Evaluation of salinity tolerance of Yemeni chilli pepper genotypes during gemination by using different statistically models

Published 2025-03-10
Keywords
- Chili pepper,
- Germination,
- Salinity,
- Tolerance
How to Cite
Copyright (c) 2024 Isam Al-madhagi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Evaluating the genotypes of vegetables is a critical component in establishing effective plant breeding programs. In this study, nine genotypes of Yemeni Capsicum spp. were collected from various regions in Yemen to assess their germination capabilities under different salinity levels (0, 50, 100, 150, 200, and 250 mM). The experiment was conducted using a factorial completely randomized design (CRD) with three replicates. Results indicated that increasing salinity levels led to a gradual decline in germination percentage (GRP), mean germination rate (MGR), germination time (MGT), and seedling dry matter (DM%). Additionally, variations in the genotypes’ responses to salt stress were evaluated using four models: the slope of the regression line (b), the integrated evaluation approach (DV), Principal components, and the genotypes’ salinity susceptibility index (GSSI). All the classified of genotypes was different by analysis models. Based on the integrated value (DV), the genotypes were classified into four sensitivity categories: resistant (A, D, and G), moderately resistant (F and V2), sensitive (S and Z), and highly sensitive (H and V3) to salinity stress. The findings demonstrate that the slope of the regression line is a reliable indicator for assessing genotype sensitivity to salinity, aligning consistently with the integrated value model (DV). The insights gained from this research are expected to significantly inform breeding strategies aimed at developing salt-tolerant chilli pepper cultivars, which are essential for successful cultivation in challenging environmental conditions.
References
- ABRAHÁM E., RIGÓ G., SZEKELY G., NAGY R., KONCZ C., SZABADOS L., 2003 - Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. - Plant Mol. Biol., 3(51): 363-372.
- AFZAL M., ALGHAMDI S.S., MIGDADI H.H., EL-HARTY E., AL-FAIFI S.A., 2022 - Agronomical and physiological responses of faba bean genotypes to salt stress. - Agriculture, 2(12): 235.
- AHMAD A., BLASCO B., MARTOS V., 2022 - Combating salinity through natural plant extracts based biostimulants: A review. - Front. Plant Sci., 13: 862034.
- AKTAS H., ABAK K., CAKMAK I., 2006 - Genotypic variation in the response of pepper to salinity. - Scientia Horticulturae, 110(3): 260-266.
- AL-MADHAGI I., AL-SHARAGI H., 2019 - Schinus molle leaves compost improves the growth, quality and productivity of strawberry (Fragaria × ananassa Duch) in potting culture. - J. Hort. Plant Res., 7: 26-39.
- AL-MAQTARY E., AL-MADHAGI I., AL-MUREISH K., 2024 - Salicylic acid alleviates the adverse of salinity stress in fenugreek (Trigonella foenum-graecum). - Asian J. Biol., 20(4): 30-58.
- AL-SWEDI F., ALSHAMARI M., AL ZAIDI I., RIHAN H.Z., 2020 - Impact of salinity stress on seed germination in lettuce (Lactuca Sativa). - J. Res. Lepidoptera, 51: 374-385.
- ALDOBAI H., AL-SHABI J., 2010 - Estimation of the Morphological variation and yield components of some hot peppers genotypes in Yemen. - Egypt. J. Appl.Sci. 25(6A): 402-421.
- ALI L., SHAHEEN M.R., IHSAN M.Z., MASOOD S., ZUBAIR M., SHEHZAD F., 2022 - Growth, photosynthesis and antioxidant enzyme modulations in broccoli (Brassica oleracea L. var. italica) under salinity stress. - South African J. Bot., 148: 104-111.
- AMIRINEJAD A.A., SAYYARI M., GHANBARI F., KORDI S., 2017 - Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). - Adv. Hort. Sci., 31(3): 157-163.
- BINZEL M.L., HASEGAWA P.M., HANDA A.K., BRESSAN R.A., 1985 - Adaptation of tobacco cells to NaCl. - Plant Physiol., 79(1): 118-125.
