Vol. 39 No. 3 (2025)
Articles

Digital and multivariate analysis of lettuce seed vigor: Impact of hydropriming on physiological potential

H.A. Trujillo
Department of Crop Science, University of São Paulo, 'Luiz de Queiroz' College of Agriculture, Av. 11 Pádua Dias, 13418-900 Piracicaba, SP, Brazil.
F.C. Assis de Oliveira
Department of Exact Sciences, University of São Paulo, ‘Luiz de Queiroz’ College of Agriculture, Av. 11 Pádua Dias, 13418-900 Piracicaba, SP, Brazil.
C.M. Villegas Lobos
Department of Exact Sciences, University of São Paulo, ‘Luiz de Queiroz’ College of Agriculture, Av. 11 Pádua Dias, 13418-900 Piracicaba, SP, Brazil.
M. da Silva
Department of Exact Sciences, University of São Paulo, ‘Luiz de Queiroz’ College of Agriculture, Av. 11 Pádua Dias, 13418-900 Piracicaba, SP, Brazil.
F.G. Gomes-Junior
Department of Crop Science, University of São Paulo, 'Luiz de Queiroz' College of Agriculture, Av. 11 Pádua Dias, 13418-900 Piracicaba, SP, Brazil.

Published 2025-11-05

Keywords

  • Applied statistics,
  • image analysis,
  • physiological variability,
  • seed priming

How to Cite

Trujillo, H. A., Assis de Oliveira, F. C., Villegas Lobos, C. M., da Silva, M., & Gomes-Junior, F. G. (2025). Digital and multivariate analysis of lettuce seed vigor: Impact of hydropriming on physiological potential. Advances in Horticultural Science, 39(3), 165–173. https://doi.org/10.36253/ahsc-17532

Abstract

Digital image analysis has emerged as a highly precise and efficient methodology for assessing the physiological attributes of seeds. This research aimed to assess the morphological and physiological properties of lettuce seeds subjected to hydropriming using multivariate statistical approaches. Two lettuce genotypes, Roxa and Vanda, were evaluated under hydropriming treatments (primed-dry and primed-stored). Seedlings were digitally scanned, and vigor indices were quantified using the Seed Vigor Imaging System (SVIS®). Data were analyzed by multivariate analysis of variance (MANOVA), with tests of normality and homogeneity of covariance ensuring analytical robustness. The primed-dry treatment resulted in minimal improvement in vigor and uniformity, while the primed-stored treatment promoted a partial recovery of these attributes. The Roxa genotype exhibited greater variability in vigor and seedling length, whereas Vanda demonstrated higher uniformity but slightly reduced seedling growth. A strong positive correlation was observed between the vigor index and seedling length, reinforcing the importance of these parameters in seed quality assessment. These findings underscore the utility of digital image analysis combined with multivariate statistical methods for the accurate assessment of seed vigor, thereby improving seed-lot classification and informing decision-making in lettuce production systems.

