Vol. 9 No. 2 (2020)
Original Research Article

Valuation of Viticultural Adaptation to Climate Change in Vineyards: A Discrete Choice Experiment to Prioritize Trade-Offs Perceived by Citizens

Verónica Farreras
Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (CCT-CONICET-Mendoza
Laura Abraham
Universidad Nacional de Cuyo, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, Luján de Cuyo, CPA M5528AHB Mendoza
Published November 23, 2020
Keywords
  • viticultural management practices,
  • climate change,
  • discrete choice experiment,
  • human welfare effects of environmental-impact choices
How to Cite
Farreras, V., & Abraham, L. (2020). Valuation of Viticultural Adaptation to Climate Change in Vineyards: A Discrete Choice Experiment to Prioritize Trade-Offs Perceived by Citizens. Wine Economics and Policy, 9(2), 99-112. https://doi.org/10.36253/web-9823

Abstract

On a climate change scenario, a discrete choice experiment was applied to elicit the trade-off values for three environmental impacts of current viticultural management practices in vineyards of Mendoza, Argentina. Water availability for other uses was found to be the most concerning topic for the population, followed by use of chemical fertilizers and then by use and conservation of biodiversity. An increase of one percentage point in water availability was estimated to add each citizen on average 13.05 Argentinean pesos – 0.74 US dollars – per year in terms of increased welfare, a figure equivalent to the welfare drop a citizen would experience after an increase of 1.45 percentage points in the use of chemical fertilizers annually per hectare, or a decrease of 2.69 percentage points in the use and conservation of biodiversity. These trade-off values may help policy makers, planners, regional managers, and ecologists to take social preferences into account in setting resource allocation priorities intended to support viticulture. This study approach provides a framework that could guide similar assessments in other regions.

References

Arora, A., Bansal, S., Ward, P.S., 2018. Do farmers value rice varieties tolerant to droughts and floods? Evidence from a discrete choice experiment in Odisha, India. Water Resour. Econ. 1–15. https://doi.org/10.1016/j.wre.2018.03.001
Barreiro-Hurlé, J., Colombo, S., Cantos-Villar, E., 2008. Is there a market for functional wines? Consumer preferences and willingness to pay for resveratrol-enriched red wine. Food Quality and Preference 19, 360–371.
Bennett, J., Blamey, R., (eds.). 2001. The choice modelling approach to environmental valuation. Cheltenham, UK: Edward Elgar.
Boninsegna, J.A., 2014. Impacto del cambio climático en los oasis del oeste argentino. Ciencia e Investigación 64, 45–58.
Cabré, M.F., Quénol, H., Nuñez, M., 2016. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina. Int. J. Biometeorol. 60, 1325–1340. https://doi.org/10.1007/s00484-015-1126-3
Carson, R.T., Louviere, J.J., 2011. A common nomenclature for stated preference elicitation approaches. Environmental and Resource Economics 49, 539–559. https://doi.org/10.1007/s10640-010-9450-x
Castex, V., Morán, E., Beniston, M., 2015. Water availability, use and governance in the wine producing region of Mendoza, Argentina. Environmental Science & Policy 48, 1–8. https://doi.org/10.1016/j.envsci.2014.12.008.
ChoiceMetrics. 2014. Ngene 1.1.2. User Manual & Reference Guide, Australia.
Deis, L., Rosas, M.I. De, Malovini, E., Cavagnaro, M., 2015. Climate change impact in Mendoza. Climate variation on the last 50 years. A view to grapevine physiology. Rev. FCA UNCuyo 47, 67–92.
DGI, 2016. Departamento General de Irrigación. Aquabook. Available from: http://aquabook.agua.gob.ar/ Accessed March 18, 2019.
Di Lorenzo, T., Cifoni, M., Fiasca, B., Di Cioccio, A., Galassi, D.M.P., 2018. Science of the Total Environment Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward more realistic scenarios for risk mitigation. Sci. Total Environ. 644, 161–172. https://doi.org/10.1016/j.scitotenv.2018.06.345
Farreras, V., Lauro, C., 2016. Valoración económica de los efectos de la contaminación por vertido de residuos sólidos urbanos. El caso del aglomerado urbano del Gran Mendoza, Argentina. Gestión y Ambiente 19, 211–227. http://dx.doi.org/10.15446/ga.v19n2.54755.
