Digital and multivariate analysis of lettuce seed vigor: Impact of hydropriming on physiological potential
Published 2025-11-05
Keywords
- Applied statistics,
- image analysis,
- physiological variability,
- seed priming
How to Cite
Copyright (c) 2025 Heiber Andres Trujillo, Francisco Canindé Assis de Oliveira, Cristian Marcelo Villegas Lobos, Marcelo da Silva, Francisco Guilhien Gomes-Junior

This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
Digital image analysis has emerged as a highly precise and efficient methodology for assessing the physiological attributes of seeds. This research aimed to assess the morphological and physiological properties of lettuce seeds subjected to hydropriming using multivariate statistical approaches. Two lettuce genotypes, Roxa and Vanda, were evaluated under hydropriming treatments (primed-dry and primed-stored). Seedlings were digitally scanned, and vigor indices were quantified using the Seed Vigor Imaging System (SVIS®). Data were analyzed by multivariate analysis of variance (MANOVA), with tests of normality and homogeneity of covariance ensuring analytical robustness. The primed-dry treatment resulted in minimal improvement in vigor and uniformity, while the primed-stored treatment promoted a partial recovery of these attributes. The Roxa genotype exhibited greater variability in vigor and seedling length, whereas Vanda demonstrated higher uniformity but slightly reduced seedling growth. A strong positive correlation was observed between the vigor index and seedling length, reinforcing the importance of these parameters in seed quality assessment. These findings underscore the utility of digital image analysis combined with multivariate statistical methods for the accurate assessment of seed vigor, thereby improving seed-lot classification and informing decision-making in lettuce production systems.
References
- ALVARENGA R.O., MARCOS-FILHO J., 2014 - Vigor evaluation of stored cotton seeds, including the Seed Vigor Imaging System (SVIS®). - J. Seed Sci., 36(2): 222-230. DOI: https://doi.org/10.1590/2317-1545v32n2944
- ALVARENGA R.O., MARCOS-FILHO J., TIMÓTEO T.S., 2013 - Assessment of the physiological potential of super sweet corn seeds. - J. Seed Sci., 35(3): 340-346. DOI: https://doi.org/10.1590/S2317-15372013000300010
- ANDERSON T.W., 2003 - An introduction to multivariate statistical analysis. - Wiley & Sons, Inc., 3rd edition. Hoboken, NJ, USA, pp. 752.
- BAUMEISTER M., DITZHAUS M., PAULY M., 2024 - Quantile-based MANOVA: A new tool for inferring multivariate data in factorial designs. - J. Multivar. Anal., 199: 105246. DOI: https://doi.org/10.1016/j.jmva.2023.105246
- BLACK M., BEWLEY J.D., 2000 - Seed technology and its biological basis. 1st ed., Vol. 1. - CRC Press, Boca Raton, FL, USA, pp. 410.
- CALDEIRA C.M., MOREIRA DE CARVALHO M.L., OLIVEIRA J.A., VILAS BOAS COELHO S., YUMI KATAOKA V., 2014 - Vigor de sementes de girassol pela análise computadorizada de plântulas [Sunflower seed vigor by computerized seedling analysis]. - Científica, 42(4): 346-353. DOI: https://doi.org/10.15361/1984-5529.2014v42n4p346-353
- CASEIRO R.F., 2003 - Métodos para o condicionamento fisiológico de sementes de cebola e influência da secagem e armazenamento [Methods for the physiological conditioning of onion seeds and influence of drying and storage]. - Escola Superior de Agricultura Luiz de Queiroz, Univ. São Paulo, Piracicaba, SP, Brasil.
- CHENG T., CHEN G., WANG Z., HU R., SHE B., PAN Z., ZHOU X.-G., ZHANG G., ZHANG D., 2023 - Hyperspectral and imagery integrated analysis for vegetable seed vigor detection. - Infrared Phys. Technol., 131: 104605. DOI: https://doi.org/10.1016/j.infrared.2023.104605
- DE MEDEIROS A.D., CAPOBIANGO N.P., DA SILVA J.M., DA SILVA L.J., DA SILVA C.B., DOS SANTOS DIAS D.C.F., 2020 - Interactive machine learning for soybean seed and seedling quality classification. - Sci. Rep., 10: 11267. DOI: https://doi.org/10.1038/s41598-020-68273-y
- DIN I., HAYAT Y., 2021 - ANOVA or MANOVA for correlated traits in agricultural experiments. - Sarhad J. Agric., 37(4): 1250-1259. DOI: https://doi.org/10.17582/journal.sja/2021/37.4.1250.1259
- ELIAS S.G., COPELAND L.O., MCDONALD M.B., BAALBAKI R.Z., 2012 - Seed testing: principles and practices. - Michigan State Univ. Press, 1st ed., Vol. 1. East Lansing, MI, USA, pp. 368.
