Vol. 13 No. 1 (2024)
Case Study Article

Water stress as a critical issue for Mediterranean viticulture: economic evidence from the Montepulciano d’Abruzzo PDO grape based on a case study in central Italy

Deborah Bentivoglio
Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Italy. Via Brecce Bianche 10, 60131 Ancona
Giulia Chiaraluce
Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Italy. Via Brecce Bianche 10, 60131 Ancona
Adele Finco
Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Italy. Via Brecce Bianche 10, 60131 Ancona

Published 2024-05-15

Keywords

  • vineyard,
  • irrigation,
  • climate change,
  • economic analysis,
  • water use indicators

How to Cite

Bentivoglio, D., Chiaraluce, G., & Finco, A. (2024). Water stress as a critical issue for Mediterranean viticulture: economic evidence from the Montepulciano d’Abruzzo PDO grape based on a case study in central Italy. Wine Economics and Policy, 13(1), 141–150. https://doi.org/10.36253/wep-15257

Abstract

Climate change has impacted viticulture in almost all of the Mediterranean area, mainly because of temperature rises and changes in precipitation patterns, thus influencing yield, quality, and the management of grape production. One of the measures to mitigate these effects is the adoption of irrigation strategies. This has environmental and economic implications. Thus, it seems essential to evaluate if irrigation is economically and environmentally justified to ensure the sustainability of the vineyard by preserving the water resource. The aim of this research is to compute water-use indicators such as Water Productivity and Economic Water Productivity using field data obtained and to assess the economic impact of supplemental irrigation expenses through the analysis of a single case study. Since the results are heavily influenced by pedoclimatic conditions, vineyard structure, and economic decisions, the generalizability of our findings is not conceivable. However, our findings are valuable in determining when supplemental irrigation is or is not viable. Nonetheless, the findings might shed light on how water is managed in an Italian vineyard. Future supplemental irrigation plans ought to be developed using precision viticulture technologies to monitor the intricate soil-plant-environment system.