References

  1. ALVARENGA R.O., MARCOS-FILHO J., 2014 - Vigor evaluation of stored cotton seeds, including the Seed Vigor Imaging System (SVIS®). - J. Seed Sci., 36(2): 222-230. DOI: https://doi.org/10.1590/2317-1545v32n2944
  2. ALVARENGA R.O., MARCOS-FILHO J., TIMÓTEO T.S., 2013 - Assessment of the physiological potential of super sweet corn seeds. - J. Seed Sci., 35(3): 340-346. DOI: https://doi.org/10.1590/S2317-15372013000300010
  3. ANDERSON T.W., 2003 - An introduction to multivariate statistical analysis. - Wiley & Sons, Inc., 3rd edition. Hoboken, NJ, USA, pp. 752.
  4. BAUMEISTER M., DITZHAUS M., PAULY M., 2024 - Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs. - J. Multivar. Anal., 199: 105246. DOI: https://doi.org/10.1016/j.jmva.2023.105246
  5. BLACK M., BEWLEY J.D., 2000 - Seed technology and its biological basis. 1st ed., Vol. 1. - CRC Press, Boca Raton, FL, USA, pp. 410.
  6. CALDEIRA C.M., MOREIRA DE CARVALHO M.L., OLIVEIRA J.A., VILAS BOAS COELHO S., YUMI KATAOKA V., 2014 - Vigor de sementes de girassol pela análise computadorizada de plântulas [Sunflower seed vigor by computerized seedling analysis]. - Científica, 42(4): 346-353. DOI: https://doi.org/10.15361/1984-5529.2014v42n4p346-353
  7. CASEIRO R.F., 2003 - Métodos para o condicionamento fisiológico de sementes de cebola e influência da secagem e armazenamento [Methods for the physiological conditioning of onion seeds and influence of drying and storage]. - Escola Superior de Agricultura Luiz de Queiroz, Univ. São Paulo, Piracicaba, SP, Brasil.
  8. CHENG T., CHEN G., WANG Z., HU R., SHE B., PAN Z., ZHOU X.-G., ZHANG G., ZHANG D., 2023 - Hyperspectral and imagery integrated analysis for vegetable seed vigor detection. - Infrared Phys. Technol., 131: 104605. DOI: https://doi.org/10.1016/j.infrared.2023.104605
  9. DE MEDEIROS A.D., CAPOBIANGO N.P., DA SILVA J.M., DA SILVA L.J., DA SILVA C.B., DOS SANTOS DIAS D.C.F., 2020 - Interactive machine learning for soybean seed and seedling quality classification. - Sci. Rep., 10: 11267. DOI: https://doi.org/10.1038/s41598-020-68273-y
  10. DIN I., HAYAT Y., 2021 - ANOVA or MANOVA for correlated traits in agricultural experiments. - Sarhad J. Agric., 37(4): 1250-1259. DOI: https://doi.org/10.17582/journal.sja/2021/37.4.1250.1259
  11. ELIAS S.G., COPELAND L.O., MCDONALD M.B., BAALBAKI R.Z., 2012 - Seed testing: principles and practices. - Michigan State Univ. Press, 1st ed., Vol. 1. East Lansing, MI, USA, pp. 368.
  12. FAROOQ M., BASRA S.M., WAHID A., AHMAD N., 2010 - Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. - Agric. Sci. China, 9(2): 191-198. DOI: https://doi.org/10.1016/S1671-2927(09)60083-3
  13. FAROOQ M., BASRA S.M.A., AFZAL I., KHALIQ A., 2006 - Optimization of hydropriming techniques for rice seed invigoration. - Seed Sci. Technol., 34(2): 507-512. DOI: https://doi.org/10.15258/sst.2006.34.2.25
  14. FAROOQ M., ROMDHANE L., REHMAN A., AL-ALAWI A.K.M., AL-BUSAIDI W.M., ASAD S.A., LEE D.-J., 2021 - Integration of seed priming and biochar application improves drought tolerance in cowpea. - J. Plant Growth Regul., 40(5): 1972-1980. DOI: https://doi.org/10.1007/s00344-020-10245-7
  15. GOMES-JUNIOR F.G., CHAMMA H.M.C.P., CICERO S.M., 2014 - Automated image analysis of seedlings for vigor evaluation of common bean seeds. - Acta Sci. Agron., 36(2): 195-202. DOI: https://doi.org/10.4025/actasciagron.v36i2.21957
  16. GOMES-JUNIOR F.G., MONDO V.H.V., CICERO S.M., MCDONALD M.B., BENNETT M.A., 2009 - Evaluation of priming effects on sweet corn seeds by SVIS®. - Seed Technol., 31(1): 95-100.
  17. HAMPTON J.G., TEKRONY D.M., 1995 - Handbook of vigour test methods. 3rd ed. - International Seed Testing Association, Zurich, Switzerland, pp. 117.
  18. HAND D.J., TAYLOR C.C., 1987 - Multivariate analysis of variance and repeated measures: a practical approach for behavioural scientists. Vol. 5. - CSR Press, New York, NY, USA.
  19. HENZE N., ZIRKLER B., 1990 - A class of invariant consistent tests for multivariate normality. - Commun. Stat. Theory Methods, 19(10): 3595-3617. DOI: https://doi.org/10.1080/03610929008830400