- FAROOQ M., BASRA S.M., WAHID A., AHMAD N., 2010 - Changes in nutrient-homeostasis and reserves metabolism during rice seed priming: consequences for seedling emergence and growth. - Agric. Sci. China, 9(2): 191-198. DOI: https://doi.org/10.1016/S1671-2927(09)60083-3
- FAROOQ M., BASRA S.M.A., AFZAL I., KHALIQ A., 2006 - Optimization of hydropriming techniques for rice seed invigoration. - Seed Sci. Technol., 34(2): 507-512. DOI: https://doi.org/10.15258/sst.2006.34.2.25
- FAROOQ M., ROMDHANE L., REHMAN A., AL-ALAWI A.K.M., AL-BUSAIDI W.M., ASAD S.A., LEE D.-J., 2021 - Integration of seed priming and biochar application improves drought tolerance in cowpea. - J. Plant Growth Regul., 40(5): 1972-1980. DOI: https://doi.org/10.1007/s00344-020-10245-7
- GOMES-JUNIOR F.G., CHAMMA H.M.C.P., CICERO S.M., 2014 - Automated image analysis of seedlings for vigor evaluation of common bean seeds. - Acta Sci. Agron., 36(2): 195-202. DOI: https://doi.org/10.4025/actasciagron.v36i2.21957
- GOMES-JUNIOR F.G., MONDO V.H.V., CICERO S.M., MCDONALD M.B., BENNETT M.A., 2009 - Evaluation of priming effects on sweet corn seeds by SVIS®. - Seed Technol., 31(1): 95-100.
- HAMPTON J.G., TEKRONY D.M., 1995 - Handbook of vigour test methods. 3rd ed. - International Seed Testing Association, Zurich, Switzerland, pp. 117.
- HAND D.J., TAYLOR C.C., 1987 - Multivariate analysis of variance and repeated measures: a practical approach for behavioural scientists. Vol. 5. - CSR Press, New York, NY, USA.
- HENZE N., ZIRKLER B., 1990 - A class of invariant consistent tests for multivariate normality. - Commun. Stat. Theory Methods, 19(10): 3595-3617. DOI: https://doi.org/10.1080/03610929008830400
- HOFFMASTER A.F., FUJIMURA K., MCDONALD M.B., BENNETT M.A., 2003 - An automated system for vigor testing three-day-old soybean seedlings. - Seed Sci. Technol., 31(3): 701-713. DOI: https://doi.org/10.15258/sst.2003.31.3.19
- HUANG M., WANG Q.G., ZHU Q.B., QIN J.W., HUANG G., 2015 - Review of seed quality and safety tests using optical sensing technologies. - Seed Sci. Technol., 43(3): 337-366. DOI: https://doi.org/10.15258/sst.2015.43.3.16
- HUBERTY C.J., OLEJNIK S., 2006 - Applied MANOVA and discriminant analysis. 2nd ed. - Wiley, Hoboken, NJ, USA. DOI: https://doi.org/10.1002/047178947X
- JOHNSON R.A., WICHERN D.W., 2002 - Applied multivariate statistical analysis (6th ed.). - Prentice Hall, Upper Saddle River.
