Vol. 39 No. 2 (2025)
Articles

Physiological tolerance of shallot varieties to airborne salinity in coastal sandy soils

Saparso
Agrotechnology Department, Agriculture Faculty, Universitas Jenderal Soedirman, Jl. Dr. Soeparno No. 63, Purwokerto 53122, Central Java, Indonesia.
A. Sudarmaji
Agrotechnology Department, Agriculture Faculty, Universitas Jenderal Soedirman, Jl. Dr. Soeparno No. 63, Purwokerto 53122, Central Java, Indonesia.
M. Bachtiar Musthafa
Agrotechnology Department, Agriculture Faculty, Universitas Jenderal Soedirman, Jl. Dr. Soeparno No. 63, Purwokerto 53122, Central Java, Indonesia.
E. Wukir Tini
Agrotechnology Department, Agriculture Faculty, Universitas Jenderal Soedirman, Jl. DR. Soeparno No. 63, Purwokerto 53122, Central Java, Indonesia.
F. Pramana Putra
Agriculture Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Jl. Prof. Sudarto No. 13, Semarang 50275, Cental Java, Indonesia.
R. Raditya Kurniawan
Agrotechnology Department, Agriculture Faculty, Universitas Jenderal Soedirman, Jl. Dr. Soeparno No. 63, Purwokerto 53122, Central Java, Indonesia.

Published 2025-08-08

Keywords

  • Seasonal shoreline wind,
  • resistant varieties,
  • salinity tolerane index

How to Cite

saparso, saparso, Sudarmaji, A., Bachtiar Musthafa, M., Tini, E. W., Pramana Putra, F., & Raditya Kurniawan, R. (2025). Physiological tolerance of shallot varieties to airborne salinity in coastal sandy soils. Advances in Horticultural Science, 39(2), 149–162. https://doi.org/10.36253/ahsc-16803

Abstract

Shallot as a horticultural crop has various benefits and important uses as a provider of nutritional needs. Its uniqueness in aroma and flavor makes it commonly used as a seasoning so that it has a good economic value as an increase in farmers’ income. Sandy land on the coast has the potential for shallot cultivation. The presence of wind that airborne salinity on coastal land requires the selection of tolerant varieties and knowledge of the level of airborne salinity concentration that shallot plants can tolerate. Experiments have been conducted from July to December 2023 in the screenhouse and horticultural agronomy lab, Faculty of Agriculture, Jenderal Soedirman University, Purwokerto (7°24’27.7”S, 109°15’19.1”E). Treatments consisted of the use of shallot varieties Bali Karet (B1) and Bima Brebes (B2), with the application of several concentrations of airborne salinity consisting of 0, 6, 12, and 18 mS cm-1. The Bali Karet variety excels in plant height and root dry weight morphologically. Physiologically, Bima Brebes has higher levels of chlorophyll a and stomatal density, while Bali Karet is superior in chlorophyll b. Harvest results show Bima Brebes produces more tubers, while Bali Karet produces higher fresh tuber weight per clump. Morphological parameters (plant height, root dry weight), physiology (chlorophyll a, chlorophyll b, stomatal aperture, stomatal density), and yield showed the highest value at the lowest air salinity concentration (0 mS cm). Both varieties increased proline as a tolerance mechanism to 18 mS cm air salinity. The best interaction occurred between Bali Karet and 0 mS cm-¹ salinity on stomatal opening, and between Bima Brebes and 0 mS cm salinity on stomatal density. Both varieties were classified as having moderate tolerance to 18 mS cm salinity, but total chlorophyll was very sensitive to this salinity concentration.