  20. HOFFMASTER A.F., FUJIMURA K., MCDONALD M.B., BENNETT M.A., 2003 - An automated system for vigor testing three-day-old soybean seedlings. - Seed Sci. Technol., 31(3): 701-713. DOI: https://doi.org/10.15258/sst.2003.31.3.19
  21. HUANG M., WANG Q.G., ZHU Q.B., QIN J.W., HUANG G., 2015 - Review of seed quality and safety tests using optical sensing technologies. - Seed Sci. Technol., 43(3): 337-366. DOI: https://doi.org/10.15258/sst.2015.43.3.16
  22. HUBERTY C.J., OLEJNIK S., 2006 - Applied MANOVA and discriminant analysis. 2nd ed. - Wiley, Hoboken, NJ, USA. DOI: https://doi.org/10.1002/047178947X
  23. JOHNSON R.A., WICHERN D.W., 2002 - Applied multivariate statistical analysis (6th ed.). - Prentice Hall, Upper Saddle River.
  24. KIKUTI A.L.P., MARCOS-FILHO J., 2012 - Testes de vigor em sementes de alface [Vigor tests in lettuce seeds]. - Horticult. Bras., 30(1): 44-50. DOI: https://doi.org/10.1590/S0102-05362012000100008
  25. KIKUTI A.L.P., MARCOS-FILHO J., 2013 - Análise de imagens de plântulas e testes tradicionais para avaliação do vigor de sementes de quiabo [Seedling image analysis and traditional tests for assessing okra seed vigor]. - J. Seed Sci., 5(4): 443-448. DOI: https://doi.org/10.1590/S2317-15372013000400005
  26. KOSE A., ONDER O., BILIR O., KOSAR F., 2018 - Application of multivariate statistical analysis for breeding strategies of spring safflower (Carthamus tinctorius L.). - Turk. J. Field Crops, 23(1): 12-19. DOI: https://doi.org/10.17557/tjfc.413818
  27. KRZANOWSKI W.J., 2000 - Principles of multivariate analysis: A User’s Perspective. - Ford Statistical Science Series, Oxford University Press, Oxford, UK, pp. 608. DOI: https://doi.org/10.1093/oso/9780198507086.001.0001
  28. KRZANOWSKI W.J., MARRIOTT F.H.C., 1994 - Multivariate analysis: Distributions, ordination and inference. Vol. 1). Edward Arnold, London, UK, pp. 280.
  29. LEWANDOWSKA S., ŁOZIŃSKI M., MARCZEWSKI K., KOZAK M., SCHMIDTKE K., 2020 - Influence of priming on germination, development, and yield of soybean varieties. - Open Agric., 5(1): 930-935. DOI: https://doi.org/10.1515/opag-2020-0092
  30. LIU F., YANG R., CHEN R., LAMINE GUINDO M., HE Y., ZHOU J., LU X., CHEN M., YANG Y., KONG W., 2023 - Digital techniques and trends for seed phenotyping using optical sensors. - J. Adv. Res., 63: 1-16. DOI: https://doi.org/10.1016/j.jare.2023.11.010
  31. MARCHI J.L., CICERO S.M., GOMES-JUNIOR F.G., 2011 - Using computerized analysis of seedlings to evaluate the physiological potential of peanut seeds treated with fungicide and insecticide. - Rev. Bras. Sementes, 33(4): 652-662.
  32. MARCOS-FILHO J., 1999 - Testes de vigor: importância e utilização [Vigor tests: importance and use], pp. 1-21. - In: KRZANOWSKI F.C., R.D. VIEIRA, and FRANÇA NETO J.B. (eds.) Vigor de sementes: conceitos e testes (Vol. 1,). ABRATES, Londrina, Brazil, pp. 601.
  33. MARCOS-FILHO J., 2015 - Fisiologia de sementes de plantas cultivadas [Physiology of seeds of cultivated plants]. ABRATES, 2nd edition, Londrina, Brazil, pp. 660.
  34. MARCOS-FILHO J., BENNETT M.A., MCDONALD M.B., EVANS A.F., GRASSBAUGH E.M., 2006 - Assessment of melon seed vigour by an automated computer imaging system compared to traditional procedures. - Seed Sci. Technol., 34(2): 485-497. DOI: https://doi.org/10.15258/sst.2006.34.2.23
  35. MARCOS-FILHO, J., 2015 - Seed vigor testing: an overview of the past, present and future perspective. - Sci. Agric., 72(4): 363-374. DOI: https://doi.org/10.1590/0103-9016-2015-0007
  36. MUHIE S.H., AKELE F., YESHIWAS T., 2024 - Phenological and yield response of primed carrot (Daucus carota L.) seeds under deficit irrigation. - Adv. Hort. Sci., 38(2): 119-127. DOI: https://doi.org/10.36253/ahsc-14965
  37. NICACIO J.E.M., PERUSSOLO M.A., LIMA A.C.S. S., 2013 - Análise de variância multivariada-manova na seleção de produtores de laranja Citrus sinensis (L.) Osbeck [Multivariate analysis of variance-MANOVA in the selection of sweet orange producers]. - Rev. Estud. Soc., 15(30): 189-202.