- BOLTON A., SIMON P., 2019 - Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. - HortSci., 54(1): 38-44.
- CHARTZOULAKIS K., KLAPAKI G., 2000 - Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. - Scientia Horti., 86(3): 247-260.
- COLONNA V., D’AGOSTINO N., GARRISON E., ALBRECHTSEN A., MEISNER J., FACCHIANO A., CARDI T., TRIPODI P., 2019 - Genomic diversity and novel genome-wide association with fruit morphology in Capsicum, from 746k polymorphic sites. - Scientific Reports, 9: 10067, pp. 1-14.
- COMPARINI D., TAITI C., LANZA M., VITA F., PANDOLFI C., LUTI S., SPINELLI F., PAZZAGLI L., MANCUSO S., 2021 - Comparison of wild and domesticated hot peppers fruit: volatile emissions, pungency and protein profiles. - Adv. Hort. Sci., 35(3): 305-327.
- DAWD S.M., ABDULLA S.S., 2020 - Effect of different salt concentrations on ratio, speed, growth and development of seedlings of some vegetable crops. - Int. J. Agricult. Stat. Sci., 16(1): 1755-1759.
- DEMIR I., MAVI K., 2008 - Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. - Brazilian Arch. Biol. Technol., 51: 897-902.
- DEVI N.D., ARUMUGAM T., 2019 - Screening of tomato genotypes at various levels of salinity. - J. Pharmacognosy Phytochem., 8(3): 3199-3201.
- EDELSTEIN M., BEN-HUR M., COHEN R., BURGER Y., RAVINA I., 2005 - Boron and salinity effects on grafted and non-grafted melon plants. - Plant Soil, 269(1): 273-284.
- ESTAN M.T., MARTINEZ-RODRIGUEZ M.M., PEREZ-ALFOCEA F., FLOWERS T.J., BOLARIN M.C., 2005 - Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. - J. Exp. Bot., 56(412): 703-712.
- FANG Z., HU Z., ZHAO H., YANG L., DING C., LOU L., CAI Q., 2017 - Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination - Grassland Sci., 63(1): 36-45.
- FAO, 2022 - United National food and agricultural statistical database. - http://www.fao.org.
- FAROOQI M.Q.U., ZAHRA Z., AFZAL M., GHANI M.I., 2021 - Recent advances in plant adaptation to climate change. An introduction to compatible solutes, pp. 1-9. - In: WANI S.H., M.P. GANGOLA, and B.R. RAMADOSS (eds.) Compatible solutes engineering for crop plants facing climate change. Springer, Cham, Switzerland, pp. 266.
- FU H., YANG Y., 2023 - How plants tolerate salt stress. - Curr. Issues Mol. Biol., 45(7): 5914-5934.
- GIORIO P., CIRILLO V., CARAMANTE M., OLIVA M., GUIDA G., VENEZIA A., GRILLO S., MAGGIO A., ALBRIZIO R., 2020 - Physiological basis of salt stress tolerance in a landrace and a commercial variety of sweet pepper (Capsicum annuum L.). - Plants, 9(6): 795.
- GREENWAY H., MUNNS R., 1980 - Mechanisms of salt tolerance in non halophytes. - Ann. Rev. Plant Physiol., 31(1): 149-190.
- GREGORY P.J., ISMAIL S., RAZAQ I.B., WAHBI A., 2018 - Soil Salinity: Current status and in depth analyses for custainable use chapter 2, pp. 4-11. - In: Challenges and opportunities for crop production in dry and saline environments in Arasia Member States. FAO-IAEA, Wien, Austria, pp. 124.
- GUPTA B., HUANG B., 2014 - Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. - Int. J. Genomics, 2014: 701596.
- HAMDIA M., SHADDAD M., DOAA M., 2004 - Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. - Plant Growth Reg., 44(2): 165-174.
- HANNACHI S., VAN LABEKE M.-C., 2018 - Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). - Scientia Hort., 228: 56-65.