References

  1. R. Zucaro, A. Pontrandolfi, Agricoltura irrigua e scenari di cambiamento climatico. Stagione irrigua 2006 nel Centro Nord, Istituto Nazionale di Economia Agraria, 2007. https://sigrian.crea.gov.it/wp-content/uploads/2020/11/2007_Rapporto_Irrigazione_camb_climatici_2006.pdf (accessed on 17 January 2023).
  2. J.M. Costa, M. Vaz, J. Escalona, R. Egipto, C. Lopes, H. Medrano, M.M. Chaves, Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity, Agr. Water Manage. 164 (2016) 5-18. https://doi.org/10.1016/j.agwat.2015.08.021
  3. J.M. Mirás-Avalos, E.S. Araujo, Optimization of vineyard water management: Challenges, strategies, and perspectives. Water, 13(6) (2021) 746. https://doi.org/10.3390/w13060746
  4. L.C. Carvalho, M.J. Ramos, D. Faísca-Silva, D. van der Kellen, J.C. Fernandes, R. Egipto, C.M. Lopes, S. Amâncio, Developmental Regulation of Transcription in Touriga Nacional Berries under Deficit Irrigation, Plants 11(6) (2022) 827. https://doi.org/10.3390/plants11060827
  5. M.R. Mozell, L. Thach, The impact of climate change on the global wine industry: Challenges & solutions, Wine Econ. Policy, 3(2) (2014) 81-89. https://doi.org/10.1016/j.wep.2014.08.001
  6. I. Bernetti, S., Menghini, N., Marinelli, S., Sacchelli, V.A. Sottini, Assessment of climate change impact on viticulture: economic evaluations and adaptation strategies analysis for the Tuscan wine sector. Wine Econ. Policy, 1(1) (2012) 73-86. https://doi.org/10.1016/j.wep.2012.11.002
  7. S. Dal Santo, A. Palliotti, S. Zenoni, G.B. Tornielli, M. Fasoli, P. Paci, … M. Pezzotti, Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars, BMC genomics, 17(1) (2016) 1-19. https://doi.org/10.1186/s12864-016-3136-x
  8. M.C. Antolín, E. Salinas, A. Fernández, Y. Gogorcena, I. Pascual, J.J. Irigoyen, N. Goicoechea, Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios, Plants, 11(21) (2022) 2929. https://doi.org/10.3390/plants11212929
  9. A. Naulleau, C. Gary, L. Prévot, F. Vinatier, L. Hossard, How can winegrowers adapt to climate change? A participatory modeling approach in southern France, Agr. Syst., 203 (2022) 103514. https://doi.org/10.1016/j.agsy.2022.103514
  10. T. Frioni, E. Romanini, S. Pagani, F. Del Zozzo, M. Lambri, A. Vercesi, … & M. Gabrielli, Reintroducing Autochthonous Minor Grapevine Varieties to Improve Wine Quality and Viticulture Sustainability in a Climate Change Scenario. Aust. J. Grape Wine R., (2023). https://doi.org/10.1155/2023/1482548
  11. F., Del Zozzo, S., Poni, Climate Change Affects Choice and Management of Training Systems in the Grapevine, Aust. J. Grape Wine R., (2024). https://doi.org/10.1155/2024/7834357
  12. O. Ashenfelter, K. Storchmann, Wine and climate change, AAWE Working Paper, (2014) 152. https://ageconsearch.umn.edu/record/164854/ (accessed on 17 January 2023).
  13. S. Candar, İ. Korkutal, E. Bahar, Changes of Vine Water Status and Growth Parameters Under Different Canopy Managements on cv. Merlot (Vitis vinifera L.), Tekirdağ Ziraat Fakültesi Dergisi, 19(1) (2022) 1-15. https://doi.org/10.33462/jotaf.795232
  14. P. Romero Azorin, J. Garcia Garcia, The Productive, economic, and social efficiency of vineyards using combined drought-tolerant rootstocks and efficient low water volume deficit irrigation techniques under Mediterranean semiarid conditions, Sustainability, 12(5) (2020) 1930. https://doi.org/10.3390/su12051930
  15. J.M. Costa, M. Vaz, J. Escalona, R. Egipto, C. Lopes, H. Medrano, M.M. Chaves, Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity, Agr. Water Manage., 164 (2016) 5-18. https://doi.org/10.1016/j.agwat.2015.08.021
  16. A.D.C. Teixeira, W.G.M. Bastiaanssen, L.H. Bassoi, Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil, Agr. Water Manage., 94(1-3) (2007) 31-42. https://doi.org/10.1016/j.agwat.2007.08.001
  17. R. Salvador, A. Martínez-Cob, J. Cavero, J. E. Playán, Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems, Agr. Water Manage., 98(4) (2011) 577-587. https://doi.org/10.1016/j.agwat.2010.10.003
  18. V. Phogat, M.A. Skewes, M.G. McCarthy, J.W. Cox, J. Šimůnek, P.R. Petrie, Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip, Agr. Water Manage., 180 (2017) 22-34. https://doi.org/10.1016/j.agwat.2016.10.016