Farreras, V., Riera, P., Salvador, P.F., 2017. Environmental valuation with periodical payments in high-inflation economies. An Argentinean case study. Ecological Economics 138, 56–63. https://doi.org/10.1016/j.ecolecon.2017.03.028.
Hamada, E., Gini, R., 2011. Impacts of climate change on plant diseases and pests in Brazil. Revista Mexicana de Ciencias Agrícolas 2, 195–205.
Hanley, N., Mourato, S., Wright, R.E., 2002. Choice Modelling Approaches: A Superior Alternative for Environmental Valuatioin? J. Econ. Surv. 15, 435–462. https://doi.org/10.1111/1467-6419.00145
Hensher, D., Greene, W.H., 2003. The mixed logit model: the state of practice and Warnings for the Unwary. Transportation (Amst). 30, 133–176. https://doi.org/10.1.1.195.1039
Hensher, D.A., Rose, J.M., Greene, W.H., 2005. Applied choice analysis: A primer. Cambridge, UK: Cambridge University Press.
INDEC, 2010. Instituto Nacional de Estadísticas y Censo. Censo Nacional de Población, Hogares y Vivienda en Argentina. Available from: https://www.indec.gob.ar/ftp/cuadros/poblacion/censo2010_tomo1.pdf Accessed November 28, 2018.
INDEC, 2017. Instituto Nacional de Estadísticas y Censo. Evolución de la distribución del ingreso. Cuarto trimestre de 2017. Available from: https://www.indec.gob.ar/uploads/informesdeprensa/ingresos_4trim17.pdf Accessed November 12, 2018.
INV, 2018. Instituto Nacional de Vitivinicultura. Informe anual de superficie 2017. Available from: https://www.argentina.gob.ar/inv/vinos/estadisticas/superficie/anuarios Accessed January 29, 2019.
IPCC, 2013. Intergovernmental Panel on Climate Change. Climate change 2013: The physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. (eds). New York, USA: Cambridge University Press https://doi.org/10.1017/CBO9781107415324.001
Jones, C., Pease, K., 1997. Restoration-based compensation measures in natural resource liability statutes. Contemporary Economic Policy 15, 111–122. https://doi.org/10.1111/j.1465-7287.1997.tb00494.x
Karuppaiah, V., Sujayanad, G., 2012. Impact of climate change on population dynamics of insect pests. World J. Agric. Sci. 8, 240–246.
Kremen, C., Miles, A., 2012. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecology and Society 17(4), 40. http://dx.doi.org/10.5751/ES-05035-170440
Krinsky, I., Robb, A.L., 1986. On Approximating the Statistical Properties of Elasticities. The Review of Economics and Statistics 68, 715–719. http://dx.doi.org/10.2307/1924536
Lacoste, P., 2003. El vino del inmigrante: los inmigrantes europeos y la industria vitivinícola argentina: su incidencia en la incorporación, difusión y estandarización del uso de topónimos europeos 1852-1980. Mendoza, Argentina: Consejo Empresario Mendocino.
Lanfranchi, M., Schimmenti, E., Campolo, M.G., Giannetto, C., 2019. The willingness to pay of Sicilian consumers for a wine obtained with sustainable production method: An estimate through an ordered probit sample-selection model. Wine Econ. Policy 8, 203–215. https://doi.org/10.1016/j.wep.2019.11.001
Lauro, C., Vich, A., Moreiras, S., 2019. Streamflow variability and its relationship with climate indices in western rivers of Argentina. Hydrological Sciences Journal 64, 607–619. https://doi.org/10.1080/02626667.2019.1594820
Lienhoop, N., MacMillan, D., 2007. Valuing wilderness in Iceland: Estimation of WTA and WTP using the market stall approach to contingent valuation. Land Use Policy 24, 289–295. https://doi.org/10.1016/j.landusepol.2005.07.001
Manski, C., 1977. The structure of random utility models. Theory and Decision 8, 229–254. https://doi.org/10.1007/BF00133443
Martínez, L.E., Vallone, R.C., Piccoli, P.N., Ratto, S.E., 2018. Assessment of soil properties, plant yield and composition, after different type and applications mode of organic amendment in a vineyard of Mendoza, Argentina. Rev. la Fac. Ciencias Agrar. 50, 17–32.