- KIKUTI A.L.P., MARCOS-FILHO J., 2012 - Testes de vigor em sementes de alface [Vigor tests in lettuce seeds]. - Horticult. Bras., 30(1): 44-50. DOI: https://doi.org/10.1590/S0102-05362012000100008
- KIKUTI A.L.P., MARCOS-FILHO J., 2013 - Análise de imagens de plântulas e testes tradicionais para avaliação do vigor de sementes de quiabo [Seedling image analysis and traditional tests for assessing okra seed vigor]. - J. Seed Sci., 5(4): 443-448. DOI: https://doi.org/10.1590/S2317-15372013000400005
- KOSE A., ONDER O., BILIR O., KOSAR F., 2018 - Application of multivariate statistical analysis for breeding strategies of spring safflower (Carthamus tinctorius L.). - Turk. J. Field Crops, 23(1): 12-19. DOI: https://doi.org/10.17557/tjfc.413818
- KRZANOWSKI W.J., 2000 - Principles of multivariate analysis: A User’s Perspective. - Ford Statistical Science Series, Oxford University Press, Oxford, UK, pp. 608. DOI: https://doi.org/10.1093/oso/9780198507086.001.0001
- KRZANOWSKI W.J., MARRIOTT F.H.C., 1994 - Multivariate analysis: Distributions, ordination and inference. Vol. 1). Edward Arnold, London, UK, pp. 280.
- LEWANDOWSKA S., ŁOZIŃSKI M., MARCZEWSKI K., KOZAK M., SCHMIDTKE K., 2020 - Influence of priming on germination, development, and yield of soybean varieties. - Open Agric., 5(1): 930-935. DOI: https://doi.org/10.1515/opag-2020-0092
- LIU F., YANG R., CHEN R., LAMINE GUINDO M., HE Y., ZHOU J., LU X., CHEN M., YANG Y., KONG W., 2023 - Digital techniques and trends for seed phenotyping using optical sensors. - J. Adv. Res., 63: 1-16. DOI: https://doi.org/10.1016/j.jare.2023.11.010
- MARCHI J.L., CICERO S.M., GOMES-JUNIOR F.G., 2011 - Using computerized analysis of seedlings to evaluate the physiological potential of peanut seeds treated with fungicide and insecticide. - Rev. Bras. Sementes, 33(4): 652-662.
- MARCOS-FILHO J., 1999 - Testes de vigor: importância e utilização [Vigor tests: importance and use], pp. 1-21. - In: KRZANOWSKI F.C., R.D. VIEIRA, and FRANÇA NETO J.B. (eds.) Vigor de sementes: conceitos e testes (Vol. 1,). ABRATES, Londrina, Brazil, pp. 601.
- MARCOS-FILHO J., 2015 - Fisiologia de sementes de plantas cultivadas [Physiology of seeds of cultivated plants]. ABRATES, 2nd edition, Londrina, Brazil, pp. 660.
- MARCOS-FILHO J., BENNETT M.A., MCDONALD M.B., EVANS A.F., GRASSBAUGH E.M., 2006 - Assessment of melon seed vigour by an automated computer imaging system compared to traditional procedures. - Seed Sci. Technol., 34(2): 485-497. DOI: https://doi.org/10.15258/sst.2006.34.2.23
- MARCOS-FILHO, J., 2015 - Seed vigor testing: an overview of the past, present and future perspective. - Sci. Agric., 72(4): 363-374. DOI: https://doi.org/10.1590/0103-9016-2015-0007
- MUHIE S.H., AKELE F., YESHIWAS T., 2024 - Phenological and yield response of primed carrot (Daucus carota L.) seeds under deficit irrigation. - Adv. Hort. Sci., 38(2): 119-127. DOI: https://doi.org/10.36253/ahsc-14965
- NICACIO J.E.M., PERUSSOLO M.A., LIMA A.C.S. S., 2013 - Análise de variância multivariada-manova na seleção de produtores de laranja Citrus sinensis (L.) Osbeck [Multivariate analysis of variance-MANOVA in the selection of sweet orange producers]. - Rev. Estud. Soc., 15(30): 189-202.
- OLIVEIRA I.R.C., REZENDE M.T., DIAS C.T.S., GOMES D.S., BOTREL É.P., GOMES L.A. A., 2013 - Evaluation of crisphead lettuce cultivars in different cover types by MANOVA and discriminant analysis. - Horticult. Bras., 31(3): 439-444. DOI: https://doi.org/10.1590/S0102-05362013000300015
- PANG T., CHEN C., FU R., WANG X., YU H., 2023 - An end-to-end seed vigor prediction model for imbalanced samples using hyperspectral image. - Front. Plant Sci., 14: 1-16. DOI: https://doi.org/10.3389/fpls.2023.1322391
- PIRASTEH-ANOSHEH H., HASHEMI S.-E., 2020 - Priming, a promising practical approach to improve seed germination and plant growth in saline conditions. - Asian J. Agric. Food Sci., 8(1): 1-12. DOI: https://doi.org/10.24203/ajafs.v8i1.6068
- QIU C., DING F., HE X., WANG M., 2023 - Apply physical system model and computer algorithm to identify Osmanthus fragrans seed vigor based on hyperspectral imaging and convolutional neural network. - Inf. Technol. Control, 52(4): 887-897. DOI: https://doi.org/10.5755/j01.itc.52.4.34476
- R CORE TEAM, 2024 - R: A language and environment for statistical computing (4.3.3). - R Foundation for Statistical Computing.