  38. OLIVEIRA I.R.C., REZENDE M.T., DIAS C.T.S., GOMES D.S., BOTREL É.P., GOMES L.A. A., 2013 - Evaluation of crisphead lettuce cultivars in different cover types by MANOVA and discriminant analysis. - Horticult. Bras., 31(3): 439-444. DOI: https://doi.org/10.1590/S0102-05362013000300015
  39. PANG T., CHEN C., FU R., WANG X., YU H., 2023 - An end-to-end seed vigor prediction model for imbalanced samples using hyperspectral image. - Front. Plant Sci., 14: 1-16. DOI: https://doi.org/10.3389/fpls.2023.1322391
  40. PIRASTEH-ANOSHEH H., HASHEMI S.-E., 2020 - Priming, a promising practical approach to improve seed germination and plant growth in saline conditions. - Asian J. Agric. Food Sci., 8(1): 1-12. DOI: https://doi.org/10.24203/ajafs.v8i1.6068
  41. QIU C., DING F., HE X., WANG M., 2023 - Apply physical system model and computer algorithm to identify Osmanthus fragrans seed vigor based on hyperspectral imaging and convolutional neural network. - Inf. Technol. Control, 52(4): 887-897. DOI: https://doi.org/10.5755/j01.itc.52.4.34476
  42. R CORE TEAM, 2024 - R: A language and environment for statistical computing (4.3.3). - R Foundation for Statistical Computing.
  43. RAHMAN A., CHO B.-K., 2016 - Assessment of seed quality using non-destructive measurement techniques: a review. - Seed Sci. Res., 26(4): 285-305. DOI: https://doi.org/10.1017/S0960258516000234
  44. RAJ A.B., RAJ S.K., 2019 - Seed priming: an approach towards agricultural sustainability. - J. Appl. Nat. Sci., 11(1): 227-234. DOI: https://doi.org/10.31018/jans.v11i1.2010
  45. REGO C.H.Q., BRITO D.L., TORRES S.B., MORAIS E.R.C., PEREIRA M.D., DUTRA A.S., BACHETTA G., ALVES C. Z., 2023 - Primary root emission as a vigor test in soybean seeds. - Rev. Ciênc. Agron., 54: , e20238714. DOI: https://doi.org/10.5935/1806-6690.20230051
  46. RHAMAN M.S., IMRAN S., RAUF F., KHATUN M., BASKIN C.C., MURATA Y., HASANUZZAMAN M., 2020 a - Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. - Plants, 10(1): 37. DOI: https://doi.org/10.3390/plants10010037
  47. RHAMAN M.S., RAUF F., TANIA S.S., KHATUN M., 2020 b - Seed priming methods: application in field crops and future perspectives. - Asian J. Res. Crop Sci., 5(2): 8-19. DOI: https://doi.org/10.9734/ajrcs/2020/v5i230091
  48. ROCHA C.R.M., DA SILVA V.N., CICERO S.M., 2015 - Sunflower seed vigor evaluation by seedling image analyze. - Cienc. Rural, 45(6): 970-976. DOI: https://doi.org/10.1590/0103-8478cr20131455
  49. RODRIGUES M., GOMES-JUNIOR F.G., MARCOS-FILHO J., 2020 - Vigor-S: system for automated analysis of soybean seed vigor. - J. Seed Sci., 42: e202042039. DOI: https://doi.org/10.1590/2317-1545v42237490
  50. SAKO Y., MCDONALD M. B., FUJIMURA K., EVANS A.F., BENNETT M., 2001 - A system for automated seed vigour assessment. - Seed Sci. Technol., 29: 625–636.
  51. SCHOLZ F.W., STEPHENS M.A., 1987 - K-sample Anderson–Darling tests. - J. Am. Stat. Assoc., 82(399): 918-924. DOI: https://doi.org/10.1080/01621459.1987.10478517
  52. SOUZA P.P., MOTOIKE S.Y., CARVALHO M., KUKI K.N., BORGES E.E.L.E, SILVA A. M., 2016 - Storage on the vigor and viability of macauba seeds from two provenances of Minas Gerais State. - Cienc. Rural, 46(11): 1932-1937. DOI: https://doi.org/10.1590/0103-8478cr20150848
  53. WANG C., LIU B., LIU L., ZHU Y., HOU J., LIU P., LI X., 2021 - A review of deep learning used in the hyperspectral image analysis for agriculture. - Artif. Intell. Rev., 54(7): 5205-5253. DOI: https://doi.org/10.1007/s10462-021-10018-y
  54. WATERS-JUNIOR L., BLANCHETTE B., 1983 - Prediction of sweet corn field emergence by conductivity and cold tests. - J. Am. Soc. Hort. Sci., 108(5): 778-781. DOI: https://doi.org/10.21273/JASHS.108.5.778
  55. WILKS S.S., 1935 - On the independence of k sets of normally distributed statistical variables. - Econométrica, 3(3): 309. DOI: https://doi.org/10.2307/1905324
  56. XIA Y., XU Y., LI J., ZHANG C., FAN S., 2019 - Recent advances in emerging techniques for non-destructive detection of seed viability: A review. - Artif. Intell. Agric., 1: 35-47. DOI: https://doi.org/10.1016/j.aiia.2019.05.001