- HASANUZZAMAN M., RAIHAN M.R.H., MASUD A.A.C., RAHMAN K., NOWROZ F., RAHMAN M., NAHAR K., FUJITA M., 2021 - Regulation of reactive oxygen species and antioxidant defense in plants under salinity. - Int. J. Mol. Sci., 17 22: 9326.
- HASEGAWA P.M., BRESSAN R.A., ZHU J.-K., BOHNERT H.J., 2000 - Plant cellular and molecular responses to high salinity. - Ann. Rev. Plant Biol., 51(1): 463-499.
- HORUZ A., BALKAYA A., YıLDıZ S., SARıBAŞ Ş., UYGUR V., 2022 - Comparison of the salt stress tolerance of promising turkish winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines and interspecific hybrids. - Gesunde Pflanzen, 74(1): 69-86.
- HOWLADER M.H.K., ISLAM M.N., BISWAS S., UDDIN M.E., SHILA A., HAQUE M.Z., MAHMUD N., 2018 - Salt tolerance of chili genotypes during germination and seedling growth. - Malays. J. Halal Res., 1(2): 1-7.
- KADER M.A., 2005 - A comparison of seed germination calculation formulae and the associated interpretation of resulting data. - J. Proc. Royal Soc. New South Wales, 138(3-4): 65-75.
- KARALIJA E., LOŠIĆ A., DEMIR A., ŠAMEC D., 2024 - Effects of seed priming on mitigating the negative effects of increased salinity in two varieties of sweet pepper (Capsicum annuum L.). - Soil Syst., 8(1): 35.
- KAYA C., ASHRAF M., ALYEMENI M.N., AHMAD P., 2020 - The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. - Plant Phys. Biochem., 147: 10-20.
- KAYACETIN F., 2022 - Assessment of safflower genotypes for individual and combined effects of drought and salinity stress at early seedling growth stages - Turkish J. Agric. For., 46(5): 601-612.
- KHONDOKER M., MANDAL S., GURAV R., HWANG S., 2023 - Freshwater shortage, salinity increase, and global food production: A need for sustainable irrigation water desalination. - A scoping review. - Earth, 4(2): 223-240.
- KHOSHSOKHAN F., BABALAR M., CHAGHAZARDI H., MOGHADAM M., 2012 - Effect of salinity and drought stress on germination indices of two thymus species. - Cercetări Agronomice în Moldova, 45 (1): 27-35.
- LÄUCHLI A., EPSTEIN E., 1990 - Plant responses to saline and sodic conditions - Agric. Salinity Assessment Manag., 71: 113-137.
- LOGANAYAKI K., TAMIZHMATHI S., BRINDA D., GAYATHRI S., MARY M.C., MOHANLAL V., 2020 - In vitro evaluation of tomato (Lycopersicon esculentum Mill.), chilli (Capsicum annum L.), cucumber (Cucumis sativus L.) and Bhendi (Abelmoschus esculentus L.) for salinity stress. - Inter. J. Chem. Studies, 8(2): 2364-2367.
- LONG S.P., HUMPHRIES S., FALKOWSKI P.G., 1994 - Photoinhibition of photosynthesis in nature. - Ann. Rev. Plant Biol., 45(1): 633-662.
- LYCOSKOUFIS I., SAVVAS D., MAVROGIANOPOULOS G., 2005 - Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system. - Scientia Hort., 106(2): 147-161.
- MAAS E.V., HOFFMAN G.J., 1977 - Crop salt tolerance. -Current assessment. - J. Irrig. Drain. Eng., 103(2): 115-134.
- MAGGIO A., RAIMONDI G., MARTINO A., DE PASCALE S., 2007 - Salt stress response in tomato beyond the salinity tolerance threshold. - Environ. Exp. Bot., 59(3): 276-282.