- RAHMAN A., CHO B.-K., 2016 - Assessment of seed quality using non-destructive measurement techniques: a review. - Seed Sci. Res., 26(4): 285-305. DOI: https://doi.org/10.1017/S0960258516000234
- RAJ A.B., RAJ S.K., 2019 - Seed priming: an approach towards agricultural sustainability. - J. Appl. Nat. Sci., 11(1): 227-234. DOI: https://doi.org/10.31018/jans.v11i1.2010
- REGO C.H.Q., BRITO D.L., TORRES S.B., MORAIS E.R.C., PEREIRA M.D., DUTRA A.S., BACHETTA G., ALVES C. Z., 2023 - Primary root emission as a vigor test in soybean seeds. - Rev. Ciênc. Agron., 54: , e20238714. DOI: https://doi.org/10.5935/1806-6690.20230051
- RHAMAN M.S., IMRAN S., RAUF F., KHATUN M., BASKIN C.C., MURATA Y., HASANUZZAMAN M., 2020 a - Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. - Plants, 10(1): 37. DOI: https://doi.org/10.3390/plants10010037
- RHAMAN M.S., RAUF F., TANIA S.S., KHATUN M., 2020 b - Seed priming methods: application in field crops and future perspectives. - Asian J. Res. Crop Sci., 5(2): 8-19. DOI: https://doi.org/10.9734/ajrcs/2020/v5i230091
- ROCHA C.R.M., DA SILVA V.N., CICERO S.M., 2015 - Sunflower seed vigor evaluation by seedling image analyze. - Cienc. Rural, 45(6): 970-976. DOI: https://doi.org/10.1590/0103-8478cr20131455
- RODRIGUES M., GOMES-JUNIOR F.G., MARCOS-FILHO J., 2020 - Vigor-S: system for automated analysis of soybean seed vigor. - J. Seed Sci., 42: e202042039. DOI: https://doi.org/10.1590/2317-1545v42237490
- SAKO Y., MCDONALD M. B., FUJIMURA K., EVANS A.F., BENNETT M., 2001 - A system for automated seed vigour assessment. - Seed Sci. Technol., 29: 625–636.
- SCHOLZ F.W., STEPHENS M.A., 1987 - K-sample Anderson–Darling tests. - J. Am. Stat. Assoc., 82(399): 918-924. DOI: https://doi.org/10.1080/01621459.1987.10478517
- SOUZA P.P., MOTOIKE S.Y., CARVALHO M., KUKI K.N., BORGES E.E.L.E, SILVA A. M., 2016 - Storage on the vigor and viability of macauba seeds from two provenances of Minas Gerais State. - Cienc. Rural, 46(11): 1932-1937. DOI: https://doi.org/10.1590/0103-8478cr20150848
- WANG C., LIU B., LIU L., ZHU Y., HOU J., LIU P., LI X., 2021 - A review of deep learning used in the hyperspectral image analysis for agriculture. - Artif. Intell. Rev., 54(7): 5205-5253. DOI: https://doi.org/10.1007/s10462-021-10018-y
- WATERS-JUNIOR L., BLANCHETTE B., 1983 - Prediction of sweet corn field emergence by conductivity and cold tests. - J. Am. Soc. Hort. Sci., 108(5): 778-781. DOI: https://doi.org/10.21273/JASHS.108.5.778
- WILKS S.S., 1935 - On the independence of k sets of normally distributed statistical variables. - Econométrica, 3(3): 309. DOI: https://doi.org/10.2307/1905324
- XIA Y., XU Y., LI J., ZHANG C., FAN S., 2019 - Recent advances in emerging techniques for non-destructive detection of seed viability: A review. - Artif. Intell. Agric., 1: 35-47. DOI: https://doi.org/10.1016/j.aiia.2019.05.001