McFadden, D., 1973. Conditional logit analysis of qualitative choice behavior. In P. Zarembka. (ed.), Frontiers in Econometrics, 105–142. New York, USA: Academic Press.
Meier, M.S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., Stolze, M., 2015. Environmental impacts of organic and conventional agricultural products e Are the differences captured by life cycle assessment? J. Environ. Manage. 149, 193–208. https://doi.org/10.1016/j.jenvman.2014.10.006
Miglécz, T., Valkó, O., Török, P., Deák, B., Kelemen, A., Donkó, Á., Drexler, D., Tóthmérész, B., 2015. Establishment of three cover crop mixtures in vineyards. Sci. Hortic. (Amsterdam) 197, 117–123. https://doi.org/10.1016/j.scienta.2015.09.017
Montaña, E., 2007. Identidad regional y construcción del territorio en Mendoza (Argentina): memorias y olvidos estratégicos. Bulletin de l’Institut Français d’Études Andines 36, 277–297. https://doi.org/10.4000/bifea.3908
Moonen, A.C., Bàrberi, P., 2008. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 127, 7–21. https://doi.org/10.1016/j.agee.2008.02.013
Morábito, J., Mirábile, C., Salatino, S., 2007. Eficiencia del riego superficial, actual y potencial, en el área de regadío del río Mendoza (Argentina). Ingeniería del Agua 14, 199–214. https://doi.org/10.4995/ia.2007.2912
Morábito, J., Salatino, S., Bermejillo, A., Filippini, M., Campos, S., Nacif, N., Dediol, C., Medina, R., Maffei, J., Mastrantonio, L., Genovese, D, Stocco, A., September 2011. Contaminación antrópica en el río Tunuyán, Mendoza - Argentina: tendencias y escenarios futuros. In La Agricultura de Riego ante el Cambio Climático Global. Symposium held at the XVI Congreso Nacional de Irrigación, Culiacán, Sinaloa, México. Available from: https://www.ina.gov.ar/legacy/pdf/CRA-ryd-contaminacion-antropica.pdf Accessed November 28, 2018.
Mueller, S., Remaud, H. 2010. Are Australian wine consumers becoming more environmentally conscious? robustness of latent preference segments over time. In: Proceedings of the 5th International Academy of Wine Business Research Conference. Auckland, New Zealand.
Nicholls Estrada, C.I., 2008. Control biológico de insectos: un enfoque agroecológico. Medellín, Colombia: Universidad de Antioquia.
Pérez Vázquez, A., Landeros Sánchez. C., 2009. Agricultura y deterioro ambiental. Elementos 73, 19–25. Available from: http://www.elementos.buap.mx/num73/pdf/19.pdf
Poblete, A., Minetti, J., 2017. ¿Influye el calentamiento global en la disminución de las nevadas en los Andes Áridos? Revista Universitaria de Geografía 26, 11–29. Available from: http://bibliotecadigital.uns.edu.ar/scielo.php?script=sci_arttext&pid=S1852-42652017001100002&lng=es&nrm=iso
Pomarici, E., Asioli, D., Vecchio, R., Næs, T., 2018. Young consumers’ preferences for water-saving wines: An experimental study. Wine Econ. Policy 7, 65–76. https://doi.org/10.1016/j.wep.2018.02.002
Powlson, D.S., Gregory, P.J., Whalley, W.R., Quinton, J.N., Hopkins, D.W., Whitmore, A.P., Hirsch, P.R., Goulding, K.W.T., 2011. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36, S72–S87. https://doi.org/10.1016/j.foodpol.2010.11.025
Riera, P., Peñuelas, J., Farreras, V., Estiarte, M., 2007. Valuation of climate-change effects on Mediterranean shrublands. Ecological Applications 17, 91–100. https://doi.org/10.1890/1051-0761(2007)017[0091:VOCEOM]2.0.CO;2
Rolando, J.L., Turin, C., Ramírez, D.A., Mares, V., Monerris, J., Quiroz, R., 2017. Key ecosystem services and ecological intensification of agriculture in the tropical high-Andean Puna as affected by land-use and climate changes. Agric. Ecosyst. Environ. 236, 221–233. https://doi.org/10.1016/j.agee.2016.12.010
Salatino, S., Morábito, J., Bermejillo, A., Dediol, C., Stocco, A., Tapia, O., Miralles, S., Hernández, R., Mastrantonio, L., Genovese, D., Ortiz, N., 2017. Calidad de aguas y análisis de la contaminación en el Río Tunuyán Superior (Mendoza, Argentina) en el periodo 2007-2014. AUGMDOMUS 9, 67-82. Available from: https://revistas.unlp.edu.ar/domus/article/view/2410
Schäufele, I., Hamm, U., 2017. Consumers' perceptions, preferences and willingness-to-pay for wine with sustainability characteristics: a review. J. Clean. Prod. 147 (20), 379-394.