References

  1. AHMAD R., HUSSAIN S., ANJUM M.A., KHALID M.F., SAQIB M., ZAKIR I., HASSAN A., FAHAD S., AHMAD S., 2019 - Oxidative stress and antioxidant defense mechanisms in plants under salt stress, pp. 191-205. - In: HASANUZZAMAN M., K.R. HAKEEM, K. NAHAR, and H.F. ALHARBY (eds.) Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches. Springer, Cham, Switzerland, pp. 490.
  2. ALAM M.A., RAHMAN M.A., RAHMAN M.M., HASAN M.M., NAHER S., FAHIM A.H.F., MOTTALIB A., ROY S., ISLAM R., MOZUMDER S.N., ALSUHAIBANI A.M., GABER A., HOSSAIN A., 2023 - Performance valuation of onion (Allium cepa L.) genotypes under different levels of salinity for the development of cultivars suitable for saline regions. - Front. Plant Sci., 14: 1154051.
  3. ALAVAN A., HAYATI R., HAYATI E., 2015 - Pengaruh pemupukan terhadap pertumbuhan beberapa varietas pad Gogo (Oryza sativa L.). - J. Floratek 10: 61-68.
  4. ANSHORI M.F., PURWOKO B.S., DEWI I.S., ARDIE S.W., SUWARNO W.B., SAFITRI H., 2018 - Determination of selection criteria for screening of rice genotypes for salinity tolerance. - SABRAO J. Breed. Genet., 50(3): 279-294.
  5. ANUGRAH D.E., SETIAWAN T.P., SASMITA R., AULIA E., AMININGSIH R., SARI V.N., HAJIJAH S.W., KENCANA Y.D., NUGRAHA E.D.S., SAFITRI I.K., PRATAMA J.S.A., SUHARJO U.K.J., FAHRURROZI F., 2022 - Penggunaan indikator fisiologis untuk menentukan tingkat cekaman salinitas pada tanaman padi (Oryza sativa L.). - J. Agroqua: Media Informasi Agronomi Budidaya Perairan, 20(1): 50-65.
  6. ANWAR N.H., KARYAWATI A.S., MAGHFOER M.D., KURNIAWAN A., 2024 - Organic fertilizer alleviates salt stress in shallot by modulating plant physiological responses. - J. Ecol. Engin., 25(7).
  7. ASHRAF M., ALI Q., 2008 - Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). - Environ. Exp. Bot., 63(1-3): 266-273.
  8. ASHRAF M., FOOLAD M.R., 2007 - Roles of glycine betaine and proline in improving abiotic stress resistance. - Environ. Exp. Bot., 59: 206-216.
  9. AYYUB C.M., ALI M., SHAHEEN M.R., QADRI R.W.K., KHAN I., JAHANGIR M.M., ABBASI K.Y., KAMAL S., ZAIN M., 2015 - Enhancing the salt tolerance potential of watermelon (Citrullus lanatus) by exogenous application of salicylic acid. - Amer. J. Plant Sci., 6(19): 3267-3271.
  10. AZMI C., HIDAYAT I.M., WIGUNA G., 2011 - Pengaruh varietas dan ukuran umbi terhadap produktivitas bawang merah. - J. Hortikultura, 21(3): 206-213.
  11. BADAN PUSAT STATISTIK, 2024 - Statistic of horticulture 2023 (Vol. 5). - Badan Pusat Statistik, Jakarta.
  12. BADEM A., SÖYLEMEZ S., 2022 - Effects of nitric oxide and silicon application on growth and productivity of pepper under salinity stress. - J. King Saud Univ. - Sci., 34(6): 102189.
  13. BALASUBRAMANIAM T., SHEN G., ESMAEILI N., ZHANG H., 2023 - Plant’s response mechanisms to salinity stress. - Plants, 12(12): 1-22.
  14. BATES L.S., WALDREN R.P.A., TEARE I.D., 1973 - Rapid determination of free proline for water-stress studies. - Plant Soil, 39: 205-207.
