Just Accepted Manuscripts
Case Study Article

Classification of products based on the uncertainty of supply chain demand: a case study of wineries in Chile

Armando Camino
Universidad de Lleida
Juan Pablo Vargas
Universidad de Santiago de Chile

Published 2025-05-20

Keywords

  • demand uncertainty,
  • supply chain,
  • production and inventory management,
  • product classification,
  • wine industry

How to Cite

Camino, A., & Vargas, J. P. (2025). Classification of products based on the uncertainty of supply chain demand: a case study of wineries in Chile. Wine Economics and Policy. https://doi.org/10.36253/wep-15086

Abstract

Supply chains face increased uncertainty, which must be taken into account in tactical and operational decisions. However, there is a gap between the models proposed in research and actual practice. The objective of this research is to contribute to closing this gap by providing findings on product classification based on the measurement of supply chain uncertainty. Our research presents a case study of three wineries in Chile. The empirical methods of product classification used by the company are reviewed. A quantitative method is applied to measure the uncertainty of the demand of finished products, which enables classifying the products, and the performance of the methods is analyzed in comparison with the ABC classification of products for the purpose of integration with inventory management. The quantitative ABC method is the most widely used. However, failure to incorporate demand uncertainty as a criterion can lead to poor inventory management decisions. The method based on demand uncertainty is more effective in product classification and supply chain operational and tactical decisions. The novelty lies in the application of a quantitative method based on demand behavior that classifies products in a useful way for a comprehensive production and inventory management model. This article opens the door to future research to replicate this methodology in other industries with real cases to close the gap between theory and practice.