Schilardi, C., Rearte, E., Martín, L., Morábito, J., June 2015. Uniformidad de distribución del riego por goteo en vid: su impacto sobre los índices de vegetación, la cantidad y calidad de la producción. Caso de estudio en Mendoza, Argentina. In Agua, como Política de Estado. Symposium held at the XXV Congreso Nacional del Agua - CONAGUA 2015 -, Paraná, Entre Ríos, Argentina. Available from: https://www.ina.gov.ar/legacy/pdf/Cra_7_Schilardi_Diagnostico.pdf Accessed January 29, 2019.
SENASA, 2017. Servicio Nacional de Sanidad y Calidad Agroalimentaria. Situación de la producción orgánica en la Argentina durante el año 2016. Available from: https://www.argentina.gob.ar/sites/default/files/5_situacin_de_la_po_en_la_argentina_2016.pdf Accessed November 15, 2018.
Sellers-Rubio, R., Nicolau-Gonzalbez, J.L., 2016. Estimating the willingness to pay for a sustain able wine using a Heckit model. Wine Economics and Policy 5 (2), 96-104.
Szabó, Z., 2011. Reducing protest responses by deliberative monetary valuation: improving the validity of biodiversity valuation. Ecological Economics 72, 37–44. https://doi.org/10.1016/j.ecolecon.2011.09.025
Train, K., 2009. Discrete choice methods with simulation (2nd ed.). Available from: https://eml.berkeley.edu/books/choice2.html
Turgut, C., 2007. The impact of pesticides toward parrotfeather when applied at the predicted environmental concentration 66, 469–473. https://doi.org/10.1016/j.chemosphere.2006.05.073
Uliarte, E., Ferrari, F., Montoya, M., Bonada, M., Ambrogetti, A.O., 2013. Viticultura orgánica. Aportes tecnológicos para el manejo ecológico de viñedos. In J.A. Ullé (ed.), Bases tecnológicas de sistemas de producción agroecológicos. Nodos Agrícola Ganadero, Agricultura Orgánica y Cultivos Perennes, 12-31. Buenos Aires, Argentina: Ediciones INTA.
van den Bosch, M. E., 2017. Márgenes Brutos de referencia de la producción de uvas en espalderos bajo con variedades de uva con destino enológico y reconocimiento varietal (finas). Ediciones INTA (Instituto Nacional de tecnología Agropecuaria) 1–8.
Vázquez, L., 2011. Cambio climático, incidencia de plagas y prácticas agroecológicas resilientes. In H. Ríos, D. Vargas and F. Funes-Monzote. (eds.), Innovación agroecológica, adaptación y mitigación del cambio climático, 75–101. Mayabeque, Cuba: INCA.
Villalba, R., 2009. Cambios climáticos regionales en el contexto del calentamiento global. (IANIGLA). CONICET Internal Publication (1), 11–14. Argentina, Mendoza.
Waldman, K.B., Richardson, R.B., 2018. Confronting Tradeoffs Between Agricultural Ecosystem Services and Adaptation to Climate Change in Mali. Ecol. Econ. 150, 184–193. https://doi.org/10.1016/j.ecolecon.2018.04.003
Yao, R.T., Kaval, P., 2010. Valuing biodiversity enhancement in New Zealand. International Journal of Ecological Economics and Statistics 16, 26–42.