  15. DENAXA N.K., DAMVAKARIS T., ROUSSOS P.A., 2020 - Antioxidant defense system in young olive plants against drought stress and mitigation of adverse effects through external application of alleviating products. - Scientia Hortic., 259: 108812.
  16. DURAZZO A., LUCARINI M., 2022 - Chemical properties, nutritional quality, and bioactive components of horticulture food. - Horticulturae, 8(1): 3.
  17. FAKHRI M., EKAWATI A.W., 2020 - Pengaruh salinitas terhadap Pertumbuhan, Biomassa dan Klorofil-a Dunaliella sp. - J. Fisheries Marine Res., 4(3): 393-398.
  18. FAUZAN M., 2020 - Pendapatan rumah tangga petani bawang merah lahan pasir pantai di Kabupaten Bantul. - JAS, Jurnal Agri Sains, 4(1): 60-66.
  19. FIKRI M.R.A., 2021 - Faktor-Faktor yang Mempengaruhi Peranan Kelompok Tani dalam Penerapan Inovasi Teknologi Budidaya Cabai di Lahan Pasir Pantai Kabupaten Kulon Progo. J. Agrimanex: Agribusiness, Rural Manag. Develop. Ext., 1(2): 20-27.
  20. FURLAN A.L., BIANUCCI E., GIORDANO W., CASTRO S., BECKER D.F., 2020 - Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiol. Biochem., 151, 566-578.
  21. GUPTA B., HUANG B., 2014 - Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. - Int. J. Genomics, 2014: 701596.
  22. HADIANTI F.N., DAMANHURI D., 2019 - Toleransi Enam Varietas Tanaman Bawang Merah (Allium ascalonicum L.) pada Cekaman Salinitas. - J. Produksi Tanaman, 7(12).
  23. HAMEED A., AHMED M.Z., HUSSAIN T., AZIZ I., AHMAD N., GUL B., NIELSEN B.L., 2021 - Effects of salinity stress on chloroplast structure and function. - Cells, 10(8): 2023.
  24. HASANUZZAMAN M., RAIHAN M.R.H., MASUD A.A.C., RAHMAN K., NOWROZ F., RAHMAN M., NAKAR K., FUJITA M., 2021 - Regulation of reactive oxygen species and antioxidant defense in plants under salinity. - Inter. J. Mol. Sci., 22(17): 9326.
  25. HASEGAWA P.M., BRESSAN R.A., ZHU J.K., BOHNERT H.J., 2000 - Plant cellular and molecular responses to high salinity. - Ann. Rev. Plant Biol., 51(1): 463-499.
  26. HOOSHMANDI B., 2019 - Evaluation of tolerance to drought stress in wheat genotypes. - Idesia, 37(2): 37-43.
  27. IRIANI E., 2013 - Prospek pengembangan inovasi teknologi bawang merah di lahan sub optimal (lahan pasir) dalam upaya peningkatan pendapatan petani. - J. Litbang Provinsi Jawa Tengah, 11(2): 231-243.
  28. ISAYENKOV S.V., 2012 - Physiological and molecular aspects of salt stress in plants. - Cytol. Genet., 46(5): 302-318.
  29. JADIDI E., TATARI M., GHASEMNEZHAD M., SALEMI H.R., 2020 - The salinity tolerance of pomegranate cultivars: Effects of salt stress on root and leaf mineral content. - Adv. Hort. Sci., 34(3): 325-335.
  30. KADAYIFCI A., TUYLU G., UCAR Y., CAKMAK B., 2005 - Salt stress and Allium species. - J. Plant Nutr., 28(10): 1865-1877.
  31. KARO B.B., MANIK F., 2020 - Observasi dan adaptasi 10 varietas bawang merah (allium cepa) di berastagi dataran tinggi basah. - J. Agroteknosains, 4(2): 1-9.