References

  1. Abolghasemi, M., Beh, E., Tarr, G., & Gerlach, R. (2020). Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion. Computers and Industrial Engineering, 142. https://doi.org/10.1016/j.cie.2020.106380 DOI: https://doi.org/10.1016/j.cie.2020.106380
  2. Acuna, M., Sessions, J., Zamora, R., Boston, K., Brown, M., & Ghaffariyan, M. R. (2019). Methods to manage and optimize forest biomass supply chains: a review. Current Forestry Reports, 5(3), 124–141. https://doi.org/10.1007/s40725-019-00093-4 DOI: https://doi.org/10.1007/s40725-019-00093-4
  3. Alonso-Ayuso, A., Escudero, L. F., Garín, A., Ortuño, M. T., Pérez, G., Rey, U., & Carlos, J. (2003). An approach for Strategic Supply Chain Planning under Uncertainty based on Stochastic 0-1 Programming. Journal of Global Optimization, 26(1), 97–124. DOI: https://doi.org/10.1023/A:1023071216923
  4. Azzamouri, A., Baptiste, P., Dessevre, G., & Pellerin, R. (2021). Demand driven material requirements planning (Ddmrp): A systematic review and classification. Journal of Industrial Engineering and Management, 14(3), 439–456. https://doi.org/10.3926/jiem.3331 DOI: https://doi.org/10.3926/jiem.3331
  5. Babagolzadeh, M., Shrestha, A., Abbasi, B., Zhang, Y., Woodhead, A., & Zhang, A. (2020). Sustainable cold supply chain management under carbon tax regulation and demand uncertainty. Transportation Research Part D: Transport and Environment, 80, 102245. DOI: https://doi.org/10.1016/j.trd.2020.102245
  6. Bacchetti, A., & Saccani, N. (2012). Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice. Omega, 40(6), 722–737. https://doi.org/10.1016/j.omega.2011.06.008 DOI: https://doi.org/10.1016/j.omega.2011.06.008
  7. Bhatnagar, R., & Sohal, A. S. (2005). Supply chain competitiveness: measuring the impact of location factors, uncertainty and manufacturing practices. Technovation, 25(5), 443–456. https://doi.org/10.1016/j.technovation.2003.09.012 DOI: https://doi.org/10.1016/S0166-4972(03)00172-X
  8. Bilgen, B., & Ozkarahan, I. (2004). Strategic tactical and operational production-distribution models: a review. Int. J. Technology Management, 28(2), 151–171. DOI: https://doi.org/10.1504/IJTM.2004.005059
  9. Bortolini, M., Faccio, M., Galizia, F. G., & Gamberi, M. (2021). Push/pull parts production policy optimization in the ato environment. Applied Sciences (Switzerland), 11(14), 6570. https://doi.org/10.3390/app11146570 DOI: https://doi.org/10.3390/app11146570
  10. Bowersox, D. J., Closs, D. J., & Cooper, M. B. (2013). Supply Chain Logistics Management. Mc Graw Hill.
  11. Cavalieri, S., Garetti, M., MacChi, M., & Pinto, R. (2008). A decision-making framework for managing maintenance spare parts. Production Planning and Control, 19(4), 379–396. https://doi.org/10.1080/09537280802034471 DOI: https://doi.org/10.1080/09537280802034471
  12. Chavez, J. H. (2012). Supply Chain Management. RIL Editores.
  13. Chopra, S., & Meindl, P. (2017). Supply Chain Management 7th edition. Pearson Education Inc.
  14. D’Alessandro, A. J., & Baveja, A. (2000). Divide and conquer: Rohm and Haas’ response to a changing specialty chemicals market. Interfaces, 30(6), 1–16. https://doi.org/10.1287/inte.30.6.1.11627 DOI: https://doi.org/10.1287/inte.30.6.1.11627
  15. Davis, T. (1993). Effective supply chain management. Sloan Management Review, 34(4), 35–46.
  16. de Lima, F. A., Seuring, S., & Sauer, P. C. (2022). A systematic literature review exploring uncertainty management and sustainability outcomes in circular supply chains. In International Journal of Production Research (Vol. 60, Issue 19, pp. 6013–6046). Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2021.1976859 DOI: https://doi.org/10.1080/00207543.2021.1976859
  17. Fisher, M. L. (1997). What is the Right Supply Chain for Your Product? Harvard Business Review.
  18. Fox, M. S., Barbuceanu, M., & Teigen, R. (2000). Agent-oriented supply-chain management. The International Journal of Flexible Manufacturing Systems, 81–104. DOI: https://doi.org/10.1007/978-1-4615-1599-9_5
  19. Ganeshan, R., Jack, E., Magazine, M. J., & Stephens, P. (1999). A taxonomic review of supply chain management research. In Quantitative models for supply chain management (pp. 840–879). Kluwer Academic. DOI: https://doi.org/10.1007/978-1-4615-4949-9_27
  20. Ghobbar, A. A., & Friend, C. H. (2002). Sources of intermittent demand for aircraft spare parts within airline operations. In Journal of Air Transport Management (Vol. 8). DOI: https://doi.org/10.1016/S0969-6997(01)00054-0
  21. Ghosh, S., Mandal, M. C., & Ray, A. (2021). Strategic sourcing model for green supply chain management: an insight into automobile manufacturing units in India. Benchmarking: An International Journal, 29(10), 3097–3132. https://doi.org/10.1108/BIJ-06-2021-0333 DOI: https://doi.org/10.1108/BIJ-06-2021-0333
