchi-Levi. Managing the supply chain the definitive guide for the business professional. New York: McGraw Hill; 2004.
  17. G. Merkuryeva, A. Valberga, A. Smirnov. Demand forecasting in pharmaceutical supply chains: A case study. Procedia Comput Sci, vol. 149, Elsevier B.V.; 2019, p. 3–10. https://doi.org/10.1016/j.procs.2019.01.100. DOI: https://doi.org/10.1016/j.procs.2019.01.100
  18. J.G.A.J. Van Der Vorst, A.J.M. Beulens. Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management 2002;32:409–30. https://doi.org/10.1108/09600030210437951. DOI: https://doi.org/10.1108/09600030210437951
  19. M. Babagolzadeh, A. Shrestha, B. Abbasi, Y. Zhang, A. Woodhead, A. Zhang. Sustainable cold supply chain management under carbon tax regulation and demand uncertainty. Transp Res D Transp Environ 2020;80:102245. https://doi.org/10.1016/j.trd.2020.102245. DOI: https://doi.org/10.1016/j.trd.2020.102245
  20. T. Davis. Effective supply chain management. Sloan Manage Rev 1993;34:35–46.
  21. J.Y. Jung, G. Blau, J.F. Pekny, G.V. Reklaitis, D. Eversdyk. A simulation based optimization approach to supply chain management under demand uncertainty. Comput Chem Eng 2004;28:2087–106. https://doi.org/10.1016/j.compchemeng.2004.06.006. DOI: https://doi.org/10.1016/j.compchemeng.2004.06.006
  22. D. Peidro, J. Mula, R. Poler, F.C. Lario. Quantitative models for supply chain planning under uncertainty. Int J Adv Manuf Technol 2009;43:400–20. https://doi.org/10.1007/s00170-008-1715-y. DOI: https://doi.org/10.1007/s00170-008-1715-y
  23. F.A. de Lima, S. Seuring, P.C. Sauer. A systematic literature review exploring uncertainty management and sustainability outcomes in circular supply chains. Int J Prod Res 2022;60:6013–46. https://doi.org/10.1080/00207543.2021.1976859. DOI: https://doi.org/10.1080/00207543.2021.1976859
  24. M. Acuna, J. Sessions, R. Zamora, K. Boston, M. Brown, M.R. Ghaffariyan. Methods to manage and optimize forest biomass supply chains: a review. Current Forestry Reports 2019;5:124–41. https://doi.org/10.1007/s40725-019-00093-4. DOI: https://doi.org/10.1007/s40725-019-00093-4
  25. A. Gupta, C.D. Maranas. Managing demand uncertainty in supply chain planning. Comput Chem Eng 2003;27:1219–27. https://doi.org/10.1016/S0098-1354(03)00048-6. DOI: https://doi.org/10.1016/S0098-1354(03)00048-6
  26. B. Bilgen, I. Ozkarahan. Strategic tactical and operational production-distribution models: a review. Int J Technology Management 2004;28:151–71. https://doi.org/10.1504/IJTM.2004.005059. DOI: https://doi.org/10.1504/IJTM.2004.005059
  27. S. Ghosh, M.C. Mandal, A. Ray. Strategic sourcing model for green supply chain management: an insight into automobile manufacturing units in India. Benchmarking: An International Journal 2021;29:3097–132. https://doi.org/10.1108/BIJ-06-2021-0333. DOI: https://doi.org/10.1108/BIJ-06-2021-0333
  28. M.S. Fox, M. Barbuceanu, R. Teigen. Agent-oriented supply-chain management. Int J Flexible Manufacturing Systems 2000:81–104. https://doi.org/10.1023/A:1008195614074. DOI: https://doi.org/10.1007/978-1-4615-1599-9_5
  29. J. Oh, B. Jeong. Tactical supply planning in smart manufacturing supply chain. Robot Comput Integr Manuf 2019;55:217–33. https://doi.org/10.1016/j.rcim.2018.04.003. DOI: https://doi.org/10.1016/j.rcim.2018.04.003
  30. J. Saragih, A. Tarigan, E. Frida, J. Wardati, I. Pratama. Supply chain operational capability and supply chain operational performance: Does the supply chain management and supply chain integration matters? Int J Sup Chain Mgt 2020;9:1222–9.
  31. X. Wen, T.M. Choi, S.H. Chung. Fashion retail supply chain management: A review of operational models. Int J Prod Econ 2019;207:34–55. https://doi.org/10.1016/j.ijpe.2018.10.012. DOI: https://doi.org/10.1016/j.ijpe.2018.10.012
  32. R. Ganeshan, E. Jack, M.J. Magazine, P. Stephens. A taxonomic review of supply chain management research. Quantitative models for supply chain management, Boston: Kluwer Academic; 1999, p. 840–79. https://doi.org/10.1007/978-1-4615-4949-9_27. DOI: https://doi.org/10.1007/978-1-4615-4949-9_27
  33. S.Y. Sun, M.H. Hsu, W.J. Hwang. The impact of alignment between supply chain strategy and environmental uncertainty on SCM performance. Supply Chain Management 2009;14:201–12. https://doi.org/10.1108/13598540910954548. DOI: https://doi.org/10.1108/13598540910954548
  34. A. Kortabarria, U. Apaolaza, A. Lizarralde, I. Amorrortu. Material management without forecasting: From MRP to demand driven MRP. Journal of Industrial Engineering and Management 2018;11:632–50. https://doi.org/10.3926/jiem.2654. DOI: https://doi.org/10.3926/jiem.2654
  35. R. Miclo, M. Lauras, F. Fontanili, J. Lamothe, S. Melnyk, S.A. Melnyk. Demand Driven MRP: assessment of a new approach to materials management. Int J Prod Res 2019;57:166–81. https://doi.org/10.1080/00207543.2018.1464230. DOI: https://doi.org/10.1080/00207543.2018.1464230
  36. S. Cavalieri, M. Garetti, M. MacChi, R. Pinto. A decision-making framework for managing maintenance spare parts. Production Planning and Control 2008;19:379–96. https://doi.org/10.1080/09537280802034471. DOI: https://doi.org/10.1080/09537280802034471
  37. T.J. van Kampen, R. Akkerman, D.P. van Donk. SKU classification: A literature review and conceptual framework. Int J Operations and Production Management 2012;32:850–76. https://doi.org/10.1108/01443571211250112. DOI: https://doi.org/10.1108/01443571211250112