  32. KHANNA-CHOPRA R., SEMWAL V.K., LAKRA N., PAREEK A., 2019 - Proline - A key regulator conferring plant tolerance to salinity and drought, pp. 59-80. - In: HASANUZZAMAN M., M. FUJITA, H. OKU, and M.T. ISLAM (eds.) Plant tolerance to environmental stress. CRC Press, Boca Raton, FL, USA, pp. 488.
  33. KHARISUN, SISNO, BUDIONO M.N., ROKHMINARSI, KURNIASIH K., 2022 - The study of silica (Si) and salinity on the growth and yield of shallot plant (Allium ascalonicum L.) in an Entisol soil. - Proceedings of the 2nd Int. Conf. for Smart Agriculture, Food, and Environment (ICSAFE 2021), Atlantis Press, Dordrecht, The Netherlands, pp. 18-31.
  34. KHATUN M., MATSUSHIMA D., RHAMAN M.S., OKUMA E., NAKAMURA T., NAKAMURA Y., MUNEMASA S., MURATA Y., 2020 - Exogenous proline enhances antioxidant enzyme activities but does not mitigate growth inhibition by selenate stress in tobacco BY-2 cells. - Biosci., Biotechol., Biochem., 84(11): 2281-2292.
  35. KIEŁKOWSKA A., 2017 - Allium cepa root meristem cells under osmotic (sorbitol) and salt (NaCl) stress in vitro. - Acta Bot. Croatica, 76(2): 146-153.
  36. KIREMIT M.L., ARSLAN E., 2016 - Effects of salt stress on shallot growth. - European J. Hort. Sci., 81: 267-275.
  37. KOUR D., KHAN S.S., KAUR T., KOUR H., SINGH G., YADAV A., YADAV A.N., 2022 - Drought adaptive microbes as bioinoculants for the horticultural crops. - Heliyon, 8(5): e09493.
  38. KUBALA S., WOJTYLA Ł., QUINET M., LECHOWSKA K., LUTTS S., GARNCZARSKA M., 2015 - Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. - J. Plant Physiol., 183: 1-12.
  39. KUL R., ARJUMEND T., EKINCI M., YILDIRIM E., TURAN M., ARGIN S., 2021 - Biochar as an organic soil conditioner for mitigating salinity stress in tomato. - Soil Sci. Plant Nutr., 67(6): 693-706.
  40. MANSOUR M.M.F., ALI E.F., 2017 - Evaluation of proline functions in saline conditions. - Phytochem., 140: 52-68.
  41. MARDHIANA F., SOEPARJONO S., DAN HANDOYO T., 2018) - Pengaruh konsentrasi dan waktu aplikasi NaCl terhadap hasil dan mutu cabai merah (Capsicum Annum L.). - J. Appl. Agr. Sci., 2(1): 1-8.
  42. MUNNS R., TESTER M., 2008 - Mechanisms of salinity tolerance. - Ann. Rev. Plant Biol., 59: 651-681.
  43. ORZECHOWSKA A., TRTÍLEK M., TOKARZ K.M., SZYMAŃSKA R., NIEWIADOMSKA E., ROZPĄDEK P., WĄTOR K., 2021 - Thermal analysis of stomatal response under salinity and high light. - Inter. J. Mol. Sci., 22(9): 4663.
  44. PRANASARI R., NURHIDAYATI T., PURWANI K., 2012 - Persaingan Tanaman Jagung (Zea mays) dan Rumput Teki (Cyperus rotundus) pada Pengaruh Cekaman Garam (NaCl). - J. Sains Seni ITS, 1 (1).
  45. RATNARAJAH V., GNANACHELVAM N., 2021 - Effect of abiotic stress on onion yield: A review. - Adv. Technol., 1(1): 147-160.
  46. RUIZ-LOZANO J.M., PORCEL R., AZCON C., AROCA R., 2012 - Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. - J. Exp. Bot., 63(11): 4033-4044.
  47. RUSTIKAWATI R., HERISON C., SUTRAWATI M., UMROH D., 2023 - Assessment of salinity tolerance on chili pepper genotypes. - EDP Sciences, E3S Web Conferences, 373: 03023.