  22. Guillén, G., Mele, F. D., Bagajewicz, M. J., Espuña, A., & Puigjaner, L. (2005). Multiobjective supply chain design under uncertainty. Chemical Engineering Science, 60(6), 1535–1553. https://doi.org/10.1016/j.ces.2004.10.023 DOI: https://doi.org/10.1016/j.ces.2004.10.023
  23. Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning. Computers and Chemical Engineering, 27(8–9), 1219–1227. https://doi.org/10.1016/S0098-1354(03)00048-6 DOI: https://doi.org/10.1016/S0098-1354(03)00048-6
  24. Heizer, J. H., & Render, B. (2003). Principles of operations management. Pearson Education.
  25. Hult, G. T. M., Craighead, C. W., & Ketchen, D. J. (2010). Risk Uncertainty and Supply Chain Decisions: A Real Options Perspective. Decision Sciences, 41(3), 435–458. DOI: https://doi.org/10.1111/j.1540-5915.2010.00276.x
  26. Jiménez García, F. N., Vargas Sánchez, J. J., Toro Galvis, J. M., & Rodríguez García, Y. A. (2019). Comparación por simulación de sistemas de manufactura tipo push y pull. Ciencia e Ingeniería Neogranadina, 29(1), 81–94. https://doi.org/10.18359/rcin.3075 DOI: https://doi.org/10.18359/rcin.3075
  27. Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. v., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers and Chemical Engineering, 28(10), 2087–2106. https://doi.org/10.1016/j.compchemeng.2004.06.006 DOI: https://doi.org/10.1016/j.compchemeng.2004.06.006
  28. Kortabarria, A., Apaolaza, U., Lizarralde, A., & Amorrortu, I. (2018). Material management without forecasting: From MRP to demand driven MRP. Journal of Industrial Engineering and Management, 11(4), 632–650. https://doi.org/10.3926/jiem.2654 DOI: https://doi.org/10.3926/jiem.2654
  29. Langley, C. J., Novack, R. A., Ginson, B., & Coyle, J. J. (2020). Supply Chain Management: a logistics perspective. Cengage Learning.
  30. Lee, H. L. (2002). Aligning Supply Chain Strategies with Product Uncertainties. In California CMR (Vol. 44, Issue 3). DOI: https://doi.org/10.2307/41166135
  31. Liu, F., & Ma, N. (2020). Multicriteria ABC inventory classification using the social choice theory. Sustainability (Switzerland), 12(1). https://doi.org/10.3390/SU12010182 DOI: https://doi.org/10.3390/su12010182
  32. Lukinskiy, V., Lukinskiy, V., & Sokolov, B. (2020). Control of inventory dynamics: A survey of special cases for products with low demand. In Annual Reviews in Control (Vol. 49, pp. 306–320). Elsevier Ltd. https://doi.org/10.1016/j.arcontrol.2020.04.005 DOI: https://doi.org/10.1016/j.arcontrol.2020.04.005
  33. Malviya, R. K., Dharmadhikari, S., Choudhary, S., Gupta, S., & Raghuwanshi, V. (2020). Study of Inventory Audit and Control of Automobile Spare Parts Using Selective Inventory Control Techniques. Industrial Engineering Journal, 13(1). DOI: https://doi.org/10.26488/IEJ.13.1.1204
  34. Merkuryeva, G., Valberga, A., & Smirnov, A. (2019). Demand forecasting in pharmaceutical supply chains: A case study. Procedia Computer Science, 149, 3–10. https://doi.org/10.1016/j.procs.2019.01.100 DOI: https://doi.org/10.1016/j.procs.2019.01.100
  35. Miclo, R., Lauras, M., Fontanili, F., Lamothe, J., Melnyk, S., & Melnyk, S. A. (2019). Demand Driven MRP: assessment of a new approach to materials management. International Journal of Production Research, 57(1), 166–181. https://doi.org/10.1080/00207543.2018.1464230ï DOI: https://doi.org/10.1080/00207543.2018.1464230
  36. Min, H., & Zhou, G. (2002). Supply chain modeling: past, present and future. Computers & Industrial Engineering, 43(1–2), 231–249. www.elsevier.com/locate/dsw DOI: https://doi.org/10.1016/S0360-8352(02)00066-9
  37. Miranda, P. A., & Garrido, R. A. (2004). Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Transportation Research Part E: Logistics and Transportation Review, 40(3), 183–207. https://doi.org/10.1016/j.tre.2003.08.006 DOI: https://doi.org/10.1016/j.tre.2003.08.006
  38. Mula, J., Poler, R., García-Sabater, G. S., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271–285. https://doi.org/10.1016/j.ijpe.2005.09.001 DOI: https://doi.org/10.1016/j.ijpe.2005.09.001
  39. Narasimhan, R., & Mahapatra, S. (2004). Decision models in global supply chain management. Industrial Marketing Management, 33(1), 21–27. https://doi.org/10.1016/j.indmarman.2003.08.006 DOI: https://doi.org/10.1016/j.indmarman.2003.08.006
  40. Oh, J., & Jeong, B. (2019). Tactical supply planning in smart manufacturing supply chain. Robotics and Computer-Integrated Manufacturing, 55, 217–233. https://doi.org/10.1016/j.rcim.2018.04.003 DOI: https://doi.org/10.1016/j.rcim.2018.04.003