- MANGAL V., LAL M.K., TIWARI R.K., ALTAF M.A., SOOD S., KUMAR D., BHARADWAJ V., SINGH B., SINGH R.K., AFTAB T., 2023 - Molecular insights into the role of reactive oxygen, nitrogen and sulphur species in conferring salinity stress tolerance in plants. - J. Plant Growth Reg., 42(2): 554-574.
- MEYER R., BOYER J., 1981 - Osmoregulation, solute distribution, and growth in soybean seedlings having low water potentials. - Planta, 151: 482-489.
- MICELI A., MONCADA A., VETRANO F., 2021 - Use of microbial biostimulants to increase the salinity tolerance of vegetable transplants. - Agronomy, 11(6): 1143.
- MOMENPOUR A., IMANI A., 2018 - Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia vera L.) cultivars. - Adv. Hort. Sci., 32(2): 249-264.
- MUBUSHAR M., EL-HENDAWY S., TAHIR M.U., ALOTAIBI M., MOHAMMED N., REFAY Y., TOLA E., 2022 - Assessing the suitability of multivariate analysis for stress tolerance indices, biomass, and grain yield for detecting salt tolerance in advanced spring wheat lines irrigated with saline water under field conditions. - Agronomy, 12: 3084.
- MUNNS R., 1993 - Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. - Plant, Cell Environ., 16(1): 15-24.
- MUNNS R., GILLIHAM M., 2015 - Salinity tolerance of crops - What is the cost? - New Phytologist, 208(3): 668-673.
- MUSHTAQ Z., FAIZAN S., GULZAR B., 2020 - Salt stress, its impacts on plants and the strategies plants are employing against it: A review. - J. Appl. Biol. Biotechn., 8(3): 81-91.
- NAEEM M., BASIT A., AHMAD I., MOHAMED H.I., WASILA H., 2020 - Effect of salicylic acid and salinity stress on the performance of tomato plants. - Gesunde Pflanzen, 72: 393-402.
- NEGRÃO S., SCHMÖCKEL S.M., TESTER M.A., 2016 - Evaluating physiological responses of plants to salinity stress. - Ann. Bot., 119(1): 1-11.
- NTANASI T., SAVVAS D., KARAVIDAS I., PAPADOPOULOU E.A., MAZAHRIRH N., FOTOPOULOS V., ALIFERIS K.A., SABATINO L., NTATSI G., 2024 - Assessing salinity tolerance and fruit quality of pepper landraces. - Agronomy, 14(2): 309.
- PASARIBU S.A., BASYUNI M., PURBA E., HASANAH Y., 2021 - Drought tolerance selection of GT1 rubber seedlings with the addition of polyethylene glycol (PEG) 6000. - - Biodiversitas. J. Biol. Div., 22(1): 394-400.
- QIU R., JING Y., LIU C., YANG Z., WANG Z., 2017 - Response of hot pepper yield, fruit quality, and fruit ion content to irrigation water salinity and leaching fractions. - HortScience, 52(7): 979-985.
- RANAL M.A., 1999 - Effects of temperature on spore germination in some fern species from semideciduous mesophytic forest. - Am. Fern J., 89(2): 149-158.
- RANAL M.A., SANTANA D.G.D., 2006 - How and why to measure the germination process. - Brazilian J. Bot., 29: 1-11.
- ROȘCA M., MIHALACHE G., STOLERU V., 2023 - Tomato responses to salinity stress: From morphological traits to genetic changes. - Front. Plant Sci., 14: 1118383.
- SAHBENI G., NGABIRE M., MUSYIMI P.K., SZEKELY B., 2023 - Challenges and opportunities in remote sensing for soil salinization mapping and monitoring: A review. - Remote Sensing, 15(10): 2540.
- SAKAMOTO A., MURATA N., 2001 - The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. - Plant Physiol., 125(1): 180-188.
- SANTA-CRUZ A., MARTINEZ-RODRIGUEZ M.M., PEREZ-ALFOCEA F., ROMERO-ARANDA R., BOLARIN M.C., 2002 - The rootstock effect on the tomato salinity response depends on the shoot genotype. - Plant Sci., 162(5): 825-831.