  48. SAPARSO, FAOZI K., PUTRA F.P., 2024 - Assessing the air salinity on agro-physiological response of Brassica oleracea var. capitata and Brassica oleracea var. botrytis. - J. Appl. Nat. Sci., 16(1): 77-85.
  49. SAPARSO, SUDARMAJI A., MUSTHAFA M.B., 2023 - Physiological aspects of the growth of Corns (Bonanza 9-F1 and Bisi-18) to air salinity conditions on coastal area. - 3rd Inter. Conf. Sustainable Agriculture for Rural Development, ICSARD 2022, Atlantis Press, Dordrecht, The Netherlands, pp. 362-372.
  50. SHOKAT S., GROßKINSKY D.K., 2019 - Tackling salinity in sustainable agriculture-what developing countries may learn from approaches of the developed world. - Sustainability, 11(17): 1-19.
  51. SIDABARIBA C.J., SUDJATMIKO S., 2023 - Pengaruh perlakuan pupuk organik terhadap pertumbuhan dan hasil tiga varietas bawang merah (Allium cepa var. aggregatum). - Prosiding Seminar Nasional Pertanian Pesisir, 2(1): 150-164.
  52. SILVA-ORTEGA C.O., OCHOA-ALFARO A.E., REYES-AGÜERO J.A., AGUADO-SANTACRUZ G.A., JIMÉNEZ-BREMONT J.F., 2008 - Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. - Plant Physiol. Biochem., 46(1): 82-92.
  53. SOLTABAYEVA A., ONGALTAY A., OMONDI J.O., SRIVASTAVA S., 2021 - Morphological, physiological and molecular markers for salt-stressed plants. - Plants, 10(2): 243.
  54. SUHARJO U.K.J., MARLIN M., PURNAMA D.S., 2021 - Use of organic materials to reduce salinity stress in shallot plants. - National Seminar in the Framework of the 45th Anniversary of UNS, 5(1): 430-437.
  55. SUSANAWATI S., FAUZAN M., 2019 - Risk of shallot supply chain: an analytical hierarchy process (AHP) model in Brebes Java, Indonesia. - Int. J. Supply Chain Manag., 8(1): 124 -131.
  56. SYAMSIYAH J., HERAWATI A., BINAFSIHI W., 2020 - Study of levels water salinity on the growth of varieties of shallots (Allium ascalonicum L.) in Alfisols. - IOP Conference Series: Earth and Environmental Science. IOP Publishing, 423(1): 012065.
  57. SYAMSUDDIN N., SANTOSO N., DIATIN I., 2019 - Inventarisasi Ekosistem Mangrove di Pesisir Randutatah, Kecamatan Paiton, Jawa Timur. - J. Pengelolaan Sumberdaya Alam dan Lingkungan, 9(4): 893-903.
  58. TAVAKKOLI E., RENGASAMY P., MCDONALD G.K., 2010 - High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. - J. Exp. Bot., 61(15): 4449-4459.
  59. TÜRKAN I., DEMIRAL T., 2009 - Recent developments in understanding salinity tolerance. - Environ. Exp. Bot., 67(1): 2-9.
  60. WANI A.S., IRFAN M., HAYAT S., AHMAD A., 2012 - Response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to proline. - Protoplasma, 49: 75-87.
  61. ZAINUDDIN M., HAMID N., MUDIARTI L., KURSISTYANTO N., ARYONO B., 2017 - Pengaruh Media Hiposalin dan Hipersalin terhadap Respon Pertumbuhan dan Biopigmen Dunaliella salina. - Jurnal Enggano, 2(1): 46-57.
  62. ZHANG P., SENGE M., DAI Y., 2016 - Effects of salinity stress on growth, yield, fruit quality, and water use efficiency of tomato under hydroponics system. - Rev. Agric. Sci., 4: 46-55.