  41. Peidro, D., Mula, J., Poler, R., & Lario, F. C. (2009). Quantitative models for supply chain planning under uncertainty. International Journal of Advanced Manufacturing Technology, 43(3–4), 400–420. https://doi.org/10.1007/s00170-008-1715-y DOI: https://doi.org/10.1007/s00170-008-1715-y
  42. Pratama, Y. N. A., Darmawan, M., Astanti, R. D., Ai, T. J., & Gong, D. C. (2019). Inventory policy for dependent demand where parent demand has decreasing pattern. International Journal of Industrial Engineering and Engineering Management (IJIEEM), 1(1), 17–30. https://doi.org/https://doi.org/10.24002/ijieem.v1i1.2293 DOI: https://doi.org/10.24002/ijieem.v1i1.2293
  43. Saragih, J., Tarigan, A., Frida, E., Silalahi, Jumadiah Wardati, & Pratama, I. (2020). Supply chain operational capability and supply chain operational performance: Does the supply chain management and supply chain integration matters? Int. J Sup. Chain. Mgt, 9(4), 1222–1229. https://www.researchgate.net/publication/344426743
  44. Sazvar, Z., Zokaee, M., Tavakkoli-Moghaddam, R., Salari, S. A. sadat, & Nayeri, S. (2022). Designing a sustainable closed-loop pharmaceutical supply chain in a competitive market considering demand uncertainty, manufacturer’s brand and waste management. Annals of Operations Research, 315(2), 2057–2088. https://doi.org/10.1007/s10479-021-03961-0 DOI: https://doi.org/10.1007/s10479-021-03961-0
  45. Simangunsong, E., Hendry, L. C., & Stevenson, M. (2012). Supply-chain uncertainty: A review and theoretical foundation for future research. In International Journal of Production Research (Vol. 50, Issue 16, pp. 4493–4523). https://doi.org/10.1080/00207543.2011.613864 DOI: https://doi.org/10.1080/00207543.2011.613864
  46. Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2004). Managing the supply chain the definitive guide for the business proefssional. McGraw Hill.
  47. Sun, S. Y., Hsu, M. H., & Hwang, W. J. (2009). The impact of alignment between supply chain strategy and environmental uncertainty on SCM performance. Supply Chain Management, 14(3), 201–212. https://doi.org/10.1108/13598540910954548 DOI: https://doi.org/10.1108/13598540910954548
  48. Sweeney, K., Riley, J., & Duan, Y. (2022). Product variety in retail: the moderating influence of demand variability. International Journal of Physical Distribution and Logistics Management, 52(4), 351–369. https://doi.org/10.1108/IJPDLM-12-2020-0407 DOI: https://doi.org/10.1108/IJPDLM-12-2020-0407
  49. Syntetos, A. A., Boylan, J. E., & Croston, J. D. (2005). On the categorization of demand patterns. Journal of the Operational Research Society, 56(5), 495–503. https://doi.org/https://doi.org/10.1057/palgrave.jors.2601841 DOI: https://doi.org/10.1057/palgrave.jors.2601841
  50. van der Vorst, J. G. A. J., & Beulens, A. J. M. (2002). Identifying sources of uncertainty to generate supply chain redesign strategies. International Journal of Physical Distribution & Logistics Management, 32(6), 409–430. https://doi.org/10.1108/09600030210437951 DOI: https://doi.org/10.1108/09600030210437951
  51. van Kampen, T. J., Akkerman, R., & van Donk, D. P. (2012). SKU classification: A literature review and conceptual framework. International Journal of Operations and Production Management, 32(7), 850–876. https://doi.org/10.1108/01443571211250112 DOI: https://doi.org/10.1108/01443571211250112
  52. Velasco Acosta, A. P., Mascle, C., & Baptiste, P. (2020). Applicability of Demand-Driven MRP in a complex manufacturing environment. International Journal of Production Research, 58(14), 4233–4245. https://doi.org/10.1080/00207543.2019.1650978 DOI: https://doi.org/10.1080/00207543.2019.1650978
  53. Voss, C., Tsikriktsis, N., & Frohlich, M. (2002). Case research in operations management. International Journal of Operations and Production Management, 22(2), 195–219. https://doi.org/10.1108/01443570210414329 DOI: https://doi.org/10.1108/01443570210414329
  54. Wen, X., Choi, T. M., & Chung, S. H. (2019). Fashion retail supply chain management: A review of operational models. In International Journal of Production Economics (Vol. 207, pp. 34–55). Elsevier B.V. https://doi.org/10.1016/j.ijpe.2018.10.012 DOI: https://doi.org/10.1016/j.ijpe.2018.10.012
  55. Williams, T. M. (1984). Stock control with sporadic and slow-moving demand. Journal of the Operational Research Society, 35(10), 939–948. https://doi.org/10.1057/jors.1984.185 DOI: https://doi.org/10.1057/jors.1984.185
  56. Xie, L., Ma, J., & Goh, M. (2021). Supply chain coordination in the presence of uncertain yield and demand. International Journal of Production Research, 59(14), 4342–4358. https://doi.org/10.1080/00207543.2020.1762942 DOI: https://doi.org/10.1080/00207543.2020.1762942