- SARKAR A.K., ORAON S., MONDAL S., SADHUKHAN S., 2023 - Effect of salinity on seed germination and seedling growth of bullet cultivar of chilli (Capsicum annuum L.). - Brazilian J. Bot., 46(3): 513-525.
- SEMIZ G.D., SUAREZ D.L., ÜNLUKARA A., YURTSEVEN E., 2014 - Interactive effects of salinity and N on pepper (Capsicum annuum L.) yield, water use efficiency and root zone and drainage salinity. - J. Plant Nutr., 37(4): 595-610.
- SERIO A., MAGGIO F., BEN HSOUNA A., BEN SAAD R., TAITI C., GARZOLI S., 2024 - Exploring the metabolome and antimicrobial properties of Capsicum annuum L. (Baklouti and Paprika) dried powders from Tunisia - Molecules, 29(22): 5236.
- SINGH J., SASTRY E.D., SINGH V., 2012 - Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage. - Physiol. Mol. Biol. Plants, 18: 45-50.
- SINGLA-PAREEK S., REDDY M., SOPORY S., 2003 - Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. - Proceedings Nat. Academy Sci., 100(25): 14672-14677.
- SUAREZ D.L., 2001 - Sodic soil reclamation: Modelling and field study. - Soil Res., 39(6): 1225-1246.
- SWAMY K., 2023 - Origin, distribution, taxonomy, botanical description, genetic diversity and breeding of capsicum (Capsicum annuum L.). - Int. J. Dev. Res., 13: 61956-61977.
- TAITI C., COMPARINI D., MOSCOVINI L., VIOLINO S., COSTA C., MANCUSO S., 2024 - Influence of the drying process on the volatile profile of different Capsicum species. - Plants, 13(8): 1131.
- TAITI C., COSTA C., MENESATTI P., COMPARINI D., BAZIHIZINA N., AZZARELLO E., MASI E., MANCUSO S., 2015 - Class-modeling approach to PTR-TOFMS data: A peppers case study. - J. Sci. Food Agric., 95(8): 1757-1763.
- TALSKÁ R., MACHALOVÁ J., SMÝKAL P., HRON K., 2020 - A comparison of seed germination coefficients using functional regression. - Appl. Plant Sci., 8(8): e11366.
- TAROLLI P., LUO J., PARK E., BARCACCIA G., MASIN R., 2024 - Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. - iScience, 27(2): 108830.
- USAID, 2010 -Yemen-propery rights and resource governance profile. - https://www.land-links.org /country-profile/yemen/
- WIEN H.C., STUTZEL H., 2020 - The physiology of vegetable crops. - CABI, Wallingford, UK, pp. 497.
- XIE Y., LIU X., AMEE M., YU H., HUANG Y., LI X., CHEN L., FU J., SUN X., 2021 - Evaluation of salt tolerance in Italian ryegrass at different developmental stages. - Agronomy, 11(8): 1487.
- YANG A., DUAN X., GU X., GAO F., ZHANG J., 2005 - Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance - Plant Cell, Tissue Organ Cult., 83(3): 259-270.
- ZAMLJEN T., MEDIC A., HUDINA M., VEBERIC R., SLATNAR A., 2022 - Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity level. - Plants, 11(7): 853.
- ZHOU X.-J., HUANG H.-X., ZHANG J.-X., 2023 - Effects of salt stress on photosynthetic characteristics of Gymnocarpos przewalskii seedlings - Acta Prataculturae Sinica, 32(2): 75.
- ZHU G., KINET J.M., BERTIN P., BOUHARMONT J., LUTT S., 2000 - Crosses between cultivars and tissue culture‐selected plants for salt resistance improvement in rice, Oryza sativa. - Plant Breeding, 119(6): 497-504.
- ZOWAIN A., 2014 - Effect of salt stress on germination attributes in maize - Iraqi J. Agric. Sci., 45(7): 738-745.