  38. J.H. Heizer, B. Render. Principles of operations management. Pearson Education; 2003.
  39. F. Liu, N. Ma. Multicriteria ABC inventory classification using the social choice theory. Sustainability (Switzerland) 2020;12. https://doi.org/10.3390/SU12010182. DOI: https://doi.org/10.3390/su12010182
  40. V. Lukinskiy, V. Lukinskiy, B. Sokolov. Control of inventory dynamics: A survey of special cases for products with low demand. Annu Rev Control 2020;49:306–20. https://doi.org/10.1016/j.arcontrol.2020.04.005. DOI: https://doi.org/10.1016/j.arcontrol.2020.04.005
  41. A.A. Ghobbar, C.H. Friend. Sources of intermittent demand for aircraft spare parts within airline operations. 2002. https://doi.org/10.1016/S0969-6997(01)00054-0. DOI: https://doi.org/10.1016/S0969-6997(01)00054-0
  42. A.A. Syntetos, J.E. Boylan, J.D. Croston. On the categorization of demand patterns. Journal of the Operational Research Society 2005;56:495–503. https://doi.org/10.1057/palgrave.jors.2601841. DOI: https://doi.org/10.1057/palgrave.jors.2601841
  43. A.J. D’Alessandro, A. Baveja. Divide and conquer: Rohm and Haas’ response to a changing specialty chemicals market. Interfaces (Providence) 2000;30:1–16. https://doi.org/10.1287/inte.30.6.1.11627. DOI: https://doi.org/10.1287/inte.30.6.1.11627
  44. J.H. Chavez. Supply Chain Management. Santiago de Chile: RIL Editores; 2012.
  45. L.A. Camino Cabrejos, J.P. Vargas Norambuena. Medición de Incertidumbre de Demanda de la Cadena de Suministro del Vino. RIVAR 2025;12:154–75. https://doi.org/10.35588/01jbbd18.
  46. M.L. Fisher. What is the Right Supply Chain for Your Product? Harv Bus Rev 1997;75:105–16.
  47. H.L. Lee. Aligning Supply Chain Strategies with Product Uncertainties. 2002. https://doi.org/10.2307/41166135. DOI: https://doi.org/10.2307/41166135
  48. M. Abolghasemi, E. Beh, G. Tarr, R. Gerlach. Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Comput Ind Eng 2020;142. https://doi.org/10.1016/j.cie.2020.106380. DOI: https://doi.org/10.1016/j.cie.2020.106380
  49. L. Xie, J. Ma, M. Goh. Supply chain coordination in the presence of uncertain yield and demand. Int J Prod Res 2021;59:4342–58. https://doi.org/10.1080/00207543.2020.1762942. DOI: https://doi.org/10.1080/00207543.2020.1762942
  50. C. Voss, N. Tsikriktsis, M. Frohlich. Case research in operations management. Int J Operations and Production Management 2002;22:195–219. https://doi.org/10.1108/01443570210414329. DOI: https://doi.org/10.1108/01443570210414329
  51. A. Alonso-Ayuso, L.F. Escudero, A. Garín, M.T. Ortuño, G. Pérez, U. Rey, et al. An approach for Strategic Supply Chain Planning under Uncertainty based on Stochastic 0-1 Programming. Journal of Global Optimization 2003;26:97–124. https://doi.org/10.1023/A:1023071216923. DOI: https://doi.org/10.1023/A:1023071216923
  52. J. Mota, A. Moreira, R. Costa, S. Serrão, V. Pais-Magalhães, C. Costa. Performance indicators to support firm-level decision-making in the wine industry: a systematic literature review. Int J Wine Business Res 2020;33:217–37. https://doi.org/10.1108/IJWBR-06-2020-0027. DOI: https://doi.org/10.1108/IJWBR-06-2020-0027
  53. L. Valenzuela, S. Maturana. Designing a three-dimensional performance measurement system (SMD3D) for the wine industry: A Chilean example. Agric Syst 2016;142:112–21. https://doi.org/10.1016/j.agsy.2015.11.011. DOI: https://doi.org/10.1016/j.agsy.2015.11.011
  54. A. Seccia, F.G. Santeramo, G. Nardone. Risk management in wine industry: A review of the literature. BIO Web Conf 2016;7:03014. https://doi.org/10.1051/bioconf/20160703014. DOI: https://doi.org/10.1051/bioconf/20160703014