  19. N. Graveline, M. Grémont, The role of perceptions, goals and characteristics of wine growers on irrigation adoption in the context of climate change, Agr. Water Manage., 250 (2021) 106837. https://doi.org/10.1016/j.agwat.2021.106837
  20. J.M. Costa, M., Oliveira, R.J. Egipto, J.F. Cid, R.A. Fragoso, C.M. Lopes, E.N. Duarte, Water and Wastewater management for sustainable viticulture and oenology in south Portugal–A review, Ciência e técnica vitivinícola, 35(1) (2020) 1-15. https://doi.org/10.1051/ctv/20203501001
  21. E. Pomarici, A. Seccia, Economic and Social Impacts of Climate Change on Wine Production, Ref. Modul. Food Sci., 2(1) (2016) 1-8. 10.1016/B978-0-08-100596-5.03062-6
  22. A. Finco, D. Bentivoglio, G. Chiaraluce, M. Alberi, E. Chiarelli, A. Maino, A., … G. Bucci, Combining Precision Viticulture Technologies and Economic Indices to Sustainable Water Use Management, Water, 14(9) (2022) 1493. https://doi.org/10.3390/w14091493
  23. P. Romero, J.G. García, J.I. Fernández-Fernández, R.G. Muñoz, F. del Amor Saavedra, A. Martínez-Cutillas, Improving berry and wine quality attributes and vineyard economic efficiency by long-term deficit irrigation practices under semiarid conditions. Sci. hortic., 203 (2016) 69-85. https://doi.org/10.1016/j.scienta.2016.03.013
  24. J. Aparicio, A.J. Tenza-Abril, M. Borg, J. Galea, L. Candela, Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta, Sci. tot. environ., 650 (2019) 734-740. https://doi.org/10.1016/j.scitotenv.2018.09.059
  25. J. Bellvert, M. Mata, X. Vallverdú, C. Paris, J. Marsal, Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model, Precis. Agric., 22(2) (2021) 319-341. https://doi.org/10.1007/s11119-020-09718-2.
  26. B. Marr, Key Performance Indicators (KPI): The 75 measures every manager needs to know, first ed., Pearson, UK, 2012.
  27. D. Molden, Accounting for water use and productivity, International Water Management Institute, Colombo, Srilanka, 1997.
  28. N. Heydari, Water productivity in agriculture: challenges in concepts, terms and values, Irrig. Drain., 63(1) (2014) 22-28. https://doi.org/10.1002/ird.1816.
  29. G.C. Rodrigues, L.S. Pereira, Assessing economic impacts of deficit irrigation as related to water productivity and water costs, Biosyst. Eng., 103(4) (2009) 536-551. https://doi.org/10.1016/j.biosystemseng.2009.05.002
  30. T. Zhang, Y. Zou, I. Kisekka, A. Biswas, H. Cai, Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area, Agr. Water Manage., 243 (2021) 106497. https://doi.org/10.1016/j.agwat.2020.106497
  31. J.E. Fernández, F. Alcon, A. Diaz-Espejo, V. Hernandez-Santana, M.V. Cuevas, Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard, Agr. Water Manage., 237 (2020) 106074. https://doi.org/10.1016/j.agwat.2020.106074.
  32. E. Merloni, L. Camanzi, L. Mulazzani, G. Malorgio, Adaptive capacity to climate change in the wine industry: A Bayesian Network approach, Wine Econ. Policy, 7(2) (2018) 165-177. https://doi.org/10.1016/j.wep.2018.11.002
  33. C. Corradi, Irrigare il frutteto e il vigneto - Sistemi e impianti, first ed., Edagricole, Milano, 2020.
  34. J. Alvarez Arredondo, J. Muñoz, L.F. Casassa, J.C. Dodson Peterson, The Effect of Supplemental Irrigation on a Dry-Farmed Vitis vinifera L. cv. Zinfandel Vineyard as a Function of Vine Age, Agronomy, 13(8) (2023) 1998. https://doi.org/10.3390/agronomy13081998
  35. L.S. Pereira, Relating water productivity and crop evapotranspiration. 4th WASAMED (WAter SAving in MEDiterranean Agriculture) Workshop on Water Use Efficiency and Water Productivity, (2007) Amman, Jordan.
  36. P.J.G.J. Hellegers, R. Soppe, C.J. Perry, W.G.M. Bastiaanssen, Combining remote sensing and economic analysis to support decisions that affect water productivity, Irrigation Sci., 27(3) (2019) 243-251. https://doi.org/10.1007/s00271-008-0139-7.
  37. L. Paleari, L. Brancadoro, C. Rusconi, E. Movedi, S. Poni, M. Bolognini, … & R. Confalonieri, Quantifying water stress in vineyards using a smartphone, Biosyst. Eng., 238 (2024) 89-93. https://doi.org/10.1016/j.biosyst